
Semi-Automatic Generation of CHR Solvers
from Global Constraint Automata

Frank Raiser

Faculty of Engineering and Computer Sciences, University of Ulm, Germany
Frank.Raiser@uni-ulm.de

Abstract. Constraint programming often involves global constraints,
which have been cataloged in [1] and for which various custom filtering
algorithms have been published. This work presents a semi-automatic
generation of CHR solvers for the set of global constraints which can be
defined by specific automata described in [2]. The solvers only need to be
generated once and achieve arc-consistency for over 40 global constraints.

1 Introduction

Global constraints are a combination of multiple constraints used to perform
additional filtering on the domains of involved variables. While it is common
knowledge, that specialized filtering algorithms on global constraints can often
achieve better domain pruning than generic approaches, the development of such
algorithms requires a lot of effort. Thus, in [2] a generic method for deriving
filtering algorithms from special checker automata is introduced.

Constraint Handling Rules (CHR) is a multi-headed, guarded, and concur-
rent constraint programming language. CHR was designed for writing constraint
solvers and is increasingly being used as a general-purpose programming lan-
guage. However, there is no direct support for global constraints available in
CHR so far. The aim of this work is to adapt the results from [2] in order to
generate CHR solvers for global constraints. To this end we make use of the
Prim-Miner algorithm proposed in [3] to generate rules from a constraint logic
program (CLP). The necessary CLP is automatically created from the descrip-
tion of the automata corresponding to a global constraint given by the global
constraint catalog (GCC) [1].

This work presents a refined version of the Prim-Miner algorithm that adapts
it to the problem at hand, which results in a significant improvement of runtime
complexity. It further presents the generation of the required CLP and analyses
the properties of the set of resulting CHR rules. Using this approach we can semi-
automatically generate CHR solvers for over 100 global constraints, including
arc-consistent solvers for about 40 of them.

The following section provides necessary preliminaries on CHR, the checker
automata proposed in [2], and the Prim-Miner algorithm from [3]. Section 3
discusses all steps of the semi-automatic generation of CHR solvers, including
post-processing and experimental results.

2

2 Preliminaries

In the following we introduce the necessary notions of automata for global con-
straints [2], Constraint Handling Rules [4], and the generic Prim-Miner algorithm
[3]. We assume basic familiarity of the reader with constraints and constraint
logic programming.

2.1 Automata for Global Constraints

In [2] automata for checking if a global constraint holds are introduced. The
underlying idea is to compile a list of signature arguments from the arguments
of the global constraint and use this list to iterate through the automaton. To
each signature argument a signature constraint is associated and a transition is
made in the automaton if the corresponding signature constraint holds. Despite
the creation of signature arguments, the other difference to traditional finite
automata are counters: a counter is initialized to a value in the start state of the
automaton and can be modified at each transition. Additionally, the final state
specifies a final value which has to hold for the counter in order for the global
constraint to hold.

Example 1. Figure 1 shows the automaton for the among (N, [X1, . . . , Xk], V)
constraint. This constraint holds if exactly N variables from the set of variables
X1, . . . , Xk take a value in the set V . For the automaton to check if the constraint
holds it tests whether Xi ∈ V . If this is the case the counter c is incremented,
otherwise it remains unchanged. After processing all Xi the final value of the
counter has to equal N .

WVUTPQRSs:
c=0

WVUTPQRSONMLHIJKt:
c=N

--
0

qq
��

1, c++

��
$

Fig. 1. Automaton for the among constraint

More formally an automaton is defined in [2] as
〈Signature,SignatureDomain,SignatureArg,Counters,States,Transitions, s, t〉
where:

– Signature = [S0, . . . , Sm−1] is the list of signature variables

3

– SignatureDomain specifies the domain for the Si variables (0 ≤ i < m)
– SignatureArg = [∆0, . . . ,∆m−1] are signature arguments, which are asso-

ciated to the Signature by signature constraints ψ(Si,∆i) for 0 ≤ i < m.
Each ∆i is a subset of variables of the corresponding global constraint, and
|∆i| = k for a constant k and all i = 0, . . . ,m− 1.

– Counters is a list of counters. Each counter is given as a term t(Counter, Ini-
tialValue, FinalVariable) with Counter being a symbolic name, InitialValue
an initial integer value, and FinalVariable a variable which is unified with
the counter value in the final state of the automaton.

– States is the set of states of the automaton.
– Transitions is the set of transitions given by either arc(id1, l, id2), for arcs

without counter modifications, or arc(id1, l, id2, c) for arcs including counter
modifications. id1 and id2 correspond to the source and target states, l is the
value the signature variable Si should have, and c gives the values of counters
after the transition. Usual arithmetic functions such as +,−,min, or max
can be used.

– s and t are the starting and final state, respectively.

Example 2. The automaton for the among (N, [X1, . . . , Xk], V) constraint can be
formally defined as 〈[S1, . . . , Sk], {0, 1}, [X1, . . . , Xk], [t(c, 0, N)], {s, t},
{arc(s, 0, s),arc(s, 1, s, [c← c+ 1])}, s, t〉.

In this case the ψ(Si, Xi) constraint is specified by (Si = 0↔ Xi 6∈ V)∧(Si =
1↔ Xi ∈ V).

We introduce the following notations for the remainder of this work:

– Let M = {1, . . . , |M|} be the set of all possible values for signature vari-
ables. Note that M can be split up into a union of disjoint sets where each
set corresponds to the possible values of signature variables for outgoing
transitions of a single state.

– Each value i ∈ M corresponds to a transition, which in turn, corresponds
to a signature constraint denoted as Ci.

– Let D(∆i) denote the set of domains of all variables in ∆i.
– Let the domains for the signature variables Si be D(Si) ⊆ M for i =

0, . . . ,m− 1.
– Let C(Si) = {Cj | j ∈ D(Si)}
– We write ∆ 6∈ C, iff for all values for the variables in ∆ taken from D(∆)

the resulting tuple x 6∈ C.

In [2] it is further explained how to derive a filtering algorithm from these
automata. It is based on arc-consistent solvers for the ψ constraints as well
as φ constraints, which are used to encode the transitions. A pair of constraints
ψ(Si,∆i)∧φ(Qi,Ki, Si, Qi+1,Ki+1) is added for every signature argument, with
Qi and Qi+1 being variables representing the current and next state, Ki and
Ki+1 being lists of variables for the counters before and after the transition, and
Si being the signature variable. Furthermore, instead of Q0 the starting state is

4

used and for Sm only a φ(Qm,Km, $, t,Km+1) constraint is added for a unique
signature value $ and the final state t.

The proposed generic filtering algorithm is arc-consistent if the solvers for
the ψ and φ constraint are arc-consistent. In this work we generate CHR solvers
for those constraints, which in combination with rules generating the necessary
ψ and φ constraints allow arc-consistent filtering for global constraints. Note
however, that the arc-consistency result only holds for automata in which all
subsets of variables in SignatureArg are pairwise disjoint and which do not involve
counters. In all other cases the filtering algorithm and therefore the generated
CHR solvers can still be used, but may not achieve arc-consistent filtering.

It is important to point out, that the automata proposed in [2] can have O(n)
states with n being the number of signatures. As our approach is directed to the
generation of solvers which can be reused for all instances of a specific global
constraint it is only applicable to those constraints for which the automaton has
a constant size.

Example 3. For the among (N, [X1, . . . , Xk], V) constraint the following conjunc-
tion of ψ and φ constraints is used:

ψV (S1, X1) ∧φ(s, [0], S1, Q2,K2)∧
ψV (S2, X2) ∧φ(Q2,K2, S2, Q3,K3)∧
.
ψV (Sk, Xk) ∧φ(Qk,Kk, Sk, Qk+1,Kk+1)∧

∧φ(Qk+1,Kk+1, $, t, [N])
In this example ψV denotes, that the specification of the ψ constraint refers

to V . It is shown later, that for the realization of ψ constraints in CHR further
arguments are needed depending on the signature constraints.

2.2 Constraint Handling Rules

This section presents the syntax and operational semantics of Constraint Han-
dling Rules [4]. Constraints are first-order predicates which we separate into
built-in constraints and user-defined constraints. Built-in constraints are pro-
vided by the constraint solver while user-defined constraints are defined by a
CHR program. For our purpose we only need a subset of CHR, namely propa-
gation rules. Propagation rules are of the form

Rulename @ H1, . . . ,Hi ⇒ G1, . . . , Gj | B1, . . . , Bk

where Rulename is a unique identifier of a rule, the head H = H1, . . . ,Hi is a
non-empty conjunction of user-defined constraints, the guardG = G1, . . . , Gj is a
conjunction of built-in constraints and the body B = B1, . . . , Bk is a conjunction
of built-in and user-defined constraints.

The operational semantics of a propagation rule is based on an underly-
ing constraint theory CT for the built-in constraints and a state, which is a
pair 〈G,C〉 where G is a goal, i.e. a conjunction of user-defined and built-in
constraints, and C is a (built-in) constraint. A propagation rule of the form

5

H ⇒ G | B is applicable to a state 〈E∧G,C〉 if CT |= ∀(C → ∃x((H .= E)∧G))
where x are the variables in H. We define the following state transition for the
application: 〈E ∧G,C〉 7→ 〈E ∧G ∧B, (H .= E) ∧ C ∧G〉.

Another type of rule available in CHR are simplification rules, which are of
the form

Rulename @ H1, . . . ,Hi ⇔ G1, . . . , Gj | B1, . . . , Bk.

Their operational semantics is similar to propagation rules, except that sim-
plification rules remove the constraints matched to H1, . . . ,Hi from the goal.
Applicability is the same as for propagation rules and the state transition for a
simplification rule is defined as 〈E ∧G,C〉 7→ 〈G ∧B, (H .= E) ∧ C ∧G.

2.3 Prim-Miner Algorithm

The Prim-Miner algorithm [3] automatically generates CHR solvers for a given
logical specification of a constraint. In this work we apply it to generate a solver
for the φ constraint.

The basic idea of the algorithm is to use an underlying constraint logic
program (CLP) P which specifies a constraint BaseLHS . Then sets of candi-
dates for the left-hand and right-hand sides of CHR rules are tested against this
CLP. For every subset CLHS of the left-hand side candidates set it is tested, if
BaseLHS ∪ CLHS is consistent. It the test fails with respect to P a failure rule
(BaseLHS ∪ CLHS ⇒ ⊥) is created. Otherwise all candidates d from the set of
right-hand side candidates are tested in the goal BaseLHS ∪ CLHS ∪ {not(d)}
against the CLP P . If this goal fails dmust be a logical consequence of BaseLHS∪
CLHS and is included in the right-hand side of the generated CHR propagation
rule with head BaseLHS ∪ CLHS .

As the Prim-Miner algorithm presented in [3] is very generic we slightly
modify it using additional knowledge available in the setting of this work. Sec-
tion 3.3 presents the application of the algorithm to our problem, details on the
modifications made, and their performance implications.

3 Semi-Automatic Solver Generation

To generate a CHR solver for a global constraint the following steps are required:

1. extract the automaton definition from the global constraint catalog [1]
2. write CHR rules for creating signature arguments as well as ψ and φ con-

straints
3. write/generate solver for ψ constraints
4. automatically generate solver for φ constraints
5. optionally post-process the created ruleset

The generation of the CHR solver is semi-automatic, because steps 1–3 re-
quire some manual labor. Section 3.1 describes a generic way to generate ψ and

6

1 C(∆,X,Kf) ⇔ C′(∆,X, s,Ks,Kf).

2 C′([], X,Q,K,Kf) ⇔ φ(Q,K, $, t,Kf).

3 C′([∆ | ∆′], X,Q,K,Kf) ⇔
4 S ∈ D̂S ∧Q′ ∈ D̂Q ∧ ψ(S,∆,X)∧
5 φ(Q,K, S,Q′,K′) ∧ C′(∆′, X,Q′,K′,Kf).

Listing 1.1. Creation of ψ and φ constraints

φ constraints in CHR for the case that the global constraint is already given by
its signature arguments. Section 3.2 presents the generation of the solver for the
ψ constraints and Section 3.3 the application of the Prim-Miner algorithm to
generate the solver for the φ constraints. Section 3.4 details the post-processing
step which reduces the number of rules in the final solver. The complexity of the
resulting solver is discussed in Section 3.5, before Section 3.6 presents experi-
mental results.

3.1 Generation of ψ and φ Constraints

For the filtering algorithm proposed in [2] the generation of ψ and φ constraints
for the automaton is required. Note that this step cannot be fully automated,
as the signature arguments depend on the specific global constraint for which to
generate a solver. However, assuming that the signature arguments are already
made available as ∆, we can canonically create the required constraints. Let
C(∆,X,Kf) be the CHR representation of the global constraint with X being
a sequence of arguments used for determining if a ψ constraint holds and Kf

being the final values of counters.

Example 4. The among (N, [X1, . . . , Xk], V) global constraint involves a fixed set
V of values and the signature constraint is given by Si ↔ (Xi ∈ V). Therefore,
the among constraint is given in CHR as among ([X1, . . . , Xk], [V], [N]).

Using the above representation of the global constraint in CHR and the
information contained in the automaton retrieved from the global constraint
catalog [1], Listing 1.1 presents a generic way of creating the ψ and φ constraints.
In line 1 the generation of the constraints is forwarded to a special C ′ constraint,
thereby already enforcing the starting state s and the starting values Ks for the
counters. The C ′ constraint is then used for a recursive generation of the ψ and
φ constraints as shown in lines 3–4, before the final φ constraint is generated in
line 2 including the $ transition into the final state t with the final values Kf for
the counters. In Listing 1.1 D̂Q denotes the set of all states of the automaton
and D̂S denotes the set of all transitions, i.e. D̂S =M. For the among constraint
it holds that D̂S = {0, 1} and D̂Q = {s, t}.

7

3.2 Generation of Solver for ψ Constraint

The generation of a solver for the ψ constraints assumes, that all signature con-
straints Ci and their negations are available as built-in constraints. We also
require that union of subsets of these constraints are available as built-in con-
straints. This directly leads to the creation of rules of the following kind ∀i ∈M:

ψ(S,∆)⇒ ∆ 6∈ Ci | S ∈M \ {i}.

Intuitively these rules make use of each transition i corresponding to a sig-
nature constraint Ci and state the fact that if this constraint does not hold the
transition cannot be made. Thus, the corresponding identifier for the transition
is removed from D(S).

As is shown later, these rules already suffice for arc-consistency of D(S).
In order to achieve arc-consistency on the domains in D(∆), however, further
rules are required. Considering a domain restriction for D(S) = {i1, . . . , ik} with
i1, . . . , i|M| being a permutation ofM and 0 < k ≤ |M|, a constraint Ci1 ∪ . . .∪
Cik

can be propagated. As stated earlier, we require all of these constraints, as
well as their union, to be available as arc-consistent built-in constraints.

ψ(S,∆) ∧ S ∈ {i1, . . . , ik} ⇒ ∆ ∈ (Ci1 ∪ . . . ∪ Cik
)

Such rules are inserted for D(S) = {i1, . . . , ik} being any of the possible
subsets of M with the exception of ∅. In the case of D(S) = ∅ the global
constraint is already shown to be inconsistent. Note that the case D(S) = M
can yield domain restrictions for D(∆) if D(∆) \ (C1 ∪ . . . ∪ CM) 6= ∅.

Demanding the availability of the union of these constraints as built-in con-
straints is justified by the following observation: it is always possible to use the
built-in solvers of the single signature constraints Ci to construct a brute-force
solver for their union by iterating through all values x in the domain ∆ and
successively testing them against each Cj of the union. As is discussed in Sec-
tion 3.5, the runtime complexity of such a solver is suboptimal and a custom
solver for each union of signature constraints is preferable.

The seemingly obvious addition of rules based on positive built-in constraints
as guards, like ψ(S,∆) ⇒ ∆ ∈ Ci | S ∈ {i}, is in fact incorrect. For two con-
straints Ci and Cj with Ci∩Cj 6= ∅ corresponding to outgoing transitions of two
different states, the domain D(S) = {i, j} must not be reduced to {i} solely be-
cause ∆ ∈ Ci. It may also hold that ∆ ∈ Cj , as only constraints corresponding to
outgoing transitions of the same state are required to be mutually incompatible.

Assuming an automaton with |M| transition edges where each edge is labeled
with a different constraint, O(|M|) rules of the first kind and O(2|M|) rules of
the second kind are added. Using these O(2|M|) rules we have the following
result:

Theorem 1. The generated solver achieves arc-consistency for the ψ constraint.

The fully automatic generation of these rules is hindered, because the built-in
constraints Ci and their negations are difficult to extract from the automaton’s

8

1 ψ(S,∆, V) ⇒ ∆ ∈ V | S ∈ {0, 1} \ {0}
2 ψ(S,∆, V) ⇒ ∆ 6∈ V | S ∈ {0, 1} \ {1}
3

4 ψ(S,∆, V) ∧ S ∈ {0} ⇒ ∆ 6∈ V
5 ψ(S,∆, V) ∧ S ∈ {1} ⇒ ∆ ∈ V
6 ψ(S,∆, V) ∧ S ∈ {0, 1} ⇒ >

Listing 1.2. Solver for ψ constraint of among constraint

definition. Furthermore, the S and ∆ arguments may be insufficient to specify
the Ci constraints, such that additional information is required which is only
available from an instance of the global constraint. In the previous example of an
among constraint the necessary built-in constraint is set inclusion, however, the
specific set V is given by the global constraint’s instance. Therefore, generation
of the solver for the ψ constraint is can only be partly automated.

Example 5. The generated solver for the ψ constraint of the among global con-
straint is shown in Listing 1.2. As mentioned earlier, the solver needs knowledge
about the specific set V which, therefore, has to be passed to the ψ constraint
as an additional argument. The first two rules filter the domain of S, while the
latter three rules filter the domain of ∆. As the two transitions constraints C1

and C2 are set inclusion and exclusion, every value of ∆ has to satisfy at least
one of those constraints. Thus, the last rule – which assumes in the guard, that
either transition is possible – cannot propagate any additional information, due
to D(∆) \ (C1 ∪ C2) = ∅.

3.3 Generation of Solver for φ Constraint

The solver for the φ constraint is based on the Prim-Miner algorithm. The ba-
sic idea is to encode the automaton in a constraint logic program P for the
algorithm to work with and use all possible domains as candidate inputs. For
φ(Q,K, S,Q′,K ′) varying domains for Q,Q′, and S are added and given to the
CLP P which checks if a solution is possible for these domains.

In the following, we discuss the automatic generation of the CLP P , the
application of the Prim-Miner algorithm, and the modifications made to the
original Prim-Miner algorithm in order to improve its runtime complexity when
applied to this specific problem.

Generation of CLP Creating the CLP P for the φ constraints is a straightfor-
ward encoding of the automaton’s transitions into CLP rules. Listing 1.3 shows
how transitions of the kind arc(q, s, q′, [c = f(c), . . .]) for the among constraint
are encoded as rules. The generation of these CLPs can be fully automated given
the definition of the automaton.

9

1 φ(Q, [K], S,Q′, [K′]) : − Q = s ∧Q′ = s ∧ S = 0 ∧K′ = K .
2 φ(Q, [K], S,Q′, [K′]) : − Q = s ∧Q′ = s ∧ S = 1 ∧K′ = K + 1 .
3 φ(Q, [K], S,Q′, [K′]) : − Q = s ∧Q′ = t ∧ S = $ ∧K′ = K .

Listing 1.3. CLP for among constraint

A check performed by the Prim-Miner algorithm against such a CLP consists
of a default backtracking search. If the given domain restrictions are consistent
with one of the automaton’s transitions the check succeeds, and the check fails
if the given domain restrictions do not allow for any of the transitions to fire.
In fact a successful check means the CLP P has found a support σ for the φ
constraint according to the following definition:

Definition 1 (Support). Given a constraint C and domains D1, . . . , Dn a tu-
ple σ ∈ D1 × . . .×Dn is called a support of D1, . . . , Dn for C if σ ∈ C.

Solver Generation The generation of the solver for the φ constraint is per-
formed by the GC-Prim-Miner algorithm shown in Listing 1.4, which is a modi-
fied version of the Prim-Miner algorithm. It uses the previously generated CLP
P against which to test goals. As mentioned before, the input candidate domains
LQ, LQ′ , LS are the power sets of the sets of all states and transitions, respec-
tively, except for the empty set. The resulting ruleset is a CHR solver for the φ
constraint providing arc-consistency for global constraints whose automaton is
free of counters:

Theorem 2. For automata which do not involve counters the resulting rule set
achieves arc-consistency for φ.

The original Prim-Miner algorithm only allows one set of candidates as input
and then iterates over all its subsets. As the candidate domains are already
power sets the input to the Prim-Miner algorithm is of size O(2n + 2|M|) for
an automaton with n states and |M| transitions. Iterating over all subsets of
this input then yields a runtime of O(22n ·22|M|

) for the Prim-Miner algorithm’s
main loop which needs to be improved in order to be feasible.

However, the main part of the algorithm in lines 10–27 remains almost un-
changed. First a candidate left-hand side for a possible CHR rule is selected. The
selection process differs from the original Prim-Miner algorithm and is detailed
later. Given the selected candidate CLHS the goal BaseLHS ∪ CLHS is tested
against the CLP P , where BaseLHS consists of a single φ constraint. There-
fore, this test ensures that the chosen left-hand side is consistent, i.e. there are
supports for the φ constraint with the given domain restrictions in CLHS .

In the original Prim-Miner algorithm [3] a special failure rule is created in
those cases the goal BaseLHS ∪ CLHS fails. As Lemma 1 shows such a rule has
no effect on the propagation power of the generated ruleset. Thus, the GC-Prim-
Miner algorithm omits the generation of failure rules.

10

1 R = ∅
2 L i s a l i s t o f a l l subs e t s o f {Q,Q′, S} (L 6= ∅)
3 LQ, LQ′ , LS are l i s t s o f candidate domains f o r v a r i a b l e s Q,Q′, S
4 ordered by s i z e o f the domains
5 whi le L i s not empty do
6 Remove from L i t s f i r s t element denoted CV ars

7 Let Lx be the Cartes ian product o f a l l candidate domains
8 f o r a l l v a r i a b l e s in CV ars

9 whi le Lx i s not empty do
10 Remove from Lx i t s f i r s t element denoted CLHS .
11 i f the goa l (BaseLHS ∪ CLHS) succeeds
12 with r e sp e c t to the CLP P then
13 l e t rhs = ∅ .
14 f o r a l l v ∈ {Q,Q′, S} do
15 f o r a l l d ∈ Lv do
16 i f the goa l (BaseLHS ∪ CLHS ∪ {not(d)}) f a i l s
17 with r e sp e c t to the CLP P then
18 add d to the s e t rhs .
19 break % break inner for , cont inue with next va r i a b l e v
20 end i f
21 endfor
22 endfor
23 i f rhs 6= ∅ then
24 add the ru l e (BaseLHS ∪ CLHS ⇒ rhs) to R
25 end i f
26 end i f
27 endwhi le
28 endwhi le
29 output R

Listing 1.4. GC-Prim-Miner Algorithm

11

Lemma 1 (no failure rules). Any generated failure rules – i.e. rules with body
⊥ – are redundant.

In the inner loop in lines 13–22 candidates for the right-hand side are deter-
mined. Again the selection of the candidate d is modified. The goal BaseLHS ∪
CLHS ∪ {not(d)} is tested against P for failure. If this goal fails there is no sup-
port anymore when the additional domain restriction not(d) is added. Therefore,
all supports must take values from the domain given in d and d can be added to
the right-hand side of the CHR rule. In lines 23–25 the CHR rule is added to the
resulting ruleset if a successful right-hand side domain restriction was found.

Example 6. Applying the GC-Prim-Miner algorithm to the CLP created from
the automaton of the among constraint generates, among others, the following
rules:
φ(Q,K, S,Q′,K ′) ∧ S ∈ {$, 0} ∧Q′ ∈ {t} ⇒ Q ∈ {s} ∧ S ∈ {$}
φ(Q,K, S,Q′,K ′) ∧Q ∈ {s} ∧ S ∈ {$, 0} ∧Q′ ∈ {t} ⇒ S ∈ {$}
As the first rule’s head is more general and as it propagates everything the second
rule could propagate it is sufficient, so that the second rule can be removed due
to redundancy. This process is explained in more detail in Section 3.4.

As the runtime complexity of the direct application of the Prim-Miner algo-
rithm is insufficient we can make use of the specifics of our application to improve
it. Given a list of all subsets of possible values for all variables and then consid-
ering all subsets of this list will often result in goals like Q ∈ {0, 1} ∧ Q ∈ {0},
which supply multiple domain restrictions for the same variable. Considering,
that the intersection of these domains is again a domain restriction which is
part of the original input all of these goals can be ignored. The same argument
holds for the right-hand side candidates.

Therefore, if we order the domain restrictions for a variable by the size of
their domains we can simply iterate through them. For the outer loop this means
we first loop over all subsets of the variables and then in lines 3–5 over the dif-
ferent combinations of domain restrictions for each of the variables. Similarly in
lines 14–15 the inner loop iterates over all variables and their domain restric-
tions. Breaking out of the loop in line 19 is possible due to the size ordering of
the domain restrictions, as it ensures that the best possible domain restriction
for this variable was found. Note that it is irrelevant, that the ordering is in-
complete: if two domain restrictions of equal size could be used, only the values
in the intersection of the domains belong to supports, as otherwise the tests in
line 16 could not have failed. However, the intersection of these domains occurs
earlier in the ordered list and was therefore already causing a break of the loop.

This tailored version of the Prim-Miner algorithm performs much better: The
outer-most loop iterates over all non-empty subsets of variables. As in our case
we only have the three variables Q,Q′, and S, this means 7 iterations. The loop
in lines 9–27 iterates over the Cartesian product of all candidate domains. In
the worst case this happens for all three variables resulting in 2n ∗2n ∗2|M| loop
executions. The inner loop in line 14 simply iterates over the three variables,
before the loop in lines 15–21 is run for each domain restriction of a variable, i.e.

12

at most 2n +2n +2|M| times. Therefore, the overall complexity of the GC-Prim-
Miner algorithm – more precisely the number of calls to the underlying CLP – is
O(7∗2n∗2n∗2|M|∗3∗(2n+2n+2|M|)) = O(22n+|M|∗(2n+2|M|)) = O(23n+|M|+
22n+2|M|) which is a major improvement over the original O(22n ∗ 22|M|

).

3.4 Post-Processing of Rule Set

After generating a set of CHR rules with the GC-Prim-Miner algorithm the re-
sulting rule set can be reduced. As discussed earlier, the unmodified Prim-Miner
algorithm would create rules with multiple domain restrictions for a variable.
The GC-Prim-Miner algorithm already eliminates these rules, but nevertheless,
a large number of generated rules is redundant in a similar way to the ones
presented in Example 6. Therefore, an additional post-processing of the rule set
leads to a more concise solver.

In order to find redundant rules for removal, the results about operational
equivalence of CHR programs in [5] can be applied. [5] presents a decidable, suffi-
cient, and necessary syntactic condition to determine operational equivalence of
CHR programs that are terminating and confluent. We can apply this condition
by removing each rule from the generated rule set successively, and check if the
complete rule set and the rule set without that rule are operationally equivalent.
If they are, the selected rule is redundant and can be removed.

To be able to apply this result, terminating and confluent CHR programs
are required. Confluence is explained in detail in [6], so that we only refer to
the intuitive notion of confluence here: A CHR program is confluent if for every
choice of rules to apply there is always a sequence of rule applications resulting
in the same state. In case of a terminating program this notion is even stronger:
it states, that every terminating computation beginning with an initial goal, i.e.
a computation resulting in a state to which no more rules are applicable, results
in the same final state, no matter in which order the rules are applied.

Confluence of our generated global constraint solvers is easy to see: for the
simplification rules in Listing 1.1 only one of them is applicable at any time,
so that all terminating computations need to fully unroll the global constraint
into ψ, φ, and domain constraints. The solvers for the ψ and φ constraints in
turn are solely based on propagation rules. As these rules only add new domain
restrictions to achieve arc-consistency, the order of their application is irrelevant.
Therefore, the generated solvers are confluent.

As for termination, it is important to note that a propagation rule could be
applied an infinite number of times leading to a trivial non-termination. As this
behavior is not wanted, a token store was introduced in [6], which remembers
on which set of constraints a propagation rule was applied, such that the rule
cannot be applied on the same set of constraints again. Using this restriction
on the application of propagation rules, termination of the generated solvers is
guaranteed: the unrolling into ψ and φ constraints is terminating due to the
finite number of arguments to the global constraint. The applications of the
propagation rules terminate due to the token store.

13

1 φ(Q,K, S,Q′,K′) ⇒ Q ∈ {s}
2 φ(Q,K, S,Q′,K′) ∧Q′ ∈ {t} ⇒ Q ∈ {s} ∧ S ∈ {$}
3 φ(Q,K, S,Q′,K′) ∧Q′ ∈ {s} ⇒ Q ∈ {s} ∧ S ∈ {0, 1}
4 φ(Q,K, S,Q′,K′) ∧ S ∈ {$} ⇒ Q ∈ {s} ∧Q′ ∈ {t}
5 φ(Q,K, S,Q′,K′) ∧ S ∈ {0} ⇒ Q ∈ {s} ∧Q′ ∈ {s}
6 φ(Q,K, S,Q′,K′) ∧ S ∈ {1} ⇒ Q ∈ {s} ∧Q′ ∈ {s}
7 φ(Q,K, S,Q′,K′) ∧ S ∈ {0, 1} ⇒ Q ∈ {s} ∧Q′ ∈ {s}

Listing 1.5. Solver for φ constraint for the among automaton

Example 7. Using the GC-Prim-Miner algorithm on the CLP for the φ constraint
for the among automaton and removing all redundant rules generates the solver
given in Listing 1.5.

3.5 Runtime Complexity

The runtime complexity of solvers for global constraints based on automata is
discussed in [2], so we only discuss the complexity of the three parts specific to
this work: the generation of the required constraints and the solvers for ψ and
φ constraints.

The generation of the ψ and φ constraints given in Listing 1.1 is a simple
linear recursion. The solver for φ constraints is strong enough to achieve arc-
consistency through the application of a single rule. As the GC-Prim-Miner
algorithm creates a rule for every possible starting condition, that propagates
the maximal amount of information, a second rule application is unnecessary.

Therefore, the runtime complexity depends on the solver for the ψ constraint.
As the generated rules require the signature constraints of the automaton to be
checked in the guard the runtime complexity is based on the runtime used for
these entailment checks. The first kind of rules generated for the ψ constraint
solver can be applied at most O(|M|) times, as each time a value from M is
removed from D(S). Note again, that the use of a token store to avoid trivial
non-termination guarantees, that a rule is not applied multiple times for the
same ψ constraint.

The second kind of rule is applied once to propagate the maximal union of sig-
nature constraints available for D(S). As a single such rule application achieves
arc-consistency on D(∆), the runtime complexity depends on the complexity of
the solver for the union of these built-in constraints. Using the above-mentioned
brute-force approach the complexity is bound by O(D(∆) · b), where b is the
complexity of the slowest–to–solve built-in constraint. It is thus important to
provide custom built-in solvers for the union of signature constraints, especially
as b is often constant.

14

3.6 Experimental Results

We have applied our approach to several global constraints and Table 3.6 shows
the number of rules of the resulting solvers for a selection of global constraints.
The number of rules for the given φ solver are the rules produced by the GC-
Prim-Miner algorithm, including redundant rules. Our experiments have shown,
that approximately two thirds of such rules are redundant.

Table 3.6 shows, that the total number of rules is clearly dominated by the
number of rules required for the φ constraint solver. Furthermore, it provides
confirmation for the number of rules being exponential to the number of states
and signature constraints of the automaton. It also shows, that the number
of rules for the ψ constraint solver only depends on the number of signatures,
whereas the number of rules for the φ constraint solver depends on the actual
automaton’s transitions.

The last column gives an indication of the running time required for the
solver generation by listing the number of calls the GC-Prim-Miner algorithm
makes to its underlying CLP program. Note that the actual number of calls is
significantly lower, than the asymptotic bounds given in Section 3.3. This is due
to the test in lines 11–12 in Listing 1.4 which often causes the inner two loops
to be avoided.

4 Conclusion

In this paper we have shown a way to semi-automatically generate CHR solvers
for the set of automata-describable global constraints. The process is not fully
automated due to the generation of signature arguments and because signature
constraints are not available in a suitable format in the global constraint catalog.
Nevertheless, our approach applies to over 40 different global constraints for
which CHR solvers can be generated.

We have shown that by the use of the GC-Prim-Miner algorithm and given
the availability of built-in constraint solvers for signature constraints the gen-
erated CHR solvers achieve arc-consistency in those cases the automata-based
filtering proposed in [2] allows for it. We have further shown, that the generality
of the Prim-Miner algorithm can cause a runtime complexity problem, which can
be alleviated by an order of magnitude if specialized for the problem at hand.

Our experimental results have shown, that the exponential number of rules
generated reduces the approach to be used for small automata only. However,
the automata published in the global constraint catalog so far, consist of very
few states and transitions only, except for automata with a linear number of
states to which our approach is not applicable at all.

For future work the problems associated with the ψ constraint solver need to
be tackled. As there are few semantically different signature constraints used in
the various automata it might be possible to develop arc-consistent solvers for
these, including their negations and unions. Together with a way to automati-
cally extract the signature constraints from the definitions given in the global

15

Table 1. Comparison of number of generated rules

Name States Signatures ψ rules φ rules CLP calls

arith 2 2 2 11 99
arith or 2 2 2 11 99
decreasing 2 2 2 11 99
domain constraint 2 2 2 11 99
elem 2 2 2 11 99
element greatereq 2 2 2 11 99
in same partition 2 2 2 11 99
increasing 2 2 2 11 99
lex different 2 2 2 11 99
not all equal 2 2 2 11 99
stage element 2 2 2 11 99
int value precede 2 3 5 27 287
sequence folding 2 3 5 27 295
maximum 3 3 5 185 2195
minimum 3 3 5 185 2195
two orth are in contact 3 3 5 178 2023
element sparse 3 4 10 423 5257
no peak 3 4 10 439 6175
no valley 3 4 10 439 6175
minimum greater than 3 6 36 1851 63959
between min max 4 3 5 1002 14763
global contiguity 4 3 5 996 15241
minimum except 0 4 5 19 4599 105157
and 5 3 5 4538 88959
nand 5 3 5 4526 89159
nor 5 3 5 4526 86471
or 5 3 5 4538 86367
equivalent 6 2 2 8829 229007
imply 6 2 2 8125 192339
xor 6 2 2 8829 229007

16

constraint catalog this would allow for a fully automated generation of the CHR
solvers.

References

1. Beldiceanu, N., Carlsson, M., Demassey, S., Petit, T.: Global constraint catalog:
Past, present and future. Constraints 12(1) (2007) 21–62

2. Beldiceanu, N., Carlsson, M., Petit, T.: Deriving filtering algorithms from constraint
checkers. In Wallace, M., ed.: Principles and Practice of Constraint Programming
(CP’2004). Volume 3258 of Lecture Notes in Computer Science., Springer-Verlag
(2004) 107–122

3. Abdennadher, S., Rigotti, C.: Automatic generation of CHR constraint solvers.
TPLP 5(4-5) (2005) 403–418

4. Frühwirth, T.: Theory and practice of constraint handling rules. Journal of Logic
Programming, Special Issue on Constraint Logic Programming 37(1-3) (October
1998) 95–138

5. Abdennadher, S., Frühwirth, T.: Operational equivalence of chr programs and con-
straints. In Jaffar, J., ed.: Principles and Practice of Constraint Programming (CP
1999). Volume 1713 of Lecture Notes in Computer Science., Springer-Verlag (1999)
43–57

6. Abdennadher, S.: Operational semantics and confluence of constraint propagation
rules. In: Principles and Practice of Constraint Programming. (1997) 252–266

Appendix (Proofs)

Lemma 1 (no failure rules). Any generated failure rules – i.e. rules with body
⊥ – are redundant.

Proof. Let r ≡ H ⇒ ⊥ ≡ φ(Q,K, S,Q′,K ′) ∧ X1 ∈ D1 ∧ . . . ∧ Xk ∈ Dk ⇒ ⊥
be a failure rule with Xi ∈ {Q,Q′, S}, 1 ≤ i ≤ k ≤ 3, and Xi 6= Xj for i 6= j.
W.l.o.g. there is no failure rule r′ with a head H ′ ⊂ H, i.e. a head with fewer
domain restrictions, otherwise r is redundant due to r′. Let Hi = H \{Xi ∈ Di}
for some i. Then there is no rule Hi ⇒ ⊥, and thus, there exists a support in
the domain restrictions given in Hi (otherwise the corresponding test in the GC-
Prim-Miner algorithm would generate such a rule). Therefore, for D̃i = D̂i \Di

with D̂i being the initial maximal domain of Xi, the GC-Prim-Miner algorithm
tests the goal 〈Hi ∧ ¬(Xi ∈ D̃i)〉 ≡ 〈Hi ∧Xi ∈ Di〉. As this goal fails, the rule
r′ ≡ Hi ⇒ Xi ∈ D̃i is generated. Now consider a CHR goal 〈H̃, C〉 to which
rule r is applicable, i.e. Xi ∈ Di is contained in H̃. As Hi ⊂ H, rule r′ is also

applicable to this goal, thus 〈H̃, C〉 r′7→ 〈H̃ ∧ Xi ∈ D̃i, (H̃
.= Hi) ∧ C〉 ≡ 〈⊥〉,

because Xi ∈ Di ∧Xi ∈ D̃i is inconsistent. ut

Theorem 1. The generated solver achieves arc-consistency for the ψ constraint.

Proof. We have to distinguish two cases for ψ(S,∆): arc-consistency on D(S)
and arc-consistency on D(∆):

Let i ∈ D(S) be a value for which the given ψ constraint has no support. This
means there is no accompanying variable assignment x ∈ D(∆) satisfying x ∈ Ci.

17

Therefore, the constraint theory CT |= ∆ 6∈ Ci, which causes the generated rule
ψ(S,∆) ⇒ ∆ 6∈ Ci | S ∈ M \ {i} to be applied. The solver for the domain
constraints then propagates that S ∈ D(S)∩M\{i} = D(S)\{i}, thus removing
the value i from the domain of S to achieve arc-consistency.

On the other hand let i ∈ D(S) with support σ. Then ∃x ∈ D(∆) satisfying
x ∈ Ci, therefore, CT 6|= ∆ 6∈ Ci. So, the corresponding rule to remove i from
D(S) is not applicable. As the other kind of rules only affect D(∆), the value i
is not removed from D(S) by any of the generated rules.

Let now x ∈ D(∆) be an assignment of the variables in ∆ for which there is
no support. Then x is no support for the constraints Ci∀i ∈ D(S). As D(S) =
{i1, . . . , ik} is w.l.o.g. non-empty, the rule ψ(S,∆) ∧ S ∈ {i1, . . . , ik} ⇒ ∆ ∈
(Ci1 ∪ . . .∪Cik

) can be applied to propagate the corresponding built-in constraint.
As x ∈ D(∆), but x 6∈ (Ci1 ∪ . . . ∪ Cik

), this results in x being removed from
D(∆).

Let x ∈ D(∆) with support σ. Then ∃i ∈ D(S) such that x ∈ Ci. Then it
holds for all rules of the kind ψ(S,∆) ∧ S ∈ D(S)⇒ ∆ ∈ (Ci1 ∪ . . . ∪ Cik

), that
i ∈ {i1, . . . , ik}, and therefore, x ∈ (Ci1∪. . .∪Cik

). Thus, if such a rule is applied
and arc-consistency is enforced on the union of these built-in constraints, the
value x cannot be removed from D(∆). Analogously to the above case, the rules
responsible for removing values from D(S) do not affect D(∆) and a supported
value x can therefore not be removed from D(∆). ut

Theorem 2. For automata which do not involve counters the resulting rule set
achieves arc-consistency for φ.

Proof. Let x ∈ D(Q), for which the given φ constraint has no support. Let
CLHS be the conjunction of domain constraints including Q ∈ D(Q), which is
tested during the GC-Prim-Miner algorithm. If the goal BaseLHS ∪CLHS fails,
a failure rule would be generated. However, according to Lemma 1 such a rule is
redundant, i.e. the inconsistency occurs due to other rules.
Otherwise the GC-Prim-Miner algorithm considered Q ∈ D(Q) for the left-hand
side. As Q ∈ D(Q)\{x} is among the candidates for the right-hand side – in fact
all domains smaller than D(Q) \ {x} are tested first, but would only result in an
even stronger propagation – the goal BaseLHS ∪CLHS ∪{not(Q ∈ D(Q) \ {x})}
is tested for failure during the GC-Prim-Miner algorithm. As Q ∈ D(Q)∧¬(Q ∈
D(Q)\{x}) implies Q = x, calling the CLP with this goal is equivalent to finding
a support for Q = x for the φ constraint, which by assumption does not exist.
Therefore the goal fails and the GC-Prim-Miner algorithm generates the rule
for BaseLHS ∪ CLHS ⇒ Q ∈ D(Q) \ {x} ∧ . . ., possibly including some more
candidates for the right-hand side. Applying this rule removes the value x from
domain D(Q), thus achieving arc-consistency.

Unsupported values are removed analogously from the domains of Q′ and S.
Therefore, it remains to be shown, that no rule application can result in the
removal of a supported value:

Let x ∈ D(Q) with support σ. Assume a generated rule with Q ∈ D(Q) on
the left-hand side is applicable and the right-hand side contains the constraint
Q ∈ D′. As the rule was created by the GC-Prim-Miner algorithm, it holds

18

that the CLP call for CBase ∪ CLHS ∪ {not(Q ∈ D′)} failed. However, Q ∈
D(Q) ∧ ¬(Q ∈ D′) implies Q ∈ D(Q) \ D′. If x 6∈ D′ the test would not have
failed due to σ, thus, x ∈ D′ and the rule application cannot remove x from
D(Q). Again, the argumentation is analogous for the domains of Q′ and S. ut

