
A State Equivalence and Confluence Checker for
CHR

Johannes Langbein, Frank Raiser, and Thom Frühwirth

Faculty of Engineering and Computer Science, Ulm University, Germany
firstname.lastname@uni-ulm.de

Abstract. Analyzing confluence of CHR programs manually can be an im-
practical and time consuming task. Based on a new theorem for state equiva-
lence, this work presents the first tool for testing equivalence of CHR states.
As state equivalence is an essential component of confluence analysis, we
apply this tool in the development of a confluence checker that overcomes
limitations of existing checkers. We further provide evaluation results for
both tools and detail their modular design, which allows for extensions and
reuse in future implementations of CHR tools.

1 Introduction

Constraint Handling Rules (CHR) [1] is a declarative, multiset- and rule-based
programming language suitable for powerful program analysis.

One such property a CHR program can be analyzed for is called confluence. For
a confluent program, it is guaranteed that we always get the same result for a given
query, independently of the order of rule applications and the order of constraints
in the query. Furthermore, confluent programs are parallelizable without changing
their source code [1].

There is a decidable, sufficient, and necessary criterion for confluence of termi-
nating CHR programs [2]. It is based on the joinability of so-called critical pairs.
However, proving confluence of a larger program manually can quickly become in-
feasible as there is a combinatorial explosion in the number of critical pairs with
program size. Hence, confluence checking is preferably done using a software tool.

Equivalence of CHR states is a fundamental notion used in the criterion for
confluence. Recent work [3,4] has led to an axiomatic definition of state equivalence
alongside a decidable and sufficient criterion.

Based on this work, we implemented a checker for equivalence of CHR states.
Furthermore, we used this checker to implement a new tool for confluence checking,
which overcomes limitations (cf. Section 4.2) of existing confluence checkers [2,5].
The checkers for state equivalence and confluence together with some example CHR
programs and test-cases are available under GNU GPL and can be downloaded
from [6]. They can be used for any terminating CHR program which does not
contain propagation rules. Furthermore, only the built-ins true, false, and =/2
are supported (cf. Section 5.1).

We make the following contributions:

– We present the first implementation of a test for CHR state equivalence (Sec-
tion 3.1).

– Based on this, we describe our implementation of a new confluence checker
(Section 3.2).

– We evaluate our confluence checker with the union-find implementations pre-
sented in [5] and compare it to previous implementations (Section 4) .

– Finally, we point out possible future extensions of our checkers (Section 5.1).

2 Preliminaries

Constraint Handling Rules distinguishes two kinds of constraints: CHR constraints
and built-in constraints. We assume reasoning on built-in constraints to be possible
through a satisfaction-complete and decidable constraint theory CT . We use the
following definitions of CHR states and state equivalence from [3].

Definition 1 (CHR States). A CHR state σ is a tuple 〈G; B; V〉. The goal G
is a multiset of CHR constraints. The built-in constraint store B is a conjunction
of built-in constraints. V is a set of global variables. A variable v ∈ (B ∪ G) is
called a local variable iff v /∈ V. A variable v ∈ B is called a strictly local variable
iff v /∈ (V ∪G). We use Σ to denote the set of all states.

Definition 2 (State Equivalence). Equivalence between CHR states is the small-
est equivalence relation ≡ over CHR states that satisfies the following conditions:

1. (Equality as Substitution)
〈G;X .= t ∧ B; V〉 ≡ 〈G [X/t] ;X .= t ∧ B; V〉

2. (Transformation of the Constraint store)
If CT |= ∀(∃s̄.B ↔ ∃s̄′.B′) where s̄, s̄′ are the strictly local variables of B,B′,
respectively, then 〈G; B; V〉 ≡ 〈G; B′; V〉

3. (Omission of Non-Occuring Global Variables)
If X is a variable that does not occur in G or B then 〈G; B; {X}∪V〉 ≡ 〈G; B; V〉

4. (Equivalence of failed states)
〈G;⊥; V〉 ≡ 〈G′;⊥; V〉

The following sufficient and decidable criterion for state equivalence was intro-
duced in [3].

Theorem 1 (Criterion for ≡). Let σ = 〈G; B; V〉 and σ′ = 〈G′; B′; V〉 be CHR
states with local variables ȳ and ȳ′ that have been renamed apart. Then

σ ≡ σ′ iff CT |= ∀(B→ ∃ȳ′.((G = G′) ∧ B′)) ∧ ∀(B′ → ∃ȳ.((G = G′) ∧ B))

For G = {c1, . . . , cn} and G′ = {c′1, . . . , c′n} the expression (G = G′) denotes the
following set of equations: cτ(1) = c′1 ∧ . . . ∧ cτ(n) = c′n for a permutation τ .

A CHR program P is a set of rules of the following form.

Definition 3 (CHR Rule). A CHR (simpagation) rule is of the form

r @ H1\H2 ⇔ G | Bc]Bb

where H1 and H2 are multisets of user-defined constraints, called the kept head and
removed head, respectively. The guard G is a conjunction of built-in constraints
and the body consists of a conjunction of built-in constraints Bb and a multiset of
user-defined constraints Bc. The rule name r is optional and may be omitted along
with the @ symbol. If H1 is empty, we call the rule a simplification rule.

In this paper, we use the following equivalence-based operational semantics ωe
which was established in [3].

Definition 4 (ωe Transitions). For a CHR program P, the state transition sys-
tem (Σ/≡,�) is defined as follows. The transition is based on a variant of a rule r
in P such that its local variables are disjoint from the variables occurring in the
pre-transition state.

r @ H1 \H2 ⇔ G | Bc]Bb
[〈H1]H2]G;G ∧ B; V〉] �r [〈H1]Bc]G;G ∧Bb ∧ B; V〉]

2

When the rule r is clear from the context or not important, we may write �
rather than �r. By �∗, we denote the reflexive-transitive closure of �. For two
states σ and σ′ we may also write σ � σ′ instead of [σ] � [σ′].

Confluence is a property which guarantees that all possible computations for
a given goal result in equivalent final states. For confluent programs, the order of
constraints in a goal and the order of rules in the program does not matter [2]. We
define confluence using the following definition of joinability.

Definition 5 (Joinability). Two CHR states σ1 and σ2 are called joinable if there
exist states σ′1 and σ′2 such that σ1 �∗ σ′1 and σ2 �∗ σ′2 with σ′1 ≡ σ′2

Definition 6 (Confluence). A CHR program is confluent if for all states σ, σ1,
σ2:

If σ �∗ σ1 and σ �∗ σ2, then σ1 and σ2 are joinable.

We cannot check joinability starting from all possible states σ, as in general there
are infinitely many such states. However, there exists a decidable, sufficient and
necessary criterion for confluence of terminating CHR programs [2], which is based
on joinability of so-called critical pairs. The criterion states, that for terminating
programs, we can restrict the joinability test to those critical pairs, of which only
a finite number exists. For critical pairs, we use the following, adapted definition
from [7]:

Definition 7 (Critical Pair). Given two (not necessarily different) rules
r1 @ H11\H21 ⇔ G1 | Bc1] Bb1 and r2 @ H12\H22 ⇔ G2 | Bc2] Bb2 whose
variables have been renamed apart.
The tuple (σ1, σ2) with

σ1 = 〈Bc1] ((H4r1]H
4
r2]H∩r1)−H21); (H∩r1 = H∩r2) ∧Bb1 ∧G1 ∧G2; V〉

σ2 = 〈Bc2] ((H4r1]H
4
r2]H∩r1)−H22); (H∩r1 = H∩r2) ∧Bb2 ∧G1 ∧G2; V〉

where

H4r1]H∩r1 = H11]H21

H4r2]H∩r2 = H12]H22

V = vars(H4r1 ∧H
4
r2 ∧H∩r1 ∧G1 ∧G2)

is called a critical pair of r1 and r2 if H∩r1 6= ∅ and CT |= (H∩r1 = H∩r2) ∧G1 ∧G2.

Here, the equality = between multisets of head constraints has the same meaning
as in Theorem 1.

It suffices to show joinability of critical pairs to show confluence of a terminating
program.

Theorem 2 (Criterion for confluence [2]). A terminating CHR program P is
confluent iff all critical pairs of all rules of P are joinable.

In [2] this theorem has been proven for CHR programs consisting only of simplifi-
cation rules. However, as we do not consider propagation rules and as simpagation
rules are only an abbreviation for simplification rules, the theorem remains valid.
Furthermore, this allows us to ignore the token-store from [8] and thus apply the
theorem using CHR states according to Definition 1.

Confluence can be tested by posing the two states σ1 and σ2 of a critical pair as
query to the CHR program, as the following argumentation shows: If the two queries

3

result in two states σ′1 and σ′2 with σ′1 ≡ σ′2, we have shown joinability of the critical
pair. If the two queries result in two non-equivalent states σ′1 and σ′2, there should
be transitions σ1 �∗ σ′′1 and σ′2 �∗ σ′′2 such that σ′′1 ≡ σ′′2 , if the program was
confluent as the order of rule application should not matter in this case. However, if
the computation stops with σ′1 and σ′2 as final states, no more rules are applicable,
in particular there are no transitions leading to equivalent states σ′′1 and σ′′2 . This
means we have found a counterexample for confluence of the program.

3 State Equivalence and Confluence Checkers

The checkers for state equivalence and confluence are implemented in SWI-Prolog.
They are organized in two different modules named stateequiv and conflcheck
which define the predicates for state equivalence and confluence, respectively.

3.1 State Equivalence

The module stateequiv is an implementation of Theorem 1 for the equivalence rela-
tion≡ over CHR states. In this module, CHR states (cf. Definition 1) are represented
by Prolog terms of the form state(G,B,V), where G, B, and V are lists representing
the goal store, the built-in store and the global variables of the state. CHR con-
straints are represented by Prolog terms, built-in constraints by the terms =/2, true,
and false (which are the only supported built-ins, see Section 5.1) while variables
are represented as Prolog variables. The empty goal and built-in stores > as well
as the empty set of variables are represented as empty Prolog lists.

Example 1. The CHR state 〈{c(X)}, X = 1, {X}〉 is represented by the term
state([c(X)],[X=1],[X]).

The predicate equivalent_states/2 takes two state terms representing CHR
states σ and σ′ as arguments and succeeds if and only if σ ≡ σ′.

Example 2. The goal

equivalent states(state([c(X)],[X=1],[X]), state([c(1)],[X=1],[X]))

succeeds while the following goal fails:
equivalent states(state([c(X)],[],[X]), state([c(X)],[X=1],[X]))

3.2 Confluence

Based on the module for state equivalence, the module conflcheck implements the
criterion for confluence from Theorem 2. The confluence checker creates all possi-
ble critical pairs of all rules in the program according to Definition 7. It checks
them for joinability by posing the two states separately as query to the CHR
program and retrieving the two resulting states, which are tested for equivalence
by equivalent states/2.

The entire list of critical pairs is created before each individual critical pair is
tested for joinability. This allows for filtering out critical pairs which are variants or
symmetrical to other critical pairs. The list is also filtered to remove critical pairs
whose states are already equivalent. Only the remaining critical pairs are tested for
joinability.

The module conflcheck defines the predicate check_confluence/1 which takes
the path to a CHR program file as argument and checks this program for confluence.
The predicate always succeeds, printing either a message of success or a list of non-
joinable critical pairs.

4

Example 3. Consider the following program simulating destructive assignment,
which can also be found in examples/mem.pl in the package available at [6]:

assign(V,N), cell(V,O) <=> cell(V,N).

This program is not confluent as it has two non-joinable critical pairs. The
call check_confluence(’examples/mem.pl’) outputs information about the two
non-joinable critical pairs as follows (shortened):

Checking confluence of CHR program in examples/mem.pl...

The following critical pair is not joinable:

state([cell(A, B), cell(C, D)], [C=A, D=E], [C, D, F, A, E, B])

state([cell(C, F), cell(A, E)], [C=A, D=E], [C, D, F, A, E, B])

...

The following critical pair is not joinable:

state([assign(A, B), cell(C, D)], [C=A, E=F], [C, D, E, A, B, F])

state([assign(C, D), cell(A, B)], [C=A, E=F], [C, D, E, A, B, F])

...

The CHR program in examples/mem.pl is NOT confluent!

2 non-joinable critical pair(s) found!

The predicate check_confluence/3 works the same way but only considers
critical pairs of two (not necessarily different) rules in the program. The mod-
ule conflcheck also offers predicates which return the number of non-joinable
critical pairs instead of printing them. Those predicates can be used to call the
confluence checker from other programs. Details about the mentioned predicates
and additionaly ones are given in the manual of the confluence checker [6].

4 Evaluation and Related Work

In this section, we describe the results of applying our confluence checker to pro-
grams which have already been analyzed for confluence as well as we compare our
implementation to existing confluence checkers for CHR programs.

4.1 Confluence of Union-Find

In addition to unit-tests with classic CHR programs, which are defined in the
file tests.pl in the package available at [6], we evaluated our confluence checker
with the CHR implementations of the union-find algorithm from [5]; on the one hand
to test our checkers with programs yielding more critical pairs, on the other hand
to compare the results of our confluence checker to a previous confluence analysis
from [5].

We were able to confirm the number of critical pairs of the implementations
in ufd_basic.pl, ufd_basic1.pl, and ufd_rank.pl for those rules our confluence
checker is applicable to.

However, checking the confluence of the parallelized optimal union-find imple-
mentation in ufd_found_compr.pl, we found differing numbers of non-joinable crit-
ical pairs for some rules:

– The rule findroot1 @ root(A,_) \ find(A,X) <=> found(A,X) has two
non-trivial critical pairs that we both found to be joinable in contrary to one
non-joinable critical pair mentioned in [5].

– For the rule compress @ foundc(C,X) \ A~>B, compr(A,X) <=> A~>C we
found the following four non-joinable critical pairs, in contrary to [5], where
only three non-joinable critical pairs were found:

5

(foundc(C,X) ∧ A~>C ∧ A~>D,

foundc(C,X) ∧ A~>C ∧ A~>B)

(foundc(C,X) ∧ foundc(D,E) ∧ A~>C ∧ compr(A,E),

foundc(C,X) ∧ foundc(D,E) ∧ A~>D ∧ compr(A,X))

(foundc(C,X) ∧ foundc(D,X) ∧ A~>C,

foundc(C,X) ∧ foundc(D,X) ∧ A~>D)

(foundc(C,X) ∧ A~>C ∧ foundc(D,X) ∧ A~>E,

foundc(C,X) ∧ A~>D ∧ foundc(D,X) ∧ A~>B)

– The rule linkeq1c @ found(A,X), found(A,Y), link(X,Y) <=>
foundc(A,X), foundc(A,Y) leads to 18 non-joinable critical pairs according
to [5]. However, there are only 13 different possibilities to overlap the head
constraints of this rule leading to six non-joinable critical pairs.

Using our new tools, we were able to correct some of the numbers of non-joinable
critical pairs. We suppose the differing numbers to be due to typos or an error in
the existing implementation as it can be easily shown that our above-mentioned
numbers are correct. However, despite our findings, the general results presented
in [5] remain correct in that the programs are not confluent.

4.2 Related Work

To our knowledge there are two existing implementations of confluence analysis for
CHR programs. The tool used to check confluence of the union-find implementations
in [5] requires the CHR program to be represented as Prolog facts in the source code
of the tool. Another existing confluence checker [2], whose sources are available
to the authors, is limited to single-headed simplification rules. Furthermore, the
existing tools check joinability of critical pairs based on the notion of variants rather
than state equivalence. Our confluence checker overcomes those limitations as it
supports multi-headed and simpagation rules and directly parses a CHR source
file as input. Also, it checks joinability based on state equivalence, according to
Definition 5.

Both existing confluence checkers require manual changes in the source code of
the analyzed CHR program in order to process built-in constraints. Our implemen-
tation does not need any changing of the source file to process built-in constraints.
However, as a trade-off, it is restricted to the built-ins =/2, true, and false as of
now (cf. Section 5.1).

5 Conclusion and Future Work

We have presented the first implementation of a program for state equivalence
testing and a new confluence checker based on an axiomatic definition of state
equivalence. We used a modular design for our checkers to allow for extensions
and reuse of our code. We have tested them with unit-tests and existing CHR
implementations of the union-find algorithm, re-evaluated the previously published
results about their numbers of critical pairs, and compared our confluence checker
to existing implementations.

5.1 Future Work

Due to our definition of states which does not provide any means to express the
propagation history of the operational semantics ωt [1], our confluence checker does

6

not work for programs containing propagation rules. Taking critical pairs from prop-
agation rules alongside the propagation history into account is one possible solution
for this. Alternatively, the confluence checker can be extended to support persistent
constraints [9,4].

To allow arbitrary Prolog predicates as built-in constraints, the checkers for
state equivalence and confluence need to be extended to check logical entailment.
The current restriction to the built-ins =/2, true, and false arises from the fact
that Prolog in general requires the arguments of built-ins to be ground, while CHR
states and especially critical pairs can contain unbound variables.

An extension to the notion of confluence is the so-called observable confluence [7].
The criterion for observable confluence only considers critical pairs satisfying an
invariant. Our confluence checker can be adapted to this notion of confluence: the
predicate process_cps/2 can be used for any kind of modification of critical pairs
and thus can be extended to test and alter each critical pair according to a given
invariant. Alternatively, the addition of an interactive mode could enable the user
to check and modify each critical pair before it is tested for joinability.

In [10], a criterion for operational equivalence of CHR programs, which also
relies on joinability, is given. Our implementations of critical pair generation and
state equivalence can be adapted and used to implement a checker for operational
equivalence.

References

1. Frühwirth, T.: Constraint Handling Rules. Cambridge University Press (2009)
2. Abdennadher, S., Frühwirth, T., Meuss, H.: On Confluence of Constraint Handling

Rules. In Freuder, E., ed.: Principles and Practice of Constraint Programming, Second
International Conference, CP 96. Volume 1118 of Lecture Notes in Computer Science.,
Springer-Verlag (1996) 1–15

3. Raiser, F., Betz, H., Frühwirth, T.: Equivalence of CHR States Revisited. In Raiser, F.,
Sneyers, J., eds.: Sixth International Workshop on Constraint Handling Rules (CHR).
(2009) 34–48

4. Betz, H., Raiser, F., Frühwirth, T.: A Complete and Terminating Execution Model for
Constraint Handling Rules. In: Logic Programming, 26th International Conference,
ICLP 2010. (2010) accepted.

5. Frühwirth, T.: Parallelizing Union-Find in Constraint Handling Rules Using Conflu-
ence Analysis. In Gabbrielli, M., Gupta, G., eds.: Logic Programming, 21st Interna-
tional Conference, ICLP 2005. Volume 3668 of Lecture Notes in Computer Science.,
Springer-Verlag (2005) 113–127

6. Langbein, J.: A State Equivalence and Confluence Checker for CHR, Prolog sources.
http://www.uni-ulm.de/en/in/pm/research/topics/chr/info/downloads.html

7. Duck, G.J., Stuckey, P.J., Sulzmann, M.: Observable Confluence for Constraint Han-
dling Rules. In Dahl, V., Niemelä, I., eds.: Logic Programming, 23rd International
Conference, ICLP 2007. Volume 4670 of Lecture Notes in Computer Science., Springer-
Verlag (2007) 224–239

8. Abdennadher, S.: Operational Semantics and Confluence of Constraint Propagation
Rules. In: Principles and Practice of Constraint Programming, Third International
Conference, CP97. Volume 1330 of Lecture Notes in Computer Science., Springer-
Verlag (1997) 252–266

9. Betz, H., Raiser, F., Frühwirth, T.: Persistent Constraints in Constraint Handling
Rules. In: (Constraint) Logic Programming, 23rd Workshop, WLP 2009, Institute of
Computer Science, Potsdam University (2009)

10. Abdennadher, S., Frühwirth, T.: Operational Equivalence of CHR Programs and
Constraints. In Jaffar, J., ed.: Principles and Practice of Constraint Programming,
Fifth International Conference, CP 99. Volume 1713 of Lecture Notes in Computer
Science., Springer-Verlag (1999) 43–57

7

http://www.uni-ulm.de/en/in/pm/research/topics/chr/info/downloads.html

