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Abstract. While it is generally agreed-upon that certain classes of CHR
states should be considered equivalent, no standard definition of equiv-
alence has ever been established. Furthermore, the compliance of equiv-
alence with rule application is generally assumed, but has never been
proven. We systematically develop an axiomatic notion of state equiv-
alence based on rule applicability and the declarative semantics. We
supply the missing proof for its compliance with rule application and
provide a proof technique to determine equivalence of given states. The
compliance property leads to a simplified formulation of the operational
semantics. Furthermore, it justifies a novel view based on equivalence
classes of states which provides a powerful proof technique.

1 Introduction

While equivalence of states is apparently an elementary concept in Constraint
Handling Rules (CHR), the community has never agreed on a standard defini-
tion of that concept up to now. A plethora of definitions of state equivalence has
been introduced in various areas of application. For example, the operational
equivalence algorithm compares two resulting states of different programs for
equivalence [1]. Equivalence is the basis for invariants such as in [2]. Several def-
initions [3–6] have been introduced in the context of confluence considerations.
Finally, from an operational point of view, it is clear that the normalization
function of the operational semantics implicitly assumes a notion of state equiv-
alence.

As the various authors had different intentions, the resulting definitions of
state equivalence vary considerably. There is a general agreement that from an
operational point of view any notion of state equivalence should be compliant
with rule applications, i.e. for equivalent states the same rules are applicable and
lead to equivalent results. However, this property has never been proven for any
of the previously proposed definitions. Another general agreement is that from
a declarative point of view the logical reading of equivalent states should also be
equivalent.

Our aim is therefore to develop a definition of state equivalence that satisfies
both the operational and the declarative view. Instead of defining a notion of
state equivalence for a fixed problem setting, we intend a notion for which these
generally agreed-upon properties hold. By construction, our definition of state
equivalence then is compliant with rule application and the logical reading of
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states. Thus, it becomes a generic proof technique that can be applied to specific
problems with the additional knowledge that the above-mentioned properties are
satisfied.

In this paper, we make the following contributions:

– We justify a set of desirable properties for a general notion of state equiva-
lence and present them in the form of example cases in Sect. 2.2.

– We give a concise overview of the existing definitions of state equivalence in
Sect. 2.3 and compare their behavior with respect to our example cases in
Sect. 2.4. We show that none of the existing definitions satisfies all of the
example cases.

– We introduce an axiomatic definition of state equivalence in Sect. 3.1 along
with several useful properties following from that definition.

– We present a necessary, sufficient, and decidable criterion for determining
equivalence of states in Sect. 3.2.

– In Sect. 3.3 we show that our definition of state equivalence complies with
all of the example cases defined in Sect. 2.2.

– In Sect. 4.1, we show that our notion of equivalence leads to a clearer defini-
tion of the operational semantics. We prove its equivalence to the traditional
definition and – for the first time in the literature – we show that state equiv-
alence is indeed compliant with rule application.

– In Sect. 4.3, we present a view of the CHR transition system that is based
on equivalence classes of states rather than individual states.

Finally, we present our conclusions and establish possible further research
paths in Sect. 5.

2 Existing Equivalence Definitions

Constraint Handling Rules (CHR) [7–9] is a concurrent committed-choice rule-
based programming language, originally developed as a portable language ex-
tension for the implementation of user-defined constraint solvers. In the main
part of our paper, specific knowledge of CHR is not required. For a discussion
of the operational semantics of CHR, refer to Sect. 4.

In this section, we evaluate existing definitions of state equivalence and postu-
late desirable properties of an equivalence relation over CHR states. To this end,
we present several prototypical example cases of equivalent and non-equivalent
CHR states in Sect. 2.2. In Sect. 2.3 we concisely introduce the different notions
of state equivalence that have been proposed so far, before we investigate how
these notions apply to our example states in Sect. 2.4. We first define the syntax
of CHR states and rules. The corresponding transition system is given in Sect. 4
where we apply our results from Sect. 3.

2.1 Preliminaries

In CHR, we distinguish two disjoint sets of constraints which we call built-in

constraints and CHR constraints.
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Definition 1 (CHR State). A CHR state σ is a tuple 〈G, B, V〉. The goal G is

a multiset of CHR constraints. The built-in constraint store B is a conjunction

of built-in constraints. V is a set of global variables.

We use σ, σ0, σ1, . . . to denote states and Σ to denote the set of all states.

We found more elaborate definitions than Def. 1 unsuitable for our demand
on the logical reading of equivalent states, because they contain information
that is not reflected in the logical reading of the states, such as the propagation
history [10]. Depending on the domain of application, our result can be extended
to these definitions. Our notion of state clearly separates the three components
that each have to be treated differently by state equivalence.

For any CHR state we distinguish three sets of variables according to the
following definition.

Definition 2 (Variable Types). For the variables occurring in a state σ =
〈G, B, V〉 we distinguish three different types:

1. a variable v ∈ V is called a global variable

2. a variable v 6∈ V is called a local variable

3. a variable v 6∈ (V ∪ G) is called a strictly local variable

The following definition introduces the logical reading of CHR states.

Definition 3 (Logical Reading of CHR States).

Let σ be a CHR state of the form 〈{g1, g2, . . . gn}, B, V〉. Then the logical

reading of σ is:

∃̄V (g1 ∧ g2 ∧ . . . ∧ gn ∧ B)

where ∃̄V is existential quantification of all free variables except those in V.

A CHR program defines a set of rules, as given in Def. 4, by which the con-
straints in G are to be rewritten to a final solved form. The store B contains
built-in constraints that have been posted to an underlying solver. These are
assumed to be solved implicitly by the host language H according to a complete
and decidable constraint theory CT . The set V usually contains the variables
that occur in the initial state of a computation and can be thought of as com-
munication channels with the outside world.

Definition 4 (CHR rule).

A CHR rule is of the following form

H1\H2 ⇔ G|Bc ⊎ Bb

where the head H1,H2 consists of two multisets of CHR constraints, the guard G
is a conjunction of built-in constraints, and the body consists of a multiset Bc of

CHR constraints and a conjunction Bb of built-in constraints.
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2.2 Examples of CHR States

Let us now consider the following examples of equivalent and non-equivalent
states to highlight the differences between existing definitions of state equiva-
lence:

〈c(X),⊤, ∅〉 ≡ 〈c(Y ),⊤, ∅〉 (1)

〈c(X),X = 0, {X}〉 ≡ 〈c(0),X = 0, {X}〉 (2)

〈⊤,X ≥ 0 ∧ X ≤ 0 ∧ Y = 0, {X}〉 ≡ 〈⊤,X = 0, {X}〉 (3)

〈c(0),⊤, {X}〉 ≡ 〈c(0),⊤, ∅〉 (4)

〈c(X),⊤, {X}〉 6≡ 〈c(Y ),⊤, {Y }〉 (5)

The equivalences (1)-(3) are motivated by the fact that the same rules are
applicable to these states with the same results.

As the states in equivalence (4) have the same logical reading c(0) accord-
ing to Def. 3 we require them to be equivalent. Note that unused global vari-
ables can practically occur, for example when applying rule c(X) ⇔ c(0) to the
state 〈c(X),⊤, {X}〉. Concerning non-equivalence (5), note that X,Y are free
variables and therefore the logical readings c(X), c(Y ) are not equivalent.

2.3 Existing Definitions

Over the last decade, the CHR community proposed various definitions for state
equivalence. The following list identifies six distinct categories of equivalence
definitions in the literature:

I The definitions based on variable renaming [1, 4, 11, 12] are often as simple as
stating that two states are equivalent (or variants) if they can be obtained by
variable renaming only. These definitions arose from the notion of variance
on terms.

II In [13] a definition is given that is based on renaming of local variables as
well as logical equivalence of built-in stores.

III In [5] a similar definition is given for arbitrary binary relations rather than
for CHR states only.

IV [14] gives another definition based on the so-called refined operational se-
mantics [15] of CHR.

V [6] – a follow-up to [14] – extends the definition with the usage of a unifier
instead of variable renaming.

VI In [16, 17] a normalization function is defined. While we emphasize that this
definition was not targeted towards determining state equivalence, we in-
clude it in this work due to its clear structure that is similar to our proposed
definition. When we talk about equivalence with respect to normalization
we implicitly assume that two states are equivalent iff their normalizations
are syntactically equivalent.
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2.4 Comparison of Existing Equivalence Definitions

We have applied each of the existing definitions to each of the example cases. The
results are presented in Table 1. Each entry shows whether the two corresponding
example states are considered equivalent or not, according to the category used
in that row. The last row presents the results that we deem desirable. As we can
see, none of the previously published definitions of state equivalence respects all
of the example cases.

(1) (2) (3) (4) (5)

Def. I ≡ 6≡ 6≡ 6≡ ≡

Def. II ≡ 6≡ ≡ ≡ 6≡

Def. III ≡ 6≡ ≡ ≡ 6≡

Def. IV ≡ 6≡ ≡ 6≡ 6≡

Def. V ≡ ≡ ≡ 6≡ 6≡

Def. VI 6≡ ≡ ≡ 6≡ 6≡

Desired ≡ ≡ ≡ ≡ 6≡

Table 1. Comparison of different state equivalence definitions

3 An Axiomatic Definition of Equivalence

In this section, we introduce an axiomatic definition of equivalence that satisfies
all the desirable properties we identified in the previous section. We present
our definition in Sect. 3.1 along with several properties. In Sect. 3.2 we give
a necessary, sufficient, and decidable criterion to prove equivalence and non-
equivalence between CHR states. In Sect. 3.3, we prove compliance with the
example cases from Sect. 2.2.

3.1 Definition of State Equivalence

Our notion of state equivalence is given in the following definition.

Definition 5 (State Equivalence).
Equivalence between CHR states is the smallest equivalence relation ≡ over

CHR states that satisfies the following conditions:

1. (Equality as Substitution)

〈G, x
.
= t ∧ B, V〉 ≡ 〈G [x/t] , x

.
= t ∧ B, V〉

2. (Transformation of the Constraint Store) If CT |= ∃s̄.B ↔ ∃s̄′.B′ where s̄, s̄′

are the strictly local variables of B, B′, respectively, then:

〈G, B, V〉 ≡ 〈G, B′, V〉
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3. (Omission of Non-Occurring Global Variables) If X is a variable that does

not occur in G or B then:

〈G, B, {X} ∪ V〉 ≡ 〈G, B, V〉

4. (Equivalence of Failed States)

〈G,⊥, V〉 ≡ 〈G′,⊥, V〉

The axioms are chosen such that we can guarantee compliance with the
operational semantics (cf. Sect. 4.1) as well as the logical readings of CHR states.

Firstly, names of local variables in CHR states are chosen non-
deterministically upon execution. Hence, considering these names invariant with
respect to state equivalence suggests itself. In combination, axiom 1 and axiom 2
guarantee this desired property (cf. Lemma 1:1).

Axiom 1 and axiom 2 are furthermore invariant with respect to rule appli-
cability and comply with logical equivalence of the logical readings. The same
holds for axiom 4: On the logical level, inconsistent logical readings are of course
logically equivalent. It is necessary to guarantee compliance with the operational
semantics as we justify in Sect. 4.2.

Axiom 3 suggests itself with regard to logical readings, since adding or re-
moving global constraints results in syntactically identical and therefore indistin-
guishable logical readings. Operationally, unused global variables have no effect,
so it stands to reason to consider them redundant.

Lemma 1 states several properties that follow from Def. 5.

Lemma 1 (Properties of State Equivalence). The equivalence relation over

CHR states given in Def. 5 has the following properties:

1. (Renaming of Local Variables) Let x, y be variables such that x, y 6∈ V and

y does not occur in G or B:

〈G, B, V〉 ≡ 〈G [x/y] , B [x/y] , V〉

2. (Partial Substitution) Let G [x ≀ t] be a multiset where some occurrences of

x are substituted with t:

〈G, x
.
= t ∧ B, V〉 ≡ 〈G [x ≀ t] , x

.
= t ∧ B, V〉

3. (Logical Equivalence) If

〈G, B, V〉 ≡ 〈G′, B′, V′〉

then CT |= ∃ȳ.G ∧ B ↔ ∃ȳ′.G′ ∧ B
′, where ȳ, ȳ′ are the local variables of

〈G, B, V〉, 〈G′, B′, V′〉, respectively.
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Proof.

Property 1: By transformation of the constraint store, we have that 〈G, B, V〉
is equivalent to 〈G, x

.
= y ∧ B, V〉. We apply equality as substitution

and get 〈G [x/y] , x
.
= y ∧ B, V〉 which by transformation is equivalent to

〈G [x/y] , B [x/y] , V〉.
Property 2: By substitution, we have that both 〈G, B, V〉 and 〈G [x ≀ t] , x

.
=

t∧B, V〉 are equivalent to 〈G [x/t] , x
.
= t∧B, V〉. The equivalence relation is

implicitly symmetric and transitive.

Property 3: All conditions given in Def. 5 correspond to valid logical equiva-

lences:
Definition 5:1 preserves logical equivalence since

G ∧ x
.
= t ↔ G [x/t] ∧ x

.
= t

Definition 5:2: As CT |= ∃s̄.B ↔ ∃s̄′.B′ and the variables in s̄, s̄′ do not

occur in G, G′, we have

CT |= ∃ȳ.B ∧ G ↔ ∃ȳ′.B′ ∧ G

Definition 5:3: For a variable X that does not occur in B or G we obviously

have

CT |= ∃X.∃ȳ.B ∧ G ↔ ∃ȳ.B ∧ G

Definition 5:4 preserves logical equivalence due to the ex falso quodlibet
property.

As logical equivalence is reflexive, transitive, and symmetric, Prop. 3 holds.

⊓⊔

3.2 A Sufficient and Decidable Criterion for State Equivalence

Logical equivalence between ∃ȳ.G ∧ B and ∃ȳ′.G′ ∧ B
′ is a necessary but not a

sufficient condition for state equivalence between 〈G, B, V〉 and 〈G′, B′, V′〉 (cf.
Lemma 1:3). This is due to the fact that unlike logical equivalence, state equiva-
lence preserves the multiplicities of logically equivalent user-defined constraints.
A similar condition which is also sufficient can be formulated in linear logic [18].

Theorem 1 gives a necessary and sufficient criterion for deciding state equiva-
lence. Note that due to its preconditions it technically decides a smaller relation
than ≡, because it only applies to the case that local variables are renamed apart
and the set of global variables is unchanged.

However, this restriction is not problematic for deciding equivalence in gen-
eral. By Lemma 1 we are free to rename local variables apart and by Def. 5:3
we can adjust the sets of global variables to match. Therefore, Thm. 1 gives us
a necessary and sufficient criterion for equivalence of arbitrary states: first we
transform the states into equivalent states that satisfy the preconditions, then
we apply the theorem. The transformation is straightforward and equivalence-
preserving, hence, the result we get from the theorem applies to the original
states by transitivity of ≡. Finally, decidability of our criterion is a direct con-
sequence of decidability of CT .
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Theorem 1 (Criterion for ≡). Let σ = 〈G, B, V〉, σ′ = 〈G′, B′, V〉 be CHR

states with local variables ȳ, ȳ′ that have been renamed apart.

σ ≡ σ′ iff CT |= ∀(B → ∃ȳ′.((G = G
′) ∧ B

′)) ∧ ∀(B′ → ∃ȳ.((G = G
′) ∧ B))

Proof. Let C be a binary predicate on CHR states such that

C(〈G, B, V〉, 〈G′, B′, V〉) holds iff

CT |= ∀(B → ∃ȳ′.((G = G
′) ∧ B

′)) ∧ ∀(B′ → ∃ȳ.((G = G
′) ∧ B))

⇒:
We show that each of the three implicit conditions – reflexivity, symmetry

and transitivity – as well as all the four explicit conditions of Def. 5 are sound

w.r.t. criterion C.

Reflexivity: Reflexivity is given as the following judgment is obviously true:

CT |= ∀(B → ∃ȳ.((G = G) ∧ B)) ∧ ∀(B → ∃ȳ.((G = G) ∧ B))

Symmetry: Symmetry of C is obvious.

Transitivity: Assume three states σ = 〈G, B, V〉, σ′ = 〈G′, B′, V〉, σ′′ =
〈G′′, B′′, V〉 with distinct local variables ȳ, ȳ′, ȳ′′ such that C(σ, σ′) and

C(σ′, σ′′). By definition, we have:

CT |= ∀(B → ∃ȳ′.((G = G
′) ∧ B

′)) (i)
CT |= ∀(B′ → ∃ȳ.((G = G

′) ∧ B)) (ii)
CT |= ∀(B′ → ∃ȳ′′.((G′ = G

′′) ∧ B
′′)) (iii)

CT |= ∀(B′′ → ∃ȳ′.((G′ = G
′′) ∧ B

′)) (iv)

From (i) and (iii) follows:

CT |= ∀(B → ∃ȳ′′.((G = G
′′) ∧ B

′′))

From (ii) and (iv) follows:

CT |= ∀(B′′ → ∃ȳ.((G = G
′′) ∧ B))

Consequently, C(σ, σ′′).
Equality as Substitution: Assume two states σ = 〈G, x

.
= t ∧ B, V〉, σ′ =

〈G [x/t] , x
.
= t ∧ B, V〉 with local variables ȳ, ȳ′. As CT |= ∀(x

.
= t → (G =

G [x/t])), we have C(σ, σ′).
Transformation of the Constraint Store: Assume two states σ =

〈G, B, V〉, σ′ = 〈G, B′, V〉 with local variables ȳ, ȳ′ and strictly local

variables s̄, s̄′ such that CT |= ∃s̄.B ↔ ∃s̄′.B′. This implies the following

judgment:

CT |= ∀(B → ∃ȳ′.((G = G) ∧ B
′)) ∧ ∀(B′ → ∃ȳ.((G = G) ∧ B))

Hence, C(σ, σ′).
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Omission of Non-Occurring Global Variables: Does not apply since σ, σ′

share the set V of global variables.
Equivalence of Failed States: For any two failed states, we have states

of the form 〈G,⊥, V〉, 〈G′,⊥, V〉. The following judgment proves

C(〈G,⊥, V〉, 〈G′,⊥, V〉):

CT |= ∀(⊥ → ∃ȳ′.((G = G
′) ∧ ⊥)) ∧ ∀(⊥ → ∃ȳ.((G = G

′) ∧ ⊥))

⇐:

We consider two CHR states σ = 〈G, B, V〉, σ′ = 〈G′, B′, V〉 with local vari-

ables ȳ and ȳ′. We assume that

CT |= ∀(B → ∃ȳ′.((G = G
′) ∧ B

′)) ∧ ∀(B′ → ∃ȳ.((G = G
′) ∧ B))

If there does not exist a pairwise matching G = G
′, we have B = B

′ = ⊥,

which proves that σ ≡ σ′ by Def. 5:4. In the following, we assume that a pairwise

matching G = G
′ does exist.

It follows from ∀(B → ∃ȳ′.((G = G
′) ∧ B

′) by Def. 5:2 that:

σ ≡ 〈G, G = G
′ ∧ B ∧ B

′, V〉

By Def. 5:1 we have:

σ ≡ 〈G′, G = G
′ ∧ B ∧ B

′, V〉

From ∀(B′ → ∃ȳ.((G = G
′) ∧ B)) we get by Def. 5:2 that:

σ ≡ 〈G′, B′, V〉 = σ′

⊓⊔

3.3 Example Cases Revisited

We claimed earlier that our definition of state equivalence replicates the desired
equivalences and non-equivalences given in the examples in Sect. 2.2. Now we
revisit these examples and prove their compliance with our definition.

Example (1): 〈c(X),⊤, ∅〉 ≡ 〈c(Y ),⊤, ∅〉

Proof. Renaming of local variables (cf. Lemma 1:1) ⊓⊔

Example (2): 〈c(X),X = 0, {X}〉 ≡ 〈c(0),X = 0, {X}〉

Proof. Follows directly from Def. 5:1. ⊓⊔

Example (3): 〈⊤,X ≥ 0 ∧ X ≤ 0 ∧ Y = 0, {X}〉 ≡ 〈⊤,X = 0, {X}〉

Proof. Follows from Def. 5:2, as:

CT |= ∃Y.(X ≥ 0 ∧ X ≤ 0 ∧ Y = 0) ↔ (X = 0)

⊓⊔

Example (4): 〈c(0),⊤, {X}〉 ≡ 〈c(0),⊤, ∅〉

Proof. Follows directly from Def. 5:3. ⊓⊔

Example (5): 〈c(X),⊤, {X}〉 6≡ 〈c(Y ),⊤, {Y }〉

Proof. Follows from Thm. 1, as CT 6|= ∀(⊤ → c(X) = c(Y )). ⊓⊔
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4 Impact on the Operational Semantics

In this section, we discuss the impact of our definition of state equivalence on the
operational semantics of CHR. Section 4.1 applies our notion of state equivalence
to the traditional operational semantics. The resulting formulation is clearer and
more lucid than the traditional one. More importantly, it enables us to prove
that state equivalence is indeed compliant with rule applications. This important
property – while generally assumed – has never been proven before. This in
turn gives rise to a definition of the operational semantics based directly on
equivalence classes of states which we present in Sect. 4.3.

4.1 A Simplified Formulation of the Operational Semantics

In this section, we present a formulation of the operational semantics based on
state equivalence. Our definition is not only based on the traditional definition,
but is also provably equivalent. Consider the following definition for the tradi-
tional operational semantics, adjusted from [9]:

Definition 6 (Traditional Operational Semantics). For a CHR pro-

gram P, the state transition system (Σ, 7→) is defined as follows, where (r @ H1\
H2 ⇔ G | Bc ⊎ Bb) is a copy of a rule in P containing only fresh variables.

(r @ H1 \ H2 ⇔ G | Bc ⊎ Bb) with fresh variables ȳ
CT |= ∀(B → ∃ȳ.(H1 = H ′

1
∧ H2 = H ′

2
∧ G))

〈H ′

1
⊎ H ′

2
⊎ G, B, V〉 7→r 〈H ′

1
⊎ Bc ⊎ G,H1 = H ′

1
∧ H2 = H ′

2
∧ G ∧ Bb ∧ B, V〉

Integrating the notion of state equivalence permits removing the matching
that has traditionally been hidden in the complex formula H1 = H ′

1
∧H2 = H ′

2
.

Furthermore, imposing a guard condition on CT becomes dispensable, leading
to the following simplified operational semantics:

Definition 7 (Operational Semantics). For a CHR program P we define the

state transition system (Σ,) as follows, where (r @ H1 \ H2 ⇔ G | Bc ⊎ Bb)
is a copy of a rule in P containing only fresh variables.

(r @ H1 \ H2 ⇔ G | Bc ⊎ Bb)
〈H1 ⊎ H2 ⊎ G, G ∧ B, V〉 

r 〈H1 ⊎ Bc ⊎ G, G ∧ Bb ∧ B, V〉

σ′ ≡ σ σ 
r τ τ ≡ τ ′

σ′


r τ ′

If the rule r is clear from the context or any rule is sufficient we simply write

σ  τ . As usual 
∗ is the reflexive-transitive closure of .

Theorem 2 proves the equivalence of both definitions. An important aspect of
this equivalence, and therefore the second rule of Def. 7, is that state equivalence
is compliant with rule applications. It seems that the CHR community intuitively
agrees this property holds for state equivalence. It is noteworthy that, to the
best of our knowledge, the following is effectively the first published proof for
this important property.
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Theorem 2 (Equivalence of the Definitions). For a CHR state σ we have

1. If σ 
r τ then there exists a state τ ′ ≡ τ with σ 7→r τ ′

2. If σ 7→r τ ′ then there exists a state τ ≡ τ ′ with σ 
r τ

Proof.

1: Let r @ H1 \ H2 ⇔ G | Bc ⊎ Bb, σ = 〈H1 ⊎ H2 ⊎ G, G ∧ B, V〉 
r τ =

〈H1 ⊎ Bc ⊎ G, G ∧ Bb ∧ B, V〉, and σ′ ≡ σ. Let ȳ, ȳ′ be the local variables of

σ, σ′ respectively.

Since r uses only fresh variables, we can assume w.l.o.g. that the local vari-

ables of σ are renamed apart from the local variables of σ′ and σ′ is of the

form 〈H ′

1
⊎ H ′

2
⊎ G

′, B′, V〉.
As σ ≡ σ′ we get by Thm. 1 that

CT |= ∀(B′ → ∃ȳ.((H ′

1
⊎ H ′

2
⊎ G

′ = H1 ⊎ H2 ⊎ G) ∧ G ∧ B))

and consequently:

CT |= ∀(B′ → ∃ȳ.(H ′

1
= H1 ∧ H ′

2
= H2 ∧ G))

Therefore, we can apply the traditional operational semantics and get:

σ′ 7→r 〈H ′

1
⊎ Bc ⊎ G

′,H1 = H ′

1
∧ H2 = H ′

2
∧ G ∧ Bb ∧ B

′, V〉 = τ ′

By the above and Def. 5:2 we get:

τ ′ ≡ 〈H ′

1
⊎ Bc ⊎ G

′,H1 = H ′

1
∧ H2 = H ′

2
∧ G = G

′ ∧ G ∧ Bb ∧ B
′ ∧ B, V〉

By Def. 5:1 and Def. 5:2 we then get:

τ ′ ≡ 〈H1 ⊎ Bc ⊎ G, G ∧ Bb ∧ B, V〉 = τ

2: Let σ = 〈H ′

1
⊎ H ′

2
⊎ G, B, V〉 7→r τ ′ = 〈H ′

1
⊎ Bc ⊎ G,H1 = H ′

1
∧ H2 =

H ′

2
∧ G ∧ Bb ∧ B, V〉.

As CT |= ∀(B → ∃ȳ.(H1 = H ′

1
∧ H2 = H ′

2
∧ G)) we apply Def. 5:2 to σ:

σ ≡ 〈H ′

1
⊎ H ′

2
⊎ G,H1 = H ′

1
∧ H2 = H ′

2
∧ G ∧ B, V〉

Using Def. 5:1 we get by substitution:

σ ≡ 〈H1 ⊎ H2 ⊎ G,H1 = H ′

1
∧ H2 = H ′

2
∧ G ∧ B, V〉

We can apply rule r according to Def. 7 now resulting in

σ 
r 〈H1 ⊎ Bc ⊎ G, G ∧ Bb ∧ (H1 = H ′

1
∧ H2 = H ′

2
∧ B), V〉 = τ

By Def. 5:1 we get τ ≡ τ ′. ⊓⊔
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4.2 Termination on Failure

Both formulations of the operational semantics given above allow arbitrary rule
applications on failed states. In the case of the traditional operational semantics,
the applicability condition is of the form CT |= ∀(B → . . .). This condition
is trivially satisfied for any inconsistent built-in store due to the principle ex

contradictio quodlibet (ECQ). In our formulation of the operational semantics
arbitrary rule applications are due to the explicit equivalence of failed states
established in Def. 5:4. For example, under a program P = {a ⇔ b} both
〈c,⊥, ∅〉 7→∗ 〈b,⊥, ∅〉 and 〈c,⊥, ∅〉 

∗ 〈b,⊥, ∅〉 are correct.
For theoretical considerations such as correctness analyses, this property is

intentional: Firstly, it corresponds to the ECQ property which holds in most
logical formalisms. Secondly, allowing derivations from failed states preserves
monotonicity with respect to strengthening the constraint store such that e.g.
〈G, B, V〉 7→∗ 〈G′, B′, V′〉 implies 〈G, B ∧ B̄, V〉 7→∗ 〈G′, B′ ∧ B̄, V′〉, regardless of
whether B ∧ B̄ is consistent.

In a practical implementation, however, this property would lead to triv-
ial non-termination of any failed computation. Existing implementations conse-
quently do not allow computation from failed states. Formally, this property can
be captured by introducing CT |= ∃B as an applicability condition. Alternatively,
we can solve this issue by explicitly disallowing atomic derivation steps between
equivalent states. Unlike the first solution, such a formulation also avoids trivial
non-termination originating from rules of the form H ⇔ G | H.

4.3 Founding the Operational Semantics on Equivalence Classes

Having finally shown the compliance of state equivalence with rule application,
we revisit the operational semantics once more: We know that a rule application
is possible for all states equivalent to a state containing the head and guard of
that rule and that we are free to choose any element of the set of equivalent
result states. Therefore, the actual syntactical representation of a state is of
no importance, leading to a different view on the transition system: instead
of considering all syntactical representations as different states, we propose the
following reformulation of the operational semantics based on equivalence classes
over states.

Definition 8. For a CHR program P we define the state transition sys-

tem (Σ/≡ , ) as follows. The application of a rule r is based on a copy

of it that contains only fresh variables.

r @ H1 \ H2 ⇔ G | Bc ⊎ Bb

[〈H1 ⊎ H2 ⊎ G, G ∧ B, V〉] 
r [〈H1 ⊎ Bc ⊎ G, G ∧ Bb ∧ B, V〉]

This concise definition of the operational semantics of CHR requires only one
rule and combines all of our results on state equivalence and its behavior with
regard to rule applications. Furthermore, it leads to simplifications in other re-
search areas where state equivalence is relevant. For example, confluence analysis
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in CHR is made complicated by different syntactical representations. Figure 1
depicts that term rewriting systems (TRS) require all computations to reach the
exact same final term. However, the corresponding CHR results demand equiv-
alence of final states. Under the operational semantics as given in Def. 8, the
original diamond property of confluence depicted in Fig. 1 found in the TRS
literature applies directly to CHR.
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""
FF

FF
FF

FF
F σ
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σ1
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w

σ
′ σ
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′

2

Fig. 1. Diamond property of confluence in TRS and CHR

5 Conclusion

As the main result, we have proven the compliance of state equivalence with rule
application. To the best of our knowledge, this is the first published proof of this
important property for any notion of equivalence.

This property has significant impact on the formulation of the operational
semantics of CHR: It allows for a considerably more compact and lucid definition
of the operational semantics than the ones known in the literature. Furthermore,
it justifies an operational semantics of CHR based on equivalence classes of states
rather than individual states.

We have presented the first axiomatic definition of state equivalence in the
literature. It is more intuitive than existing definitions and provides elegant proof
techniques such as applied in our proof of Lemma 1. However, it is not always
trivial to prove state equivalence – and more so: non-equivalence – of arbitrary
CHR states using the axiomatic definition. Therefore, we have presented a neces-
sary, sufficient, and decidable criterion for both equivalence and non-equivalence
of states. Example case (5) in Sect. 3.3 shows an application of this criterion.

We have evaluated the previously published definitions of state equivalence
for a set of example cases and shown that none of them satisfies all of the exam-
ples. Contrarily, our definition of state equivalence satisfies all of the example
cases.

We expect that the notion of state extensions [6] leads to a further enhanced
formulation of the operational semantics. This concept would allow to disregard
parts of the state that are unaffected by rule application. This would lead to an
even more compact definition of the state transition system.
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As we have shown, the operational semantics based on equivalence classes
allows a simplified formulation of confluence results for CHR. We furthermore
plan to reinvestigate results from observable confluence, operational equivalence,
and their combination under this context. Combined with the expressive pos-
sibilities of state extensions this should lead to more concise formulations and
proofs of all those results.
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18. Betz, H., Frühwirth, T.: A linear-logic semantics for Constraint Handling Rules.
In: Principles and Practice of Constraint Programming, 11th International Confer-
ence, CP 2005. Volume 3709 of Lecture Notes in Computer Science., Sitges, Spain,
Springer-Verlag (October 2005) 137–151


