Semi-Automatic Generation of CHR Solvers for
Global Constraints

Frank Raiser

Faculty of Engineering and Computer Sciences, University of Ulm, Germany
Frank.RaiserQuni-ulm.de

Abstract. Constraint programming often involves global constraints,
for which various custom filtering algorithms have been published. This
work presents a semi-automatic generation of CHR solvers for the subset
of global constraints defineable by specific automata. The generation is
based on a constraint logic program modelling an automaton and an im-
proved version of the Prim-Miner algorithm. The solvers only need to be
generated once and achieve arc-consistency for over 40 global constraints.

1 Introduction

Global constraints are a combination of multiple constraints in order to improve
filtering on the domains of involved variables. While it is common knowledge,
that specialized filtering algorithms on global constraints achieve better domain
pruning than generic approaches, the development and implementation of such
algorithms requires a lot of effort. Thus, in [1] a generic method for deriving
filtering algorithms from special checker automata is introduced.

Constraint Handling Rules (CHR) [2] is a multi-headed, guarded, and con-
current constraint programming language. CHR was designed for writing con-
straint solvers and is increasingly being used as a general-purpose programming
language. However, there is no direct support for global constraints available in
CHR so far.

The aim of this work is to adapt the results from [1] in order to generate
CHR solvers for global constraints. To this end, we make use of the Prim-Miner
algorithm proposed in [3] to generate rules from a constraint logic program
(CLP). The necessary CLP is automatically created from the description of the
automaton corresponding to a global constraint, as given by the global constraint
catalog (GCC) [4,5]. This work presents a refined version of the Prim-Miner
algorithm that adapts it to the problem at hand, which results in a significant
improvement of runtime complexity.

2 Preliminaries

2.1 Automata for Global Constraints

In [1] automata for checking if a global constraint holds are introduced. The
underlying idea is to compile a list of signature arguments from the arguments

of the global constraint and use this list to iterate through the automaton. These
automata can use counters which are initialized to a value in the start state and
can be modified at each transition. Additionally, the final state specifies a final
value which has to hold for the counter in order for the global constraint to hold.
We use M = {1,...,|M]|} for the set of transitions of an automaton.

Ezample 1. The among (N, [X1,...,Xg],V) constraint holds if exactly N vari-
ables from the set of variables X7, ..., X} take a value in the set V. The cor-
responding automaton consists of two states. In the first state the value of the
current variable X; is checked for inclusion in the set V and a counter is incre-
mented in that case. The second state is the final state where the final counter
value is compared to V.

[1] further describes an arc-consistent filtering algorithm based on these au-
tomata and arc-consistent solvers for the 1 constraints as well as ¢ constraints,
which are used to encode the transitions. In this work we generate CHR solvers
for those constraints, which in combination with rules generating the necessary
1 and ¢ constraints allow arc-consistent filtering for global constraints. Note,
however, that the arc-consistency result only holds for automata which do not
involve counters. In all other cases the filtering algorithm and therefore the gen-
erated CHR solvers can still be used, but may not achieve arc-consistent filtering.

3 Semi-Automatic Solver Generation

To generate a CHR solver for a global constraint, first the automaton definition
is extracted from the global constraint catalog [5]. Then CHR rules for creating
signature arguments, ¢ and ¢ constraints are written, after which the solvers
for ¢ constraints and for ¢ constraints are generated. Optionally, the generated
ruleset can be optimized in a post-processing step. The following sections present
these steps in more detail.

3.1 Generation of ¥ and ¢ Constraints

For the filtering algorithm proposed in [1] the generation of 1) and ¢ constraints
for the automaton is required. Note that this step cannot be fully automated,
as the signature arguments depend on the specific global constraint for which
to generate a solver. In some cases, however, the generation of these constraints
can be done in a canonical way as detailed in [6].

3.2 Generation of Solver for 1 Constraint

The generation of a solver for the i constraints assumes that all transition con-
straints C; and their negations are available as arc-consistent built-in constraints.
We also require that for all subsets of these constraints their union is available
as a arc-consistent built-in constraint. This directly leads to the creation of rules
of the following kind Vi € M : ¥(S,A) = A& C; | S € M\ {i}.

N

o

Intuitively, these rules make use of each transition 4 corresponding to a tran-
sition constraint C; and state the fact that if this constraint does not hold the
transition cannot be made. Thus, the corresponding identifier for the transition
is removed from the possible transitions.

In order to achieve arc-consistency, however, further rules are required. Con-
sidering a domain restriction for D(S) = {i1,...,ir} with i1,...,4 ¢ being a
permutation of M and 0 < k < | M|, a constraint C;, U...UC;, can be propa-
gated: (S, A)AS € {i1,...,ig} = A€ (C;, U...UC;,) Such rules are inserted
for D(S) = {i1,...,ix} being any of the possible subsets of M with the exception
of 0.

Assuming an automaton with | M| transition edges where each edge is labeled
with a different constraint, O(|]M|) rules of the first kind and O(2M) rules of
the second kind are added. Using these O(2™!) rules we have the following
result:

Theorem 1. The generated solver achieves arc-consistency for the ¥ constraint.

Ezxample 2. The generated solver for the 1 constraint of the among global con-
straint consists of these rules:

W(S, A, V)= AecV|Se{0,1}\ {0}
(S, A, V)= AgV|Se{0,1}\{1}

WS, AVIAS {0} = AgV
WS, AVIASe{l} = AeV
WS, A V)AS€{0,1} =T

3.3 Generation of Solver for ¢ Constraint

The solver for the ¢ constraint is based on the Prim-Miner algorithm. The basic
idea is to encode the automaton in a constraint logic program P for the algorithm
to work with and use all possible domains as candidate inputs.

Generation of CLP Creating the CLP P for the ¢ constraints is a straightfor-
ward encoding of the automaton’s transitions into CLP rules [6]. The generation
of these CLPs can be fully automated given the definition of the automaton.

A check performed by the Prim-Miner algorithm against such a CLP consists
of a backtracking search. If the given domain restrictions are consistent with one
of the automaton’s transitions the check succeeds and the check fails if the given
domain restrictions do not allow for any of the transitions to fire.

Solver Generation The generation of the solver for the ¢ constraint is per-
formed by a modified version of the Prim-Miner algorithm, which we call the GC-
Prim-Miner algorithm. It uses the previously generated CLP P against which to
test goals. The resulting ruleset is a CHR solver for the ¢ constraint providing
arc-consistency for global constraints whose automaton is free of counters:

- S R VR

Theorem 2. For automata which do not involve counters the resulting rule set
achieves arc-consistency for ¢.

As the runtime complexity of the direct application of the Prim-Miner al-
gorithm is insufficient we can make use of the specifics of our application to
improve it. By selecting the inputs in an advantageous way we can ensure, that
the resulting ruleset still possesses the same propagation power, while at the
same time drastically reducing the complexity of the algorithm. The details of
this modification can be found in [6], along with the deduction of the runtime
complexity now being O(23"+M! 4 227+2IMI) whereas using the original Prim-
Miner algorithm gives a complexity of O(2%" * 22!).

3.4 Post-Processing of Rule Set

After generating a set of CHR rules with the GC-Prim-Miner algorithm the
resulting rule set can be reduced. A large number of the generated rules is
redundant, therefore, an additional post-processing of the rule set leads to a
more concise solver.

In order to find redundant rules for removal, the results about operational
equivalence of CHR programs in [7] can be applied. [7] presents a decidable,
sufficient, and necessary syntactic condition to determine operational equivalence
of CHR programs that are terminating and confluent [8]. We can apply this
condition by removing each rule from the generated rule set successively, and
check if the complete rule set and the rule set without that rule are operationally
equivalent. If they are, the selected rule is redundant and can be removed.

Ezample 3. Using the GC-Prim-Miner algorithm on the CLP for the ¢ con-
straint for the among automaton and removing all redundant rules generates the
following solver:

¢(Q7§,S,Q'7£) = Qe {s}

(Q,K,S,QK')YANQ € {t} = Qe {s}ASe{$}
?(Q,K,S,Q K')\NQ € {s} = Qe {s}ASe{0,1}
P(Q,K,S,Q K')ANSe{$} = Qe {s} AQ e {t}
#(Q,K,S,Q,K')ANSec{0}=Qec{s}nQ €{s}
#(Q,K,S,Q,K)ANSec{1} =Qec{s}nQ €{s}
?(Q,K,S,Q K')ANSc{0,1} =Qc{s}rnQ €{s}

4 Conclusion

In this paper we have shown a way to semi-automatically generate CHR solvers
for the set of automata-describable global constraints. The process is not fully

automated due to the generation of signature arguments and because signature
constraints are not available in a suitable format in the global constraint catalog.

We have shown that by the use of the GC-Prim-Miner algorithm, and given
the availability of arc-consistent built-in constraint solvers for transition con-
straints, the generated CHR solvers achieve arc-consistency in those cases the
automata-based filtering proposed in [1] allows for it. We have further shown,
that the generality of the Prim-Miner algorithm can cause a runtime complexity
problem, which can be alleviated by an order of magnitude if specialized for the
problem at hand.

For future work the problems associated with the 4 constraint solver [6]
need to be tackled. As there are few semantically different signature constraints
used in the various automata it might be possible to develop arc-consistent
solvers for these, including their negations and unions. Together with a way to
automatically extract the signature constraints from the definitions given in the
global constraint catalog this would allow for a fully automated generation of
the CHR solvers.

References

1. Beldiceanu, N., Carlsson, M., Petit, T.: Deriving filtering algorithms from constraint
checkers. In Wallace, M., ed.: Principles and Practice of Constraint Programming
(CP’2004). Volume 3258 of Lecture Notes in Computer Science., Springer-Verlag
(2004) 107-122

2. Frithwirth, T.: Theory and practice of constraint handling rules. Journal of Logic
Programming, Special Issue on Constraint Logic Programming 37(1-3) (October
1998) 95-138

3. Abdennadher, S., Rigotti, C.: Automatic generation of CHR constraint solvers.
TPLP 5(4-5) (2005) 403-418

4. Beldiceanu, N., Demassey, S.: Global constraint catalog (2008)
http://www.emn.fr/x-info/sdemasse/gccat /.

5. Beldiceanu, N., Carlsson, M., Demassey, S., Petit, T.: Global constraint catalog:
Past, present and future. Constraints 12(1) (2007) 21-62

6. Raiser, F.: Semi-automatic generation of CHR solvers from global constraint au-
tomata. Technical Report UIB-2008-03, Ulmer Informatik Berichte, Universitat Ulm
(February 2008)

7. Abdennadher, S., Frithwirth, T.: Operational equivalence of CHR programs and
constraints. In Jaffar, J., ed.: Principles and Practice of Constraint Programming
(CP 1999). Volume 1713 of Lecture Notes in Computer Science., Springer-Verlag
(1999) 43-57

8. Abdennadher, S.: Operational semantics and confluence of constraint propagation
rules. In: Principles and Practice of Constraint Programming. (1997) 252-266

