
Persistent Constraints in Constraint Handling
Rules

Hariolf Betz, Frank Raiser, and Thom Frühwirth

Faculty of Engineering and Computer Sciences, Ulm University, Germany
firstname.lastname@uni-ulm.de

Abstract. In the most abstract definition of its operational semantics,
the declarative and concurrent programming language CHR is trivially
non-terminating for a significant class of programs. Common refinements
of this definition, in closing the gap to real-world implementations, com-
promise on declarativity and/or concurrency. Building on recent work
and the notion of persistent constraints, we introduce an operational se-
mantics avoiding trivial non-termination without compromising on its
essential features.

1 Introduction

Constraint Handling Rules [1] (CHR) is a declarative, multiset- and rule-based
programming language suitable for concurrent execution and powerful program
analyses. Several operational semantics have been proposed for CHR [1], situated
between an abstract and an implementation level.

The most abstract operational semantics – constituting the basis for most
other variants – is called the “very abstract” operational semantics and denoted
as ωva. It is firmly rooted in first-order logic, defining a state transition system
but providing no execution model. Hence, it is oblivious to termination issues,
unfavorably causing the class of rules known as propagation rules to induce trivial
non-termination.

The de-facto standard in avoiding trivial non-termination is set by the op-
erational semantics ωt [1], providing the basis for most available CHR imple-
mentations. In ωt, every propagation rule is applicable only once to a specific
combination of constraints, thus avoiding trivial non-termination. This is real-
ized by keeping a propagation history – also called token store – in the program
state.

On the downside, token stores break with declarativity: Two states that
differ only in their token stores may exhibit different operational behaviour while
sharing the same logical reading. Therefore, we consider token stores as non-
declarative elements in program states. The propagation history also hinders
effective concurrent execution of CHR programs, as it has to be distributed
adequately.

With concurrency in mind, [2] defines operational semantics based on sets
rather than multisets, which effectively avoids trivial non-termination without



2 Hariolf Betz, Frank Raiser, and Thom Frühwirth

recurring to token stores. With nine transition rules, however, the resulting state
transition system is unusually complex, thus reducing clarity and complicating
formal proofs. Furthermore, abandoning multiset semantics is a severe break with
existing approaches and the presence of non-declarative elements remains. No-
tably, the authors of [2] reckon that any “reasonable [multiset-based] semantics”
for CHR requires a propagation history. This work is proof to the contrary.

Recent work on linear logical algorithms [3] and the close relation of CHR to
linear logic [4] suggest a novel approach: we introduce the notion of persistent
constraints to CHR, a concept reminiscent of “banged” propositions in linear
logic. Persistent constraints provide a finite representation of the results of any
number of propagation rule firings. Furthermore, we explicitly define our state
transition system as irreflexive. It shows that, in combination, these ideas solve
the problem of trivial non-termination.

Building on earlier work in [5], we thus develop the operational semantics ω!

for CHR in this work. As opposed to existing approaches, it achieves a high
degree of declarativity whilst preserving the potential of ωva for effective con-
current execution. Its state transition system requires only two rules, such that
each transition step corresponds to a CHR rule application, thus facilitating
formal reasoning over programs.

In Section 2 we introduce CHR and present its operational semantics ωva

and ωt. We then introduce ω! and discuss its properties in Section 3, before
comparing it to other approaches in Section 4. Finally, in Section 5 we conclude
and consider possible directions of future work.

2 Preliminaries

This section introduces CHR and its two most important operational semantics.
A complete listing of available operational semantics is given in [6]. In this work,
we concentrate on the so-called very abstract operational semantics ωva and
theoretical operational semantics ωt. A refined variant of the latter – introduced
in [7] and denoted as ωr – reduces several sources of non-determinism and is the
de-facto standard for CHR implementations.

The very abstract operational semantics ωva is the semantics with the sim-
plest state definition and fewest restrictions on rule applications. We introduce
it in Section 2.2 before presenting its refinement into the theoretical operational
semantics ωt in Section 2.3.

2.1 The Syntax of CHR

Constraint Handling Rules distinguishes between two kinds of constraints: user-
defined (or simply CHR) constraints and built-in constraints. The latter are pro-
cessed by a predefined solver implementing a complete and decidable constraint
theory CT .

CHR itself is an advanced rule-based rewriting language. Its eponymous rules
are of the form

r@ H1\H2 ⇔ G | Bc, Bb



Persistent Constraints in Constraint Handling Rules 3

where H1 and H2 are multisets of user-defined constraints, called the kept head
and removed head, respectively. The guard G is a conjunction of built-in con-
straints and the body consists of a conjunction of built-in constraints Bb and a
multiset of user-defined constraints Bc. The rule name r is optional and may be
omitted along with the @ symbol.

Intuitively speaking, a rule is applicable, if a part of the current state can be
matched to all head constraints such that the guard is satisfied. Application of a
rule removes from the state the constraints matched to H2 and adds the guards
and the body constraints to the state. In this work, we put special emphasis on
the class of rules where H2 = ∅, called propagation rules. Propagation rules can
be written alternatively as H1 ⇒ G | Bc, Bb.

2.2 Very Abstract Operational Semantics

The very abstract operational semantics ωva [1] is the most general specifica-
tion of an operational semantics for CHR. Its state definition only contains one
component and the transition system is given by a single rule.

Definition 1 (ωva-State).
A ωva-state σva = 〈C〉 is a conjunction C of built-in and CHR constraints.

The only allowed state transition in ωva is the application of a CHR rule.

Definition 2 (ωva-Transition). Let r @ H1 \H2 ⇔ G | B be an instance of a
rule r ∈ P with new local variables x̄ and CT |= ∀(G→ ∃x̄.G). Then

〈H1 ∧H2 ∧G〉�ωva
〈H1 ∧G ∧B ∧G〉

Note that the above definition, based on instantiation of rules, requires all
arguments of constraints in H1 and H2 to be variables. Ground terms can be
realized by an equality constraint in the guard, and similarly, multiple occur-
rences of the same variable are not allowed, but have to be realized via guard
constraints. This restriction simplifies the formulation of ωva, but it also makes
for less elegant programs. Most derived operational semantics – including ωt,
ωset, and ω! discussed herein – avoid this restriction.

An inherent problem of ωva is its behavior with respect to propagation rules:
If a state can fire a propagation rule once, it can do so again and again, ad
infinitum. In the literature, this problem is referred to as trivial non-termination
of propagation rules.

2.3 Theoretical Operational Semantics

The theoretical operational semantics ωt [1, 6] is based on the idea of using a
token store to avoid trivial non-termination. Under ωt, a propagation rule can
only be applied once to each combination of constraints matching the head.
Hence, the token store keeps a history of fired propagation rules, which is based
on constraint identifiers.



4 Hariolf Betz, Frank Raiser, and Thom Frühwirth

Definition 3 (Identified CHR Constraints).
An identified CHR constraint c#i is a CHR constraint c associated with a

unique integer i, the constraint identifier. We introduce the functions chr(c#i) =
c and id(c#i) = i, and extend them to sequences and sets of identified CHR
constraints in the obvious manner.

The definition of a CHR state in ωt is more complicated, because identified
constraints are distinguished from unidentified constraints and the token store
is added [1].

Definition 4 (ωt-State).
A ωt-state is a tuple of the form 〈G,S,B,T〉Vn where the goal (store) G is

a multiset of constraints, the CHR (constraint) store S is a set of numbered
CHR constraints, the built-in (constraint) store B is a conjunction of built-in
constraints. The propagation history (or token store) T is a set of tuples (r, I),
where r is the name of a propagation rule and I is an ordered sequence of the
identifiers of constraints that matched the head constraints of r in a previous
application of r. Finally, the set V of global variables contains the variables that
occur in the initial goal.

This state definition entails a more complicated transition system, consisting
of the following three types of transitions:

Definition 5 (ωt-Transitions).

1. Solve. 〈{c} ]G,S,B,T〉Vn �ωt
〈G,S,B′,T〉Vn

where c is a built-in constraint and CT |= ∀((c ∧ B)↔ B′).
2. Introduce. 〈{c} ]G,S,B,T〉Vn �ωt

〈G, {c#n} ∪ S,B,T〉Vn+1

where c is a CHR constraint.
3. Apply. 〈G, H1∪H2∪S,B,T〉Vn �ωt 〈B]G, H1∪S, chr(H1) = H ′1∧chr(H2) =

H ′2 ∧G ∧ B,T ∪ {(r, id(H1) + id(H2))}〉Vn
where r @ H ′1 \ H ′2 ⇔ G | B is a fresh variant of a rule in P with fresh
variables variables x̄ such that CT |= ∃(B) ∧ ∀(B → ∃x̄(chr(H1) = H ′1 ∧
chr(H2) = H ′2 ∧G)) and (r, id(H1) + id(H2)) 6∈ T.

By construction, ωt restricts the number of applications of a propagation rule
for each given combination of head constraints to one. This stands in contrast
to its declarative reading as well as its execution under ωva, where a propa-
gation rule may be applied any number of times. The ωt-state also contains
non-declarative elements: the set of identified CHR constraints, the propagation
history, and the integer n used for identification.

3 Operational Semantics with Persistent Constraints

We now introduce our proposal for an operational semantics ω! with persistent
constraints. It is based on three important ideas:



Persistent Constraints in Constraint Handling Rules 5

1. In ωva, the body of a propagation rule can be generated any number of times
given that the corresponding head constraints are present in the store. In
order to give consideration to this theoretical behavior while avoiding trivial
non-termination, we introduce those body constraints as so-called persistent
constraints. A persistent constraint can be regarded as a finite representation
of a very large, though unspecified number of identical constraints. For a
proper distinction, constraints that are non-persistent are henceforth called
linear constraints.

2. Not only the bodies of propagation rules can be generated indefinitely many
times in ωva. Consider the following program:

r1 @ a(X) =⇒ b(X)
r2 @ b(X) ⇔ c(X)

If executed with a goal a(0), this program can generate an arbitrary number
of constraints of the form b(0). As a consequence of this, it can also gen-
erate arbitrarily many constraints c(0). To take these indirect consequences
of propagation rules into accout, we introduce a rule’s body constraints as
persistent, whenever its removed head can be matched completely with per-
sistent constraints.

3. As a persistent constraint represents an arbitrary number of identical con-
straints, we consider several occurences of a persistent constraint as idempo-
tent. We now adapt our execution model such that a transition takes place
only if the post-transition state is not equivalent to the pre-transition state.
By the thus irreflexive transition system, we avoid trivial non-termination of
propagation rules.

To realize the first two ideas, we adapt the definion of states in ω! with respect
to ωt: The goal store G of ωt-states is split into a store L of linear constraints
and a store P of persistent constraints. The components B and V of ωt-states are
retained, but the token-related components S,T, and n are eliminated.

Definition 6 (ω!-State).
A ω!-state is a tuple of the form 〈L,P,B,V〉, where L and P are multisets

of CHR constraints called the linear (CHR) store and persistent (CHR) store,
respectively. B is a conjunction of built-in constraints and V is a set of variables.

We define the notion of strictly local variables which we will apply below.

Definition 7 (Strictly local variables). Let σ = 〈L,P,B,V〉 be an ω! state.
Then we call the variables occurring in B but not in L, P, or V the strictly local
variables of σ.

To realize the third idea, we adapt the equivalence relation between ω!-states.
The following definition of state equivalence is based on [5], adding condition 5
to handle idempotence of persistent constraints.

Definition 8 (Equivalence of ω!-States).
Equivalence between ω!-states is the smallest equivalence relation ≡ over ω!-

states that satisfies the following conditions:



6 Hariolf Betz, Frank Raiser, and Thom Frühwirth

1. (Equality as Substitution) Let X be a variable, t be a term and .= the syn-
tactical equality relation.

〈L,P, X .= t ∧ B,V〉 ≡ 〈L [X/t] ,P [X/t] , X .= t ∧ B,V〉

2. (Transformation of the Constraint Store) If CT |= ∃s̄.B↔ ∃s̄′.B′ where s̄, s̄′

are the strictly local variables of B,B′, respectively, then:

〈L,P,B,V〉 ≡ 〈L,P,B′,V〉

3. (Omission of Non-Occurring Global Variables) If X is a variable that does
not occur in L, P or B then:

〈L,P,B, {X} ∪ V〉 ≡ 〈L,P,B,V〉

4. (Equivalence of Failed States)

〈L,P,⊥,V〉 ≡ 〈L′,P′,⊥,V′〉

5. (Contraction)
〈L, P ] P ] P,B,V〉 ≡ 〈L, P ] P,B,V〉

Based on this definition of state equivalence, we define CHR as a rewrite
system over equivalence classes of states. Let Σ be the set of all ω!-states, then
the transition relation �ω! satisfies �ω!⊆ (Σ/≡)×(Σ/≡). Note that we use the
term state interchangably to denote ω!-states per se, as well as equivalence classes
over such states. As discussed above, we require that a post-transition state τ
needs to be different to the pre-transition state σ, thus making the transition
relation irreflexive.

Definition 9 (ω!-Transitions).

r @ (H l
1 ]H

p
1 )\(H l

2 ]H
p
2 )⇔ G | Bc, Bb H l

2 6= ∅ σ 6= τ
σ = [〈H l

1 ]H l
2 ] L, Hp

1 ]H
p
2 ] P, G ∧ B,V〉]

�ω! [〈H l
1 ]Bc ] L, Hp

1 ]H
p
2 ] P, G ∧ B ∧Bb,V〉] = τ

r @ (H l
1 ]H

p
1 )\Hp

2 ⇔ G | Bc, Bb σ 6= τ
σ = [〈H l

1 ] L, Hp
1 ]H

p
2 ] P, G ∧ B,V〉]

�ω! [〈H l
1 ] L, Hp

1 ]H
p
2 ]Bc ] P, G ∧ B ∧Bb,V〉] = τ

Note that in a concurrent environment, the second inference rule can be
executed without any restrictions: As persistent constraints cannot be removed
by other rule applications every process can independently use them to fire rules.
The first inference rule can be executed concurrently, if is is guaranteed, that
rule applications do not interfere, in the manner described in [8].



Persistent Constraints in Constraint Handling Rules 7

3.1 Termination Behavior

Our proposed operational semantics ω! results in a termination behavior different
from ωt and ωva. Compared to ωva, the problem of trivial non-termination is
solved in ω!. In comparison with ωt, we find that there exist programs that
terminate under ω! but not under ωt, and vice versa.

Example 1. Consider the following straightforward CHR program for computing
the transitive hull of a graph represented by edge constraints e/2:

t @ e(X,Y ), e(Y, Z) =⇒ e(X,Z)

Due to the presence of propagation rules, this program is not terminating
under ωva. Under ωt, termination depends on the initial goal: It is shown in
[9] that this program terminates for acyclic graphs. However, goals containing
graphs with cycles, like 〈(e(1, 2), e(2, 1)), ∅,>, ∅〉∅0, result in nontermination.

When executed under ω!, the previous goal terminates after computing the
transitive hull.

〈{e(1, 2), e(2, 1)}, ∅,>, ∅〉
�t

ω!
〈{e(1, 2), e(2, 1)}, {e(1, 1)},>, ∅〉

�∗
ω!
〈{e(1, 2), e(2, 1)}, {e(1, 1), e(1, 2), e(2, 1), e(2, 2)},>, ∅〉 6�ω!

In fact, we can show that the above program terminates under ω! for all
possible inputs.

Proposition 1. Under ω!, the transitive hull program terminates for every pos-
sible input.

Proof. The only rule t propagates e constraints, which are necessarily persistent.
The propagated constraints contain only the arguments X,Z, already recieved
as parameters. Hence, no new arguments are introduced. Any given initial state
contains only a finite number of arguments. Therefore, only finitely many dif-
ferent e constraints can be built from these arguments. As rule application is
irreflexible, the computation therefore has to stop after a finite number of tran-
sition steps. ut
Example 2. Consider the following exemplary CHR program:

r1 @ a =⇒ b
r2 @ c(X), b ⇔ c(X + 1)

The above program terminates under ωt and ωr: There can only be a finite
number of a-constraints in the initial goal, hence rule r1 only creates a finite
number of b-constraints. This, in turn, allows only a finite number of increments
being made by rule r2.

In contrast, our proposed semantics ω! results in the above program being
non-terminating, as the following infinite derivation shows:

〈{a, c(X)}, ∅,>, {X}〉
�r1

ω!
〈{a, c(X)}, {b},>, {X}〉

�r2
ω!
〈{a, c(X + 1)}, {b},>, {X}〉

�r2
ω!
〈{a, c(X + 2)}, {b},>, {X}〉�r2

ω!
. . .



8 Hariolf Betz, Frank Raiser, and Thom Frühwirth

3.2 Limitations of the current approach

The approach specified in this work entails a significant discrepance w.r.t. ωva

when fresh variables are introduced in rule bodies. For example, consider the
following program:

r1 @ a =⇒ b(X)
r2 @ b(X), b(X) ⇔ c

If executed with the initial goal a, this program would cause the following infinite
derivation under ωva:

〈a〉
�r1

ωva
〈a ∧ b(X ′)〉

�r1
ωva
〈a ∧ b(X ′) ∧ b(X ′′)〉�r1

ωva
. . .

The variables X ′, X ′′, . . . each are explicitly distinct from each other and from
the variable X which occurs in the rule body. Thus, it is not possible to derive
the constraint c from goal a under ωva.

Under ω!, however, the following derivation is possible:

〈{a}, ∅,>, ∅〉
�r1

ω!
〈{a}, {b(X ′)},>, ∅〉 ≡ 〈{a}, {b(X ′), b(X ′)},>, ∅〉

�r2
ω!
〈{a}, {b(X ′), c},>, ∅〉 ≡ 〈{a}, {b(X ′), b(X ′), c},>, ∅〉

Therefore, the current formulation of the operational semantics ω! for CHR
is only applicable to range-restricted programs, i.e. rules that do not introduce
new variables in their bodies.

4 Related Work

In [2] the set-based semantics ωset has been introduced. Its development was,
amongst other considerations, driven by the intention to eliminate the propaga-
tion history. Besides addressing the problem of trivial non-termination in a novel
manner, it reduces non-determinism in a way closely resembling ωr.

Similarly to ωt, a propagation rule is only fired once for a possible matching
in ωset. Unlike ωt, however, additional single firings are possible in ωset. These
depend on the further development of the built-in store. Nonetheless, there re-
mains a limit on the number of rule firings.

Our approach to eliminate trivial non-termination consists of the combination
of two essential components: an irreflexive state transition system and persistent
constraints. Using irreflexivity for termination is a straightforward consequence
of adding persistent constraints. The separation of propositions, or constraints,
into linear and persistent ones was inspired by the work on linear logical algo-
rithms in [3]. CHR differs significantly from linear logical algorithms, because
of its support for built-in constraints, their underlying constraint theory and
interaction with user-defined constraints.

Figure 1 relates the different operational semantics for CHR in a hierarchical
order. At the root, we have the abstract semantics ωva from which the other



Persistent Constraints in Constraint Handling Rules 9

semantics are derived. The operational semantics ωt introduces token stores to
solve the trivial non-termination problem. Numerous extensions of it have been
published [6], as indicated by a dotted elements in the figure. In particular, the
operational semantics ωr [7] is an important specialization of ωt, as it is the
foundation of most existing CHR implementations. Again, numerous extensions
apply to ωr.

In the right-hand column, we have placed ωset, which, is another special-
ization of ωva. Having identified shortcomings of the token store approach, the
authors of [2] give a set-based operational semantics for CHR instead.

By placing our approach into the middle column, we emphasize that it is
a distinct approach to the trivial non-termination problem. The remaining en-
tries in Figure 1 under the category of persistent semantics indicate that ω! –
analogously to ωt – can serve as the basis for a multitude of extensions and
implementation-specific variants.

Token store
Semantics

Set
Semantics

Abstract
Semantics

Persistent
Semantics

Fig. 1. Relations between Operational Semantics of CHR

The benefits of ω! in comparison with the other cited approaches are sum-
marized in Figure 2. In the following, we discuss the different evaluation criteria
and the corresponding results given in Figure 2.

Termination on propagation rules: While forming the basis for all other se-
mantics, ωva itself is a theoretical construct, made impractical by its triv-
ial non-termination on propagation rules. Derived semantics apply various
strategies to avoid this problem, as outlined above.

Effective concurrency: In ωt and ωr, the necessity to distribute token stores
constitutes an impediment to effective concurrent execution. We deem ωva,
ωset, and ω! effective bases for concurrent execution, as they do not introduce
auxiliary elements causing inference between rule applications.

Declarative states: In ωt, ωr, and ωset, program states contain elements that
have no correspondence in the declarative reading. States in ω! and ωva avoid
such non-declarative elements, thus simplifying proofs of program properties.

Number of transition rules: To varying degrees, the transition systems of
the investigated operational semantics encompass concrete execution strate-
gies. Especially in the cases of ωr and ωset, this makes for a large number



10 Hariolf Betz, Frank Raiser, and Thom Frühwirth

of transition rules at the expense of clarity and simplicity of proofs. Second
only to ωva, our system ω! consists of only two inference rules. More im-
portantly, each transition step corresponds to an application of a CHR rule,
thus simplifying proofs of program properties.

Preservation of multiset semantics: It should be noted that the multiset
semantics is a key feature of CHR, although strictly speaking it is in contrast
with the paradigm of declaritivity w.r.t. first-order logic. It is already present
in the constitutive semantics ωva and is effectively made use of in many
programs. In this respect, ωset exerts a strong break with the tradition of
CHR that ω! avoids.

Reduced non-determinism: The refined semantics ωr and the set-based se-
mantics ωset significantly reduce the inherent non-determinism of CHR:
Firstly, they determine that rules are to be tried for applicability in tex-
tual order. Secondly, they fix the order in which CHR constraints are tried
to match to the rules. Our semantics ω!, along with ωva and ωt, is distinctly
non-deterministic. Nonetheless, it leaves open the possibility of restricting
non-determinism, analogously to ωr reducing the non-determinism of ωt.
However, this comes at the cost of additional transition rules and possibly
introducing non-declarative elements into states.

ωva ωt ωr ωset ω!

Termination on propagation rules: - + + + +
Effective concurrency: + - - + +
Declarative states: + - - - +
Number of transition rules: 1 3 7 9 2
Preservation of multiset semantics: + + + - +
Reduced non-determinism: - - + + -

Fig. 2. Comparison of the different operational semantics

5 Conclusion and Future Work

For this work, we investigated the extent to which several desirable features are
found in the most prominent operational semantics of CHR. As Figure 2 shows,
each semantics displays certain limitations for specific fields of application. In-
spired by linear logic, we introduced the concept of persistent constraints to
CHR. Building on earlier work in [5], we proposed a novel operational seman-
tics ω! that provides a better trade-off between the most significant features.

The transition system of ω! consists of two rules, such that each transition di-
rectly corresponds to a CHR rule application. Its irreflexive formulation straight-
forwardly solves the trivial non-termination problem. Furthermore, all elements



Persistent Constraints in Constraint Handling Rules 11

of ω!-states correspond to the declarative reading of states. Both properties facili-
tate formal proofs of program properties and hence are advantageous for program
analysis.

Concerning concurrency, ω! inherits the suitability for concurrent execution
from ωva. In this respect, persistent constraints have a clear advantage over token
stores: As they do not hinder rule applications, their distribution is not critical
and less synchronization is required.

Our proposed operational semantics ω! displays a termination behavior differ-
ent from the commonly used operational semantics ωt. The classes of programs
terminating under ω! and ωt do not contain each other. Hence, either semantics
may be more favorable, depending on the application. Also, in its current for-
mulation, ω! is only applicable to range-restricted CHR programs – a limitation
we plan to address in the future.

Furthermore, we intend to formulate and prove clear statements on the sound-
ness and completeness of our semantics with respect to ωva and to further investi-
gate the differing termination behavior between ω! and other semantics. Finally,
as ωt is the basis for numerous extensions to CHR [6], we plan to investigate the
effect of building these extensions on ω! instead.

References

1. Frühwirth, T.: Constraint Handling Rules. Cambridge University Press (2009)

2. Sarna-Starosta, B., Ramakrishnan, C.: Compiling Constraint Handling Rules for
efficient tabled evaluation. In Hanus, M., ed.: 9th Intl. Symp. Practical Aspects of
Declarative Languages, PADL. Volume 4354 of Lecture Notes in Computer Science.,
Nice, France, Springer-Verlag (jan 2007) 170–184

3. Simmons, R.J., Pfenning, F.: Linear logical algorithms. In Aceto, L., Damg̊ard,
I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I., eds.: Au-
tomata, Languages and Programming, 35th International Colloquium, ICALP 2008.
Volume 5126 of Lecture Notes in Computer Science., Springer-Verlag (2008) 336–347

4. Betz, H., Frühwirth, T.: A linear-logic semantics for constraint handling rules. In van
Beek, P., ed.: Principles and Practice of Constraint Programming, 11th International
Conference, CP 2005. Volume 3709 of Lecture Notes in Computer Science., Sitges,
Spain, Springer-Verlag (October 2005) 137–151

5. Raiser, F., Betz, H., Frühwirth, T.: Equivalence of CHR states revisited. In Raiser,
F., Sneyers, J., eds.: 6th International Workshop on Constraint Handling Rules
(CHR). (2009) 34–48

6. Sneyers, J., Van Weert, P., Schrijvers, T., De Koninck, L.: As time goes by: Con-
straint Handling Rules – A survey of CHR research between 1998 and 2007. Accepted
by Journal of Theory and Practice of Logic Programming (2008)

7. Duck, G.J., Stuckey, P.J., Garćıa de la Banda, M., Holzbaur, C.: The refined oper-
ational semantics of Constraint Handling Rules. In Demoen, B., Lifschitz, V., eds.:
Logic Programming, 20th International Conference, ICLP 2004. Volume 3132 of Lec-
ture Notes in Computer Science., Saint-Malo, France, Springer-Verlag (September
2004) 90–104

8. Sulzmann, M., Lam, E.S.L.: Parallel execution of multi-set constraint rewrite rules.
In Antoy, S., Albert, E., eds.: Proceedings of the 10th International ACM SIG-



12 Hariolf Betz, Frank Raiser, and Thom Frühwirth

PLAN Conference on Principles and Practice of Declarative Programming (PPDP),
Valencia, Spain, ACM (July 2008) 20–31

9. Pilozzi, P., Schreye, D.D.: Proving termination by invariance relations. In Hill,
P.M., Warren, D.S., eds.: 25th International Conference Logic Programming, ICLP.
Volume 5649 of Lecture Notes in Computer Science., Pasadena, CA, USA, Springer-
Verlag (July 2009) 499–503


