
A Linear-Logic Semantics for Constraint
Handling Rules

Hariolf Betz and Thom Frühwirth

Faculty of Computer Science, University of Ulm, Germany

Abstract. One of the attractive features of the Constraint Handling
Rules (CHR) programming language is its declarative semantics where
rules are read as formulae in first-order predicate logic. However, the
more CHR is used as a general-purpose programming language, the
more the limitations of that kind of declarative semantics in modelling
change become apparent. We propose an alternative declarative seman-
tics based on (intuitionistic) linear logic, establishing strong theorems on
both soundness and completeness of the new declarative semantics w.r.t.
operational semantics.

1 Introduction

Constraint Handling Rules (CHR) is a concurrent committed-choice constraint
logic programming language, which was developed in the 1990s as an enhance-
ment to the constraint programming paradigm. Its aim was to add flexibil-
ity and customizability to constraint programming by allowing for user-defined
constraint-handlers. This is achieved by implementation of the eponymic con-
straint handling rules, which define the rewriting and transformation of conjunc-
tions of atomic formulae.

However, over time CHR has proven useful for many tasks outside its original
field of application in constraint reasoning and computational logic, be it agent
programming, multi-set rewriting or production rules.

Owing to the tradition of logic and constraint logic programming, CHR fea-
tures – besides a well-defined operational semantics, of course – a declarative
semantics, i.e. a direct translation of a CHR program into a first-order logical
formula. In the case of constraint handlers, this is a useful tool, since it strongly
facilitates proofs of a program’s faithful handling of constraints.

The classical-logic declarative semantics, however, poses a problem, when
applied to non-traditional uses of CHR, i.e. CHR programs that use CHR as
a general-purpose concurrent programming language. Many implemented algo-
rithms do not have a first-order classical logical reading, especially when these
algorithms are deliberately non-confluent1. This may lead to logical readings
which are inconsistent with the intended meaning. This problem has recently
been demonstrated in [9] and constitutes the motivation for our development of
an alternative declarative semantics.
1 Meaning that different rule applications may lead to different final results.

Example 1. For an example of an inconsistent classical reading, consider the
following coin-throw simulator.

throw(Coin) ⇔ Coin = head (r1)
throw(Coin) ⇔ Coin = tail (r2)

The program handles the constraint throw(Coin) by committing to one of the
rules, thereby equating either head or tail with the variable Coin. (This requires
a fair selection strategy.)

Its classical declarative semantics is:

(throw(Coin) ↔ Coin = head) ∧ (throw(Coin) ↔ Coin = tail)

From this we would conclude (Coin = head) ↔ (Coin = tail) and therefore
head = tail. In natural language: Both sides of our coin are equal.

Obviously, this statement is not consistent with the intuitive idea of a coin
throw. What our program describes is an algorithm, respectively a course of
action. The logical reading misinterprets it as a description of stable facts. This
shows the basic incompatibility between the classical declarative semantics and
non-traditional CHR programs. (Non-traditional in the sense that it is not only a
constraint handler.) First-order logic can in general not handle updates, change,
dynamics without resorting to auxiliary constructions like adding time-stamps
to predicates.

With the linear-logic declarative semantics as we will propose in Sect. 4 we
get the following logical reading:

! (throw(Coin)((Coin = head)&(Coin = tail))

Informally speaking, the above expression of linear logic says that we can
replace throw(Coin) with either (Coin = head) or (Coin = tail) but not both,
i.e. a committed choice takes place.

Ever since its introduction in 1987, linear logic has inspired uses as a means to
logically formalize computational structures and dynamics. Several programming
languages have been designed from scratch for the purpose of making linear logic
executable. E.g. the programming language Linear Objects (LO) [3] extends
Horn logic by an “additive” conjunction (as occurs in linear logic) to model
structured processes. A more formal approach is taken with Lygon [11]. Lygon
is based on a systematic proof-theoretic analysis of linear logic, which results in
a large segment of linear logic to be covered.

As we will see, there are remarkable similarities between linear logic and the
operational semantics of Constraint Handling Rules, which make a linear-logic
declarative semantics of CHR a promising approach. Furthermore, intuitionistic
logic can be embedded into (intuitionistic) linear logic, which will be an indis-
pensable feature in our semantics. Our approach is somewhat similar to the ones
taken in [7] and [5] in that we will define a linear-logic semantics for an existing
programming paradigm.

This paper is structured as follows: Section 2 will give a short introduction
to the segment of intuitionistic linear logic. In Sect. 3, constraint handling rules
will be presented with a particular focus on declarative semantics. It will become
clear what the limitations to the classical declarative semantics are, which we
hope to overcome by using linear logic. Section 4 will introduce our linear-logic
semantics for CHR, explain its benefits and present strong theorems concerning
soundness and completeness of the linear-logic declarative semantics w.r.t. op-
erational semantics. In Sect. 5 we will give an example for the application of our
proposed semantics. A conclusion will be given in Sect. 6.

2 Intuitionistic Linear Logic

Intuitionistic linear logic (ILL) is a subset of linear logic [6, 10, 12, 14] which is
constituted by the symbols ⊗, &, ⊕,(and ! as well as the constants 1, > and
0. In the following a short explanation of its symbols will be given.

2.1 Connectives

Let us take a look at an easy example first:

A(B

The above formula is an example for linear implication. It is pronounced “con-
suming A yields B”. Since the idea of “consuming” logical truth (in the classical
sense) somewhat stresses the imagination, linear logic is generally considered as
dealing with resources rather than with propositions.

The meaning represented by the symbol ⊗ (“times”) is reasonably close to
the intuitive grasp we usually have of the classical conjunction ∧. Which is, that
both formulas connected hold at the same time. Consequently, the expression
A⊗B is pronounced “both A and B”.

Note that an implication of the form A(B allows us to consume-produce
exactly once, in the process of which the implication itself is used up. E.g. in
classical first-order logic the following holds:

A ∧ (A → B) ` B ∧ (A → B)

On the contrary, the following is not true:

A⊗ (A(B) ` B ⊗ (A(B)

The following conclusion is correct:

A⊗ (A(B) ` B

The connective & (“with”) represents an option of (internal) choice. The
formula A&B is pronounced “choose from either A or B and allows us to infer
either A or B (but not both, which would be A⊗B).

Similar to the with conjunction, the connective ⊕ “plus” also denotes an
alternative. However, the choice is external, i.e. if the formula A⊕B holds, then
either A or B will hold (but not both!), although it is not stated which one. The
formula A⊕B is consequently pronounced “either A or B”.

We mentioned before that linear logic is considered as discussing resources
rather than stable facts. Nevertheless, it is extremely useful if not indispensable
to have an option for stable truth (in the classical sense) to interact with variable
truth (i.e. resources). This is provided for by the ! (“bang”) symbol.

In linear logic, the bang marks either a stable truth or an abounding resource
that – within the boundaries of the model – cannot get used up (which essen-
tially boils down to the same thing). A typical application for the bang is in
implications that can be applied an unlimited number of times. It is thus correct
to conclude the following:

A⊗!(A(B) ` B⊗!(A(B)

There are three ways to actualize a banged resource’s potential, namely weak-
ening, contraction and dereliction [10].

Dereliction designates the possibility to use a banged resource just like an
un-banged instance.

`!A(A (dereliction)

Contraction denotes the fact, that we may duplicate any banged resource,
time and again, to potential infinity.

`!A(!A⊗!A (contraction)

Weakening is the property of a banged resource that – just like a classical
proposition – it needs not be used at all and may just be omitted.

`!A(1 (weakening)

Furthermore, the following equivalence holds:

!(A&B) a` (!A⊗!B)

2.2 Constants and Quantification

We will furthermore consider two constants: 0 (zero) and > (top). The constant
> represents the goal in favor of which every resource can be consumed. As for
an intuition, we may think of it as a trash can.

As for the 0: In classical logic, there is the principle “ex falso, quod libet, i.e.
from a proposition that equals false, we can deduce any other proposition. This
aspect of falsity is represented by 0, which by definition yields every resource.
In this sense, 0 represents impossibility.

Just like classical logic, linear predicate logic offers the quantifiers ∀ and ∃.
Since we cannot directly convey the classical concept of truth to linear logic, we
will use the term provability instead. The proposition ∃xQ(x) is provable if there
is a term t for which [t/x]Q(x) is provable. The proposition ∀xQ(x) is provable,
if [a/x]Q(x) is provable for a new parameter a about which we can make no
assumption. For convenience, we can define x to range over a domain D.

The following equations hold:

∀xQ(x) ≡ &
x∈D

Q(x)

∃xQ(x) ≡
⊕
x∈D

Q(x)

2.3 Girard Translation

Among the key features of intuitionistic linear logic is the possibility to faith-
fully translate (classical) intuitionistic logic into intuitionistic linear logic while
preserving the full power of the former. Fig. 1 presents one of several possible
translations, called Girard Translation [10], in the notation of [12].

(A ∧B)+ ::= A+&B+

(A → B)+ ::= (!A+) (B+

(A ∨B)+ ::= (!A+)⊕ (!B+)
(>)+ ::= >
(⊥)+ ::= 0

(¬A)+ ::= !A+ (0
(∀x.A)+ ::= ∀x.(A+)
(∃x.A)+ ::= ∃x.!(A+)

Fig. 1. Translation + from intuitionistic logic into linear logic

3 CHR

CHR is a concurrent committed-choice constraint programming language, devel-
oped in the 1990s for the implementation of constraint solvers. It is traditionally
used as an extension to other programming languages – especially constraint
logic programming languages – but has been used increasingly as a general-
purpose programming language in the recent past. In this section we will give an
overview of its syntax and operational semantics as well as its classical declara-
tive semantics [1, 8, 2].

3.1 CHR Syntax

Constraints are predicates of first-order logic. In CHR, there are two notably
different types of constraints, which we will refer to as built-in constraints and
CHR constraints. CHR constraints, will be handled by a CHR program whereas
built-in constraint are predefined in the CHR implementation.

Definition 1. An atomic built-in constraint is an expression of the form c(t1,
...,tn), where c is an n-ary constraint symbol and t1,...,tn are terms. A built-
in constraint is either an atomic built-in constraint or a conjunction of built-in
constraints.

A CHR constraint is a non-empty multiset, the elements of which have the
form e(t1,...,tn), where e is an n-ary constraint symbol and t1,...,tn are terms.
A CHR constraint is called atomic if it has exactly one element.

Note that the syntactic equality constraint = as well as the propositions true
and false are built-in by definition.

Definition 2. A goal is either {>} (top), {⊥} (bottom), an expression of the
form {C} – where C is an atomic built-in constraint –, a CHR constraint or a
multi-set union of goals.

Apart from definitions, we leave away the curly brackets from both CHR
constraints and goals.

A CHR program consists of a set of rules, determining the transformation
of constraints. These rules are the constraint handling rules, i.e. the CHR, of
which we distinguish two types: Simplify and Propagate . A Simplify rule
determines the replacement of a CHR constraint, usually a subset of a larger
goal, with a multiset of simpler constraints whereas a Propagate rule augments
an existing goal by one or several elements (which hopefully leads to further
simplification later on).

Definition 3. A simplification rule is of the form H ⇔ G|B. A propagation
rule is of the form H ⇒ G|B, where the head H is a CHR constraint, the guard
G is a built-in constraint and the body B is a goal.

A CHR program is a finite set of rules.

3.2 CHR Operational Semantics

Note that the operational semantics defined here is not necessarily identical to
the behavior of an actual implementation.

Definition 4. A state is a pair 〈G;C〉, where G is a goal and C is a built-in
constraint.

Of the two components, only the goal store G is directly accessible by CHR,
i.e. only elements stored here will be transformed by constraint handling rules.
The built-in constraint store C is not directly accessible, i.e. CHR can add (built-
in) constraints to the store, but cannot manipulate or remove its elements.

Definition 5. The constraint theory CT is a non-empty, consistent first-order
theory over the built-in constraints, including syntactic equality =, as well as the
propostions true and false.

The constraint theory CT is implicitly realized by the predefined constraint
handlers.

At runtime, a CHR program is provided with an initial state and will be
executed until either no more rules are applicable or a contradiction occurs in
the constraint store (which will result in the constraint store equaling false).

Definition 6. An initial state is of the form 〈G; true〉. A failed final state is of
the form 〈G; false〉. A state is called a successful final state if it is of the form
〈E;C〉 with no transition applicable.

Initial states are distinguished from states that appear in a derivation, since
declarative semantics will assign a different logical reading to either type of state.

Definition 7. A derived state is a state Sa which appears in a derivation from
an initial state S0. The variables x̄a that appear in Sa but not in S0 are called
local variables of Sa.

The transition rules in Fig. 2 describe the transition relation. Note that we
omit the Solve transition here since it is irrelevant to our cause.

Simplify
If (F ⇔ D|H) is a fresh variant of a rule in P with variables x̄
and CT |= ∀(C → ∃x̄(F = E ∧D))
then 〈E ∪G; C〉 7→ 〈H ∪G; (F = E) ∧D ∧ C〉
Propagate
If (F ⇒ D|H) is a fresh variant of a rule in P with variables x̄
and CT |= ∀(C → ∃x̄(F = E ∧D))
then 〈E ∪G; C〉 7→ 〈E ∪H ∪G; (F = E) ∧D ∧ C〉

Fig. 2. CHR transition rules

The sequence x̄ represents the variables in (F ⇔ D|H). We require always
a fresh variant of a rule (F ⇔ D|H), i.e. that all variables are given unique
new names. The CHR rule’s head F must be matched (pairwise) with CHR
constraints E from the goal store. The constraints in C and D as well as = are
built-in constraints and thus are handled according to the constraint theory CT.
On application of the rule, the constraint store is augmented by the matching
(F = E) as well as the guard D.

3.3 The (Classical) Declarative Semantics of CHR

Figure 3 defines the first-order-logic declarative semantics of CHR. In the trans-
formations of CHR rules, ȳ represents the variables that only appear in the
body G of the rule. While these variables are existentially quantified, all other
variables become universally quantified.

Built-in constraints: C′ ::= C
CHR constraints: {e(t1, ..., tn)}′ ::= e(t1, ..., tn)

(E ∪ F)′ ::= E′ ∧ F ′

Goals: {>}′ ::= >
{⊥}′ ::= ⊥
{c(t1, ..., tn)}′ ::= c(t1, ..., tn)
(G ∪H)′ ::= G′ ∧H ′

Initial states: 〈G; true〉′ ::= G′

Derived states: 〈G; C〉′ ::= ∃x̄a(G′ ∧ C′)
Simplify rules: (E ⇔ C | G)′ ::= ∀(C → (E ↔ ∃ȳG))
Propagate rules: (E ⇒ C | G)′ ::= ∀(C → (E → ∃ȳG))
Programs: (R1...Rm)′ ::= R′

1 ∧ ... ∧R′
m

Fig. 3. Classical-logic declarative semantics P ′ of a program P

3.4 Soundness and Completeness

The first-order-logic semantics given in Fig. 3 maps every CHR program P to a
set of logical formulae P ′ which form a mathematical theory. The following the-
orems will show that the operational and this declarative semantics are strongly
related.

Definition 8. A computable constraint of a state S0 is the logical reading S′
a of

a derived state of S0. An answer (constraint) of a state S0 is the logical reading
S′

n of a final state of a derivation from S0.

The following theorems are proved in [2]:

Theorem 1. (Soundness). Let P be a CHR program and S0 be an initial state.
If S0 has a derivation with answer constraint S′

n, then P ′ ∪ CT |= ∀(S′
0 ↔ S′

n).

Theorem 2. (Completeness). Let P be a CHR program and S0 be an initial
state with at least one finite derivation. If P ′ ∪ CT |= ∀(S′

0 ↔ S′
n), then S0 has

a derivation with answer constraint S′
ν such that P ′ ∪ CT |= ∀(S′

ν ↔ S′
n).

4 A Linear-Logic Semantics for CHR

CHR is a powerful and flexible tool for writing not only constraint handlers
but also general-purpose concurrent programs. As far as constraint handlers are
concerned, there is a useful and consistent declarative semantics. However, when
used as a general-purpose programming language and program rules go beyond
a mere representation of a mathematical theory, programs tend to produce in-
consistent logical readings as has been examined e.g. in [2].

In this section we will discuss the limitations of the classical declarative
semantics. Then we will propose a declarative semantics for CHR which is based
on intuitionistic linear logic and we will show it can provide a consistent logical
reading for non-traditional CHR programs. We will also state two theorems
proving the soundness and completeness of our approach.

4.1 Limitations of the Classical Declarative Semantics

In Sect. 1 we already gave an example for a CHR program with an inconsistent
logical reading with respect to the classical declarative semantics. Below another
such program is given to further illustrate the matter.

Example 2. The program given below applies the Sieve of Eratosthenes to an
interval of cardinal numbers in order to “sieve out the prime numbers from that
interval.

candidate(N) ⇔ N>1 | M is N-1, prime(N), candidate(M) (r1)
candidate(1) ⇔ true (r2)
prime(M), prime(N) ⇔ M mod N =:= 0 | prime(N) (r3)

The program implements two constraints: candidate and prime. The candidate
constraint is to create the set of numbers on which to work, represented as indi-
vidual constraints. The actual sieving is perfomed by the prime constraint. The
program is executed with the goal candidate(N) in the initial state, where N is
the upper limit of the interval on which to work.

Consider the declarative semantics of the constraint prime:

∀(M mod N = 0 → (prime(M) ∧ prime(N) ↔ prime(N))

What this logical expression actually says is that “a number is prime, if
it is a multiple of another prime number (sic!). The problem is that the prime
constraint does not consist of only static information. Its input is an initial range
of cardinal numbers representing candidates for primes. Only upon completion
of the calculation they do represent the actual primes. Predicate logic has no
straightforward means to express this dynamics.

4.2 An Intuitionistic Linear-Logic Semantics

The obvious similarity between linear implication and CHR constraint substi-
tution as well as the possible representation of multiplicities and embedding of
intuitionistic logic make linear logic a likely candidate for providing a suitable
declarative semantics.

In this section we introduce an intuitionistic linear logic (cf. Sect. 2.3) seman-
tics of CHR. Figure 4 shows the proposed semantics. It adheres to some extent
to the classical declarative semantics. The main differences are the interpreta-
tion of CHR constraints as linear resources (and that of built-in constraints as
embedded intuitionistic propositions), as well as the distinctly different logical
reading of CHR rules as expressing linear implementation rather than logical
equivalence.

Built-in constraints: c(t1, ..., tn)L ::= !c(t1, ..., tn)
(C ∧D)L ::= C ⊗D

CHR constraints: {e(t1, ..., tn)}L ::= e(t1, ..., tn)
(E ∪ F)L ::= EL ⊗ F L

Goals: {>}L ::= >
{⊥}L ::= 0
{c(t1, ..., tn)}L ::= c(t1, ..., tn)
(G ∪H)L ::= GL ⊗HL

Initial states: SL
0 = 〈G; true〉L ::= GL

Derived states: SL
a = 〈G; C〉L ::= ∃x̄a(GL ⊗ CL)

Simplify rules: (E ⇔ C | G)L ::= !∀
`
(!CL) (

`
EL (∃ȳGL

´´
Propagate rules: (E ⇒ C | G)L ::= !∀

`
(!CL) (

`
EL (EL ⊗ ∃ȳGL

´´
Programs: (R1...Rm)L ::= RL

1 ⊗ ...⊗RL
m

Fig. 4. Linear-logic declarative semantics P L of a program P

We assume that built-in constraints are propositions of intuitionistic logic,
translated according to Girard Translation as introduced in Sect. 2.3. States are
handled much the same as in classical declarative semantics: The logical reading
of an initial state is again the logical reading of the goal. The logical reading of a
derived state Sa is again a conjunction, now a ⊗ conjunction, of its components’
readings with its local variables existentially quantified.

A Simplify rule (E ⇔ C | G) maps to !∀
(
(!CL)(

(
EL (EL ⊗ ∃ȳGL

))
,

where ȳ represents the variables that only appear in the body G of the rule. As
before, the fulfillment of the guard is a premise. Instead of equivalence between
head and body, however, it implies now that consuming the head produces the
body. Note that the formula is banged, since it is to be used not only once, of
course. A Propagate rule follows the same pattern. The only difference is that
here, consuming the head produces the head and the body.

Example 3. We will take another look at Example 2 and see how its declarative
semantics benefits from the linear-logic approach. This is what the ILL reading
looks like (for the constraint “prime).

!∀ ((M mod N =:= 0)((prime(M)⊗ prime(N)(prime(N)))

As we can see, this reading is no longer inconsistent with the mathematical
understanding of prime numbers. It is indeed rather a suitable ILL representa-
tion of the program’s workings.

Example 4. The improvement regarding the coin-throw example mentioned in
Sect. 1 is quite alike. The ILL reading for that program is:

throw(Coin)(Coin = head
throw(Coin)(Coin = tail

This is logically equivalent to the following:

! (throw(Coin)((Coin = head)&(Coin = tail))

The above reads as: Of course, consuming Throw(Coin) produces: Choose
from (Coin = head) and (Coin = tail). Thus, our logical reading implies internal,
committed choice.

4.3 Soundness and Completeness

Concerning soundness, our approach is analogous to that one used in the classical
framework, (cf. Sect. 3.4) relying basically on Lemma 1 which proves that all
computable constraints of a state S0 are linearly implied by the initial state’s
logical reading.

The constraint theory CT, which we require to be of intuitionistic logic, is
translated according to the Girard Translation (cf. Sect. 2.3).

Lemma 1. Let P be a program, PL its linear-logic reading, S0 be a state. If Sn

is a computable constraint of S0 then:

PL, !CT+ |= ∀(SL
0 (SL

n)

From this lemma, Theorem 3 follows directly.

Theorem 3. (Soundness). Let P be a CHR program and S0 be an initial
state. If S0 has a derivation with answer SL

n , then PL, !CT+ |= ∀(SL
0 (SL

n).

We also have a surprisingly strong completeness theorem.

Theorem 4. (Completeness). If S0 and Sn are states, such that PL, !CT+ `
SL

0 (SL
n then S0 has a derivable constraint Sν such that !CT+ ` SL

ν (SL
n .

The complete proofs for both theorems can be found in [4]. Whereas the
proofs for Lemma 1 and Theorem 3 parallel the respective proofs in the classical-
logic case, the proof for Theorem 4 follows a unique approach, which is sketched
below.

Proof Sketch. The proof of Theorem 4 consists of three parts [4].

The first part establishes a series of lemmas in order to transform the ex-
pression PL, !CT+ ` SL

0 (SL
n into an equivalent form that is easier to work

with. This transformation involves bringing the formula SL
0 to the precondition

side, stripping the expression of bang symbols and finally removing quantifiers.
The most difficult task is the removal of the bang symbols. We consider a cut-
free proof of the original expression. We can show by structural induction that
for at least one bang-free version of that expression a (cut-free) proof must exist.

At the end of the first part, we have transformed our expression PL, !CT+ `
SL

0 (SL
n into the equivalent form PL, !CT+, SL

0 ` SL
n , where the horizontal bar

marks the removal of all bangs and quantifiers 2 . Since there are no more bangs,
all rules in PL and !CT+ appear in certain multiplicities, according to how often
each rule is applied.

In the second part we force the transformed expression to act similar to
a CHR program, i.e. we prove by structural induction that there must be at
least one implication in either PL or !CT+ of the form (A(B) where A is a
conjunction of atoms that is contained in SL

0 , so the implication can be applied
to SL

0 . Assuming that (A(B) is in PL, this models the application of a CHR
rule on the constraint store. Otherwise it corresponds to a rule of the constraint
theory CT. By repeated application of the above reasoning we can force the
application of all implications in PL.

Having shown this, we are already quite close to our goal. We can now safely
say that the logical transition from PL, !CT+, SL

0 to SL
n can be cut into smaller

steps, similar to the steps of a CHR program. Actually, the only difference is in
the built-in constraints: a CHR computation neither allows the consumption of
a built-in constraint nor the inference of a built-in constraint that is unnecessary
in that it does not lead to another CHR rule to become applicable.

This final problem is dealt with in the third part where we prove that our
logically derived expression SL

n is so close to an actually derivable constraint
SL

ν that the former can be inferred from the latter by applying the constraint
theory CT only, i.e. !CT+ ` SL

ν (SL
n . This is done by a methodically simple,

yet formally tedious induction over the transition steps identified in the second
part of the proof.

2 As !(A&B) a` (!A⊗!B), the expression !CT+ is not equivalent to CT+.

5 Example: Union-find in CHR

As CHR is increasingly being used as a general-purpose concurrent constraint
programming language, focus has shifted to the question whether it can be used
to implement classic algorithms in an efficient and elegant way. This has success-
fully been done for Tarjan’s union-find algorithm in [9]. However, in that paper it
has also been shown that this algorithm has a destructive update which cannot
adequately be modeled in classical logic. We will show here how the linear-logic
declarative semantics can provide a solution.

5.1 The Union-Find Algorithm in CHR

The original union-find algorithm was introduced by Tarjan in [13]. It serves to
maintain collections of disjoint sets where each set is represented by an unam-
biguous representative element. The structure has to support the three opera-
tions:

– make(X): create a new set with the single element X.
– find(X): return the representative of the set in which X is contained
– union(X,Y): join the two sets that contain X and Y, respectively (possibly

destroying the old sets and changing the representative).

In the basic algorithm discussed here the sets are represented by rooted trees,
where the roots are the respective representative elements. Trees are represented
by the constraints A ~> B and root(A). The three operations are implemented
as follows.

– make(X): generate a new tree with the only node X.
– find(X): follow the path from node X to the root by repeatedly going to the

parent. Return the root as representative.
– union(X,Y): find the representatives of X and Y and link them by making

one root point to the other root.

The following CHR program implements the Union-Find Algorithm [9].

make(A) ⇔ root(A) (make)
union(A,B) ⇔ find(A,X), find(B,Y), link(X,Y) (union)

A ~> B, find(A,X) ⇔ A ~> B, find(B,X) (findNode)
root(A), find(A,X) ⇔ root(A), X=A (findRoot)

link(A,A) ⇔ true (linkEq)
link(A,B), root(A), root(B) ⇔ B ~> A, root(A) (link)

5.2 Declarative Semantics

Concerning logical correctness we will limit ourselves to the link rule because it
is here where the problem arises. The classical declarative reading for this rule
reads as follows:

link(A,B) ∧ root(A) ∧ root(B) ⇔ B A ∧ root(A)

The reading as given above establishes a supposed logical equivalence where
the node B is a root and a non-root at the same time (root(B) and B A
hold), but actually a destructive update from a root to a non-root takes place.
The problem is in principle the same as was presented in Sect. 4: Classical logic
is able to deal with static truth only and has no capabilities to represent dynamic
processes without resorting to explicit representation of time. In contrast, the
linear-logic reading of the respective constraint reads as follows:

! (link(A,B)⊗ root(A)⊗ root(B)((B A)⊗ root(A))

The above can be read as: Of course, consuming all of link(A,B), root(A)
and root(B) yields both B A and root(A). Or less formally: On the condition
that both root(A) and root(B) hold, link(A,B) triggers the change of root(A) to
B A. This reading directly expresses the dynamic update process which is
taking place.

This example shows how our linear-logic semantics can provide logical read-
ings for non-traditional CHR programs in cases where there is no consistent
reading with respect to the classical semantics. Thus, the process of proving
logical correctness for CHR programs is considerably simplified.

6 Conclusion

We have developed a linear-logic semantics for CHR as an alternative to the
classical declarative semantics. The new declarative semantics is based on the
segment of intuitive linear logic.

We have shown that this declarative semantics indeed overcomes the limita-
tions of the classical declarative semantics, which originally motivated this work.
The new semantics features surprisingly strong theorems on both soundness and
completeness, thus simplifying the process of proving logical correctness of CHR
programs. Details can be found in [4]. How well this can be done in practice,
and what insights it offers, remains a topic for future work.

Since this is the first paper relating CHR to linear logic, there are numer-
ous options for further work in this field. An obvious follow-up project would
be a thorough comparison of CHR to related works such as the LCC class of
linear concurrent constraint programming languages [7], for which a linear-logic
semantics exists as well.

In the program presented in Sect. 5, a large part of the program actually does
have a consistent classical reading. In a case like this it might be more convenient

to apply our linear-logic semantics only on those parts of the program where
the classical semantics produces inconsistent results, in order to get to a more
intuitive logical reading. To this end, it is necessary to more closely inspect the
relationship between classical and linear-logic readings. Classical program parts
could be identified by a modified confluence analysis, since confluence implies
consistency of the classical-logic reading of a program [2].

Our linear-logic semantics for CHR may also shed light on executable subsets
of linear logic and the related recent separation logic. An interesting approach
would be to develop a CHR constraint handler for a larger segment of linear
logic than that which is actually used in the declarative semantics. This would
be an approach closer to the ones taken in [11] and [3].

References

1. Slim Abdennadher, Thom Frühwirth: Essentials of constraint programming.
Springer, 2003.

2. Slim Abdennadher, Thom Frühwirth, Holger Meuss: Confluence and semantics of
constraint simplification rules. Constraints 4(2):133-165 (1999).

3. Jean-Marc Andreoli, Remo Pareschi: LO and Behold! Concurrent Structured Pro-
cesses. ACM SIGPLAN Notices, Proceedings OOPSLA/ECOOP ’90, 25(10):44-56,
October 1990.

4. Hariolf Betz, A Linear Logic Semantics for CHR, Master Thesis, Uni-
versity of Ulm, October 2004, www.informatik.uni-ulm.de/pm/mitarbeiter/

fruehwirth/other/betzdipl.ps.gz

5. Marco Bozzano, Giorgio Delzanno, Maurizio Martelli: A Linear Logic Specification
of Chimera. DYNAMICS ’97, a satellite workshop of ILPS’97, Proceedings, 1997.

6. Vincent Danos, Roberto Di Cosmo: Initiation to Linear Logic. Course notes, June
1992.

7. François Fages, Paul Ruet, Sylvain Soliman: Linear Concurrent Constraint Pro-
gramming: Operational and Phase Semantics. Information and Computation,
165(1):14-41, 2001.

8. Thom Frühwirth: Theory and practice of constraint handling rules. Journal of Logic
Programming, 37(1-3):95-138, 1998.

9. Tom Schrijvers, Thom Frühwirth: Optimal Union-Find in Constraint Handling
Rules - Programming Pearl. Theory and Practice of Logic Programming (TPLP),
to appear 2005.

10. Jean-Yves Girard: Linear Logic: Its syntax and semantics. Theoretical Computer
Science, 50:1-102, 1987.

11. James Harland, David Pym, Michael Winikoff: Programming in Lygon: an
overview. Algebraic Methodology and Software Technology (AMAST 96), 5th In-
ternational Conference, Proceedings, 391-405, 1996.

12. Frank Pfenning: Linear Logic. Material for the homonymous course at Carnegie
Mellon University. Draft of 2002.

13. Robert E. Tarjan, Jan van Leeuwen. Worst-case analysis of set union algorithms.
Journal of the ACM, 31(2):245-281, 1984.

14. Philip Wadler: A taste of linear logic. Invited talk, Mathematical Foundations of
Computing Science, Springer LNCS 711, 1993.

