
Under consideration for publication in Theory and Practice of Logic Programming 1

Exchanging Conflict Resolution in an
Adaptable Implementation of ACT-R

DANIEL GALL and THOM FRÜHWIRTH

Faculty of Engineering and Computer Science, Ulm University, Germany

(e-mail: {daniel.gall,thom.fruehwirth}@uni-ulm.de)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

In computational cognitive science, the cognitive architecture ACT-R is very popular. It describes
a model of cognition that is amenable to computer implementation, paving the way for computa-
tional psychology. Its underlying psychological theory has been investigated in many psychological
experiments, but ACT-R lacks a formal definition of its underlying concepts from a mathematical-
computational point of view. Although the canonical implementation of ACT-R is now mod-
ularized, this production rule system is still hard to adapt and extend in central components like
the conflict resolution mechanism (which decides which of the applicable rules to apply next).

In this work, we present a concise implementation of ACT-R based on Constraint Handling
Rules which has been derived from a formalization in prior work. To show the adaptability of
our approach, we implement several different conflict resolution mechanisms discussed in the
ACT-R literature. This results in the first implementation of one such mechanism. For the other
mechanisms, we empirically evaluate if our implementation matches the results of reference
implementations of ACT-R.

KEYWORDS: computational cognitive modeling, computational psychology, ACT-R, Constraint
Handling Rules, production rule systems, conflict resolution

1 Introduction

Computational cognitive modeling is an approach in cognitive sciences which explores

human cognition by implementing detailed computational models. This enables researchers

to execute their models and simulate human behavior (Sun 2008). Due to their executabil-

ity, computational models have to be defined precisely. Thereby ambiguities appearing in

verbal-conceptual models can be eliminated. By conducting the same experiments with

humans and an executable cognitive model, the plausibility of a model can be verified

and gradually improved.

To implement cognitive models, it is helpful to introduce cognitive architectures which

bundle well-investigated research results from several disciplines of psychology to a unified

theory. On the basis of such an architecture, researchers are able to implement domain-

specific computational models without having to deal with the remodeling of fundamental

psychological results. Additionally, cognitive architectures ideally constrain modeling to

plausible models which facilitates the modeling process (Taatgen et al. 2006).

One of the most popular cognitive architectures is Adaptive Control of Thought – Ratio-

nal (ACT-R), a production rule system introduced by John R. Anderson (Anderson and



2 D. Gall and T. Frühwirth

Lebiere 1998; Anderson et al. 2004). It has been used to model cognitive tasks like learning

the past tense (Taatgen and Anderson 2002), but is also used in human-computer interac-

tion or to improve educational software by simulating human students (Anderson et al.

2004, p. 1045 sqq.). Although providing a theory of the psychological foundations, ACT-R

lacks a formal definition of its underlying concepts from a mathematical-computational

point of view. This led to a reference implementation full of assumptions and technical

artifacts beyond the theory making it difficult to overlook and inhibiting adaptability and

extensibility. The situation improved with the modularization of the psychological theory,

but it is still difficult to exchange more central parts of the implementation like conflict

resolution (Stewart and West 2007).

To overcome these drawbacks, we have formalized parts of the implementation closing

the gap between the psychological theory and the technical implementation. We describe an

implementation of ACT-R which has been derived from our formalization using Constraint

Handling Rules (CHR). Due to the power of logic programming, our implementation is very

close to the formalization and leads to short and concise code covering the fundamental

parts of the ACT-R theory. For the compilation of ACT-R models to CHR programs,

source-to-source transformation is used. Our implementation is highly adaptable. In this

paper, this is demonstrated by integrating four different conflict resolution strategies.

Despite its proximity to the theory, the implementation can reproduce the results of the

original implementation as exemplified in the evaluation of our work. The formalization

may support the understanding of the details of our implementation, hence we refer to

(Gall 2013) and and the online appendix (Appendix A).

In section 2, we give an overview of the fundamental concepts of ACT-R and shortly

describe their implementation in CHR. Section 3 describes the general conflict resolution

process of ACT-R. Then the implementation of four different conflict resolution strategies

proposed in the literature is presented. To evaluate our implementations, we use an example

to compare the results of our implementation with those of the reference implementations

where available in section 4. Eventually, in section 5 some related work is presented and a

conclusion is given in section 6.

2 A CHR implementation of ACT-R

In the following, a short overview of the fundamental concepts of the ACT-R theory and

their transfer to CHR is given. For reasons of space, we refer to the literature for an

introduction to CHR (Frühwirth 2009). For a more detailed introduction to ACT-R, see

(Anderson et al. 2004) and (Taatgen et al. 2006). The reference implementation of ACT-R

is written in Lisp and can be obtained from the ACT-R website (ACT-R 2014). Details

of our implementation including the formalization it is based on can be found in (Gall

2013). Parts of the formalization are located in the online appendix (Appendix A).

2.1 Architecture

ACT-R is a production rule system which distinguishes two types of knowledge: declarative

knowledge holding static facts and procedural knowledge representing processes controlling

human cognition. For example, in a model of the game rock, paper, scissors, a declarative

fact could be “The opponent played scissors”, whereas a procedural information could



Theory and Practice of Logic Programming 3

be that a round is won, if we played rock and the opponent played scissors. Declarative

knowledge is represented as chunks. Each chunk consists of a symbolic name and labeled

slots which hold symbolic values. The values can refer to other chunk names, i.e. chunks

can be connected. Chunks are typed, i.e. the number and names of the slots provided

by a chunk are determined by a type. As usual for production rule systems, procedural

knowledge is represented as rules of the form IF conditions THEN actions. Conditions

match values of chunks, actions modify them.

The psychological theory of ACT-R is modular: There are modules for each function

of the human mind like a declarative module holding the declarative facts, a goal module

taking track of the current goal of a task and buffering information and a procedural

module holding the procedural information and controlling the cognitive process. There

are also modules to interact with the environment like a visual module perceiving the

visual field. The modules are independent from each other, i.e. there is no direct com-

munication between them. Each module has a fixed number of buffers associated with

it. The buffers can hold at most one single piece of information a time, i.e. one chunk.

Modules can put chunks into their associated buffers.

The core of the system is the procedural module which can access the buffers of all

other modules but does not have an own buffer. It consists of a procedural memory with

a set of production rules. The conditions of a production rule refer to the contents of the

buffers, i.e. they match the values of the chunk’s slots. The formal applicability condition

of rules can be found in the online appendix (Appendix A).

There are three types of actions whose arguments are encoded as chunks as well: First

of all, buffer modifications change the content of a buffer, i.e. the values of some of the

slots of a chunk in a buffer. Secondly, the procedural module can state requests to other

modules which then change the contents of their buffers. Eventually, buffer clearings

remove the chunk from a buffer. Although our implementation can handle requests and

clearings, we only regard buffer modifications in this work for the sake of simplicity.

Example 1

Consider the following rule:

(p recognize-win

=goal> isa game me rock opponent scissors

==>

=goal> result win)

It recognizes a win situation in the game rock, paper, scissors if the model has realized

that the opponent played scissors and the agent played rock (which could be accomplished

by a corresponding production rule interacting with the visual module). The situation is

represented by a chunk of type game providing the slots me, opponent and result. As a

result, it adds the information that the round has been won by modifying the result-slot

of the goal buffer.

Furthermore, the procedural module controls the match-select-apply cycle of the pro-

duction rule system. It searches for matching rules. As soon as a matching rule has been

selected to fire, it takes 50 ms for the rule to fire based on theories of human cognition

(Anderson 2007, p. 54). During this time, the matching process is inhibited and no

other rule can be selected until the selected rule is applied. Hence, the productions are



4 D. Gall and T. Frühwirth

executed serially. The production system is called free, if no rule is selected and waiting

for execution. As long as the procedural module is free, it searches for matching rules.

The modules act in parallel. When a request is sent to a module by a production, the

procedural module becomes free while the request is completed. Hence, new production

rules can match while other modules might be busy with requests.

ACT-R can be extended by arbitrary modules communicating through buffers with the

procedural system. However, to exchange more fundamental parts of the architecture it

needs more than only architectural modules as shown in section 3.

2.2 The Procedural Module in CHR

The procedural module is the core of ACT-R’s production rule system. Our implementation

is based on the translation of production rule systems to CHR as presented in (Frühwirth

2009, chapter 6.1). However, we have to account for the concepts of chunks and buffers,

since ACT-R differs in those particular points from other production systems. Details of

the implementation can be found in (Gall 2013).

The set of chunks can be represented in CHR by a constraint chunk(C,T), where C is

the name of the chunk and T its type. The slots provided by this chunk and their values

can be stored in constraints chunk_has_slot(C,S,V) denoting that chunk C has the value

V in slot S. With special consistency rules it can be assured, that no chunk has two values

in its slots and that it only provides the slots allowed by its type. Analogously, a buffer is

represented by a constraint buffer(B,M,C) denoting that the buffer B is affiliated with

the module M and holds chunk C. The formal definitions of chunks and buffers can be

found in the online appendix (Appendix A).

A production rule can now match and modify the information of the buffer system. The

actions are implemented by trigger constraints buffer_action(B,C) which get the name

of the buffer B and a chunk description C represented by a term chunk(C,T,[(S,V),...])

which describes a chunk with name C, type T and a list of slot-value pairs representing

the values of the chunk’s slots. Note that such chunk descriptions can be incomplete in

some arguments by simply letting them unspecified.

Example 2

The rule from example 1 can be translated to the following CHR rule:

buffer(goal,_,C), chunk(C,game),

chunk_has_slot(C,me,rock), chunk_has_slot(C,opponent,scissors)

==> buffer_modification(goal,chunk(_,_,[(result,win)])).

The name and type of the chunk in the modification are not specified in the original rule

and therefore left blank as well as the me and opponent slots.

2.3 Timing and Phases

As mentioned before, the production system of ACT-R is occupied for 50 ms after a rule

has been selected. To model such latencies, an event queue has to be added. It keeps

track of the current time and holds an ordered set of events which can be dequeued one

after another according to their scheduled times. In our implementation, the event queue



Theory and Practice of Logic Programming 5

is implemented as a priority queue sorting its elements after the time and a priority

determining the order of application for simultaneous events. Events are arbitrary Prolog

goals and can be added by add_q(Time,Priority,Event). The current time can be

queried by get_time(Now).

To ensure that a production rule only matches when the module is free, we replace each

CHR rule of the form C ==> A according to the following scheme consisting of two rules:

C \ match <=> add_q(Now + 0.05,0,apply_rule(rule(r,C))).

C \ apply_rule(rule(r,C)) <=> A, get_time(Now), add_q(Now,-10,match).

The constraint match indicates that the procedural module is free and searches for a

matching rule. For the matching rule, an apply_rule event is scheduled 50 ms from the

current time. This event will actually fire the rule. The actions A schedule their effects

on the buffers at the current time with different priorities. Requests are only sent to the

corresponding module. Its effects on the requested buffer are scheduled at a later time.

Finally, a new match event is scheduled at the current time Now but with low priority of−10.

This ensures that all current actions are performed before the next rule is scheduled to fire.

Otherwise, if no rule matches and the procedural module is free (i.e. a match constraint

is present), a rule can only become matching if the content of the buffers change. Hence,

a new match constraint is added directly after the next event in the queue. This models

the fact that the procedural module is searching permanently for matching rules when it

is free without adding unnecessary match events.

3 Conflict Resolution

Only one matching production rule can fire at a time. Hence, if there are multiple

applicable productions, the system has to decide which to fire. This process is called

conflict resolution (McDermott and Forgy 1977). In most implementations, CHR simply

chooses the rule to fire by textual order, which is a valid conflict resolution mechanism.

However, in ACT-R a more advanced approach using subsymbolic concepts is needed to

faithfully model human cognition.

3.1 General Conflict Resolution Process

In (Frühwirth 2009, p. 151) a general method to implement different conflict resolution

mechanisms in CHR is given. This method is adapted to our CHR implementation of

ACT-R. The first rule of each CHR rule pair from section 2.3 can be replaced by:

match, C ==> G | conflict_set(rule(r,C)).

Hence, the application of a matching production is delayed by adding the rule to the conflict

set instead of choosing the first matching rule to be applied by scheduling apply_rule/1

as explained in section 2.3. Thereby all matching rules are collected in conflict_set/1

constraints which then can be reduced to one single constraint containing only the rule

to be applied according to an arbitrary strategy.

As a last production rule, the rule match <=> select. occurs in the program. This

rule will always be applied last (since rules are applied in textual order in CHR). It

removes the remaining match constraint and adds a constraint select which triggers the



6 D. Gall and T. Frühwirth

selection process. This means that the conflict resolution is performed by choosing one

rule from the conflict set constraints and removing all other such constraints. If no rule

matches, a new match constraint is scheduled after the next event.

With the introduction of the select constraint, the system commits to the rule to be

applied by scheduling the corresponding apply_rule/1 event as explained in section 2.3.

This leads the chosen production to perform its actions since its second CHR rule is

applicable. After the actions are performed, the next matching phase is scheduled.

The strategy of how the conflict set is eliminated to one single rule which will be applied

may vary and is exchangeable. In the following section, several strategies are presented

and implemented.

3.2 Conflict Resolution Strategies

There have been several conflict resolution strategies proposed for ACT-R over time. To

demonstrate the adaptability of our CHR implementation, we implement some of those

strategies. In the reference implementation of ACT-R, such adaptations might need a lot

of knowledge about its internal structures (Stewart and West 2007).

In general, ACT-R conflict resolution strategies usually use the subsymbolic concept of

production utilities. The production utility for a production i is the function Ui : N→ R
which expresses the value of utility of a particular production at its nth application which

may be adapted according to a learning strategy. In the conflict resolution process, the

current utility values are compared for all matching functions and the production with

the highest utility is chosen. The production utility can therefore be seen as a dynamic

rule priority which is adapted according to a certain strategy.

In the following, we present some different learning strategies to adapt the utility of a

production. Eventually, the concept of rule refraction is introduced, which is a general

conflict resolution concept and can be applied for all of the presented learning strategies.

3.2.1 Reinforcement-Learning-Based Utility Learning

The current implementation of ACT-R 6.0 uses a conflict resolution mechanism which is

motivated by the Rescorla-Wagner learning equation (Rescorla and Wagner 1972). The

basic concept is that there are special production rules which recognize a successful state

(by some model-specific definition) and then trigger a certain amount of reward measured

in units of time as a representation of the effort a person is willing to spend to receive

a certain reward (Anderson 2007, p. 161). All productions which lead to the successful

state, i.e. all productions which have been applied, receive a part of the triggered amount

of reward which demounts the more time lies between the application of the production

rule and the triggering of the reward. The utility Ui of a production i then is adapted as

follows:

Ui(n) = Ui(n− 1) + α(Ri(n)− Ui(n− 1)) (1)

The reward Ri(n) for the nth application of the rule i is the difference of the external

reward and the time between the selection of the rule and the triggering of the reward.

The utility adapts gradually to the average reward a rule receives. Its calculation can be

extended by noise to enable rules with initally low utilities to fire. This then may boost

their utility values.



Theory and Practice of Logic Programming 7

In CHR, this strategy can be implemented as follows: For each production rule, a

utility/2 constraint is stored holding its current utility value. For rules marked with

a reward, a reward/2 constraint holds the amount of reward. When a production rule

is applied, this information is stored with the application time in a constraint by the

rule apply_rule(rule(P,_,_)) ==> get_time(Now), applied([(P,Now)]). With a

corresponding rule, the applied/1 constraints are merged respecting the application time

of the rules, since the adaptation strategy depends on the last utility value of a rule and

rules might be applied more than once until they receive a reward. This leads to one

applied/1 constraint containing a sorted list of rules and their application time.

If a rule which is marked with a reward is going to be applied, the reward can be triggered

by apply_rule(rule(P,_)), reward(P,R) ==> trigger_reward(R). The triggering

of the reward simply adapts the utilities according to equation 1 for all productions

which have been applied indicated by the applied/1 constraint respecting the order

of application. Afterwards, this constraint is deleted because after a reward has been

received, the rule is not considered in the next adaptation.

3.2.2 Success-/Cost-Based Utility Learning

In prior implementations of ACT-R, the utility learning is based on a success-/cost

approach (Anderson et al. 2004; Taatgen et al. 2006). A detailed description can be found

in (ACT-R Tutorial 2004, unit 6). Each production rule i is associated to the values

Pi denoting the success probability of the production and Ci denoting its costs. In this

approach, the utility of a production rule is defined as:

Ui(n) = Pi(n)G− Ci(n) (2)

Note that the current utility does not depend on the value of the last utility, but can be

calculated by the current values of the parameters instead. Hence, the order of application

does not play a role. Usually, Ci is measured in units of time to achieve a goal whereas G

– the goal value – is an architectural parameter and usually set to 20 s. The parameters P

and C are obtained by the following equations:

Pi(n) =
#sucessesi

#successesi + #failuresi
Ci(n) =

effortsi
#successesi + #failuresi

(3)

The values #sucesses and #failures count all applications of a rule which have been

identified as a success or a failure respectively. Similarly to the reinforcement-based

learning, some productions which identify a success or failure trigger an event which adapts

the counters of successes or failures of all production rules which have been applied since

the last triggering. The efforts are estimated by the difference of the time of the triggering

and the selection of a rule. The values are initialized with #sucesses = 1,#failures = 0 and

efforts = 0.05 s which is the selection time of one firing. Analogously to the reward-based

strategy, utilities can be extended by noise.

Similarly to the implementation of the reinforcement learning rule, the triggering of

a success or failure can be achieved by a constraint success(P) or failure(P), which

encode that a production P is marked as success or failure respectively. Combined with the

apply_rule/2 constraint, a success/0 or failure/0 constraint can be propagated which

trigger the utility adaptation. The following rules show the adaptation of #successesi
and effortsi when a success is triggered and rule i has been applied before:



8 D. Gall and T. Frühwirth

success \ applied(P,T), efforts(P,E), successes(P,S) <=>

get_time(Now), efforts(P,E+Now-T), successes(P,S+1).

success <=> true.

The number of successes or failures are stored in the respective binary constraints and if a

success is triggered, they are incremented for all applied production rules and efforts are

adjusted. The rules for failures are analogous. The adaptation of one of those parameters

triggers the rules which replace the constraints holding the old Pi and Ci values by new

values. When a Pi or Ci constraint is replaced, the calculation of the new utility value is

triggered. To ensure that only one utility value is in the store, a destructive update rule

is used.

3.2.3 Random Estimated Costs

In (Belavkin and Ritter 2004), a conflict resolution strategy motivated by research results

in decision-making is presented. The current implementation varies slightly from this

description (Belavkin 2005) and we stick to this most recent approach for a better

comparability of the results. The strategy is based on the success-/cost-based utility

learning from section 3.2.2 and uses the same subsymbolic information (the counts of

successes and failures and the efforts). However, instead of calculating the average cost

Ci, the expected costs θi of achieving a success by a rule are estimated:

θi := E(Ci) ≈
effortsi

#sucessesi
(4)

From the expected costs θi of a rule i, the random estimated costs ζi are derived by

by drawing a random number ri from a uniform distribution U(0, 1) and setting ζi =

−θi · log(1− ri). Eventually, production utilities are calculated analogously to the success-

/cost-based strategy: Ui = PiG− ζi. The influence of the random estimated costs can be

varied by adapting the parameter G. If G = 0, the production rule with minimal random

estimated costs will be fired (as suggested in (Belavkin and Ritter 2004)).

Since this method uses the same parameters as the success-/cost-based variant, almost

all of the code can be reused for an implementation. However, instead of the costs, the

expected costs θi are computed and saved in a constraint whenever the success/failure ratio

changes. Additionally, the random costs must be calculated in every conflict resolution step

and not only when the parameters change since they vary each time due to randomization.

Hence, a rule must be added which calculates the utility value as soon as a production

rule enters the conflict set:

conflict_set(rule(P,_)), theta(P,T), succ_prob(P,SP) ==>

random(R), Z is -T * log(1 - R), U is SP*20-Z,

set_utility(P,U).

The rest of the implementation like the calculation of the success/failure counters, efforts

or the pruning of the conflict set is identical to the success-/cost-based strategy.

3.2.4 Production Rule Refraction

In contrast to the previous strategies which only exchange the utility learning part,

production rule refraction adapts the general conflict resolution mechanism and can be



Theory and Practice of Logic Programming 9

combined with all of the other presented strategies. It was first suggested in (Young 2003)

to avoid over-programming of models in the sense that the order of application of a set

of rules is fixed in advance by adding artificial signals to ensure the desired order. Rule

refraction can avoid such operational concepts by inhibiting the application of the same

rule instantiation more than once. To the best of our knowledge, our implementation is

the first of its kind for ACT-R.

Refraction can be implemented by saving the instantiation of each applied production

using the rule apply_rule(R) ==> instantiation(R). When building the conflict set,

the following rule eliminates all productions which already have been applied from

the set: instantiation(R) \ conflict_set(R) <=> true. This pruning rule must be

performed before the rule selection process, so that such productions are never considered

as fire candidates.

4 Evaluation

After having implemented some different conflict resolution strategies, we test their

validity with an example model of the game rock, paper, scissors. The idea is that the

model simulates a player playing against three opponents with different preferences on the

three choices in the game. We then want to observe, how the model adapts its strategy

under the different conflict resolution mechanisms and test if the results of the ACT-R

implementation and our CHR implementation match.

4.1 Setup

The player is basically modeled by the production rules play-rock, play-paper and

play-scissors standing for the three choices a player has in the game. At the beginning,

the production rules have equal utilities which are then adapted by the utility learning

mechanisms of the three conflict resolution strategies. Since we only want to test our

conflict resolution implementations, we try to rule out all other factors which could

influence the behavior of our model. Hence, we only use the procedural module with the

goal buffer and do not simulate any declarative knowledge or even perceptual and motor

modules. I.e. the model is not a realistic psychological hypothesis of the game play, but

only a test of our implementation. Furthermore, we disable noise where possible to better

compare our results. In ACT-R, the canonical parameter setting is not recommended to

change without justification (Stewart and West 2007, sec. 1.1). For our experiment, we

used this setting.

The moves of the opponents are randomly generated in advance according to their

defined preferences: Player 1 simply chooses rock for every move, player 2 chooses only

between rock and paper and player 3 chooses equally between all three possibilities. For

each player, we produced 20 samples of 20 moves (except for player 1 with only one sample

of 20 moves). Their choices are put into the goal buffer one after another by host-language

instructions (Lisp and Prolog/CHR). The game is played for 20 rounds until a restart

with a new sample which corresponds to 2 s simulation time. Finally, the utility values

U{r,p,s} at the end of each run (for rock, paper and scissors respectively) are collected

and compared to the reference implementation. We use the notation U{r,p,s} to denote



10 D. Gall and T. Frühwirth

the average of those values over all 20 samples. In the following the implementation of

the production rule play-rock:

(p play-rock

=goal> isa game me nil opponent nil

==>

=goal> me rock opponent =x !output! (rock =x) )

This rule simply puts the symbol rock into the goal buffer indicating that the model chose

rock. The variable =x is set by built-in functions of the host language (omitted in the

listing) modeling the choice of the opponent derived from a given list of moves. The rules

for paper and scissors can be defined analogously. The model has been translated to CHR

by our compiler. We performed the translation of Lisp built-ins to Prolog built-ins by hand.

Furthermore, the model contains production rules detecting a win, draw or defeat

situation (similar to example 1) and resetting the choices of the two players in the goal

buffer to indicate that the next round begins. Those rules are marked with a reward

(positive or negative) or as a success/failure respectively. In the case of a draw, no reward,

success or failure will be triggered. Hence, the utility learning algorithms will adapt the

values of the fired rules depending on their success.

If the highest utilities in the conflict set are equal, the strategy of ACT-R is undocu-

mented. It depends on the order of the rules in the source code and may vary between the

implementations (e.g. the strategy of ACT-R 6.0 differs from ACT-R 5.0 as we found in

our experiments). We adapted the order of rules in our translated CHR model to match

the strategy of ACT-R. Usually, noise would rule out such differences.

For the reference implementations, we used Clozure Common Lisp version 1.9-r15757.

The CHR implementation has been run on SWI-Prolog version 6.2.6. The relevant data

collected in our experiments can be found in the online appendix (Appendix B).

4.2 Availability of the Strategies

Our approach enables the user to exchange the complete conflict resolution strategy

without relying on provided interfaces and hooks except for the very basic information

that a rule is part of the conflict set or about to be applied. This information relies

on the fundamental concept of the match-select-apply cycle of ACT-R. In the reference

implementations of the strategies, there are deeper dependencies and assumptions on

when and how subsymbolic information is adapted and stored.

This leads to incompatibilities: The reinforcement-learning-based strategy is only

available for ACT-R 6.0. Although the success-/cost-based strategy is shipped with ACT-

R 6.0, it was not executable for us and hence we had to use ACT-R 5.0 to run it. This

leads to further incompatibility problems when using modules not available for ACT-R

5.0 (which is in general difficult to extend due to the lack of architectural modules). Since

the method of random-estimated costs relies on the success-/cost-based strategy, it is also

only available for ACT-R 5.0.

Our implementation of the refraction-based method is to the best of our knowledge the

only existing implementation for ACT-R, although it has been suggested in (Young 2003).



Theory and Practice of Logic Programming 11

4.3 Reinforcement-Learning-Based Utility Learning

For the reinforcement-learning-based strategy, we marked the win-detecting production

rules with a reward of 2 and the defeat-detecting rules with 0 which leads to negative

rewards for all applied rules when a defeat is detected. Draws do not lead to adjustments of

the strategy in our configuration. We executed the model on ACT-R 6.0 version 1.5-r1451

and our CHR implementation.

Our implementation matches the results of the reference implementation exactly when

rounded to the same decimal precision (see online appendix B.2). Differences of floating

point precision did not influence the results, since ACT-R does round the final results

to the one-thousandths. As expected, the model usually rewards the paper rule most

when playing against player 1 and 2 (average utility at end of round for player 1:

(Ur, Up, Us) = (0, 1.87,−0.02); player 2: (0, 0.81, 0.49)). Exceptions are rounds where the

opponent chooses paper above average especially as first moves (e.g. sample 10: 75% rate

of paper; first 9 moves; Up = 0, Us = 1.329). In such cases, scissors has the highest utility.

This is reinforced by the relatively high reward of successes compared to the punishment

of defeats. However, the winning rate is still very high (15 wins, 5 defeats, no draws).

Overall, the behavior of the model is very successful (average: 10.4 wins, 3.9 draws and

5.7 defeats in each sample). For player 3 – as expected – no unique result can be learned;

wins, draws and defeats are very close in average (6.6 wins, 6.7 draws, 6.7 defeats).

4.4 Success-/Cost-Based Utility Learning

For the success-/cost-based strategy, the production rules recognizing a win situation

are marked as a success and analogously the production rules for the defeat situations

as a failure. We used ACT-R 5.0 to test our implementation against the reference

implementation, since it is not available for ACT-R 6.0. Again, noise is disabled for better

comparability. Because the selection mechanism for rules with same utility differs from

ACT-R 6.0, we adapted the order in which the rules appear in the source code.

Our implementation matches the results of the reference implementation exactly (see

online appendix B.3). It can be seen that this strategy is not able to detect the optimal

moves for player 1. Analyses showed that due to the order of the rules, the model first

selects to play rock. This leads to a draw and hence no adaptation of the utilities. Hence,

rock is played repeatedly. In real-world models, noise would help to overcome such

problems. For player 2, the model correctly chose to play paper in average even for the

samples where the opponent chooses paper more often than rock. However, in average,

the model did only win 8.9 out of 20 rounds in a sample and produced 9.1 draws. For

each of the samples, only two rounds were lost.

4.5 Random Estimated Costs

Due to the randomness of this strategy, no exact matches of results can be expected.

Hence, we executed the models on 3 samples (the first of each opponent) with 50 runs for

each sample. The reference implementation has been run on ACT-R 5.0.

The average utilities are close to the reference implementation (error squares of average

utilities player 1: (∆Ur
2
,∆Up

2
,∆Us

2
) = (0.145, 0.000, 0.000); player 2: (0.850, 0.000,



12 D. Gall and T. Frühwirth

0.098); player 3: (2.823, 0.503, 0.003), see online appendix B.4 for details). It can be

seen that for most runs the production with the highest, medium and lowest utility

value coincide. For player 1, the random estimated costs overcome the problem of the

success-/cost-based implementation as discussed in section 4.4.

5 Related Work

There are several implementations of the ACT-R theory in different programming lan-

guages. First of all, there is the official ACT-R implementation in Lisp (ACT-R 2014) which

we used as a reference. There are a lot of extensions to this implementation which partly

have been included to the original package in later versions like the ACT-R/PM extension

included in ACT-R 6.0 (Bothell , p. 264). The implementation comes with an experiment

environment offering a graphical user interface to load, execute and observe models.

In (Stewart and West 2006; Stewart and West 2007), a Python implementation is

presented which also has the aim to simplify and harmonize parts of the ACT-R theory

by finding the central components of the theory. The architecture has been reduced to

only the procedural and the declarative memory which are used to build other models

combining and adapting them in different ways. However, there is no possibility to

translate traditional ACT-R models automatically to Python code since the way of

modeling differs too much from the original implementation.

Furthermore, there are two different implementations in Java: jACT-R (jACT-R b)

and ACT-R: The Java Simulation & Development Environment (Salvucci b). The latter

one is capable of executing original ACT-R models and offers an advanced graphical user

interface. The focus of the project was to make ACT-R more portable with the help of

Java (Salvucci a). In jACT-R, the focus was to offer a clean and exchangeable interface to

all the components, so different versions of the ACT-R theory can be mixed (jACT-R a)

and models are defined using XML. There is no compiler from original ACT-R models to

XML models of jACT-R. Due to the modular design defining various interfaces which can

be exchanged, jACT-R is highly adaptable to personal needs. However, both approaches

are missing the proximity to a formal representation.

6 Conclusion

In this work, we have presented an implementation of ACT-R using Constraint Handling

Rules which is capable of closing the gap between the theory of ACT-R and its technical

realization. Our implementation abstracts from technical artifacts and is near to the

theory but can reproduce the results of the reference implementation. Furthermore,

the formalization itself enables implementations to check against this reference. The

implementation of the different conflict resolution strategies has shown the adaptability

of our approach. Most of the implemented strategies are not available for the current

implementation of ACT-R and our implementation of production rule refraction is unique.

For the future, the implementation can be extended by other modules like the percep-

tive/motor modules provided by ACT-R. Currently, there is a running student project

on implementing a temporal module which may be used to investigate time perception.

The formalization and CHR translation pave the way to develop analysis tools (e.g. a

confluence test) on the basis of the results for CHR programs.



Theory and Practice of Logic Programming 13

References

ACT-R 2014. The ACT-R Homepage. http://act-r.psy.cmu.edu/.

ACT-R Tutorial 2004. The ACT-R 5.0 tutorial. http://act-r.psy.cmu.edu/tutorials-5-0/.

Anderson, J. R. 2007. How can the human mind occur in the physical universe? Oxford
University Press.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., and Qin, Y.
2004. An integrated theory of the mind. Psychological Review 111, 4, 1036–1060.

Anderson, J. R. and Lebiere, C. 1998. The Atomic Components of Thought. Lawrence
Erlbaum Associates, Inc.

Belavkin, R. 2005. Optimist conflict resolution overlay for the ACT–R cog-
nitive architecture. http://www.eis.mdx.ac.uk/staffpages/rvb/software/optimist/

optimist-for-actr.pdf.

Belavkin, R. and Ritter, F. E. 2004. Optimist: A new conflict resolution algorithm for act-r.
In ICCM. 40–45.

Bothell, D. ACT-R 6.0 Reference Manual – Working Draft. Department of Psychology,
Carnegie Mellon University, Pittsburgh, Pennsylvania 15213.

Frühwirth, T. 2009. Constraint Handling Rules. Cambridge University Press.

Gall, D. 2013. A rule-based implementation of ACT-R using constraint handling rules. Master
Thesis, Ulm University .

jACT-R. Benefits of jACT-R (part of the FAQ section of the homepage). http://jactr.org/

node/50.

jACT-R. The Homepage of jACT-R. http://jactr.org/.

McDermott, J. and Forgy, C. 1977. Production system conflict resolution strategies. SIGART
Bull. 63 (June), 37–37.

Rescorla, R. A. and Wagner, A. W. 1972. A theory of Pavlovian conditioning: Variations in
the effectiveness of reinforcement and nonreinforcement. Appleton-Century-Crofts, New York,
Chapter 3, 64–99.

Salvucci, D. About ACT-R: The Java Simulation & Development Environment. http:

//cog.cs.drexel.edu/act-r/about.html.

Salvucci, D. ACT-R: The Java Simulation & Development Environment – Homepage. http:

//cog.cs.drexel.edu/act-r/.

Sarna-Starosta, B. and Ramakrishnan, C. R. 2007. Compiling constraint handling rules
for efficient tabled evaluation. In In 9th International Symposium on Practical Aspects of
Declarative Languages (PADL).

Stewart, T. C. and West, R. L. 2006. Deconstructing ACT-R. In Proceedings of the Seventh
International Conference on Cognitive Modeling. 298–303.

Stewart, T. C. and West, R. L. 2007. Deconstructing and reconstructing ACT-R: exploring
the architectural space. Cognitive Systems Research 8, 3 (Sept.), 227–236.

Sun, R. 2008. Introduction to computational cognitive modeling. In The Cambridge Handbook
of Computational Psychology, R. Sun, Ed. Cambridge University Press, New York, 3–19.

Taatgen, N. A. and Anderson, J. R. 2002. Why do children learn to say “broke”? a model of
learning the past tense without feedback. Cognition 86, 2, 123–155.

Taatgen, N. A., Lebiere, C., and Anderson, J. 2006. Modeling paradigms in ACT-R.
In Cognition and Multi-Agent Interaction: From Cognitive Modeling to Social Simulation.
Cambridge University Press, 29–52.

Young, R. M. 2003. Should ACT-R include production refraction? In Proceedings of 10th
Annual ACT-R Workshop.



14 D. Gall and T. Frühwirth

Appendix A Formalization of ACT-R

In this section, the fundamental concepts of ACT-R are formalized and transferred to

CHR.

A.1 The Basic Unit of Knowledge: Chunks

ACT-R is a symbolic production rule system, i.e. all declarative information is represented

in form of symbols and associations of symbols and the procedural information is stored

in form of production rules transforming the declarative information. Hence, the ACT-R

production system is defined over a set of symbols S. The smallest unit of declarative

information is a chunk, which basically is a structured assembly of symbols. It has a

unique name and a number of labeled slots which can hold one single symbol. The chunk

names and the slot labels are symbols themselves. If a chunk has a symbol naming a chunk

in its slot, the two chunks are connected. We require the unique-name assumption for

symbols. The concept of chunks and their connections in form of chunk stores is defined

in section A.2.

A.2 Chunk Stores

We extend the abstract notion of chunks given in section A.1 to a definition of chunk

descriptions embedded into chunk stores which represent a network of chunks with the

help of three relations.

Definition 1 (Chunk Description)

A chunk with name c and type t and corresponding slots and values can be represented

as a term chunk(c, t, {(s, v) | c has the value v in slot s}).

Definition 2 (Chunk Store)

A chunk-store Γ over a set of symbols S is a tuple (C,E, T ,HasSlot, Isa), where C is a

set of chunk identifiers and E a set of primitive elements both identified by unique names.

The values of Γ are defined by the set V = C ∪ E. T is a set of chunk-types. The set T
then denotes the set of all type names. A chunk-type T = (t, S) ∈ T is a tuple with a

unique type name t ∈ T and a set of slots S ⊆ S where S is the set of all slot names. The

sets C, E, T and S are disjoint: C ∪̇ E ∪̇ T ∪̇ S ⊆ S.

HasSlot ⊆ C× S× V and Isa ⊆ C× T are relations and are defined as follows:

chunk(c, t, S) ∈ Γ⇔ c ∈ C ∧ c Isa t ∧ ∀(s, v) ∈ S : (c, s, v) ∈ HasSlot.

The Isa relation has to be right-unique and left-total, so each chunk has to have exactly

one type. A chunk-store is type-consistent, iff the following two conditions hold:

1. ∀c ∈ C, s ∈ S, v, v′ ∈ V : (c, s, v) ∈ HasSlot ∧ (c, s, v′) ∈ HasSlot⇒ v = v′

2. ∀c ∈ C, s ∈ S, v ∈ V, t ∈ T, S ⊆ S : c Isa t∧ (c, s, v) ∈ HasSlot∧ (t, S) ∈ T ⇒ s ∈ S

With this definition, a chunk store can be implemented directly in CHR by defining the

sets and relations as constraints. The constraint chunk(C,T) is a condensed representation

of the set of chunk symbols C and the Isa relation. This is possible, since each chunk in



Theory and Practice of Logic Programming 15

C has exactly one type. The ternary HasSlot relation is represented by constraints of the

form chunk_has_slot(C,S,V) stating that (c, s, v) ∈ HasSlot.

Chunk types can be represented by a constraint chunk_type(T,S) where T is the

symbol denoting the chunk type and S is a list of symbols for the slots. Note that there

can be added rules to ensure type-consistency and uniqueness of the relations as defined

in definition 2.

A.3 Buffer Systems

Definition 3 (buffer system)

A buffer system is a tuple (B,Γ,Holds), where B is a set of buffer names, Γ = (C,E, T ,
HasSlot, Isa) a type-consistent chunk-store and Holds ⊆ B × C a right-unique relation

that assigns every buffer at most one chunk that it holds. Buffers which do not appear in

the Holds relation are called empty.

A buffer system is consistent, if every chunk that appears in Holds is a member of C

and Σ is a type-consistent chunk-store. It is clean, if its chunk-store only holds chunks

which appear in Holds.

In CHR, the set B and the Holds relation can be represented as a constraint buffer/3

which holds the name of the buffer, the corresponding module (needed for requests) and

the name of the chunk it holds as a reference to the chunk store. This is possible since each

buffer holds at most one chunk. Empty buffers can be represented by the empty symbol

nil. For each buffer, there must be exactly one buffer constraint. This transforms the

Holds relation to a left-total and right-unique relation.

A.3.1 Production Rules

Definition 4 (Production Rules)

An ACT-R production rule is of the form (p name buffer_test* ==> action*) where

name is a unique symbol indicating the name of the rule. Buffer tests are also de-

noted as the left-hand-side (LHS), actions as the right-hand-side (RHS) of a rule. A

buffer test has the form =buffer> isa t s1 v1 ... sn vn where the symbol buffer

references the name of the tested buffer and the rest stands for a chunk description

chunk(c, t, {(s1, v1), . . . , (sn, vn)}) for a chunk with arbitrary name c. The values vi can

be symbols or variable symbols, where variable symbols are indicated by the prefix =.

An action has the form #buffer> s1 v1 ... sn vn where the # is a place-holder for

the available actions =, +, - denoting modifications, requests and clearings respectively.

The other symbols are defined as for the buffer tests. Note that for requests, the first slot

symbol must be isa followed by a chunk type as value. The values might be variables

again, but have to be bound on the left-hand-side of the rule i.e. appear on LHS.

Definition 5 (Applicability of a Production Rule)

A production rule with buffer tests =b1> isa t1 s1,1 v1,1 . . . s1,n1 v1,n1 . . . =b k> isa

tk . . . sk,nk vk,nk is applicable in a buffer system iff ∃v̄ ∈ V : b1 ∈ B ∧ ∃c1 ∈ C ∧
c1 Isa t ∧ (c1, s1,1, v1,1) ∈ HasSlot · · · ∧ v̄ = x̄ where v̄ denotes a set of values in V and x̄

the variable symbols used on the LHS.



16 D. Gall and T. Frühwirth

A.3.2 Translation of rules

The production rules as defined in definition 4 operate on the buffer system: They match

the content of the buffers and transform it with a defined set of actions. Hence, an ACT-R

rule can be transferred to a CHR rule H ==> G | B, where the head H and guard G

represent the applicability condition of the rule as defined in definition 5 and the body B

contains the actions.

Applicability Condition The applicability of a rule in definition 5 can be translated

directly to the CHR counterparts of the relations. I.e. each relational condition in the

applicability condition is expressed by the respective constraint in the head of the rule.

The guard is filled with the conditions from v̄ = x̄. Note that the condition has a set-based

semantics (since idempotency can be reduced in classical logic). I.e., for the special case

of duplicate tests on the LHS of a production rule, additional rules have to be generated

with all possible combinations of unifications of duplicate pairs to implement the set-based

semantics of CHR ωset as shown in (Sarna-Starosta and Ramakrishnan 2007). In the

following, we assume that the production rules are duplicate-free.

Actions The actions of a production rule transform the buffer system in the way as

they have been defined in section 2.1. The transformations of the buffer system can be

realized in CHR by using destructive update as described in (Frühwirth 2009, p. 32). I.e.

each action has a trigger constraint action/2 which gets the name of the buffer and the

specification of the action encoded as a chunk-description (see definitions 1 and 4). The

trigger constraints then use abstract methods to access the buffer system like set_buffer

to set the content of a buffer. This simplifies the compilation and the form of the resulting

rules, since the constraints representing the relations of the buffer system only appear in

the kept head of the resulting CHR rules and never in the removed head. Additionally,

it simplifies extensions and adaptations of the actions, since the compiler must not be

changed but only the framework implementing the actions. One adaptation of the simplest

form of actions which only apply the changes to the buffers is shown in section 2.3 when

we introduce scheduling to postpone the actual application of the changes an action

performs.

Appendix B Evaluation Results

In this appendix we list the results of our experiments as described in section 4.

B.1 Samples

In table B 1 and B 3, the used samples of player 2 and player 3 are listed. Table B 2 and B 4

show the frequencies of rock, paper and scissors within one sample. The sum Σ is a control

value and ensures that 20 moves have been produced per sample. The p values denote

the probabilities of rock, paper and scissors respectively.



Theory and Practice of Logic Programming 17

Table B 1. Samples for Player 2

Sample

1 r r r p r p p p r r r r p r p p p r p r
2 r p p p p p r r p r r r r p r p r r p p
3 r p r p r r p p r p r p r p r r r r p p
4 r r r r r r p r p r r p p p p p r r p p
5 p p p p p r p p r p p r p r r p p r p p
6 p p p p r p r r r r r r r r r p p p r p
7 p p r p p p p r r r r r r p r r r r r r
8 r r p r r p r p p r r r r p r r r p r r
9 p p p p p p r r p p r r r r r r p r r r

10 p p p p p p p p p r r p r p p r r p p p
11 p r p p r p r r r r p p p r r p r p p p
12 p p r r p r r p r r r p p p r p r r r p
13 p r p r p r r p r p r r p r p r p p r p
14 p r p p r r p p r p r p p r p p r p p p
15 p r p p p p p r r r r r r r r p r p p r
16 r r p r p p p r p r r r r r p r p r r p
17 r r r r r p p p r r r r p p p p r r p p
18 r r r r r r r p r p r r p r r p p p p r
19 r p r r r p p p p p r p r p r p r p r p
20 p p r r p p r r p r r p r r p r r p r p

Table B 2. Samples for Player 2 – Frequencies and Probabilities

Sample #rock #paper #scissors Σ pr pp ps

1 11 9 0 20 0.55 0.45 0
2 10 10 0 20 0.5 0.5 0
3 11 9 0 20 0.55 0.45 0
4 11 9 0 20 0.55 0.45 0
5 6 14 0 20 0.3 0.7 0
6 11 9 0 20 0.55 0.45 0
7 13 7 0 20 0.65 0.35 0
8 14 6 0 20 0.7 0.3 0
9 11 9 0 20 0.55 0.45 0

10 5 15 0 20 0.25 0.75 0
11 9 11 0 20 0.45 0.55 0
12 11 9 0 20 0.55 0.45 0
13 10 10 0 20 0.5 0.5 0
14 7 13 0 20 0.35 0.65 0
15 11 9 0 20 0.55 0.45 0
16 12 8 0 20 0.6 0.4 0
17 11 9 0 20 0.55 0.45 0
18 13 7 0 20 0.65 0.35 0
19 9 11 0 20 0.45 0.55 0
20 11 9 0 20 0.55 0.45 0

Average 10.35 9.65 0 20 0.5175 0.4825 0



18 D. Gall and T. Frühwirth

Table B 3. Samples for Player 3

Sample

1 s s s p s s r s r s r s s s r r p s r p
2 p r p s p p s r r s s r s s s s s r p s
3 s p r r p p r s r p r s s s r s r p p s
4 r s s p r s p p r p s p r r s r r p r p
5 r p p p s s p r r p s r r p p r s p p s
6 s s p s s r p r p p p s r p p p p s s r
7 s p r p s p r r p p p r r s s r r p p p
8 s s r p r r r p s p r s s p p r p s p p
9 r r s r r r r s p r r s r p s r r s p r

10 p r r r r p s p s r p s r r s s s s s s
11 r r s p s s s s r s s p p p p r s s p s
12 r s r p r s s r r p r r p p r s r p r r
13 s r r s r s p s p p p p s r s s p r r p
14 p p p r r s r s r p p s r s r s r p p p
15 r s s s r p r s s s r s s p s r s s s s
16 s r p r s r p r r p r r s r r r r r r r
17 s p s s p s r p p p r s r s r r s r s p
18 r r s p r s p p p r r p r r p s r s p s
19 r r s s r s s s r r s s r p s s r p r p
20 r s p r r s s r p r p p r p p s s s r r

Table B 4. Samples for Player 3 – Frequencies and Probabilities

Sample #rock #paper #scissors Σ pr pp ps

1 6 3 11 20 0.3 0.15 0.55
2 5 5 10 20 0.25 0.25 0.5
3 7 6 7 20 0.35 0.3 0.35
4 8 7 5 20 0.4 0.35 0.25
5 6 9 5 20 0.3 0.45 0.25
6 4 9 7 20 0.2 0.45 0.35
7 7 9 4 20 0.35 0.45 0.2
8 6 8 6 20 0.3 0.4 0.3
9 12 3 5 20 0.6 0.15 0.25

10 7 4 9 20 0.35 0.2 0.45
11 4 6 10 20 0.2 0.3 0.5
12 11 5 4 20 0.55 0.25 0.2
13 6 7 7 20 0.3 0.35 0.35
14 7 8 5 20 0.35 0.4 0.25
15 5 2 13 20 0.25 0.1 0.65
16 14 3 3 20 0.7 0.15 0.15
17 6 6 8 20 0.3 0.3 0.4
18 8 7 5 20 0.4 0.35 0.25
19 8 3 9 20 0.4 0.15 0.45
20 8 6 6 20 0.4 0.3 0.3

Average 7.25 5.80 6.95 20 0.36 0.29 0.35



Theory and Practice of Logic Programming 19

B.2 Reinforcement-Learning-Based Utility Learning

Tables B 5, B 7 and B 9 show the results of the ACT-R implementation of player 1, 2 and 3

respectively. In tables B 6, B 8 and B 10 the results of our CHR implementation can be

found. The U values denote the utilities for rock, paper and scissors respectively, where

the other values show the performance of the model in the corresponding sample as a

control of equal program flows of the two implementations.

Table B 5. Results for Player 1 – Reward-Based Utility Learning (ACT-R)

Sample Utilities Performance

Ur Up Us #win #draw #defeat

1 0.000 1.873 -0.020 19 0 1

Table B 6. Results for Player 1 – Reward-Based Utility Learning (CHR)

Sample Utilities Performance

Ur Up Us #win #draw #defeat

1 0.000 1.873 -0.020 19 0 1

Table B 7. Results for Player 2 – Reward-Based Utility Learning (ACT-R)

Sample Utilities Performance

Ur Up Us #win #draw #defeat

1 0.000 1.799 −0.020 10 9 1
2 0.000 1.822 −0.020 9 10 1
3 0.000 1.833 −0.020 10 9 1
4 0.000 1.743 −0.020 10 9 1
5 0.000 0.000 1.267 14 0 6
6 0.000 0.000 0.977 9 0 11
7 0.000 0.000 0.084 7 0 13
8 0.000 1.849 −0.020 13 6 1
9 0.000 0.000 0.248 9 0 11

10 0.000 0.000 1.329 15 0 5
11 0.000 0.000 1.289 11 0 9
12 0.000 0.000 0.775 9 0 11
13 0.000 0.000 1.076 10 0 10
14 0.000 0.000 1.442 13 0 7
15 0.000 0.000 0.721 9 0 11
16 0.000 1.836 −0.020 11 8 1
17 0.000 1.763 −0.020 10 9 1
18 0.000 1.760 −0.020 12 7 1
19 0.000 1.805 −0.020 8 11 1
20 0.000 0.000 0.834 9 0 11

Average 0.000 0.811 0.493 10.400 3.900 5.700



20 D. Gall and T. Frühwirth

Table B 8. Results for Player 2 – Reward-Based Utility Learning (CHR)

Sample Utilities Performance

Ur Up Us #win #draw #defeat

1 0.000 1.799 −0.020 10 9 1
2 0.000 1.822 −0.020 9 10 1
3 0.000 1.833 −0.020 10 9 1
4 0.000 1.743 −0.020 10 9 1
5 0.000 0.000 1.267 14 0 6
6 0.000 0.000 0.977 9 0 11
7 0.000 0.000 0.084 7 0 13
8 0.000 1.849 −0.020 13 6 1
9 0.000 0.000 0.248 9 0 11

10 0.000 0.000 1.329 15 0 5
11 0.000 0.000 1.289 11 0 9
12 0.000 0.000 0.775 9 0 11
13 0.000 0.000 1.076 10 0 10
14 0.000 0.000 1.442 13 0 7
15 0.000 0.000 0.721 9 0 11
16 0.000 1.836 −0.020 11 8 1
17 0.000 1.763 −0.020 10 9 1
18 0.000 1.760 −0.020 12 7 1
19 0.000 1.805 −0.020 8 11 1
20 0.000 0.000 0.834 9 0 11

Average 0.000 0.811 0.493 10.400 3.900 5.700

Table B 9. Results for Player 3 – Reward-Based Utility Learning (ACT-R)

Sample Utilities Performance

Ur Up Us #win #draw #defeat

1 0.000 0.533 −0.091 3 12 5
2 0.000 −0.052 −0.159 4 10 6
3 0.000 0.000 0.689 6 7 7
4 0.257 −0.020 −0.020 4 7 9
5 0.720 −0.131 −0.020 4 8 8
6 0.000 0.000 0.633 9 7 4
7 0.000 0.000 1.046 9 4 7
8 0.000 0.732 −0.090 5 10 5
9 0.000 1.254 −0.020 11 3 6

10 0.000 0.000 0.363 4 9 7
11 0.000 0.434 −0.020 3 6 11
12 −0.052 1.575 −0.075 7 6 7
13 0.274 −0.092 −0.052 4 9 7
14 0.000 0.000 0.977 8 5 7
15 1.717 −0.020 −0.020 12 4 4
16 0.000 1.764 −0.052 13 4 3
17 0.000 0.000 0.736 6 8 6
18 0.000 0.541 −0.020 7 7 6
19 0.000 1.083 −0.020 7 3 10
20 −0.020 0.918 −0.036 6 5 9

Average 0.145 0.426 0.187 6.600 6.700 6.700



Theory and Practice of Logic Programming 21

Table B 10. Results for Player 3 – Reward-Based Utility Learning (CHR)

Sample Utilities Performance

Ur Up Us #win #draw #defeat

1 0.000 0.533 −0.091 3 12 5
2 0.000 −0.052 −0.159 4 10 6
3 0.000 0.000 0.689 6 7 7
4 0.257 −0.020 −0.020 4 7 9
5 0.720 −0.131 −0.020 4 8 8
6 0.000 0.000 0.633 9 7 4
7 0.000 0.000 1.046 9 4 7
8 0.000 0.732 −0.090 5 10 5
9 0.000 1.254 −0.020 11 3 6

10 0.000 0.000 0.363 4 9 7
11 0.000 0.434 −0.020 3 6 11
12 −0.052 1.575 −0.075 7 6 7
13 0.274 −0.092 −0.052 4 9 7
14 0.000 0.000 0.977 8 5 7
15 1.717 −0.020 −0.020 12 4 4
16 0.000 1.764 −0.052 13 4 3
17 0.000 0.000 0.736 6 8 6
18 0.000 0.541 −0.020 7 7 6
19 0.000 1.083 −0.020 7 3 10
20 −0.020 0.918 −0.036 6 5 9

Average 0.145 0.426 0.187 6.600 6.700 6.700



22 D. Gall and T. Frühwirth

B.3 Success-/Cost-Based Utility Learning

Tables B 11, B 13 and B 15 show the results of the ACT-R implementation of player 1, 2

and 3 respectively. In tables B 12, B 14 and B 16 the results of our CHR implementation

can be found. The meaning of the values corresponds to Appendix B.2.

Table B 11. Results for Player 1 – Success-/Cost-Based Utility Learning (ACT-R)

Sample Utilities Performance

Ur Up Us #win #draw #defeat

1 19.95 19.95 19.95 0 20 0

Table B 12. Results for Player 1 – Success-/Cost-Based Utility Learning (CHR)

Sample Utilities Performance

Ur Up Us #win #draw #defeat

1 19.95 19.95 19.95 0 20 0

Table B 13. Results for Player 2 – Success-/Cost-Based Utility Learning (ACT-R)

Sample Utilities Performance

Ur Up Us #win #draw #defeat

1 3.790 19.830 13.250 8 10 2
2 6.550 19.822 9.925 8 10 2
3 6.550 19.863 13.250 10 8 2
4 2.144 19.755 13.250 5 13 2
5 9.925 19.790 14.913 7 11 2
6 9.925 19.832 13.250 11 7 2
7 9.925 19.890 16.575 16 2 2
8 4.838 19.868 9.925 11 7 2
9 9.925 19.803 9.925 10 8 2

10 9.925 19.653 9.925 4 14 2
11 9.925 19.846 14.913 10 8 2
12 9.925 19.847 9.925 10 8 2
13 9.925 19.859 14.913 11 7 2
14 9.925 19.830 13.250 7 11 2
15 9.925 19.825 13.250 11 7 2
16 4.838 19.868 14.913 11 7 2
17 2.550 19.796 9.925 5 13 2
18 1.817 19.805 13.250 6 12 2
19 6.550 19.791 9.925 7 11 2
20 9.925 19.858 9.925 10 8 2

Average 7.440 19.822 12.419 8.9 9.1 2



Theory and Practice of Logic Programming 23

Table B 14. Results for Player 2 – Success-/Cost-Based Utility Learning (CHR)

Sample Utilities Performance

Ur Up Us #win #draw #defeat

1 3.790 19.830 13.250 8 10 2
2 6.550 19.822 9.925 8 10 2
3 6.550 19.863 13.250 10 8 2
4 2.144 19.755 13.250 5 13 2
5 9.925 19.790 14.913 7 11 2
6 9.925 19.832 13.250 11 7 2
7 9.925 19.890 16.575 16 2 2
8 4.838 19.868 9.925 11 7 2
9 9.925 19.803 9.925 10 8 2

10 9.925 19.653 9.925 4 14 2
11 9.925 19.846 14.913 10 8 2
12 9.925 19.847 9.925 10 8 2
13 9.925 19.859 14.913 11 7 2
14 9.925 19.830 13.250 7 11 2
15 9.925 19.825 13.250 11 7 2
16 4.838 19.868 14.913 11 7 2
17 2.550 19.796 9.925 5 13 2
18 1.817 19.805 13.250 6 12 2
19 6.550 19.791 9.925 7 11 2
20 9.925 19.858 9.925 10 8 2

Average 7.440 19.822 12.419 8.9 9.1 2

Table B 15. Results for Player 3 – Success-/Cost-Based Utility Learning (ACT-R)

Sample Utilities Performance

Ur Up Us #win #draw #defeat

1 13.985 9.925 14.887 10 6 4
2 13.228 9.908 9.881 10 3 7
3 11.307 11.304 9.925 6 6 8
4 9.268 9.925 9.913 5 6 9
5 6.550 4.838 11.883 6 7 7
6 7.381 3.850 9.865 6 7 7
7 9.858 16.558 12.394 9 7 4
8 5.536 6.583 15.258 7 6 7
9 11.279 14.182 9.925 9 4 7

10 4.888 6.557 4.888 4 4 12
11 13.210 6.550 3.790 6 7 7
12 13.208 19.871 7.850 11 7 2
13 9.875 8.450 9.925 7 5 8
14 9.925 11.116 9.925 6 7 7
15 17.658 9.925 6.550 11 5 4
16 19.888 17.394 14.913 9 9 2
17 13.875 6.550 9.875 7 7 6
18 17.356 16.214 14.887 8 9 3
19 13.539 9.925 9.925 8 7 5
20 15.439 13.835 9.925 8 9 3

Average 11.863 10.673 10.319 7.65 6.4 5.95



24 D. Gall and T. Frühwirth

Table B 16. Results for Player 3 – Success-/Cost-Based Utility Learning (CHR)

Sample Utilities Performance

Ur Up Us #win #draw #defeat

1 13.985 9.925 14.888 10 6 4
2 13.228 9.908 9.881 10 3 7
3 11.307 11.304 9.925 6 6 8
4 9.268 9.925 9.913 5 6 9
5 6.550 4.838 11.883 6 7 7
6 7.381 3.850 9.865 6 7 7
7 9.858 16.558 12.394 9 7 4
8 5.536 6.583 15.258 7 6 7
9 11.279 14.182 9.925 9 4 7

10 4.888 6.557 4.888 4 4 12
11 13.210 6.550 3.790 6 7 7
12 13.208 19.871 7.850 11 7 2
13 9.875 8.450 9.925 7 5 8
14 9.925 11.116 9.925 6 7 7
15 17.658 9.925 6.550 11 5 4
16 19.888 17.394 14.913 9 9 2
17 13.875 6.550 9.875 7 7 6
18 17.356 16.214 14.888 8 9 3
19 13.539 9.925 9.925 8 7 5
20 15.439 13.835 9.925 8 9 3

Average 11.863 10.673 10.319 7.65 6.4 5.95



Theory and Practice of Logic Programming 25

B.4 Random Estimated Costs

Tables B 17, B 19 and B 21 show the results of the ACT-R implementation of player 1, 2

and 3 respectively. In tables B 18, B 20 and B 22 the results of our CHR implementation

can be found. The results have been produced by the first sample of each player and have

been run 50 times. The meaning of the values corresponds to Appendix B.2. In the tables

containing the results of the CHR implementation, we added the error squares of the

averages over all runs to compare them to the reference implementation.



26 D. Gall and T. Frühwirth

Table B 17. Results for Player 1 – Random Estimated Costs (ACT-R)

Run Utilities Performance

Ur Up Us #win #draw #defeat

1 19.970 19.942 9.937 12 7 1
2 19.975 19.680 9.761 11 8 1
3 9.565 19.987 9.912 18 1 1
4 9.836 19.813 9.900 18 1 1
5 19.891 19.958 9.972 14 5 1
6 19.390 19.999 9.596 13 6 1
7 4.918 19.874 9.940 16 3 1
8 19.877 19.831 9.985 11 8 1
9 19.854 19.873 9.850 13 6 1

10 19.802 19.825 9.918 11 8 1
11 3.630 19.997 9.837 16 3 1
12 19.995 19.985 9.878 11 8 1
13 6.403 19.731 9.986 17 2 1
14 19.518 19.992 9.960 9 10 1
15 9.958 19.958 9.994 18 1 1
16 19.215 19.883 9.960 9 10 1
17 19.876 19.800 9.833 14 5 1
18 19.992 19.900 9.854 9 10 1
19 19.569 19.834 9.769 15 4 1
20 19.837 19.802 9.981 10 9 1
21 9.971 19.950 9.500 18 1 1
22 19.968 19.847 9.912 11 8 1
23 19.628 19.833 9.900 13 6 1
24 9.887 19.936 9.934 18 1 1
25 9.104 19.982 9.998 18 1 1
26 19.698 19.742 9.940 12 7 1
27 19.665 19.992 9.920 14 5 1
28 13.036 19.990 9.909 17 2 1
29 19.648 19.904 9.872 14 5 1
30 19.994 19.898 9.837 12 7 1
31 19.967 19.862 9.997 11 8 1
32 19.480 19.922 9.986 13 6 1
33 19.978 19.883 9.839 10 9 1
34 19.929 19.974 9.994 14 5 1
35 19.730 19.984 9.738 11 8 1
36 19.511 19.974 9.886 13 6 1
37 9.995 19.892 9.843 18 1 1
38 19.596 19.907 9.569 13 6 1
39 19.837 19.802 9.981 10 9 1
40 9.166 19.959 9.922 18 1 1
41 19.513 19.989 9.980 9 10 1
42 19.669 19.943 9.711 15 4 1
43 3.362 19.936 9.901 15 4 1
44 19.964 19.956 9.998 14 5 1
45 3.761 19.653 9.596 16 3 1
46 9.559 19.961 9.987 18 1 1
47 5.939 19.948 9.985 17 2 1
48 19.632 19.942 9.724 11 8 1
49 19.531 19.948 9.996 9 10 1
50 19.748 19.895 9.976 14 5 1

Average 15.991 19.901 9.883 13.62 5.38 1



Theory and Practice of Logic Programming 27

Table B 18. Results for Player 1 – Random Estimated Costs (CHR)

Run Utilities Performance

Ur Up Us #win #draw #defeat

1 19.645 19.969 9.986 11 8 1
2 19.220 19.948 9.749 10 9 1
3 9.990 19.860 9.920 18 1 1
4 19.838 19.941 9.922 12 7 1
5 19.917 19.945 9.949 12 7 1
6 19.948 19.886 9.964 12 7 1
7 19.997 19.777 9.903 12 7 1
8 19.868 19.966 9.930 10 9 1
9 19.274 19.968 9.874 13 6 1

10 9.810 19.937 9.975 18 1 1
11 19.596 19.655 9.953 10 9 1
12 19.998 19.807 9.937 12 7 1
13 9.868 19.858 9.600 18 1 1
14 19.988 19.884 9.804 13 6 1
15 9.865 19.992 9.763 18 1 1
16 6.509 19.965 9.947 17 2 1
17 19.729 19.991 9.914 14 5 1
18 19.965 19.929 9.876 14 5 1
19 19.941 19.907 9.985 15 4 1
20 19.567 19.997 9.970 16 3 1
21 6.639 19.983 9.998 17 2 1
22 18.898 19.760 9.953 13 6 1
23 19.998 19.989 9.806 8 11 1
24 9.820 19.804 9.763 18 1 1
25 19.968 19.684 9.937 16 3 1
26 19.664 19.912 9.420 12 7 1
27 18.650 19.957 9.883 11 8 1
28 9.754 19.938 9.711 18 1 1
29 19.912 19.963 10.000 10 9 1
30 15.796 19.983 9.875 15 4 1
31 19.100 19.951 9.998 10 9 1
32 9.876 19.998 9.915 18 1 1
33 19.923 19.755 9.696 12 7 1
34 19.779 19.739 9.948 13 6 1
35 19.877 19.878 9.906 10 9 1
36 15.719 19.979 9.969 15 4 1
37 13.243 19.882 9.842 17 2 1
38 19.319 19.984 9.608 12 7 1
39 9.906 19.948 9.915 18 1 1
40 3.165 19.862 9.960 16 3 1
41 19.904 19.952 9.977 13 6 1
42 5.120 19.970 9.794 17 2 1
43 3.746 19.787 9.855 16 3 1
44 19.440 19.820 9.921 11 8 1
45 19.893 19.755 9.706 9 10 1
46 19.953 19.874 9.797 14 5 1
47 19.871 19.992 9.920 12 7 1
48 6.265 19.844 9.763 17 2 1
49 4.798 19.823 9.868 16 3 1
50 9.958 19.702 9.870 18 1 1

Average 15.610 19.893 9.870 13.94 5.06 1
Error Square of Average 0.145 0.000 0.000 0.10 0.10 0.00



28 D. Gall and T. Frühwirth

Table B 19. Results for Player 2 – Random Estimated Costs (ACT-R)

Run Utilities Performance

Ur Up Us #win #draw #defeat

1 2.851 14.046 6.389 6 12 2
2 15.635 17.997 16.560 11 7 2
3 9.429 18.123 9.769 8 10 2
4 13.311 19.899 9.937 9 9 2
5 9.971 19.907 9.500 9 10 1
6 13.230 18.308 14.984 11 7 2
7 12.996 19.690 9.900 9 9 2
8 9.887 19.882 9.934 9 10 1
9 9.104 19.966 9.998 9 10 1

10 4.944 19.794 14.953 10 8 2
11 9.920 19.694 9.985 10 8 2
12 16.936 19.769 15.888 8 10 2
13 6.475 19.673 9.872 9 9 2
14 13.047 15.082 13.330 7 11 2
15 6.659 19.743 9.976 9 9 2
16 12.606 19.802 9.986 6 12 2
17 6.292 19.782 9.987 9 9 2
18 13.257 18.705 9.994 9 9 2
19 7.346 17.109 9.815 8 9 3
20 13.139 19.689 15.914 12 6 2
21 6.327 19.813 9.997 9 9 2
22 3.847 18.342 9.569 8 10 2
23 6.623 19.630 9.909 9 9 2
24 9.166 19.924 9.922 9 10 1
25 4.913 19.979 9.761 8 10 2
26 11.565 19.889 9.711 7 11 2
27 3.538 19.892 14.923 9 9 2
28 7.995 19.915 13.310 8 10 2
29 13.105 19.520 9.940 9 9 2
30 9.735 19.985 9.920 10 8 2
31 13.102 19.982 9.909 9 9 2
32 6.367 19.822 9.724 9 9 2
33 6.657 19.903 9.841 9 9 2
34 4.849 15.462 6.306 7 10 3
35 5.697 19.996 9.878 9 9 2
36 9.259 16.904 9.916 8 9 3
37 9.891 19.808 9.960 9 10 1
38 7.346 17.109 9.815 8 9 3
39 6.400 19.952 9.689 9 9 2
40 9.995 19.801 9.843 9 10 1
41 3.133 19.822 9.743 8 10 2
42 9.833 18.376 9.688 8 10 2
43 3.353 17.750 8.480 6 9 5
44 13.313 19.406 9.761 9 9 2
45 9.565 19.976 9.912 9 10 1
46 9.836 19.654 9.900 9 10 1
47 6.601 19.922 9.932 9 9 2
48 9.364 9.125 13.513 7 8 5
49 9.559 19.928 9.987 9 10 1
50 5.939 19.902 9.985 8 11 1

Average 8.878 18.923 10.588 8.64 9.36 2



Theory and Practice of Logic Programming 29

Table B 20. Results for Player 2 – Random Estimated Costs (CHR)

Run Utilities Performance

Ur Up Us #win #draw #defeat

1 13.261 19.844 13.319 10 8 2
2 6.585 17.628 9.744 9 9 2
3 16.548 17.907 17.098 11 7 2
4 9.823 19.906 9.907 10 8 2
5 14.785 19.965 9.967 8 10 2
6 11.344 11.680 9.960 5 12 3
7 15.863 19.948 9.831 7 11 2
8 9.608 19.874 9.941 9 10 1
9 9.377 19.855 9.794 9 10 1

10 11.966 19.909 15.979 9 10 1
11 4.679 19.174 9.928 8 10 2
12 8.550 16.976 9.902 6 11 3
13 9.552 19.889 9.999 9 10 1
14 9.815 19.972 9.629 9 10 1
15 9.798 19.968 9.994 9 10 1
16 9.940 19.733 9.929 10 8 2
17 9.553 19.670 9.905 9 10 1
18 13.267 19.345 9.964 9 9 2
19 9.848 19.615 9.892 10 8 2
20 6.534 19.053 9.770 9 9 2
21 6.396 16.268 9.997 4 13 3
22 19.911 19.855 9.976 5 14 1
23 9.901 19.608 9.917 9 10 1
24 14.898 18.181 15.851 11 7 2
25 13.085 18.217 9.774 9 9 2
26 6.142 19.978 9.906 8 11 1
27 9.978 19.714 9.997 9 10 1
28 9.946 19.894 9.984 10 8 2
29 13.131 18.608 9.943 9 9 2
30 6.049 19.969 9.866 9 9 2
31 9.715 19.993 9.795 10 8 2
32 6.643 19.977 9.980 9 9 2
33 12.765 19.883 9.895 9 9 2
34 9.968 19.996 9.829 10 8 2
35 4.781 17.791 9.975 8 10 2
36 4.970 17.242 9.678 8 9 3
37 6.309 19.924 9.979 9 9 2
38 14.950 19.948 9.921 8 10 2
39 8.410 19.962 9.760 9 10 1
40 4.734 12.897 9.914 3 13 4
41 9.802 19.798 9.815 9 10 1
42 3.181 16.619 6.550 5 10 5
43 9.881 19.954 9.959 9 10 1
44 6.471 19.441 9.763 8 11 1
45 9.978 18.432 9.654 8 10 2
46 9.932 19.972 9.938 9 10 1
47 7.731 17.000 9.978 6 11 3
48 6.647 18.836 9.801 9 9 2
49 13.095 19.908 9.943 9 9 2
50 9.898 17.710 9.965 10 8 2

Average 9.800 18.910 10.275 8.46 9.66 1.88
Error Square of Average 0.850 0.000 0.098 0.032 0.090 0.014



30 D. Gall and T. Frühwirth

Table B 21. Results for Player 3 – Random Estimated Costs (ACT-R)

Run Utilities Performance

Ur Up Us #win #draw #defeat

1 15.827 9.996 9.755 10 6 4
2 14.019 9.976 7.990 7 8 5
3 15.242 9.986 10.701 8 7 5
4 13.066 6.292 9.963 6 10 4
5 14.952 9.935 6.643 8 8 4
6 14.255 9.815 7.259 7 8 5
7 14.236 9.689 7.676 7 8 5
8 15.102 9.843 9.995 9 7 4
9 15.215 9.569 10.978 8 7 5

10 13.902 9.909 7.947 7 8 5
11 15.931 9.922 9.250 10 6 4
12 14.264 9.761 7.943 7 8 5
13 15.192 9.739 9.518 9 7 4
14 15.892 9.934 14.901 10 6 4
15 16.847 9.998 16.631 8 8 4
16 14.757 9.804 10.722 8 7 5
17 15.647 9.987 7.338 9 7 4
18 13.311 9.802 13.220 7 9 4
19 14.091 6.207 4.188 6 9 5
20 14.902 9.841 6.651 8 8 4
21 14.084 9.976 11.592 7 8 5
22 14.281 9.878 6.822 7 8 5
23 15.985 9.658 14.928 10 6 4
24 15.826 9.960 9.902 10 6 4
25 15.287 9.975 9.691 9 7 4
26 13.946 9.689 11.942 9 7 4
27 15.586 9.843 11.759 9 7 4
28 19.997 9.743 14.043 9 8 3
29 15.750 12.970 13.227 9 7 4
30 14.977 9.922 13.238 8 8 4
31 14.717 9.983 9.602 9 7 4
32 16.228 6.057 9.794 9 8 3
33 14.325 9.900 4.573 8 7 5
34 15.218 9.932 9.953 9 7 4
35 14.997 9.596 11.532 7 8 5
36 14.717 9.987 14.909 7 10 3
37 15.076 9.985 11.289 8 7 5
38 14.174 9.850 7.219 7 8 5
39 15.861 9.841 14.918 10 6 4
40 15.995 9.784 14.837 10 6 4
41 14.637 6.661 6.218 7 8 5
42 14.900 9.928 11.405 8 7 5
43 16.652 9.960 16.463 7 9 4
44 15.219 9.994 9.958 9 7 4
45 15.168 9.960 10.971 8 7 5
46 15.347 6.324 3.722 7 10 3
47 19.997 9.743 14.043 9 8 3
48 14.882 9.308 5.265 7 10 3
49 15.189 9.981 9.894 9 7 4
50 14.575 9.500 4.925 8 7 5

Average 15.205 9.558 10.158 8.18 7.56 4.26



Theory and Practice of Logic Programming 31

Table B 22. Results for Player 3 – Random Estimated Costs (CHR)

Run Utilities Performance

Ur Up Us #win #draw #defeat

1 13.740 9.705 12.345 7 8 5
2 14.087 14.862 11.889 9 6 5
3 15.194 15.668 12.500 10 6 4
4 14.236 9.965 13.760 9 8 3
5 13.540 9.987 12.323 6 10 4
6 13.625 9.763 9.938 9 7 4
7 11.586 9.619 11.092 6 9 5
8 12.797 9.776 6.243 8 8 4
9 12.236 9.826 7.403 7 8 5

10 12.866 9.665 3.433 8 7 5
11 18.338 9.749 16.961 9 8 3
12 13.199 9.960 9.909 8 8 4
13 12.028 9.833 7.950 7 8 5
14 13.474 9.806 9.996 9 7 4
15 14.089 9.947 14.594 10 6 4
16 13.537 9.976 9.928 9 7 4
17 12.286 9.826 7.756 7 8 5
18 13.775 14.918 11.935 7 9 4
19 14.501 14.990 12.425 6 9 5
20 13.521 9.889 9.374 9 7 4
21 14.871 9.886 13.275 6 9 5
22 11.454 9.994 7.765 7 8 5
23 12.444 9.960 7.566 7 8 5
24 13.737 9.959 11.457 9 7 4
25 14.271 9.982 11.175 8 7 5
26 12.497 9.996 7.856 7 8 5
27 13.911 5.955 6.613 8 9 3
28 15.236 14.945 15.767 8 8 4
29 13.526 9.991 9.950 9 7 4
30 13.543 9.647 9.975 9 7 4
31 14.071 5.900 6.341 8 9 3
32 13.740 9.825 7.419 9 7 4
33 13.353 9.992 9.800 9 7 4
34 14.471 14.791 11.022 7 9 4
35 13.548 6.574 14.925 8 8 4
36 13.672 9.977 9.928 10 6 4
37 13.798 9.746 14.372 6 10 4
38 13.904 9.805 14.841 10 6 4
39 13.270 9.262 13.232 8 8 4
40 14.102 9.877 14.890 10 6 4
41 13.328 9.830 9.782 9 7 4
42 12.690 14.938 10.930 6 11 3
43 13.234 9.930 6.402 8 8 4
44 12.342 9.686 7.297 7 8 5
45 13.552 9.961 9.745 9 7 4
46 12.840 9.690 9.765 8 8 4
47 13.640 9.832 9.687 9 7 4
48 13.576 9.938 9.756 9 7 4
49 13.338 5.930 4.055 7 10 3
50 11.620 9.836 3.150 8 8 4

Average 13.525 10.267 10.210 8.06 7.78 4.16
Error Square of Average 2.823 0.503 0.003 0.014 0.048 0.010


