
Constraint Programming
Prof. Dr. Thom Frühwirth

assignment #5

Warmup

Exercise 1 (Cardinality Constraints).
Extend boole.pl (from assignment #4) to handle cardinality constraints card/4 with semantics
given in the lecture.

a) Implement the rules together with the required auxiliary predicates.
b) Introduce a constraint labeling together with appropriate rule(s) to label variables.
c) Cardinality constraints can be combined with the existing Boolean constraints, e.g.

card2and @ card(0,1,[X,Y],2) <=> and(X,Y,0).

card2neg @ card(1,1,[X,Y],2) <=> neg(X,Y).

Find similar rules for (at least) xor and nand.

Constraint-system Rational Tree

Exercise 2. Implement the CHR-constraint X eq Y that succeeds iff CET |= X=̇Y.
Clark’s equality theory CET should be coded “naturally”, i.e., implement the axioms as propa-
gation rules (whenever possible).
Hints:

• f(X1,...,XN)=..[f|X1,...,XN]

• Rules leading to immediate contradiction should go first in the program text.
• For termination reasons pay attention not to have multiple copies of a constraint in the

store.

Queries: Unification examples from assignment #1.

Extend your implementation, s.t. queries like X eq f(Y), Y eq f(X) can be treated (occur-
check). A simple solution introduces one (or several) rule(s) for variable-substitution.

Exercise 3. The constraint theory CT should define the (purely) syntactic inequality ˙6= between
two terms along the lines of CET:

irreflexivity ∀(x ˙6=x → ⊥)
symmetry ∀(x ˙6=y → y ˙6=x)
compatibility ∀(x1

˙6=y1 ∨ . . . ∨ xn

˙6=yn → f(x1, . . . , xn) ˙6=f(y1, . . . , yn))
decomposition ∀(f(x1, . . . , xn) ˙6=f(y1, . . . , yn) → x1

˙6=y1 ∨ . . . ∨ xn

˙6=yn)
distinctness ∀(⊤ → f(x1, . . . , xn) ˙6=g(y1, . . . , ym)) iff 6= g or n 6= m

cylicity ∀(⊤ → x ˙6=t) if t is not a variable and x appears in t

The to be implemented CHR-constraint X neq Y should succeed iff CT |= X ˙6=Y.
Use the RT-solver implementation from the lecture as blueprint for your implementation. Dis-
junction, needed for compatibility and decomposition, should be implemented by a CHR∨ cons-
traint one_neq/2 as negated same_args/ constraint. The two arguments of one_neq/2 are lists
of same length and the CHR∨ should succeed iff at least on pair of list-elements is unequal.

Note: Using disjunction in CHR∨-bodies requires a (mandatory) guard in SICStus Prolog:
rule @ Head <=> true | (Goal1 ; Goal2).

Queries:

(1) ?- X neq f(X)

(2) ?- f(a,X) neq f(X,Y)

(3) ?- f(g(X),a) neq f(Y,X)


