
TLP 10 (4–6): 597–610, 2010. C© Cambridge University Press 2010

doi:10.1017/S147106841000030X

597

A complete and terminating execution model
for Constraint Handling Rules

HARIOLF BETZ, FRANK RAISER and THOM FRÜHWIRTH

Faculty of Engineering and Computer Science, Ulm University, Germany

(e-mail: firstname.lastname@uni-ulm.de)

submitted 2 February 2010; revised 23 April 2010; accepted 21 May 2010

Abstract

We observe that the various formulations of the operational semantics of Constraint

Handling Rules proposed over the years fall into a spectrum ranging from the analytical

to the pragmatic. While existing analytical formulations facilitate program analysis and

formal proofs of program properties, they cannot be implemented as is. We propose a

novel operational semantics ω!, which has a strong analytical foundation, while featuring

a terminating execution model. We prove its soundness and completeness with respect to

existing analytical formulations and we provide an implementation in the form of a source-

to-source transformation to CHR with rule priorities.

KEYWORDS: Constraint Handling Rules, operational semantics, execution model, persistent

constraints

1 Introduction

Constraint Handling Rules (CHR; Frühwirth 2009) is a declarative, multiset- and

rule-based programming language suitable for concurrent execution and powerful

program analysis. While it is known as a language that combines efficiency with

declarativity, publications in the field display a tendency to favor one of these

aspects over the other. We observe a spectrum of research directions ranging from

the analytical to the pragmatic.

On the analytical end of the spectrum, emphasis is put on CHR as a mathem-

atical formalism, declarativity, and the understanding of its logical foundations

and theoretical properties. Several formalizations of the operational semantics,

found in Frühwirth and Hanschke (1993), Frühwirth (1998) and Frühwirth and

Abdennadher (2003), belong to this side of the spectrum. Notable results building on

these analytical formalizations include decidable criteria for operational equivalence

(Abdennadher and Frühwirth 1999) and confluence (Abdennadher et al. 1999), a

strong foundation of CHR in linear logic (Betz and Frühwirth 2005), as well as weak

and strong parallelization, as presented in (Frühwirth 2005) and further developed

toward concurrency in (Sulzmann and Lam 2007, 2008).

A recent analytical formalization is the operational semantics ωe, given in (Raiser

et al. 2009). It consists in a rewriting system of equivalence classes of states based



598 Hariolf Betz et al.

on an axiomatic formulation of equivalence. It has been shown to coincide with the

operational semantics ωva, which has been introduced in Frühwirth (2009) to set a

standard for all other operational semantics to build upon.

On the downside, these operational semantics are detached from practical im-

plementation in that they are oblivious to questions of efficiency and termination.

Particularly, the class of rules called propagation rules causes trivial non-termination

in both of them. Hence, it is safe to say that the existing analytical formalizations

of the operational semantics lack a terminating execution model.

This contrasts with most work on the pragmatic side of the spectrum, which

emphasizes practical implementation and efficiency over formal reasoning. It ori-

ginates with Abdennadher (1997), where a token-based approach is proposed

in order to avoid trivial non-termination: Every propagation rule is applicable

only once to a specific combination of constraints. This is realized by keeping a

propagation history—sometimes called token store – in the CHR state. Thus, we gain

a terminating execution model for the full segment of CHR.

Building upon Abdennadher (1997), a plethora of operational semantics has been

brought forth, such as the token-based operational semantics ωt and its refinement

ωr (Duck et al. 2004). The latter reduces non-determinism for a gain in efficiency

and sets the current standard for CHR implementations. Another notable exponent

is the priority-based operational semantics ωp (De Koninck et al. 2007).

On the downside, token stores break with declarativity: Two states that differ only

in their token stores may exhibit different operational behavior while sharing the

same logical reading. Therefore, we consider token stores as non-declarative elements

in CHR states.

Recent work on linear logical algorithms (Simmons and Pfenning 2008) and the

close relation of CHR to linear logic (Betz and Frühwirth 2005) suggest a novel

approach that emphasizes aspects from both sides of the spectrum to a useful

degree: In this work, we introduce the notion of persistent constraints to CHR,

a concept reminiscent of unrestricted or “banged” propositions in linear logic.

Persistent constraints provide a finite representation of the result of any number of

propagation rule firings.

We furthermore introduce a state transition system based on persistent constraints,

which is explicitly irreflexive. In combination, the two ideas solve the problem of

trivial non-termination while retaining declarativity and preserving the potential

for effective concurrent execution. This state transition system requires no more

than two rules. As every transition step corresponds to a CHR rule application, it

facilitates formal reasoning over programs.

In this work, we show that the resulting operational semantics ω! is sound and

complete with respect to ωe. We show that ω! can be faithfully embedded into the

operational semantics ωp, thus effectively providing an implementation in the form

of a source-to-source transformation. All operational semantics developed with an

emphasis on pragmatic aspects lack this completeness property. Therefore, this work

is the first to show that it is possible to implement CHR soundly and completely

with respect to its abstract foundations, whilst featuring a terminating execution

model.



A complete and terminating execution model for Constraint Handling Rules 599

Example 1.1

Consider the following straightforward CHR program for computing the transitive

hull of a graph represented by edge constraints e/2:

t @ e(X,Y ), e(Y ,Z) =⇒ e(X,Z)

This most intuitive formulation of a transitive hull is not a suitable implementation

in most existing operational semantics. In fact, for goals containing cyclic graphs it

is non-terminating in all aforementioned existing semantics. In this work we show

that execution in our proposed semantics ω! correctly computes the transitive hull

whilst guaranteeing termination.

The remainder of this paper is structured as follows: We state the syntax of

CHR and summarize the existing operational semantics ωt and ωe in Section 2. In

Section 3, we present our semantics ω!, originally proposed in Betz et al. (2009), and

we state results concerning its soundness and completeness with respect to ωe. In

Section 4, we show how ω! can be implemented by means of a faithful source-to-

source transformation into ωp. In Section 5, we discuss the termination behavior of

ω! as well as related work, before we conclude in Section 6. Proofs of the theorems

presented in this work can be found in the accompanying technical report (Betz

et al. 2010) 1, and will be omitted here.

2 Preliminaries

We first introduce the syntax of CHR and the equivalence-based operational

semantics ωe, which offers a foundation for all other semantics, although it lacks a

terminating execution model. We furthermore present its refinements ωt and ωp.

2.1 The syntax of CHR

Constraint Handling Rules distinguishes two kinds of constraints: user-defined

constraints (or CHR constraints) and built-in constraints. Reasoning on built-in

constraints is possible through a satisfaction-complete and decidable constraint

theory CT.

CHR is a programming language that offers advanced rule-based multiset rewrit-

ing. Its eponymous rules are of the form

r @ H1\H2 ⇔ G | Bc, Bb

where H1 and H2 are multisets of user-defined constraints, called the kept head

and removed head, respectively. The guard G is a conjunction of built-in constraints

and the body consists of a conjunction of built-in constraints Bb and a multiset of

user-defined constraints Bc. The rule name r is optional and may be omitted along

with the @ symbol. Note that throughout this paper, we omit the curly braces

around sets and multisets where there is no ambivalence. This applies especially to

CHR rules and states.

1 Betz et al. (2010) is available from http://vts.uni-ulm.de/doc.asp?id=7193



600 Hariolf Betz et al.

In this work, we put special emphasis on the class of rules where H2 = ∅, called

propagation rules. Propagation rules can be written alternatively as

r @ H1 =⇒ G | Bc, Bb.

A variant of a rule (r @ H1\H2 ⇔ G | Bc, Bb) with variables x̄ is a rule of

the form (r @ H1\H2 ⇔ G | Bc, Bb)[x̄/ȳ] for any sequence of pairwise distinct

variables ȳ. For any rule (r @ H1\H2 ⇔ G | Bc, Bb), the local variables l̄r are defined

as l̄r ::= vars(G,Bc, Bb) \ vars(H1, H2). A rule where l̄r = ∅ is called range-restricted.

A CHR program P is a set of rules. A range-restricted CHR program is a set of

range-restricted rules.

2.2 Equivalence-based operational semantics ωe

In this section, we recall the equivalence-based operational semantics ωe (Raiser et al.

2009). It is operationally close to the very abstract semantics ωva, but we prefer it for

its concise formulation and the explicit distinction of global variables, user-defined,

and built-in constraints.

Definition 2.1 (ωe State)

An ωe state is a tuple 〈�; �; �〉. The user-defined (constraint) store � is a multiset

of CHR constraints. The built-in (constraint) store � is a conjunction of built-in

constraints. � is a set of variables called the global variables. We use Σe to denote the

set of all ωe states. A variable v ∈ � is called a strictly local variable iff v 	∈ (� ∪ �).

The operational semantics ωe is founded on equivalence classes of states, based

on the following definition of state equivalence.

Definition 2.2 (ωe State Equivalence)

Equivalence between ωe states is the smallest equivalence relation ≡e over ωe states

that satisfies the following conditions:

1. 〈�;X
.
= t ∧ �; �〉 ≡e 〈�

[
X/t

]
;X

.
= t ∧ �; �〉

2. If CT |= ∃s̄.� ↔ ∃s̄′.�′ where s̄, s̄′ are the strictly local variables of �,�′,

respectively, then 〈�; �; �〉 ≡e 〈�; �′; �〉
3. If X is a variable that does not occur in � or � then 〈�; �; {X}∪�〉 ≡e 〈�; �; �〉
4. 〈�; ⊥; �〉 ≡e 〈�′; ⊥; �〉

Definition 2.3 (ωe Transitions)

For a CHR program P, the state transition system (Σe/≡e,�e) is defined as follows.

The transition is based on a variant of a rule r in P such that its local variables are

disjoint from the variables occurring in the pre-transition state.

r @ H1 \ H2 ⇔ G | Bc � Bb

[〈H1 � H2 � �;G ∧ �; �〉] �r
e [〈H1 � Bc � �;G ∧ Bb ∧ �; �〉]

When the rule r is clear from the context or not important, we may write �e

rather than �r
e. By �∗

e , we denote the reflexive-transitive closure of �e.

In the following, we freely mix equivalence classes and their representative, i.e. we

often write σ �e τ instead of [σ] �e [τ].



A complete and terminating execution model for Constraint Handling Rules 601

An inherent problem of ωe is its behavior with respect to propagation rules: If a

state can fire a propagation rule once, it can do so again and again, ad infinitum. In

the literature, this problem is referred to as trivial non-termination of propagation

rules.

Example 2.1

Reconsider the transitivity rule from Example 1.1 and the following CHR state,

which represents a cycle consisting of two edges:

σ = 〈e(A,B), e(B,A); �; ∅〉

Let t @ e(A′, B′), e(B′, C ′) =⇒ e(A′, C ′) be a variant of the transitivity rule, then it

can be applied to σ, yielding an additional loop edge:

σ ≡e 〈e(A′, B′), e(B′, C ′);A = A′ ∧ B = B′ ∧ A = C ′; ∅〉
�t 〈e(A′, B′), e(B′, C ′), e(A′, C ′);A = A′ ∧ B = B′ ∧ A = C ′; ∅〉
≡e 〈e(A,B), e(B,A), e(A,A); �; ∅〉

It is easily verified, that the transitivity rule can be applied again to the same two

constraints, yielding another e(A,A) constraint, hence this program suffers from

trivial non-termination in ωe.

2.3 Operational semantics with rule priorities

The extension of CHR with rule priorities was initially proposed in De Koninck

et al. (2007). It annotates rules with priorities and modifies the operational semantics

such that among the applicable rules, we always select one of highest priority for

execution. The operational semantics of this extension is denoted as ωp and the

formulation we use in work was given in De Koninck et al. (2008).

The operational semantics ωp uses a so-called token store to avoid trivial non-

termination. A propagation rule can only be applied once to each combination

of constraints matching the head. Hence, the token store keeps a history of fired

propagation rules based on constraint identifiers, as defined below.

Definition 2.4 (Identified CHR Constraints)

An identified CHR constraint c#i is a CHR constraint c associated with a unique

integer i, the constraint identifier. We introduce the functions chr(c#i) = c and

id(c#i) = i, and extend them to sequences and sets of identified CHR constraints in

the obvious manner.

The definition of an ωp state is more complicated, because identified constraints

are distinguished from unidentified constraints and the token store is added.

Definition 2.5 (ωp State)

An ωp state is a tuple of the form 〈�; �; �; �〉�
n where the goal (store) � is a

multiset of constraints, the CHR (constraint) store � is a set of identified CHR

constraints, the built-in (constraint) store � is a conjunction of built-in constraints.

The token store (or propagation history) � is a set of tuples (r, I), where r is the

name of a propagation rule and I is an ordered sequence of constraint identifiers.

� is a set of variables called the global variables. We use Σp to denote the set of all

ωp states.



602 Hariolf Betz et al.

The corresponding transition system consists of the following three types of

transitions.

Definition 2.6 (ωp Transitions)

For a CHR program P with rule priorities, the state transition system (Σp,�p) is

defined as follows.

1. Solve. 〈{c} � �; �; �; �〉�
n �p 〈�; �; �′; �〉�

n

where c is a built-in constraint and CT |= ∀((c ∧ �) ↔ �′).

2. Introduce. 〈{c} � �; �; �; �〉�
n �p 〈�; {c#n} ∪ �; �; �〉�

n+1

where c is a CHR constraint.

3. Apply. 〈∅;H1 ∪ H2 ∪ �; �; �〉�
n �p 〈B;H1 ∪ �; Θ ∧ �; � ∪ t〉�

n where P contains

a rule of priority p with fresh variables of the form

p :: r @ H ′
1 \ H ′

2 ⇔ G | B

and a matching substitution Θ such that chr(H1) = Θ(H ′
1), chr(H2) = Θ(H ′

2),

CT |= ∃(�) ∧ ∀(� → ∃̄�(Θ ∧ G)), Θ(p) is a ground arithmetic expression and

t = (r, id(H1)+id(H2)) 	∈ �. Furthermore, no rule of priority p′ and substitution Θ′

exists with Θ′(p′) < Θ(p) for which the above conditions hold.

When the rule r is clear from the context or not important, we may write �p rather

than �r
p. By �∗

p, we denote the reflexive-transitive closure of �p.

3 Operational semantics with persistent constraints ω!

In this section, we present the operational semantics with persistent constraints ω!,

proposed in (Betz et al. 2009). Our semantics is built on the following basic ideas:

1. In ωe, the body of a propagation rule can be generated any number of times,

provided that the corresponding head constraints are present in the store. In

order to give consideration to this theoretical behavior, we introduce those body

constraints as so-called persistent constraints. A persistent constraint is a finite

representation of a large, though unspecified number of identical constraints. For

a proper distinction, constraints that are not persistent constraints are henceforth

called linear constraints.

2. As a secondary consequence, arbitrary generation of rule bodies in ωe affects

other types of CHR rules as well. Consider the following program:

r1 @ a =⇒ b

r2 @ b ⇔ c

If executed with a goal a, this program can generate an arbitrary number of

constraints of the form b. As a consequence of this, it can also generate arbitrarily

many constraints c. To take these indirect consequences of propagation rules into

account, we introduce a rule’s body constraints as persistent whenever its removed

head can be matched completely with persistent constraints.

3. As a persistent constraint represents an arbitrary number of identical constraints,

we consider multiple occurrences of a persistent constraint as idempotent. Thus,

we implicitly apply a set semantics to persistent constraints.



A complete and terminating execution model for Constraint Handling Rules 603

4. We adapt the execution model such that a transition takes place only if the

post-transition state is not equivalent to the pre-transition state. This entails

two beneficial consequences: Firstly, in combination with the set semantics on

persistent constraints, it avoids trivial non-termination of propagation rules.

Secondly, as failed states are equivalent, it enforces termination upon failure.

The formal definition of ω! is given in Section 3.1. In Section 3.2, we state results

concerning its soundness and completeness with respect to ωe.

3.1 Definition

In this section, we give a formal definition of our operational semantics ω!. We

present our adapted notions of state and state equivalence and a transition system

which consists of two distinct transition rules.

Definition 3.1 defines ω! states. With respect to ωe, the goal store � is split up

into a store � of linear constraints and a store � of persistent constraints:

Definition 3.1 (ω! State)

A ω! state is a tuple of the form 〈�; �; �; �〉, where � and � are multisets of CHR

constraints called the linear (CHR) store and persistent (CHR) store, respectively.

� is a conjunction of built-in constraints and � is a set of variables called the global

variables. We use Σ! to denote the set of all ω! states.

Definition 3.2 is analogous to ωe, though adapted to comply with Definition 3.1.

Definition 3.2 (Variable Types)

For the variables occurring in a ω! state σ = 〈�; �; �; �〉 we distinguish three

different types:

1. a variable v ∈ � is called a global variable

2. a variable v 	∈ � is called a local variable

3. a variable v 	∈ (� ∪ � ∪ �) is called a strictly local variable

The following definition of state equivalence is adapted to comply with Defini-

tion 3.1 and extended to handle idempotence of persistent constraints.

Definition 3.3 (Equivalence of ω! States)

Equivalence between ω! states is the smallest equivalence relation ≡! over ω! states

that satisfies the following conditions:

1. (Equality as Substitution) Let X be a variable, t be a term and
.
= the syntactical

equality relation.

〈�; �;X
.
= t ∧ �; �〉 ≡! 〈�

[
X/t

]
; �

[
X/t

]
;X

.
= t ∧ �; �〉

2. (Transformation of the Constraint Store) If CT |= ∃s̄.� ↔ ∃s̄′.�′ where s̄, s̄′ are

the strictly local variables of �,�′, respectively, then:

〈�; �; �; �〉 ≡! 〈�; �; �′; �〉



604 Hariolf Betz et al.

3. (Omission of Non-Occurring Global Variables) If X is a variable that does not

occur in �, �, or � then:

〈�; �; �; {X} ∪ �〉 ≡! 〈�; �; �; �〉

4. (Equivalence of Failed States)

〈�; �; ⊥; �〉 ≡! 〈�′; �′; ⊥; �′〉

5. (Contraction)

〈�;P � P � �; �; �〉 ≡! 〈�;P � �; �; �〉

Based on the definition of ≡e, we define the operational semantics ω! below. Since

body constraints may be introduced either as linear or as persistent constraints,

uniform rule application is replaced by two distinct application modes. Note that ω!

is only defined for range-restricted programs. In (Betz et al. 2010) it is shown that

ω! is no longer compliant with ωe for non-range-restricted programs.

Definition 3.4 (ω! Transitions)

For a range-restricted CHR program P, the state transition system (Σ!/≡!,�!) is

defined as follows.

ApplyLinear:

r @ (Hl
1 � H

p
1 )\(Hl

2 � H
p
2 ) ⇔ G | Bc, Bb Hl

2 	= ∅ σ 	= τ

σ = [〈Hl
1 � Hl

2 � �;Hp
1 � H

p
2 � �;G ∧ �; �〉]

�r
! [〈Hl

1 � Bc � �;Hp
1 � H

p
2 � �;G ∧ � ∧ Bb; �〉] = τ

ApplyPersistent:

r @ (Hl
1 � H

p
1 )\Hp

2 ⇔ G | Bc, Bb σ 	= τ

σ = [〈Hl
1 � �;Hp

1 � H
p
2 � �;G ∧ �; �〉]

�r
! [〈Hl

1 � �;Hp
1 � H

p
2 � Bc � �;G ∧ � ∧ Bb; �〉] = τ

When the rule r is clear from the context or not important, we may write �!

rather than �r
! . By �∗

! , we denote the reflexive-transitive closure of �!.

Example 3.1

Again consider the transitive edge program from Example 1.1 and an analogous

computation to that given in Example 2.1, using an ApplyPersistent transition:

σ ≡! 〈e(A′, B′), e(B′, C ′); ∅;A = A′ ∧ B = B′ ∧ A = C ′; ∅〉
�t 〈e(A′, B′), e(B′, C ′); e(A′, C ′);A = A′ ∧ B = B′ ∧ A = C ′; ∅〉
≡! 〈e(A,B), e(B,A); e(A,A); �; ∅〉 = σ′

The operational semantics ω! solves the trivial non-termination problem through

the combination of persistent constraints and its irreflexive transition system, as the

following observation shows:

σ′ ≡! 〈e(A′, B′), e(B′, C ′); e(A,A);A = A′ ∧ B = B′ ∧ A = C ′; ∅〉
	�t 〈e(A′, B′), e(B′, C ′); e(A,A), e(A′, C ′);A = A′ ∧ B = B′ ∧ A = C ′; ∅〉
≡! 〈e(A,B), e(B,A); e(A,A); �; ∅〉 = σ′



A complete and terminating execution model for Constraint Handling Rules 605

3.2 Soundness and completeness

The following two theorems state the soundness and completeness of ω! with respect

to ωe.

Theorem 1 states that for every given state that can be derived in ω!, we can derive

a corresponding state in ωe which contains the linear constraints of the former state

in equal multiplicities, but its persistent constraints in arbitrarily high multiplicities.

Theorem 1 (Soundness)

Let 〈�; ∅; �; �〉, 〈�; �; �′; �〉 ∈ Σ!. If 〈�; ∅; �; �〉 �∗
! 〈�; �; �′; �〉 then for every

N ∈ 	 there exists a state 〈�′; �′; �〉 ∈ Σe such that 〈�; �; �〉 �∗
e 〈�′; �′; �〉 and

� � N · � ⊆ �′.

Theorem 2 states that for every given state that can be derived in ωe, we can

derive a corresponding state in ω!, such that its linear store and some subset of its

persistent store add up exactly to the user-defined store of the former state.

Theorem 2 (Completeness)

Let 〈�; �; �〉, 〈�′; �′; �〉 ∈ Σe. If 〈�; �; �〉 �∗
e 〈�′; �′; �〉, then there exists a state

〈�; �; �′; �〉 ∈ Σ! such that 〈�; ∅; �; �〉 �∗
! 〈�; �; �′; �〉 and � ⊆ �′ ⊆ � � �.

4 Implementation via source-to-source transformation

In this section we provide an implementation of the operational semantics ω! in the

form of a source-to-source transformation. A CHR program P is transformed into

a program �P� such that �P�’s execution in ωp is sound and complete with respect

to the execution of P in ω!.

The following definition of pathological rules is chosen such as to coincide with

those rules that cause redundant rule applications – modulo state equivalence – in

ωe, i.e. in a non-pathological program every rule applied to a state σ results in a

state τ 	≡e σ (cf. (Betz et al. 2010)). This ensures that ApplyLinear transitions never

fail due to irreflexivity, and hence, the resulting ωp programs do not need to perform

an explicit equivalence check.

Definition 4.1 (Pathological Rules)

A CHR rule r @ H1\H2 ⇔ G | Bc, Bb is called pathological if and only if ∃�.〈H2; �∧
G; ∅〉 ≡e 〈Bc;Bb; ∅〉. It is called trivially pathological iff � = �. A CHR program P
is called pathological if it contains at least one pathological rule.

Assuming a CHR program P without pathological rules, we now show how to

encode it as �P� for execution in ωp.

For every n-ary constraint c/n in P, there exists a constraint c/(n + 1) in �P�. In

the following, for a multiset of user-defined ω!-constraints M = {c1(̄t1), . . . , cn (̄tn)} let

l(M) = {c1(l, t̄1), . . . , cn(l, t̄n)}, p(M) = {c1(p, t̄1), . . . , cn(p, t̄n)}, and c(M) = {c1(c, t̄1), . . . ,

cn(c, t̄n)}.
The rules of �P� are constructed via the following source-to-source transformation.



606 Hariolf Betz et al.

1. For every rule r @ H1 \ H2 ⇔ G | B in P, and all multisets Hl
1, H

p
1 , H

l
2, H

p
2 s.t.

Hl
1 � H

p
1 = H1 and Hl

2 � H
p
2 = H2 and Hl

2 	= ∅, the following rule is in �P�:

3 :: l(Hl
1) � p(Hp

1 ) � p(Hp
2 ) \ l(Hl

2) ⇔ G | l(Bc), Bb

2. For every rule r @ H1 \ H2 ⇔ G | Bc, Bb in P, and all multisets Hl
1, H

p
1 s.t.

Hl
1 � H

p
1 = H1, the following rule is in �P�:

3 :: l(Hl
1) � p(Hp

1 ) � p(H2) =⇒ G | c(Bc), Bb

3. For every rule {c(p, t̄), c(p, t̄′)}�H1\H2 ⇔ G | B in �P�, add also the following rule:

3 :: {c(p, t̄)} � H1 \ H2 ⇔ t̄ = t̄′ ∧ G | B

4. For every user-defined constraint c/n in P, add the following rules, where t̄ is a

sequence of n different variables:

1 :: c(p, t̄)\c(c, t̄) ⇔ �
2 :: c(c, t̄) ⇔ c(p, t̄)

Example 4.1 (Encoding of Transitive Hull )

We consider the transitive hull program from Example 1.1:

t @ e(X,Y ), e(Y ,Z) =⇒ e(X,Z)

According to the encoding given above, the program is transformed as follows:

3 :: e(l, X, Y ), e(l, Y , Z) =⇒ e(c, X, Z)

3 :: e(l, X, Y ), e(p, Y , Z) =⇒ e(c, X, Z)

3 :: e(p,X, Y ), e(l, Y , Z ) =⇒ e(c, X, Z)

3 :: e(p,X, Y ), e(p, Y , Z) =⇒ e(c, X, Z)

3 :: e(p,X, Y ) =⇒ X = Y ∧ Y = Z | e(c, X, Z)

1 :: e(p,X, Y )\e(c, X, Y ) ⇔ �
2 :: e(c, X, Y ) ⇔ e(p,X, Y )

The grouping of the rules above reflects the transformation steps 2, 3, and 4.

Transformation step 1 is not productive in this example. The fifth rule above is

operationally equivalent to 3 :: e(p,X,X) =⇒ e(c, X,X), and hence, is redundant, as

the resulting constraint will immediately be removed again by the rule with priority 1.

Furthermore, transformation step 3 also adds an additional symmetric version of

the fifth rule, which was omitted here, as it is operationally equivalent as well.

Execution of a transformed program in ωp is equivalent to execution of the

original program in ω!, as the following theorem shows.

Theorem 3 (Soundness and Completeness of Encoding)

Let G,�,� be multisets of user-defined constraints, B,� conjunctions of built-in

constraints, and � = vars(G ∧ B). If P is a non-pathologic CHR program, then

〈G; ∅;B; �〉 �∗
! 〈�; �; �; �〉 	�! in P

iff

∃�, n.〈l(G), B; ∅; �; ∅〉�
0 �∗

p 〈∅; l(�) � p(�); �; �〉�
n 	�p in �P�



A complete and terminating execution model for Constraint Handling Rules 607

Example 4.2 (Example Runs of ωp and ω! Programs)

The following example derivation shows how the translated program terminates

with a state that corresponds with the result of an execution of the original program

in ω!. For clarity’s and brevity’s sake, we do not show all intermediate states and

we do not give the states’ respective token stores explicitly.

〈e(l, A, B), e(l, B, A); ∅; �; ∅〉{A,B}
0

�∗
p 〈∅; e(l, A, B)#0, e(l, B, A)#1; �; ∅〉{A,B}

2

�∗
p 〈∅; e(l, A, B)#0, e(l, B, A)#1, e(c, A, A)#2; �; . . .〉{A,B}

3

�∗
p 〈∅; e(l, A, B)#0, e(l, B, A)#1, e(p, A, A)#3; �; . . .)〉{A,B}

4

�∗
p 〈∅; e(l, A, B)#0, e(l, B, A)#1, e(p, A, A)#3, e(c, B, B)#4; �; . . .〉{A,B}

5

�∗
p 〈∅; e(l, A, B)#0, e(l, B, A)#1, e(p, A, A)#3, e(p, B, B)#5; �; . . .)〉{A,B}

6

�∗
p 〈∅; e(l, A, B)#0, e(l, B, A)#1, e(p, A, A)#3, e(p, B, B)#5, e(c, A, B)#6; �; . . .〉{A,B}

7

�∗
p 〈∅; e(l, A, B)#0, e(l, B, A)#1, e(p, A, A)#3, e(p, B, B)#5, e(p, A, B)#7; �; . . .)〉{A,B}

8

�∗
p 〈∅; e(l, A, B)#0, e(l, B, A)#1, e(p, A, A)#3, e(p, B, B)#5, e(p, A, B)#7, e(c, B, A)#8; �; . . .〉{A,B}

9

�∗
p 〈∅; e(l, A, B)#0, e(l, B, A)#1, e(p, A, A)#3, e(p, B, B)#5, e(p, A, B)#7, e(p, B, A)#9; �; . . .)〉{A,B}

10

�∗
p 〈∅; e(l, A, B)#0, e(l, B, A)#1, e(p, A, A)#3, e(p, B, B)#5, e(p, A, B)#7, e(p, B, A)#9; �; . . .)〉{A,B}

24
	�p

The above computation corresponds to the following execution in ω!:

σ ≡! 〈e(A,B), e(B,A); ∅; �; {A,B}〉
�t

! 〈e(A,B), e(B,A); e(A,A); �; {A,B}〉
�t

! 〈e(A,B), e(B,A); e(A,A), e(B,B); �; {A,B}〉
�t

! 〈e(A,B), e(B,A); e(A,A), e(B,B), e(A,B); �; {A,B}〉
�t

! 〈e(A,B), e(B,A); e(A,A), e(B,B), e(A,B), e(B,A); �; {A,B}〉
	�!

This example also demonstrates how ω! streamlines execution which in turn

facilitates formal reasoning over derivations: the whole computation consists of

4 state transitions in ω!, whereas the corresponding computation in ωp requires 60

state transitions.

The presented source-to-source transformation satisfies conditions for an accept-

able encoding according to Gabbrielli et al. (2009), modulo the necessary distinction

between linear and persistent constraints in the translation.

5 Discussion

In this section, we discuss our insights on the behavior of ω! in comparison with

existing operational semantics.

5.1 Termination behavior

Our proposed operational semantics ω! exhibits a termination behavior different

from ωt, ωp, and ωe. Compared to ωe, we have solved the problem of trivial

non-termination of propagation rules, whereas any program terminating in ωe also

terminates in ω!. With respect to ωt and ωp, we found programs that terminate in

ω! but not in ωt and ωp, and vice versa.

We have seen in Example 2.1 and Example 3.1 that the transitivity rule displays

different behavior in ωe and ω!. The program’s termination behavior in ωt and ωp

has been investigated in Pilozzi and De Schreye (2009), where it is shown to terminate

for acyclic graphs. However, states containing cyclic graphs entail non-terminating

behavior (cf. Betz et al. 2010). Contrarily, we show in the accompanying technical

report Betz et al. (2010) that in the operational semantics ω!, the computation of



608 Hariolf Betz et al.

the transitive hull terminates for every possible input. At the same place, we present

a CHR program that terminates in ωt and ωp, but not in ω!.

5.2 Related work

In Sarna-Starosta and Ramakrishnan (2007) the set-based semantics ωset has been

introduced. Its development was, among other considerations, driven by the intention

to eliminate the propagation history. Besides addressing the problem of trivial non-

termination in a novel manner, it reduces non-determinism similarly to the refined

operational semantics ωr (Duck et al. 2004). In ωset, a propagation rule cannot be

fired infinitely often for a possible matching. However, multiple firings are possible,

the exact number depending on the built-in store.

Sarna-Starosta and Ramakrishnan (2007) justify their set-based approach by the

following statement:

“When working with a multi-set-based constraint store, it appears that propagation history

is essential to provide a reasonable semantics.”

Our approach can be understood as a compromise since we avoid a propagation

history by imposing an implicit set semantics on persistent constraints. The distinction

between linear and persistent constraints, however, allows us to restrict the set behavior

to those constraints, whereas the multiset semantics is preserved for linear constraints.

Linear logical algorithms (Simmons and Pfenning 2008) (LLA) is a programming

language based on bottom-up reasoning in linear logic, inspired by logical algorithms

(Ganzinger and McAllester 2002). The first implementation of logical algorithms

was realized in CHR with rule priorities (De Koninck 2009).

Our proposed operational semantics ω! is related to LLA (Simmons and Pfenning

2008), but displays significant differences: Firstly, the notion of a constraint theory

with built-in constraints is absent in LLA. Secondly, LLA rules are restricted such

that persistent propositions cannot be derived multiple times, whereas ω! makes no

such restriction and solves this problem via the irreflexive transition system. Thirdly,

LLA requires a strict separation of propositions into linear and persistent ones. In

ω! a CHR constraint can occur in the linear store, in the persistent store, or both.

On the other hand, the separation of propositions in LLA allows the corresponding

rules to freely mix linear and persistent propositions in bodies. This is not directly

possible with our approach, as CHR constraints in a body are either added as linear

or persistent constraints.

6 Conclusion and future work

The main motivation of this work was the observation that CHR research spans a

spectrum ranging from an analytical to a pragmatic end: on the analytical side of

the spectrum, emphasis is put on the formal aspects and properties of the language

while on the pragmatic side, it is put on implementation and efficiency. A variety

of operational semantics has been brought forth in the past, each aligning with one

side of the spectrum. In this work we proposed the novel operational semantics ω!,

heeding both analytical and pragmatic aspects.

Unlike other operational semantics with a strong analytical foundation, ω! thus

provides a terminating execution model and may be implemented as is. We provided



A complete and terminating execution model for Constraint Handling Rules 609

evidence to this claim by presenting a sound and complete encoding of ω! into ωp,

which can be used to implement ω! by source-to-source transformation.

Our operational semantics ω! is based on the concept of persistent constraints.

These are finite representations of an arbitrarily large number of syntactically equi-

valent constraints. They enable us to subsume trivially non-terminating computations

in a single derivation step.

We proved soundness and completeness of our operational semantics ω! with

respect to ωe. The latter stands exemplarily for analytical formalizations of the

operational semantics, thus providing a strong analytical foundation for ω!. This

facilitates program analysis and formal proofs of program properties.

In its current formulation, ω! is only applicable to range-restricted CHR programs

– a limitation we plan to address in the future. Furthermore, similar to ωt being the

basis for numerous extensions to CHR (Sneyers et al. 2010), we plan to investigate

the effect of building these extensions on ω!.

In a concurrent environment, some kind of conflict resolution is required for the

case that multiple rules try to remove the same constraint. For example, in (Sulzmann

and Lam 2008) a transaction-based approach is used, leading to a rollback, if the

first evaluated rule application removed the constraint. The formulation of the

ApplyPersistent transition reveals that for persistent constraints, no such conflicts

have to be taken into account. A closer investigation of potential benefits of the

persistent constraint approach in concurrent settings remains to be conducted.

References

Abdennadher, S. 1997. Operational semantics and confluence of constraint propagation rules.

In 3rd International Conf. on Principles and Practice of Constraint Programming. Lecture

Notes in Computer Science, 1330. Springer, 252–266.

Abdennadher, S. and Frühwirth, T. 1999. Operational equivalence of CHR programs and

constraints. In Principles and Practice of Constraint Programming, CP 1999, J. Jaffar, Ed.

Lecture Notes in Computer Science, vol. 1713. Springer, 43–57.

Abdennadher, S., Frühwirth, T., and Meuss, H. 1999. Confluence and semantics of

constraint simplification rules. Constraints 4, 2, 133–165.

Betz, H. and Frühwirth, T. 2005. A linear-logic semantics for constraint handling rules. In

Principles and Practice of Constraint Programming, 11th International Conference, CP 2005,

P. van Beek, Ed. Lecture Notes in Computer Science, vol. 3709. Springer, Sitges, Spain,

137–151.

Betz, H., Raiser, F., and Frühwirth, T. 2009. Persistent constraint in constraint handling

rules. In Proceedings of 23rd Workshop on (Constraint) Logic Programming, WLP 2009 (to

appear).

Betz, H., Raiser, F., and Frühwirth, T. 2010. A Complete and Terminating Execution

Model for Constraint Handling Rules. Technical Report 01, Ulm University.

De Koninck, L. 2009. Logical Algorithms meets CHR: A meta-complexity result

for Constraint Handling Rules with rule priorities. Theory and Practice of Logic

Programming 9, 2 (March), 165–212.

De Koninck, L., Schrijvers, T., and Demoen, B. 2007. User-definable rule priorities for

CHR. In PPDP ’07: Proceedings of the 9th ACM SIGPLAN international conference on

Principles and practice of declarative programming. ACM, New York, 25–36.

De Koninck, L., Stuckey, P. J., and Duck, G. J. 2008. Optimizing compilation of CHR

with rule priorities. In Functional and Logic Programming, 9th International Symposium



610 Hariolf Betz et al.

(FLOPS), J. Garrigue and M. V. Hermenegildo, Eds. Lecture Notes in Computer Science,

vol. 4989. Springer, 32–47.

Duck, G. J., Stuckey, P. J., Garcı́a de la Banda, M., and Holzbaur, C. 2004. The

refined operational semantics of Constraint Handling Rules. In Logic Programming, 20th

International Conference, ICLP 2004, B. Demoen and V. Lifschitz, Eds. Lecture Notes in

Computer Science, vol. 3132. Springer, Saint-Malo, France, 90–104.

Frühwirth, T. 1998. Theory and practice of constraint handling rules. Journal of Logic

Programming, Special Issue on Constraint Logic Programming 37, 1–3 (October), 95–138.

Frühwirth, T. 2005. Parallelizing union-find in constraint handling rules using confluence

analysis. In Logic Programming, 21st International Conference, ICLP 2005, M. Gabbrielli

and G. Gupta, Eds. Lecture Notes in Computer Science, vol. 3668. Springer, Sitges, Spain,

113–127.

Frühwirth, T. 2009. Constraint Handling Rules. Cambridge University Press.

Frühwirth, T. and Abdennadher, S. 2003. Essentials of Constraint Programming. Springer.

Frühwirth, T. and Hanschke, P. 1993. Terminological reasoning with Constraint Handling

Rules. In Principles and Practice of Constraint Programming. MIT Press, 80–89.

Gabbrielli, M., Mauro, J., and Meo, M. C. 2009. On the expressive power of priorities in

CHR. In Proceedings of the 11th International ACM SIGPLAN Conference on Principles

and Practice of Declarative Programming, A. Porto and F. J. López-Fraguas, Eds. ACM,

Coimbra, Portugal, 267–276.

Ganzinger, H. and McAllester, D. A. 2002. Logical algorithms. In Logic Programming,

18th International Conference, ICLP 2002, P. J. Stuckey, Ed. Lecture Notes in Computer

Science, vol. 2401. Springer, 209–223.

Pilozzi, P. and De Schreye, D. 2009. Proving termination by invariance relations. In 25th

International Conference Logic Programming, ICLP, P. M. Hill and D. S. Warren, Eds.

Lecture Notes in Computer Science, vol. 5649. Springer, Pasadena, CA, 499–503.

Raiser, F., Betz, H., and Frühwirth, T. 2009. Equivalence of CHR states revisited. In 6th

International Workshop on Constraint Handling Rules (CHR), F. Raiser and J. Sneyers, Eds.

34–48.

Sarna-Starosta, B. and Ramakrishnan, C. 2007. Compiling Constraint Handling Rules for

efficient tabled evaluation. In 9th Intl. Symp. Practical Aspects of Declarative Languages,

PADL, M. Hanus, Ed. Lecture Notes in Computer Science, vol. 4354. Springer, Nice,

France, 170–184.

Simmons, R. J. and Pfenning, F. 2008. Linear logical algorithms. In Automata, Languages

and Programming, 35th International Colloquium, ICALP 2008, L. Aceto, I. Damg̊ard, L. A.

Goldberg, M. M. Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz, Eds. Lecture Notes in

Computer Science, vol. 5126. Springer, 336–347.

Sneyers, J., Van Weert, P., Schrijvers, T., and De Koninck, L. 2010. As time goes by:

Constraint Handling Rules–A survey of CHR research between 1998 and 2007. Theory and

Practice of Logic Programming 10, 1, 1–47.

Sulzmann, M. and Lam, E. S. L. 2007. A concurrent constraint handling rules semantics and

its implementation with software transactional memory. In Proceedings of the POPL 2007

Workshop on Declarative Aspects of Multicore Programming, N. Glew and G. E. Blelloch,

Eds. ACM, 19–24.

Sulzmann, M. and Lam, E. S. L. 2008. Parallel execution of multi-set constraint rewrite

rules. In Proceedings of the 10th International ACM SIGPLAN Conference on Principles

and Practice of Declarative Programming (PPDP), S. Antoy and E. Albert, Eds. ACM,

Valencia, Spain, 20–31.


