
CHROME: A ModelCHROME: A Model--Driven ComponentDriven Component--

Based Rule EngineBased Rule Engine

Jairson Vitorino

Ontologies
Reasoning
Components
Agents
Simulations

PhD Thesis, CIn-UFPE

February 2009

Supervisor: Prof. Jacques Robin

ContentsContents

1. Context of thesis: the ORCAS project

� State-of-the art in automated reasoning and reused-oriented software

engineering

� Extending both in synergy: the ORCAS project

� Goals of the thesis within project

2. Base technologies:2. Base technologies:

� Model-Driven Architecture (MDA) languages and methods

� Constraint Handling Rules with Disjunctions (CHR∨)

3. CHROME: Model-driven component assembly for an easy to extend,
scalable, adaptive CHR∨ engine

4. Model-transformation based CHR∨ rule base to Java compiler

5. Contributions

6. Limitations and future work

Thesis Context: ORCAS Project MotivationThesis Context: ORCAS Project Motivation

Few reuse
of AR services

�Limitations of Automated Reasoning (AR) technology:

Lack of modern
Software

Engineering

Poor Integration
with mainstream

Software

Lack of tools
for MDE and

CBD

�Limitations of Software Engineering technology:

Lack of
conceptually

complex examples
(AR, Compilers)

Potencial AR
use overlooked

(e.g.model
checking)

Thesis context: Orcas GoalsThesis context: Orcas Goals

Orcas: A framework

of AR components

Model-driven Based on

CHRv
Model-driven

Engineered CHRv

•Constraint solving over any domain

•Classical First-Order Logic (CFOL) satisfiability and

entailment

•Description Logic (DL) subsumption

•Abduction

•Agent belief update and action planning

•Truth-maintenance, default reasoning and inheritance
cf. Früwirth, Abdennadher, Fages, Martinez, Rodrigues,
Christiansen, Thielscher, Martin, Yin, Wolf, Silva, Robin

AR services

Goals of the ThesisGoals of the Thesis

CHROME: CHR On-line

•Most reused component and basis for ORCAS

•Deployable on a mainstream platform (Java)

•With built-in conflict-directed backjumping for efficient
search

•With built-in truth-maintenance for adaptive, anytime,
online reasoning

•With CHR∨ base to Java code compiler designed as a
pipeline of model-tranformations.

AR

CHROME: CHR On-line
Model-Driven Engine

pipeline of model-tranformations.

•Demonstrate the synergy between:

Software components, MDE and
Model transformation

•Demonstrate the applicability to engineer:

CHROME Engine

Compilers between languages from different paradigms
Artificial intelligence software
(Large, non-toy model-transformations, 4358 lines of ATL)

Software

Engineering

ContentsContents

1. Context of thesis: the ORCAS project

� State-of-the art in automated reasoning and reused-oriented software engineering

� Extending both in synergy: the ORCAS project

� Goals of the thesis

2. Base technologies:

� Model-Driven Architecture (MDA) languages and methods

� Constraint Handling Rule with Disjunctions (CHR∨)� Constraint Handling Rule with Disjunctions (CHR∨)
3. Model-driven component assembly for an easy to extend, scalable, adaptive CHR∨ engine

4. Model-transformation based CHR∨ rule base to Java compiler

5. Contributions

6. Limitations and future work

Base Technologies:Base Technologies:

MDE Languages and MethodologiesMDE Languages and Methodologies

� Unified Modeling Language 2.1 (UML):

�OMG main MDE standard to specify Platform Independent Models (PIMs) and
Platform-Specific Models (PSM, using self-extension profile mechanism)

� Integrates concepts from imperative, Object-Oriented (OO), concurrent, distributed and
component-based paradigms

�Covers structural, behavioral, functional and deployment aspects of a software

� Object Constraint Language 2.0 (OCL):

�Textual part of UML2 to specify arbitrary first-order logic constraints among UML2
model elements

�Allows modeling “executable” PIMs, i.e., refined enough to be fully automatically
translated into running code by MT

�Functional OO syntax concise and intuitive for mainstream developers

Base Technologies:Base Technologies:

MDE Languages and MethodologiesMDE Languages and Methodologies

� Atlas Transformation Language (ATL, Bezevin, INRIA-Rennes)

�Hybrid rule-based and imperative MT language

�Pattern-matching model element rewrite rules with embedded procedures

� Input and output models conform to a meta-model in Ecore (a MOF2 variant)� Input and output models conform to a meta-model in Ecore (a MOF2 variant)

�Core is an OCL2 execution engine for input model element pattern matching and
output model element construction (≈ 80% of an ATL program is OCL)

�Eclipse project, largest user community, de facto standard

Base Technologies:Base Technologies:
KobrA2 (Atkinson, Robin, Stoll, U. MannheimKobrA2 (Atkinson, Robin, Stoll, U. Mannheim--UFPE)UFPE)

Service View

Type View

Protocol View

Operational Service View

(OCL)Specification

Service view
Type View

Algorithmic
View

Operational Service View

(OCL)

Realization

C
o

m
p

o
n
e
n
t

MDECBD Method
UML/OCL based
16 views of Comp.

�CHROME is its first large application case study for Kobra2

Base technologies: CHRBase technologies: CHR∨∨ rule base concrete rule base concrete

syntax and logical semanticssyntax and logical semantics

� Constraint simpagation rules :

� Rule syntax: K\ R <=> G | B., with:

- K keep heads, and R remove heads, both conjunctions of so called User-

Defined Constraints (UDC)

- G guards, conjunction of so called Built-In Constraints (BIC)

- B bodies, disjunction of conjunction of either RDC or BIC

� Constraint store S (volatile CHR∨ KB) = Sr ∧ Sb

with Sr conjunction of UDC and Sb conjunction of BIC

� Query Q: conjunction of constraints, either RDC or BIC

� CHR∨ propagation rule K ==> G | B,
syntactic variant of simpagation rule K \ true <=> G | B.

� CHR∨ simplification rule R <=> G | B,
syntactic variant of simpagation rule true \ R <=> G | B.

CHRCHR∨∨ by Example: Justification and solution adaptationby Example: Justification and solution adaptation

Constraint Store

a{1},c{1,2},g{3}
r1@ a \ b <==> c

r2@ a,c <==> e,d

r3@ g <==> f

query: a{1}, b{2}, g{3}

r1

Constraint Store

e{1,2},d{1,2},f{3}
r2,r3

remove: a{1}
Constraint Store

f{3}
remove all labeled {1}

remove: a{1}
Constraint Store

b{2},f{3}
re-adding removed constraints

OutlineOutline

1. Context of thesis: the ORCAS project

� State-of-the art in automated reasoning and reused-oriented software engineering

� Extending both in synergy: the ORCAS project

� Goals of the thesis

2. Base technologies:

� Model-Driven Architecture (MDA) languages and methods

� Constraint Handling Rule with Disjunctions (CHR∨)

3. CHROME: Model-driven component assembly for an easy to extend, 3. CHROME: Model-driven component assembly for an easy to extend,
scalable, adaptive CHR∨ engine

4. Model-transformation based CHR∨ rule base to Java compiler

5. Contributions

6. Limitations and future work

CHROME: TopCHROME: Top--Level AssemblyLevel Assembly
KobrA2 Realization Structural Class Service ViewKobrA2 Realization Structural Class Service View

CHROME: CHROME: OO Data Structures for CHROO Data Structures for CHR∨∨

CHROME types (draft)CHROME types (draft)

Simpagation Constraint
*

Disjunction

+body *

Justification

label:Integer[*] Term

+js

+args *

Variable Constant

BIC

RDC

+guard *

+keep *

+remove *

CHRBase

* Variable Constant

r3 label @ label(X), indomain(X,l(A,l(B,l(C,[])))) <=> true | X=A; X=B; X=C.
Disjunction

CHROME: CHROME: OO Data Structures for CHROO Data Structures for CHR∨∨

KobrA2 Specification Structural Class Type ViewKobrA2 Specification Structural Class Type View

CHROME: Query Processor AssemblyCHROME: Query Processor Assembly
KobrA2 Realization Structural Class Service ViewKobrA2 Realization Structural Class Service View

CHROME RunCHROME Run--Time PIM AssemblyTime PIM Assembly

� 8 KobrA2/UML2 Components

� 40 KobrA2/UML2 Classes

� 33 KobrA2 view packages

� 30 UML2 diagrams

� 187 lines of OCL2 expressions

OutlineOutline

1. Context of thesis: the ORCAS project

� State-of-the art in automated reasoning and reused-oriented software engineering

� Extending both in synergy: the ORCAS project

� Goals of the thesis

2. Base technologies:

� Model-Driven Architecture (MDA) languages and methods

� Constraint Handling Rule with Disjunctions (CHR∨)

3. CHROME: Model-driven component assembly for an easy to extend, scalable, adaptive CHR∨ engine3. CHROME: Model-driven component assembly for an easy to extend, scalable, adaptive CHR engine

4. Model-transformation based CHR∨ rule base to Java compiler
5. Contributions

6. Limitations and future work

CHROME: Compiler PipelineCHROME: Compiler Pipeline

CHR2CHRCore >>

948 lines

CHRv

CHRCore

948 lines

UMLOCL

JAVA

Java

code

CHRCore2UMLOCLJ.atl >> 2489 lines

UMLOCL2JAVA.atl >> 720 lines

JAVA2String.atl >>

192 lines

CHROME Compiler Stage 1:CHROME Compiler Stage 1:
from full CHRfrom full CHR∨∨ to CHRCoreto CHRCore

�Example input (textual):

�k(1,X) \ d(X) <=> g | b.

�Example output (textual):

�k \ d <=> g, k.at(1) = 1, k.at(2) =d.at(1) | b.�k \ d <=> g, k.at(1) = 1, k.at(2) =d.at(1) | b.

���� Simpler

matching ���� Sequence

of Equalities

CHROME Compiler Stage 2:CHROME Compiler Stage 2:
from from CHRCore to UML2/OCL2CHRCore to UML2/OCL2

Basic idea: Every Constraint is converted into a UML Class

r1@ a \ b <==> g | c ; e

r2@ a,c <==> g | false

r3@ a,e ==> g | true

BConstraint

+execute()

AConstraint

+execute()
-executeR1()
-executeR2()
-executeR3()

....

+execute()
-executeR1()
....

...

CHROME Compiler Stage 2:CHROME Compiler Stage 2:
from from core CHR to UML2/OCL2core CHR to UML2/OCL2

+execute()
-executeR1()
-executeR2()

AConstraint

-executeR3()

-checkGuardR1()
-checkGuardR2()
-checGuardR3()

-addR1Body()
-addR2Body()
-addR3Body()

ContentsContents

1. Context of thesis: the ORCAS project

� State-of-the art in automated reasoning and reused-oriented software engineering

� Extending both in synergy: the ORCAS project

� Goals of the thesis

2. Base technologies:

� Model-Driven Architecture (MDA) languages and methods

� Constraint Handling Rule with Disjunctions (CHR∨)

3. Model-driven component assembly for an easy to extend, scalable, adaptive CHR∨ engine3. Model-driven component assembly for an easy to extend, scalable, adaptive CHR engine

4. Model-transformation based CHR∨ rule base to Java compiler

5. Testing and benchmarking

6. Contributions
7. Limitations and future work

ContributionsContributions

ContributionsContributions

� To CHR and CLP:

�First justification-based adaptive

CHR∨ engine (crucial for practical

applications and tracing);

�First CHR∨ engine with intelligent

search (CDBJ);

�First component-based CHR∨ engine

(easy to extend);(easy to extend);

�First MDE CHR∨ engine (easy to port

to other OO host platforms).

� To MDE:

�CHROME: Largest case study to

date to integrate MDE with MT and

components for AR.

� First MDE/MT compiler from source

language to target language from

different structural paradigm (4358

ATL lines).

OutlineOutline

1. Context of thesis: the ORCAS project

� State-of-the art in automated reasoning and reused-oriented software engineering

� Extending both in synergy: the ORCAS project

� Goals of the thesis

2. Base technologies:

� Model-Driven Architecture (MDA) languages and methods

� Constraint Handling Rule with Disjunctions (CHR∨)

3. Model-driven component assembly for an easy to extend, scalable, adaptive CHR∨ engine3. Model-driven component assembly for an easy to extend, scalable, adaptive CHR engine

4. Model-transformation based CHR∨ rule base to Java compiler

5. Testing and benchmarking

6. Contributions

7. Limitations and future work

Limitations and future workLimitations and future work

Limitations

� Only 3 built-in constraints: =, true,

false

� No visual tracing IDE

� Still an order of magnitude slower

than CHR∨ Prolog platforms on run

Future work

� Visual tracing IDE (MSc. Thesis of

Rafael Oliveira 2010)

� Create variable size benchmark for

variety of AR tasks

� Port to Python to test scalability of than CHR Prolog platforms on run

benchmark

� Untested scalability for other AR

tasks beyond finite domain solvers

� Compiler not component-based and

verbose (ATL)

� Port to Python to test scalability of

transparent distribution to Google's

cloud

� Extend to run OO CHR bases (cf.

MSc. of Marcos Silva 2009)

Thank you!

Any Questions?Any Questions?

