
Trigger Systems
Reconfigurable Computing in Experimental Physics

Andrea Triossi

October 2009, CHR working week, University of Ulm

Outlines

Trigger systems overview

Trigger systems examples

Formal description

• Compact Muon Solenoid (CMS) @ CERN

• Advanced Gamma Tracking Array (AGATA) @ GSI

• Property Specification Language (PSL)

• Automatic Synthesis

Trigger in Physics Experiments

B
u

ff
er

D
 a

 t
 a

 A

c
q

 u
 i

s
it

 i
o

 n

Front End
Readout

Trigger
Processor

Trigger
Front End

2nd Level
Trigger or
Storage

Front End
Readout
Front End
Readout

B
u

ff
er

B
u

ff
er

Trigger
Front End

Trigger
Front End

Key information are used
to perform fast and
approximate calculation

Only a small fraction of
events can be recorded

Purpose:
identify the events that
should be recorded for
later analysis

Typically low level
trigger runs on custom
electronics

Trigger implementation
General requirements
- Low latency: few μs - Flexibility
- Output rate 100 KHz ÷ 1MHz - Pattern matching algorithms
- Large degree of parallelism - High number of channels
- Dead time free operation

Temporal computing
- Slow
- Flexible
- Need instruction
- Low cost

Spatial computing
- Fast
- Not flexible
- No instruction
- Expensive

How to implement it?

CMS: Muon Drift Tube

Size: 21 m long
15 m wide
15 m high

Weight: 12 500 tones
Location: 100 m underground

inside LHC tunnel

CMS: Muon Front End Trigger

BTI 50000
TRACO 4400
TSS 1100
TSM 240

Trigger ASICS

Track selection based on the best track quality
and higher transverse momentum

AGATA Experiment

4p array of HPGe detectors
for in-beam g-ray spectroscopy

36 fold segmented crystal
+ central core contact

(6660 channels)

x 180

Digital electronics and sophisticated Pulse Shape Analysis algorithms

Operation of Ge detectors in position sensitive mode g-ray tracking

file:///D:/../My Documents/Dads Documents/A180-4Pw1.wrl

AGATA: Global Trigger System

The tree root node
acts as a custom
programmable

trigger processor
which continuously
scans all incoming

trigger requests for
a match of the rules

User defined trigger rules range
from simple multiplicity

conditions in independent
partitions to more complex

delayed coincidences involving
two or more partitions

Formal description of trigger

 To search for multiplicity conditions in independent partitions during a fixed
time window or delayed coincidences involving more partitions

 Integration on multiple channels with threshold comparison
 To look in a small database of predefined patterns for a complete or partial

matching with the recorded values

Temporal Logic

Necessity formula will be always true in the future
Modal Logic

Possibility formula will be eventually true in the future

Temporal logic

CTL*

s2s1 s4s3

Transition System

LTL view

CTL views3

s4

s3

s3

s1

s2
.
.
.

s3

s4

s3

s3

s1

s2

.

.

.

s3s4 s1

.

.

.

s4 s1

.

.

.

.

.

.

.

.

.

CTLLTL

PSL

Modeling Layer

Verification Layer

Temporal Layer

Functional specification RTL implementation

Simulation
Functional verification

Formal verification

Boolean Layer

SystemVerilog – Verilog
VHDL – SystemC – GDL

Property Specification Language

Assertion-Based Verification

Testbench > Design
Lack of suitable debugging tools

Benefit Drawback

Design Flows

Specification
Natural Language

HDL Code
Register

Transfer Level

Testbench

Specification
Natural Language

HDL Code
Register

Transfer Level

ABV

Specification
Formal Language

HDL Code
Correct by

Construction

Register
Transfer Level

Simulation

Model Checking

Automatic Synthesis

Constraint Handling Rules

Selecting trigger rules

Hardware elements

new_event(T,P,E), buf(X) <=> c_event(T,P,E,1), buf(X+1).

c_event(T1,_,_,X1) \ c_event(T2,P2,E2,X2) <=> X1=X2,

T2<T1 | c_event(T2,P2,E2,X2+1).

len(L) \ buf(_), c_event(_,_,_,X) <=> X>L | buf(X-1).

==>

F P G A

mP
Trigger

Fr
o

n
t

en
d

el
ec

tr
o

n
ic

sFPGA tags signals:
new_event(T,P,E)

CHR program runs on
embedded microprocessor

?

