
Towards Term Rewriting Systems in
Constraint Handling Rules

Coming to terms with jungles

Frank Raiser and Thom Frühwirth

Faculty of Engineering and Computer Sciences, University of Ulm, Germany
{Frank.Raiser|Thom.Fruehwirth}@uni-ulm.de

Abstract. Term rewriting systems are a formalism in widespread use,
often implemented by means of term graph rewriting. In this work we
present preliminary results towards an elegant embedding of term graph
rewriting in Constraint Handling Rules with rule priorities (CHRrp). As
term graph rewriting is well-known to be incomplete with respect to term
rewriting, we aim for sound jungle evaluation in CHRrp. Having such an
embedding available allows to benefit from CHR’s online property and
parallelization potential.

1 Introduction

Term rewriting is an important branch of computer science with applications in
algebra, recursion theory, software engineering, and programming languages [1].
There is a wealth of known results available concerning term rewriting systems
(TRSs).

Constraint handling rules (CHR) is a concurrent committed-choice constraint
logic programming language consisting of guarded rules, which transform mul-
tisets of atomic formulas (constraints) into simpler ones until exhaustion [2].
Initially created for the development of constraint solvers [3] it has meanwhile
grown to a general-purpose programming language [4, 5].

As CHR shares the basic property with TRSs of replacing left-hand sides by
right-hand sides, several properties of TRSs have also been investigated in the
context of CHR. The most important of these being confluence and termination.
However, up to now there is no existing work on embedding a TRS in CHR.
Despite their similarities there is a major difference in the way a TRS and a
CHR program work, which makes this embedding non-trivial: a TRS can replace
subterms of a term independent of how deeply nested the subterm is, whereas
CHR replaces multisets of top-level constraints.

Many practical implementations of term rewriting actually perform term
graph rewriting [6] instead, which is a sound, but incomplete, alternative to
pure term rewriting. The lack of completeness is made up for with the efficiency
of the rewriting process. As term graph rewriting can perform multiple term
rewrite steps in one step there are even examples of exponential speedups, like
the computation of Fibonacci numbers [7]. The reason for these speedups is that

2 $Id: trs.tex 1153 2008-06-05 08:17:08Z PM2\frank $

term graph rewriting makes use of structure sharing, such that equal subterms
only exist once in a term graph and the need for equality checking, therefore, is
avoided. Considering, that term graph rewriting is based on graph transforma-
tions for which an embedding in CHR exists [8], this work focuses directly on
embedding term graph rewriting into CHR as a means to achieve sound term
rewriting.

The theory for term graph rewriting is based on jungles which are introduced
in Sect. 2. We also introduce CHRrp [9] there, which is a variant of CHR assign-
ing priorities to rules. It is used in this work instead of plain CHR, as it greatly
simplifies the process of updating structure sharing in term graphs without be-
ing as restrictive as the refined semantics for CHR. Section 2 further details
the correspondence between term rewriting and term graph rewriting, before
Sect. 3 presents our approach to embed term graphs with structure sharing in
CHRrp. It is shown there, that our proposed CHRrp encoding of term graphs
ensures a terminating and confluent computation of term graphs with a maxi-
mal amount of shared structures. We plan to use these normal form term graphs
as a basis for performing term graph rewriting in CHRrp, which is outlined in
Sect. 4. In that section future work regarding jungle evaluation and properties of
the CHRrp implementation of term graph rewriting are outlined as well, before
Sect. 5 concludes this work.

2 Preliminaries

The following preliminaries are taken from [7]:

Strings A∗ denotes the set of all strings over some set A, including the empty
string ε. f∗ : A∗ → B∗ denotes the homomorphic extension of a function
f : A→ B.

Abstract Reductions Let → be a binary relation on some set A.
We write →+ and →∗ for the transitive and transitive-reflexive closure of
→, respectively. The n-fold composition of → (n ≥ 0) is denoted by →n; in
particular, →0 is the equality on A.
Some a ∈ A is a normal form (w.r.t. →) if there is no b ∈ A with a→ b. A
normal form a is called a normal form of b ∈ A if b→∗ a.
We say → is terminating if there is no infinite chain a0 → a1 → a2 → . . .

The relation → is confluent if for all a, b1, b2 ∈ A, b1∗← a →∗ b2 implies
b1 →∗ c∗← b2 for some c ∈ A.

Terms and Substitution T (X) denotes the set of all terms over the set X of
variables. Terms can contain function symbols from the set Σ. Each function
symbol f is associated with an arity arity(f) ≥ 0. A function symbol c with
arity(c) = 0 is called a constant.
A substitution σ : T (X) → T (Y), rewrite rules, and term rewriting systems
are defined as usual.

$Id: trs.tex 1153 2008-06-05 08:17:08Z PM2\frank $ 3

2.1 Constraint Handling Rules with Rule Priorities

This section presents the syntax and operational semantics of constraint han-
dling rules [2, 3]. Constraints are first-order predicates which we separate into
built-in constraints and user-defined constraints. Built-in constraints are pro-
vided by the constraint solver while user-defined constraints are defined by a
CHR program. A CHR program consists of CHR rules, for which three variants
exist: simplification, propagation, and simpagation rules. As simpagation rules
are the most general and can directly simulate the other two variants we consider
only simpagation rules in this work.

There are different operational semantics available for CHR [4]. We chose to
use CHR with rule priorities (CHRrp) for this work, as it is most suitable to the
underlying idea of establishing maximal term structure sharing before applying
term graph rules. The remaining operational semantics are not as suitable for
our work:

refined semantics The operational semantics found in most common CHR im-
plementations is the so-called refined semantics. It is geared towards imple-
mentation issues and its major drawback in our case is that the application
order of rules is fixed by their order of occurrence in the program text. In or-
der to be able to generally embed term graph rewriting, however, we require
a non-deterministic rule selection as it is available for term graph rewriting.

abstract semantics The abstract (or standard) operational semantics is the
default operational semantics for CHR, which includes non-deterministic rule
selection. However, as we want to ensure, that term graphs use maximal
structure sharing before term graph rules are applied to them, additional
effort would be required: it has to be guaranteed, that despite the non-
deterministic rule selection term graph rules can only be applied after the
corresponding term graphs provide for maximal structure sharing.

CHRrp extends the abstract semantics with priorities for rules, such that
rules with the same priority are still selected non-deterministically, but only
when no other rules of higher priority can be applied. This allows us to split
our rules for the term graph embedding into two classes: a high-priority class of
rules responsible for ensuring maximal structure sharing and a low-priority class
of rules corresponding to the embedded term graph rewriting rules.

In CHRrp simpagation rules are of the form

priority :: Rulename @ H1 \H2 ⇔ g | C

where priority is the priority of the rule, Rulename is an optional unique iden-
tifier of a rule, the head H1 \ H2 is a non-empty conjunction of user-defined
constraints, the guard g is a conjunction of built-in constraints and the body C is
a conjunction of built-in and user-defined constraints. Note that with respect to
H1, H2, and C we mix the use of the terms conjunction, sequence, and multiset.

The operational semantics is based on an underlying constraint theory D for
the built-in constraints and a state, which is a pair 〈G,S,B, T 〉 where G is a goal,

4 $Id: trs.tex 1153 2008-06-05 08:17:08Z PM2\frank $

i.e. a multiset of user-defined and built-in constraints, S is the CHR constraint
store, B is the built-in store, and T is the propagation history [4]. Table 1 shows
the possible state transitions for CHRrp under the operational semantics of CHR
with rule priorities, denoted as ωp.

1. Solve 〈{c}]G,S,B, T 〉n
ωp

�P 〈G,S, c ∧B, T 〉n where c is a built-in constraint.

2. Introduce 〈{c}] G,S,B, T 〉n
ωp

�P 〈G, {c#n} ∪ S,B, T 〉n+1 where c is a CHR
constraint.

3. Apply 〈∅, H1 ∪H2 ∪S,B, T 〉n
ωp

�P 〈Θ(C), H1 ∪S,B, T ∪{t}〉n where P contains
a rule of priority p of the form

p :: r @ H ′
1 \H ′

2 ⇔ g | C

and a matching substitution Θ such that chr(H1) = Θ(H ′
1), chr(H2) =

Θ(H ′
2),D |= B → ∃B(Θ ∧ g), Θ(p) is a ground arithmetic expression and

t = 〈r, id(H1) + + id(H2)〉 6∈ T . Furthermore, no rule of priority p′ and sub-
stitution Θ′ exists with Θ′(p′) < Θ(p) for which the above conditions hold.

Table 1. Transitions of ωp

2.2 Jungle Evaluation and Term Rewriting

A survey on term graph rewriting can be found in [6], with additional details,
especially considering jungle evaluation, in [7]. The following definitions and facts
are taken from those two works.

It is well-known, how a term can be represented as a tree. The sharing of
equal subterms, however, is not allowed in the usual tree structure. To this end,
jungles are used, which are a specialization of hypergraphs:

Definition 1 (Hypergraph). A hypergraph G = (VG, EG, attG, labG) con-
sists of a finite set VG of nodes, a finite set EG of hyperedges (or edges for short),
and a mapping labG : EG → Σ, labeling hyperedges with function symbols and
a mapping attG : EG → V +

G such that | attG(e)| = 1 + arity(labG(e)).
Given e ∈ EG with attG(e) = v0v1 . . . vn, res(e) = v0 is called the re-

sult node and arg(e) = v1, . . . , vn are called the argument nodes. We define
indegreeG(v) = |{e | v ∈ arg(e)}| and outdegreeG(v) = |{e | v = res(e)}|

Let v1, v2 be two nodes in a hypergraph G. Then v1 >G v2 denotes that there
is a non-empty path from v1 to v2 in G; v1 ≥G v2 means v1 >G v2 or v1 = v2.
G is acyclic if there is no node v ∈ VG such that v >G v.

This allows us to define a jungle:

$Id: trs.tex 1153 2008-06-05 08:17:08Z PM2\frank $ 5

Definition 2 (Jungle). A hypergraph G = (VG, EG, attG, labG) is a jungle if

1. outdegreeG(v) ≤ 1 ∀v ∈ VG,
2. G is acyclic.

When we consider ground terms represented as trees, then all leafs are con-
stants. For jungles these constants become hyperedges with arity 1, i.e. hyper-
edges which are attached to a result node, but have no argument nodes. Con-
versely, if a node in a jungle is not a result node of an edge we treat it like a
variable. It is easy to see that non-linear terms of a term rewriting system, i.e.
terms in which a variable occurs multiple times, can be represented by jungles
with one shared variable node per variable of the TRS.

Notation VARG = {v ∈ VG | outdegreeG(v) = 0} denotes the set of variables
associated with a jungle G.

Example 1. Figure 1 shows an exemplary jungle used in a rule for computing
Fibonacci numbers. Nodes are shown as black dots and hyperedges as rectangles.
For an edge, the associated operation symbol is written inside the rectangle and
the result node is given by a line without an arrow, whereas the argument nodes
are given by arrows. In general, we assume that the order of arguments coincides
with the left-to-right order of arrows in a figure.

In Fig. 1 the node r is a root node of the jungle and the node n is a variable
node.

Also see the jungles in Fig. 3 for how jungles allow the sharing of common
substructures.

fib

s

s

r

u

v

n

Fig. 1. Exemplary jungle G

To associate jungles with terms we define a mapping assigning terms to each
node of a jungle:

6 $Id: trs.tex 1153 2008-06-05 08:17:08Z PM2\frank $

Definition 3 (Term Representation Function). Let G be a jungle. Then

termG(v) =

v if v ∈ VARG,
labG(e)(termG(v1), . . . , termG(vn)) for the unique edge e such

that attG(e) = vv1 . . . vn

defines a function termG : VG → T (VARG).
The set termG(VG) of all terms represented by a jungle G is denoted by

TERMG.

Example 2. The terms represented by Fig. 1 are:
node termG

r fib(s(s(n)))
u s(s(n))
v s(n)
n n
All terms represented by G, hence, are:

TERMG = {fib(s(s(n))), s(s(n)), s(n), n}
For the remainder of this work we require various morphisms between jungles,

which have to satisfy the following definition:

Definition 4 (Jungle Morphism). Let G,H be jungles. A jungle morphism
f : G → H is a pair of mappings f = (fV : VG → VH , fE : EG → EH)
which preserves sources, targets, and labels, i.e. attH ◦fE = f∗V ◦ attG and
labH ◦fV = labG.

A jungle morphism f = (fV , fE) is injective (surjective) if and only if fV

and fE are both injective (surjective).

Notation ROOTG = {v ∈ VG | indegreeG(v) = 0} denotes the set of roots of
a jungle G.

Analogous to [6] we equate a node v with the set of paths from a root node to
v in order to get standard term graphs and avoid the usual isomorphism details.
As we allow for multiple root nodes only the path from a specific root node
to v is unique, and thus, we include paths from all root nodes to get a unique
standard term graph.

As jungles can contain variables, which are represented as nodes that are not
result nodes of an edge, every jungle morphism assigning such a node to a node
in the target jungle induces a substitution:

Definition 5 (Induced Substitution). Let f : G→ H be a jungle morphism.
Then the induced substitution σ : T (VARG) → T (VARH) is defined for all
x ∈ VARG by

σ(x) = termH(fV (x))

Example 3. Figure 2 shows a jungle morphism g between two jungles G and H.
The morphism is depicted by dotted arrows. The jungle H represents the ground
term fib(s(s(s(0)))) which is used to compute the third Fibonacci number.
The jungle morphism g, which maps n to g(n) = n′, induces a substitution σ
with σ(n) = termH(n′) = s(0).

$Id: trs.tex 1153 2008-06-05 08:17:08Z PM2\frank $ 7

fib

s

fib

s

s

s

s

0

n

v

u

r r’

n’

G H

z

y

x

.

Fig. 2. Jungle morphism g : G→ H

3 Structure sharing in CHRrp

This section explains how to encode jungles in CHRrp and introduces a set of
rules which implement structure sharing on these jungles. It is shown, that the
rules ensure that the maximal amount of structures is shared.

3.1 Jungle Encoding in CHRrp

Definition 6 (Jungle Encoding). Let G = (VG, EG, attG, labG) be a jungle.
Then G is encoded in CHRrp as follows:

1. for all v ∈ VG introduce a unique variable Xv.
2. For each edge e ∈ EG with res(e) = v and arg(e) = v1, . . . , vn add the

constraint Eq(Xv, labG(e)(Xv1 , . . . , Xvn))

Let encode(G) denote the set of Eq constraints for the CHRrp encoding of G
and let XVG

denote the set of variables introduced for the encoding of G1.
Let Xv be a variable used in encode(G). Then

term(Xv) =

v if 6 ∃ Eq(Xv, . . .) ∈ encode(G)
op(term(Xv1), . . . , term(Xvk

))) if ∃ Eq(Xv, op(Xv1 , . . . , Xvk
))

∈ encode(G)

defines a function term : XVG
→ T (XVG

).
1 Note that for each variable Xv ∈ XVG there is at most one Eq(Xv,) ∈ encode(G)

due to outdegree(v) ≤ 1 (Def. 2)

8 $Id: trs.tex 1153 2008-06-05 08:17:08Z PM2\frank $

Example 4. Consider again the jungle H from Fig. 2. It’s encoding in CHRrp is:
Eq(Xr′ , fib(Xx)), Eq(Xx, s(Xy)), Eq(Xy, s(Xn′)), Eq(Xn′ , s(Xz)), Eq(Xz, 0).

The following lemma ensures, that the set of terms represented by encode(G)
via term is the same as the set of terms represented by G via termG:

Lemma 1 (Encoding preserves terms). For an encoding encode(G) of a
jungle G = (VG, EG, attG, labG) it holds that:

∀X ∈ XVG
: term(X) ∈ TERMG (1)

∀t ∈ TERMG ∃X ∈ XVG
: t = term(X) (2)

Proof. Proof for (1) by structural induction:
if 6 ∃ Eq(Xv, . . .) ∈ encode(G) this implies by Definition 6(1) that Xv corresponds
to a node v ∈ VARG, and thus, term(Xv) = v = termG(v) ∈ TERMG.
if ∃ Eq(Xv, op(Xv1 , . . . , Xvk

)) ∈ encode(G) this implies the existence of an edge
e ∈ EG with resG(e) = v, labG(e) = op and argG(e) = v1, . . . , vk. The term
op(term(Xv1), . . . , term(Xvk

)), thus, equals the term (Def. 3)
labG(e)(termG(v1), . . . , termG(vk)) and is, therefore, contained in TERMG.

Each term in TERMG corresponds to a node v ∈ VG to which a variable
Xv ∈ XVG

is associated. Hence, the proof of (2) is another structural induction
analogous to the above. ut

3.2 Structure sharing

The idea of structure sharing is that identical subterms can share the same
nodes and edges in a jungle. This cuts down on the space usage of an encoded
term, as well as allowing to apply a term rewriting rule to all occurrences of
the shared subterm in one step. Based on a lemma from [7] this leads us to the
basic idea of how to embed term graph rewriting in CHRrp: Every jungle G is
first transformed into a jungle G representing the same terms, but for which
its subterm structures are maximally shared. It is then known, that for each
application of a term graph rewriting rule to the jungle G the rule also applies
to the transformed jungle G.

Using this property of structure sharing we can provide for a CHRrp embed-
ding which avoids the previously mentioned problem of having to detect subterm
equality. Whenever two subterms are equal this is trivially seen from the cor-
responding jungle nodes and edges being shared. The remaining part of this
section, therefore, details how structure sharing can be enforced in CHRrp, with
the following definitions being adapted from [6]:

Definition 7 (Collapsing). Given two jungles G and H, G collapses to H if
there is a jungle morphism f : G → H such that fV (ROOTG) = ROOTH and
termG(fV (ROOTG)) = termH(ROOTH)). This is denoted by G � H, or if the
morphism is non-injective, by G � H. The latter kind of collapsing is said to be
proper.

$Id: trs.tex 1153 2008-06-05 08:17:08Z PM2\frank $ 9

Given the notion of collapsing jungles we can further identify the jungles
which are fully collapsed, i.e. to which no more proper collapsing steps are ap-
plicable:

Definition 8 (Tree, Fully Collapsed). A jungle G is a tree if there is no H
with G ≺ H, while G is fully collapsed if there is no H with G � H.

The following alternative definition of a fully collapsed jungle is given in [7]
and is independent from the notion of collapsing via a jungle morphism:

Definition 9 (Fully Collapsed, Alternative Definition). A jungle G is
called fully collapsed if termG is injective.

Example 5. Figure 3 shows a jungle which occurs during the computation of
fib(3) representing the recursive computation fib(3) = (fib(1)+fib(0))+fib(1).
The duplicate occurrence of fib(1) can then be optimized by structure sharing.
The collapse step shown in Fig. 3 eliminates one hyperedge representing the
term fib(1) by reusing another hyperedge which represents the same term.
The corresponding jungle morphism is the identity morphism, except for the
mapping depicted by the dashed arrows. Overall, structure sharing leads to a
linear computation of Fibonacci numbers, as opposed to the naive exponential
computation.

s

fib

+

+

fib

s

fib

+

+

fib

fib

00

G H

.

Fig. 3. Collapsing of a jungle

The process of collapsing a jungle (called Folding in [7]) is instrumented via
a set of folding rules according to the following definition:

10 $Id: trs.tex 1153 2008-06-05 08:17:08Z PM2\frank $

Definition 10 (Folding Rule). Let op ∈ Σ be a function symbol such that
arity(op) = k ≥ 0.

The folding rule for op is given by a pair (L←↩ K b→ R) of jungle morphisms
as depicted in Fig. 4 (”x = y” indicates that b identifies the roots of K; note
that L and R have no variables if op is a constant, ←↩ denotes an inclusion
morphism). F denotes the set of folding rules for Σ.

x y x y

L K

op op op

...

...
op

x=y

R

...

b

Fig. 4. Folding rule for op ∈ Σ

We now port this instrumentation to jungles encoded in CHR by encode.
The generated folding rules are assigned a static priority of 1. This enforces our
basic idea of fully collapsing a jungle, before applying rules of the actual TRS
to it.

Definition 11 (CHR folding rule). Let op ∈ Σ be a function symbol such
that arity(op) = k ≥ 0. Then we define the following CHR folding rule:

1 :: fold op @ Eq(X, op(X1, . . . , Xk)) \ Eq(Y, op(X1, . . . , Xk))⇔ X = Y.

PF denotes the CHR program consisting of all CHR folding rules for Σ.
Note that due to CHR’s built-in support for syntactic equivalence we can also

use the following single fold rule instead:

1 :: fold @ Eq(X,Term) \ Eq(Y, Term)⇔ X = Y

A single folding step is defined in [7] as follows. In CHR such a folding step
coincides with the application of a folding rule, as the following theorem shows.

Definition 12 (Folding Step). Let G be a jungle. A folding step G⇒
F
Hfrom

G to a hypergraph H is constructed as follows:

– Find a morphism g : L→ G for some folding rule (L←↩ K b→ R) such that
gE is injective.

– Obtain D from G by removing gE(e), where e is the unique edge in L \K.
– Obtain H from D by identifying gV (x) and gV (y), where x and y are the

roots in L.

$Id: trs.tex 1153 2008-06-05 08:17:08Z PM2\frank $ 11

Fact 1 (Folding Steps Preserve Jungles [7]) Given a jungle G and a fold-
ing step G⇒

F
H, H is a jungle, too.

Theorem 1 (CHR folding is sound and complete). For a op ∈ Σ and a
jungle G the following steps are equivalent:

1. G⇒
F
H

2. encode(G)
ωp

�PF encode(H)

Proof. (1)⇒ (2):
Let g : L → G be the required morphism for the folding rule corresponding
to the function symbol op ∈ Σ with gE being injective. This morphism ex-
tends to a matching for the head of the corresponding CHR folding rule for
op. The two edges in L directly correspond to the two Eq constraints in the
head of the CHR rule. As gE is injective there exist two edges e1 and e2 in
gE(EL) with labG(e1) = labG(e2) = op, resG(e1) = v, resG(e2) = w, and
attG(e1) = attG(e2) = v1, . . . , vk. By Definition 6 there also exist corresponding
constraints Eq(Xv, op(Xv1 , . . . , Xvk

)) and Eq(Xw, op(Xv1 , . . . , Xvk
)). Therefore,

these two constraints match the two Eq constraints in the head of the correspond-
ing CHR folding rule and the rule can be applied.

D is obtained from G by removing gE(e) with e being the unique edge in L\K.
Let w.l.o.g. gE(e) = e2 and Xw = Y be the substitution used for the matching
of the CHR folding rule’s head. Then the application of the simpagation rule
removes the Eq constraint corresponding to e2, as demanded for the generation
of D.

Finally, H is obtained by identifying gV (x) and gV (y) where x and y are
the roots in L. As defined by the edges e1 and e2 it follows that gV (x) = v and
gV (y) = w. By the implied matching the variables X and Y in the head of the
CHR folding rule are bound to the variables Xv and Xw. Therefore, the applica-
tion of the rule unifies Xv with Xw as required by Definition 12.
(2)⇒ (1):
This proof is mostly analogous to the previous argumentation: The CHR match-
ing induces the required morphism g where the injectivity is guaranteed by the
multiset semantics of CHR. Additionally, we have to show that applying a CHR
folding rule actually results in a state which is an encoding of a jungle. This can,
however, be seen from what such a rule does. The encoded graph has to contain
two edges with the same label and argument nodes and different result nodes. As
one of these edges is removed and it’s result node identified with the result node
of the other edge the result is again a jungle with the resulting state being its
encoding modulo variable renaming. ut

Example 6. Consider again the folding step depicted in Fig. 3 and let
encode(G) = Eq(Xr,+(Xv1 , Xv2)),

Eq(Xv1 ,+(Xv3 , Xv4)), Eq(Xv2 , fib(Xv5)),
Eq(Xv3 , fib(Xv5)), Eq(Xv4 , fib(Xv6)),
Eq(Xv5 , s(Xv6)), Eq(Xv6 , 0).

12 $Id: trs.tex 1153 2008-06-05 08:17:08Z PM2\frank $

The CHR folding rule is defined as
1 :: fold @ Eq(X,Term) \ Eq(Y, Term)⇔ X = Y
and can be applied to the Eq constraints for Xv2 and Xv3 leading to the following
CHR state:
encode(H) = Eq(Xr,+(Xv1 , Xv2)),

Eq(Xv1 ,+(Xv2 , Xv4)), Eq(Xv2 , fib(Xv5)),
Eq(Xv4 , fib(Xv6)), Eq(Xv5 , s(Xv6)), Eq(Xv6 , 0).

Using Theorem 1 several properties of jungle folding can be transferred to
PF :

Fact 2 (Folding Steps Preserve Terms [7]) Let G ⇒
F

Hbe a folding step.

Then TERMG = TERMH .

Corollary 1 (CHR folding preserves terms). The application of a CHR

folding rule encode(G)
ωp

�PF encode(H) preserves the terms represented by the
encoded jungle G.

Proof. A direct consequence of Fact 2 and Theorem 1. ut

Fact 3 ([7]) ⇒
F

is terminating and confluent.

Corollary 2 (CHR folding is terminating and confluent).
ωp

�PF is ter-
minating and confluent.

Proof. This follows directly from the soundness and completeness result in The-
orem 1 and Fact 3. ut

Following the idea of fully collapsing jungles by the application of folding
rules, we transfer the following fact to CHR:

Fact 4 ([7]) A jungle G is fully collapsed if and only if there is no folding step
G⇒
F
H.

Corollary 3 (fully collapsed with CHR folding). Let G be a jungle with
encoding encode(G). G is fully collapsed if and only if there is no rule in PF
applicable to encode(G).

Proof. This is a direct consequence of Thm. 1 and Fact 4.

Corollary 4 (CHR folding fully collapses). Let G be a jungle with encod-

ing encode(G). Then there exists a terminating computation encode(G)
ωp

�
∗

PF
encode(H), such that the jungle H is fully collapsed.

Proof. This is a direct consequence of Corollary 2 and Corollary 3. ut

$Id: trs.tex 1153 2008-06-05 08:17:08Z PM2\frank $ 13

4 Discussion and Future Work

Targeting term graph rewriting instead of term rewriting allows us to avoid
equivalence problems occurring with non-linear TRSs. A non-linear TRS allows
the usage of the same variable multiple times on the left-hand side in order to
express equal subterms. Considering a direct approach of flattening a term into
a linear number of CHR constraints and associating a variable to each subterm
has shown to be problematic in terms of these non-linear equalities.

One possible approach is to compute equality of subterms eagerly, similar
to the structure sharing presented in this work. However, when the structures
are not shared, but the constraint store only knows that two structures are
equal a rewrite rule could change only one of the structures. This leads to the
constraint store still modeling equivalence between the structures, and thus, a
recomputation is required to regain a consistent store.

Another possibility is to include checking equivalent subterms in guards for
non-linear rules resulting in the following kind of rules:

c(. . . , X, . . . , Y, . . .), H ⇔ test eq(X,Y) ∧G | B

Technically however, these constraints are not built-in, as they have to inspect
the constraint store and CHR only allows built-in constraints in guards. Hence,
the computation of these equality checks can be triggered by additional propa-
gation rules according to the following scheme:

c(. . . , X, . . . , Y, . . .), H ⇒ test eq(X,Y,R)
c(. . . , X, . . . , Y, . . .), test eq(X,Y, 1), H ⇔ G | B

This approach, however, is targeted towards the refined semantics of CHR, as a
non-deterministic execution model resembles eager computation – as all propa-
gation rules may fire first leading to the computation of all possible equalities.

Using Adaptive CHR [10] for eagerly computing equivalent subterms is an-
other approach we plan to investigate in the future. With Adaptive CHR the
equivalence of subterms also contains a justification, such that in the case of the
replacement of a term in only one of the subterms the justification is violated
and equivalence is recomputed on demand. While term graph rewriting is in-
complete w.r.t. pure term rewriting an embedding in Adaptive CHR can achieve
completeness at the cost of the efficiency granted by term graph rewriting.

The collapsing process detailed above is a necessary prerequisite for embed-
ding term graph rewriting in CHR. The next step is the application of jungle
evaluation rules to a jungle in order to simulate one or more term rewriting
steps. This application is based on general graph transformations using the dou-
ble pushout approach [11]. An embedding for graph transformations in CHR has
already been investigated in [8].

However, the matching of left-hand sides of jungle evaluation rules to host
jungles has to be injective in CHR due to its multiset semantics. Consider the jun-
gle evaluation rule in Fig. 5, which represents the term rewriting rule +(0, 0)→ 0.
As we take care that host jungles are fully collapsed, the left-hand side of the rule

14 $Id: trs.tex 1153 2008-06-05 08:17:08Z PM2\frank $

has to use a non-injective matching for the two 0-edges to a shared occurrence
of such a 0-edge.

We plan to investigate the possibility of collapsing the jungles occurring in a
jungle evaluation rule in order to enforce an injective matching. Figure 6 shows
how the resulting jungle evaluation rule for the rule in Fig. 5 looks like. In CHR
this can easily be realized, by using each of the jungles as input to PF and use
the collapsed output jungle for the construction of the corresponding CHRrp

rule. However, additional investigations are required to ensure, that using these
collapsed rules is sound and complete with respect to the original rules being
applied to fully collapsed jungles.

0 0

+

yx

r r

0 0

x y

0 0

x y=r

b

Fig. 5. Jungle evaluation rule

+

r

0

x

r

0

x

0

x=r

b

Fig. 6. The collapsed jungle evaluation rule

With a guaranteed injective matching the results from [8] can then be re-
used in order to perform term graph rewriting in CHRrp. Slight adjustments
will be necessary to account for the possible non-injectivity of b and due to the
structure sharing idea no edges – except for the one representing the topmost
term which is replaced by the rule – must be removed. This could result in a
possibly large proportion of the constraint store being garbage left over from
rule applications, and thus, requires the addition of cleanup rules. This garbage
problem also conflicts with confluence, which is solved by considering pointed
reductions in [6]. We expect to get a cleaner result for confluence modulo garbage
by applying the results on observable confluence [12] in CHR.

5 Conclusion

In this paper we provide a basis for embedding term graph rewriting in Con-
straint handling rules with rule priorities (CHRrp). We presented how jungles

$Id: trs.tex 1153 2008-06-05 08:17:08Z PM2\frank $ 15

are representing term graphs, and how these jungles can be encoded in CHRrp

such that the encoding is term preserving. We then introduced the concepts of
structure sharing and fully collapsing a jungle, for which we proposed means to
achieve them in a sound and complete, as well as terminating and confluent, way
in CHRrp. Furthermore, we outlined initial ideas for the remaining part of the
embedding of term graph rewriting in CHRrp.

References

1. Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge University Press,
New York, NY, USA (1998)

2. Frühwirth, T., Abdennadher, S.: Essentials of Constraint Programming. Springer-
Verlag (2003)

3. Frühwirth, T.: Theory and practice of constraint handling rules. Journal of Logic
Programming, Special Issue on Constraint Logic Programming 37(1-3) (October
1998) 95–138

4. Sneyers, J., Weert, P.V., Schrijvers, T., De Koninck, L.: As time goes by: Constraint
Handling Rules — A survey of CHR research between 1998 and 2007. Submitted
to Journal of Theory and Practice of Logic Programming (2008)

5. Frühwirth, T.: Constraint handling rules. to appear (2008)
6. Plump, D.: Term graph rewriting. In: Handbook of Graph Grammars and Com-

puting by Graph Transformations. Volume 1., World Scientific (1997) 3–61
7. Hoffmann, B., Plump, D.: Implementing term rewriting by jungle evaluation.

Informatique Théorique et Applications 25 (1991) 445–472
8. Raiser, F.: Graph Transformation Systems in CHR. In Dahl, V., Niemelä, I., eds.:

Logic Programming, 23rd International Conference, ICLP 2007. Volume 4670 of
Lecture Notes in Computer Science., Porto, Portugal, Springer-Verlag (September
2007) 240–254

9. De Koninck, L., Schrijvers, T., Demoen, B.: User-definable rule priorities for CHR.
In: PPDP ’07: Proceedings of the 9th ACM SIGPLAN international conference on
Principles and practice of declarative programming, New York, NY, USA, ACM
(2007) 25–36

10. Wolf, A.: Adaptive constraint handling with CHR in java. In: Principles and Prac-
tice of Constraint Programming, 7th International Conference, CP 2005. (2001)
256–270

11. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer-Verlag (2006)

12. Duck, G.J., Stuckey, P.J., Sulzmann, M.: Observable confluence for constraint
handling rules. In Dahl, V., Niemelä, I., eds.: Logic Programming, 23rd Interna-
tional Conference, ICLP 2007. Volume 4670 of Lecture Notes in Computer Science.,
Porto, Portugal, Springer-Verlag (September 2007) 224–239

