
Constraint Programming
Prof. Dr. Thom Frühwirth

Assignment 1

Execise 1. Make yourself familiar with SICStus Prolog, which is installed in the Linux pool:

• Go to www.sics.se/sicstus/ for information regarding SICStus Prolog. Read the chap-
ter “How to Run Prolog”.

• Install Emacs-Support for SICStus: Add the line (load

"/opt/sicstus4.0.1/lib/sicstus-4.0.1/emacs/sicstus_emacs_init") to the
file ~/.emacs (where ~ is your home directory).

• Write a “Hello world!” program in SICStus Prolog, e.g.,
start :- write(’Hello world!’).

Compile the source in Emacs and call it with start.

Execise 2 (CLP – “generate and test” vs. “constrain and generate”).
Use the permutation sort algorithm for sorting a list of integers. Analyse the run time complexity
of each implementation with respect to the length of the list.

a) To implement the generate and test version, use three Prolog predicates perm-

sort(List,Sorted), permutation(List,Sorted), and sorted(Sorted) (all argu-
ments are lists).
A list R is the sorted version of the list L if R is a permutation of R and the elements
or R are sorted in increasing order.

b) For the constrain and generate version, use the constraint solver given in the modul
clpq and refer to the SICStus manual – chapter 33 – for details.
Hint: Your source code must include :- use_module(library(clpq)).

For example, the constraint solver simplifies the following two constraints (which must
be enclosed in braces) {A=<3, A=<5} to {A=<3}.
Convert, both the explicit as well as the implicit compare operations (i.e., the operations
that compare list elements) from part (a), into clpq constraints by attaching braces.
Note that in the definition of permsort, the predicate sorted should be called before
permutation in order to constrain first.
Testing should include lists with variables (e.g. permsort([1,A,3],Sorted)) and alrea-
dy sorted (output)lists (e.g. permsort(X,[1,3,7])).
If you run into an endless loop, explain why and fix the problem.

Execise 3.

Implement a Prolog program to help scheduling routes for the freight forwarding business. The
program uses the following knowledge base, giving distances between major cities in Germany.

Hamburg,Bremen,80 Hamburg,Hannover,110

Hamburg,Berlin,230 Bremen,Hannover,100

Bremen,Dortmund,200 Hannover,Kassel,140

Hannover,Nuernberg,380 Dortmund,Kassel,130

Dortmund,Koeln,80 Kassel,Wuerzburg,180

Kassel,Frankfurt,180 Frankfurt,Wuerzburg,110

Nuernberg,Muenchen,160

a) Represent the distances with a Prolog predicate dist(city0,city1,km).
Test your implementation with queries like ?- dist(dortmund,bremen,Km),
?- dist(From,To,180), and ?- dist(From,To,Km).

b) The Prolog predicate route(From,To) should succeed, iff there is a route between From

and To.
Tests should include route(muenchen,berlin), route(ulm,halle), and finally rou-

te(frankfurt,To).



c) Define a ternary predicate route(From,To,Route) which has the same functionality as
route/2 with respect to the first and second parameters From and To. Additionally, the
third parameter, Route, contains the cities already visited in order to avoid cycles (i.e.
visiting a city more than once).
Thorough testing should include ground and non-ground queries, e.g.,
?- route(dortmund,X,[kassel]).

d) The Prolog predicate shortestpath(From,To,Route,Km) should succeed, iff the mini-
mal distance between the cities From and To is Km along Route.
Tests should include, e.g., shortestpath(kassel,bremen,[hannover],X).

Execise 4 (Map Coloring).

The Prolog predicate
color(Map,Colors) should
succeed if each state could
be assigned a color from
Colors, such that no two
bordering states have the
same color. The element
of the list Map are tuples
(Land,Color).
Compute a valid assignment
using four colors.

Execise 5. Decompose the following equations according to Clark’s Equality Theory. Determine
whether the equations are consistent and give the resulting variable bindings.
(a) p(a,X, c, Y, Z) = p(Y,X, c, a,W )
(b) p(Y, g(Y, f(Y )), g(X,a)) = p(f(U), V, g(h(U, V,W ), U))
(c) p(g(X), h(a,X), h(Y, Y )) = p(U, h(a, g(V )), h(V, g(U)))
(d) p(h(f(X), a),X, h(f(f(X)), f(f(X)))) = p(h(V, a), U, h(W,f(V )))


