CHROME: A Model-Driven Component-
Based Rule Engine

Jairson Vitorino

PhD Thesis, Cin-UFPE
February 2009

Supervisor: Prof. Jacques Robin

*EEI’I“’B

wlnfurmética
i F F E

@ Contents

1. Context of thesis: the ORCAS project
o State-of-the art in automated reasoning and reused-oriented software
engineering
* Extending both in synergy: the ORCAS project
* Goals of the thesis within project
2. Base technologies:
<+ Model-Driven Architecture (MDA) languages and methods
<+ (Constraint Handling Rules with Disjunctions (CHRY)

3. CHROME: Model-driven component assembly for an easy to extend,
scalable, adaptive CHRY engine

4. Model-transformation based CHRY rule base to Java compiler
Contributions
6. Limitations and future work

o

Thesis Context: ORCAS Project Motivation

*[_imitations of Automated Reasoning (AR) technology:

Lack of modern Poor Integration
Software with mainstream
Engineering Software

Few reuse

of AR services

= imitations of Software Engineering technology:

Lack of tools Lack of Potencial AR
for MDE and conceptually use overlooked

CBD complex examples (e.g.model
(AR, Compilers) checking)

@ Thesis context: Orcas Goals

Based on

odel-driven CHRY

Engineered

AR services

@ Goals of the Thesis

CHROME: CHR On-line

Model-Driven Engine

Software
Engineering

*Most reused component and basis for ORCAS
*Deployable on a mainstream platform (Java)

*With built-in conflict-directed backjumping for efficient
search

*With built-in truth-maintenance for adaptive, anytime,
online reasoning

*With CHR" base to Java code compiler designed as a
pipeline of model-tranformations.
*Demonstrate the synergy between:

Software components, MDE and
Model transformation

*Demonstrate the applicability to engineer:
CHROME Engine
Compilers between languages from different paradigms

Artificial intelligence software
(Large, non-toy model-transformations, 4358 lines of ATL)

@0 Contents

1. Context of thesis: the ORCAS project
* State-of-the art in automated reasoning and reused-oriented software engineering
<« Extending both in synergy: the ORCAS project
* Goals of the thesis

2. Base technologies:
<« Model-Driven Architecture (MDA) languages and methods
<« Constraint Handling Rule with Disjunctions (CHRY)

Model-driven component assembly for an easy to extend, scalable, adaptive CHRY engine
Model-transformation based CHRY rule base to Java compiler

Contributions

Limitations and future work

2R

'. Base Technologies:
*%e’ MDE Languages and Methodologies

<« Unified Modeling Language 2.1 (UML):

<« OMG main MDE standard to specify Platform Independent Models (PIMs) and
Platform-Specific Models (PSM, using self-extension profile mechanism)

* |ntegrates concepts from imperative, Object-Oriented (OO), concurrent, distributed and
component-based paradigms

< Covers structural, behavioral, functional and deployment aspects of a software

<+ Object Constraint Language 2.0 (OCL):

< Textual part of UML2 to specify arbitrary first-order logic constraints among UML2
model elements

< Allows modeling “executable” PIMs, i.e., refined enough to be fully automatically
translated into running code by MT

< Functional OO syntax concise and intuitive for mainstream developers

'. Base Technologies:
*%e’ MDE Languages and Methodologies

o Atlas Transformation Language (ATL, Bezevin, INRIA-Rennes)
< Hybrid rule-based and imperative MT language
< Pattern-matching model element rewrite rules with embedded procedures
< |Input and output models conform to a meta-model in Ecore (a MOF2 variant)

< Core is an OCL2 execution engine for input model element pattern matching and
output model element construction (= 80% of an ATL program is OCL)

< Eclipse project, largest user community, de facto standard

®
I Base Technologies:

¢ KobrA2 (Atkinson, Robin, Stoll, U. Mannheim-UFPE)

Operational Service View
Specification

Type View

UML/OCL based
16 views of Comp.

Type View /_,

MDECBD Method I

.
Service view

Algorithmic
View

Realization

T Operational Service View

(OCL)

+-CHROME is its first large application case study for Kobra2

. Base technologies: CHRY rule base concrete
syntax and logical semantics

<+ Constraint simpagation rules :

* Rule syntax: K\ R <=> G | B., with:
- K keep heads, and R remove heads, both conjunctions of so called User-
Defined Constraints (UDC)
- G guards, conjunction of so called Built-In Constraints (BIC)
- B bodies, disjunction of conjunction of either RDC or BIC
< Constraint store S (volatile CHRY KB) = S, A S,
with S, conjunction of UDC and S, conjunction of BIC

<+ Query Q: conjunction of constraints, either RDC or BIC
<+ CHRY propagation rule K ==> G | B,

syntactic variant of simpagation rule K\ true <=> G | B.
* CHRY simplification rule R <=> G | B,

syntactic variant of simpagation rule true \ R <=> G | B.

CHRY by Example: Justification and solution adaptation

rM@a\b<==>c¢
2@ a,c <==>e,d
@ g <==>f

query: a{1}, b{2}, g{3}

remove: a{l}

remove: a{1}

Constraint Store

r
— G{l},C{l,Z},g{3}

Constraint Store

r2,r3
— 6{1,2},d{1,2},f{3}

Constraint Store

remove all labeled .‘1}

Constraint Store

re-adding removed constraints

°®. Outline

1. Context of thesis: the ORCAS project
* State-of-the art in automated reasoning and reused-oriented software engineering
<« Extending both in synergy: the ORCAS project
* Goals of the thesis

2. Base technologies:
<« Model-Driven Architecture (MDA) languages and methods
<« Constraint Handling Rule with Disjunctions (CHRY)

3. CHROME: Model-driven component assembly for an easy to extend,

scalable, adaptive CHRY engine
4. Model-transformation based CHRY rule base to Java compiler
Contributions
6. Limitations and future work

o

.®. CHROME: Top-Level Assembly

® KobrA2 Realization Structural Class Service View

«RealizationStructuralClassServices
CHROME.RSCS

«componentClasss
asubject, componentClass» ConstraintStore
CHROME
+ getPartners (¢ Constraint) Constraint [*]
+ compile { chrb : CHREaze) +del [c: Constraint)

+ solvelll { query : Constraint) @ Solution [*] e +add (¢! Constraint)
e xnestss N 2Ll .
+ salveMext () : Constraint []_ _ cs + setFailurelustif (js : Justification)
+ solverOne (query: Constraint [*]) : Solution 1, getFailure)ustif () : Justification
+del(js :Justlflcatmn;l + clearFailurelustif ()
+ getStore () Constraint [*] + dellustCsReturnCsToPutBack (s : Justification, jp @ Integer, csTold : Constraint [*]) : Constraint [*]
+ clearStore () + getStore () : Constraint [*]
+ clearStore ()
wnestss m;;t:” +e5t 1 -]
1 zacqLiless
1
scomponentClasss scamponentClass» BF -
Compiler QueryProcessor HRConstructors:Constraint
+ compile (cb : CHREBase) : CHREase [*] + salvelll { query : Constraint [*]) Solution [*]

+ solveMext () Solution
+ solweOne [guery : Constraint [*]) : Solution
+ del [s : Justification)

“ACGUIress

... CHROME: OO Data Structures for CHRY

CHROME types (draft)

Justification e
Disjunction labelinteger] | t>{ Term
+body * +is T
Simpagation Constraint
A =~ Variable Constant

+guard * BIC
+keep * | RDC
+remove *
CHRBase

—— 3 label @ label(X), indomain(X,I(A I(B,I(C.[]))) <=> true | X=A; X=B; X=C.

Disjunction

... CHROME: OO Data Structures for CHRY

KobrA2 Specification Structural Class Type View

+args
2l FunctionalTerm 3 ﬁ'gsm Term
. e) " B K e 1“*
Choice |+ onj[ConjBody Justification +warsInFunctionalTerm () @ Variable [*]
i + label : Integer [*] +value
+ islustifiec By (s ¢ Justification) : Boolean =
“NamedElement “
+Js + name ; String
Disjunction & BuiltinStore
“onstant
1
= Imdyﬂ + constraints
variables
%impagatiunﬂule + keep| RDC Constraint MumericalConstant SymbolicConstant
= o
Variable
® + notification ()
+ execute [) + clone ()
[F]_+ rermawe * + registerObserver (o Observer)
+rules ™ + notifyObservers ()
IntegerConstant RealConstant + unhind ()
+walue : Integer +wvalue : Real + notification)
& tguard A Solution
Subject +abservers
Observer
CHRBase Equality True False

+ registerObservers (o Observer) E—
+ notifyObservers () + notification ()

«®+ CHROME: Query Processor Assembly

® KobrA2 Realization Structural Class Service View

arealizationStructuralClassServices

QueryProcessor.RSCS
wnestss
“Lonstraint wacquiress scomponentClasss
Flent Entailment
+ entails { existentialVars : Variable [*], t1: Term, 2 : Term, js : Justification) : Boolean
“ACEUiress
El-ph
P scomponentClasss
anestss PropagationHistory
+ add (ruleld : Integer, cons : Constraint [*]) : Boolean
+ applied { ruleld : Integer, constraints : Constraint [*]) : Boolean
«subject, componentClass» sacquiress
QueryProcessor = fr scomponentClasss
snestss FiredRules
+ solvedll { query: Constraint [*]) : Solution [*] fr

+ solveMext () Solution

+ solveOne [query : Constraint [*]) : Solution

+ del { s : Justification)

- solveMextOnes [query : Constraint [*]) : Solution [*]
- load&lVars (query : Constraint [*])

- rermovelustifiedVarBindings (s : Justification)

xnests=

+ add [ruleld : Integer, removedConstraints : Constraint [*], js ¢ Justification)
+ removelependentRules (s ¢ Justification) : Constraint [*]

scomponentClasss

CDBJSearch

earc 1 - Bhisjunction
B

+ backtrack { jumpTo : Integer, js @ Justification) : Constraint [*] “@CgUiress

+ getCurrentlewvel () : Integer

+ insertElementdt { ch i Choice)

+ cdbj

e®s CHROME Run-Time PIM Assembly

o 8 KobrA2/UML2 Components
o 40 KobrA2/UML2 Classes

* 33 KobrA2 view packages

* 30 UML2 diagrams

o 187 lines of OCL2 expressions

@0 Outline

1. Context of thesis: the ORCAS project
* State-of-the art in automated reasoning and reused-oriented software engineering
<« Extending both in synergy: the ORCAS project
* Goals of the thesis

2. Base technologies:
* Model-Driven Architecture (MDA) languages and methods
<« Constraint Handling Rule with Disjunctions (CHRY)

CHROME: Model-driven component assembly for an easy to extend, scalable, adaptive CHRY engine

Model-transformation based CHRY rule base to Java compiler
Contributions
Limitations and future work

2L

@ CHROME: Compiler Pipeline

CHR2CHRCore >>
948 lines

[
»

CHRCore2UMLOCLJ.atl >> 2489 lines

[
»

UMLOCL2JAVA . atl >> 720 lines

JAVA2String.atl >>
192 lines

CHROME Compiler Stage 1:
from full CHRY to CHRCore

<o~ Example input (textual):

otk(1,X) \ d(X)

<=>(Q | b.

*- Example output (textual):

«k\d<=>|g, kat(1) = 1, k.at(2) =d.at(1)|| b.

|

Simpler
matching

|

Sequence
of Equalities

.e. CHROME Compiler Stage 2:
* from CHRCore to UML2/OCL2

Basic idea: Every Constraint is converted into a UML Class

rf@a\b<==> g|c;e
r2@ a,c <==> ¢|false
3@ ae ==> g]|true

AConstraint

+execute()

-executeR1()
" | -executeR2()
-executeR3()

BConstraint

+execute()
-executeR1()

.e. CHROME Compiler Stage 2:
* from core CHR to UML2/OCL2

AConstraint

+execute()

-executeR1()
-executeR2()
-executeR3()

-checkGuardR1()
-checkGuardR2()
-checGuardR3()

-addR1Body()
-addR2Body()
-addR3Body()

@0 Contents

1. Context of thesis: the ORCAS project
* State-of-the art in automated reasoning and reused-oriented software engineering
<« Extending both in synergy: the ORCAS project
* Goals of the thesis

2. Base technologies:
* Model-Driven Architecture (MDA) languages and methods
<« Constraint Handling Rule with Disjunctions (CHRY)

Model-driven component assembly for an easy to extend, scalable, adaptive CHRY engine
Model-transformation based CHRY rule base to Java compiler
Testing and benchmarking

Contributions
Limitations and future work

N O 9k ®

.'.. Contributions
o

Contributions

o To CHR and CLP:

< First justification-based adaptive
CHRY engine (crucial for practical
applications and tracing);

< First CHRY engine with intelligent
search (CDBJ);

< First component-based CHRY engine
(easy to extend);

< First MDE CHRY engine (easy to port
to other OO host platforms).

* To MDE:

o CHROME: Largest case study to
date to integrate MDE with MT and
components for AR.

* First MDE/MT compiler from source
language to target language from
different structural paradigm (4358
ATL lines).

@0 Outline

1. Context of thesis: the ORCAS project
* State-of-the art in automated reasoning and reused-oriented software engineering
<« Extending both in synergy: the ORCAS project
* Goals of the thesis

2. Base technologies:
* Model-Driven Architecture (MDA) languages and methods
<« Constraint Handling Rule with Disjunctions (CHRY)

Model-driven component assembly for an easy to extend, scalable, adaptive CHRY engine
Model-transformation based CHRY rule base to Java compiler

Testing and benchmarking

Contributions

Limitations and future work

N @ o R

o®¢ | imitations and future work

o
Limitations Future work
<« Only 3 built-in constraints: =, true, <« \isual tracing IDE (MSc. Thesis of
false Rafael Oliveira 2010)
<@ No visual tracing IDE o (Create variable size benchmark for
« Still an order of magnitude slower variety of AR tasks
than CHRY Prolog platforms on run <@ Port to Python to test scalability of
benchmark transparent distribution to Google's
« Untested scalability for other AR cloud
tasks beyond finite domain solvers o Extend to run OO CHR bases (cf.
« Compiler not component-based and MSc. of Marcos Silva 2009)

verbose (ATL)

Thank you!
Any Questions?

