
Operational Equivalence of Graph

Transformation Systems

Frank Raiser and Thom Frühwirth

Faculty of Engineering and Computer Sciences, Ulm University, Germany
{Frank.Raiser|Thom.Fruehwirth}@uni-ulm.de

Abstract. Graph transformation systems (GTS) provide an important
theory for numerous applications. With the growing number of GTS-
based applications the comparison of operational equivalence of two GTS
becomes an important area of research. This work introduces a notion of
operational equivalence for graph transformation systems. The embed-
ding of GTS in constraint handling rules (CHR) provides the basis for a
decidable and sufficient criterion for operational equivalence of GTS. It
is based on the operational equivalence test for CHR programs. A direct
application of adapting this test to GTS allows automatic removal of
redundant rules.

1 Introduction

Graph transformation systems (GTS) describe complex structures and systems
in an expressive and versatile way. The principal idea of graph transformation
systems is to apply graph production rules to a host graph. This involves finding
a subgraph that matches the rule’s graph and that is modified according to that
rule.

As more applications based on graph transformations emerge it is becoming
an important area of research to compare two GTS with each other. This com-
parison can be used to check whether two GTS solve the same problem, to verify
that an optimized version of a GTS adheres to a non-optimized, but simpler,
specification-GTS, to remove redundant rules, and more.

Different mechanisms for rewriting graphs have been developed [1] and in
this work we make use of the so-called DPO approach [2]. It provides a sound
category theoretical basis for modeling graph transformations.

Example 1. In Fig. 1 a graph transformation system consisting of two rules is
shown. The graphical notation is explained in more detail later. The two rules
replace edges of type a by edges of type b. An application of the operational
equivalence, presented in Sect. 3.1, is the automatic removal of the second rule
due to its redundancy.

In [3] an embedding of GTS in constraint handling rules (CHR) [4, 5] is given.
In the context of CHR, operational equivalence is already an active area of re-
search [6]. Therefore, we apply the results on operational equivalence in CHR

2 Frank Raiser and Thom Frühwirth

a
21

a
21

b

3

a
21

21
b

3

a

Fig. 1. Graph transformation system – the second rule is redundant

to embedded graph transformation systems. This gives us a first notion of op-
erational equivalence for GTS and at the same time a decidable and sufficient
criterion for it. In CHR research a successful application of the operational equiv-
alence test is the removal of redundant rules [7, 8]. By building upon the GTS
embedding and operational equivalence of CHR, we show that this application
can be adapted to remove redundant GTS rules as well.

Note that there is an orthogonal notion for behavioral equivalence of graph
transformation systems [9]. Behavioral equivalence investigates the behavior of
models, i.e. host graphs, which are transformed into new models while preserving
behavior as given by a semantics based on another graph transformation system.
Similarly, in [10] bisimilarity for GTS is discussed. While bisimilarity originated
from process calculi and is focused on the transitions made during computation of
a result, our approach only compares the final computation results independently
of how they are reached.

This paper is a preliminary work for establishing the notion of operational
equivalence on graph transformation systems. We make the following contribu-
tions:

– We present definitions of joinability and operational equivalence in GTS
transferred from CHR research.

– We show that given our existing embedding of GTS into CHR allows to
reuse the operational equivalence test as a sufficient criterion for operational
equivalence of two GTS.

– We apply the previous result to automatically remove redundant rules from
a GTS.

– We observe the problem of a direct formulation of our criterion in the GTS
context.

This work is divided into the following sections: Section 2 presents the neces-
sary preliminaries for graph transformation systems, constraint handling rules,
the embedding of GTS in CHR, and operational equivalence in CHR. We then
introduce operational equivalence for GTS in Sect. 3, before concluding in Sect. 4.

Operational Equivalence of Graph Transformation Systems 3

2 Preliminaries

In this section we introduce the necessary preliminaries for this work. As our work
is derived from results in different research areas, each of the following sections
introduces a particular research topic. In Sect. 2.1 we introduce Graph Trans-
formation Systems (GTS) and in Sect. 2.2 Constraint Handling Rules (CHR).
Section 2.3 discusses the embedding of a GTS in CHR. Finally, Sect. 2.4 high-
lights existing achievements on operational equivalence for CHR programs.

2.1 Graph Transformation Systems

The following definitions for graphs and graph transformation systems have been
adapted from [2].

Definition 1 (type graph, typed graph).
A graph G = (V,E, src, tgt) consists of a finite set V of nodes, a finite set E

of edges and two morphisms src, tgt : E → V specifying source and target of an
edge, respectively. A type graph TG is a graph with unique labels for all nodes
and edges.

For multiple graphs we refer to the node set V of a graph G as VG and
analogously for edge sets and the src, tgt morphisms. We further define the degree
of a node as deg : V → N, v 7→ #{e ∈ E | src(e) = v}+ #{e ∈ E | tgt(e) = v}.
When the context graph is clear the subscript is omitted.

A typed graph G is a tuple (V,E, src, tgt, type, TG) where (V,E, src, tgt) is
a graph, TG a type graph, and type a morphism with type = (typeV , typeE) and
typeV : V → VTG, typeE : E → ETG. The type morphism is a graph morphism,
therefore, it has to satisfy the following condition: ∀e ∈ E : typeV (src(e)) =
srcTG(typeE(e)) ∧ typeV (tgt(e)) = tgtTG(typeE(e))

For the purpose of simplicity, the above definition avoids an additional label
morphism in favor of identifying variable names with labels. As there are often
multiple graphs containing the same node due to inclusion morphisms we use
degG(v) to specify the degree of a node v with respect to the graph G.

Example 2. Figure 2 shows an example for a type graph and a corresponding
typed graph. The type graph at the bottom is used to define a node type and
two edge types a and b. The typed graph at the top left assigns a unique node
type (or edge type) to each node (or edge) via the type morphism represented by
the dotted lines. The typed graph at the top right uses a shorter notation that
implicitly defines the type morphism by specifying the corresponding labels.

Definition 2 (GTS, rule).
A Graph Transformation System (GTS) is a tuple consisting of a type graph

and a finite set of graph production rules. A graph production rule – also simply

called rule if the context is clear – is a tuple p = (L
l
← K

r
→ R) of graphs L,K,

and R with inclusion morphisms l : K → L and r : K → R.

4 Frank Raiser and Thom Frühwirth

a b

nodea b

Fig. 2. Example of a type graph and typed graphs

We distinguish two kinds of typed graphs: rule graphs and host graphs. Rule
graphs are the graphs L,K,R of a graph production rule p and host graphs are
graphs to which the graph production rules can be applied. We, furthermore,
make use of graph transformations based on the double-pushout approach (DPO)
as defined in [2]. Most notably, we require a so-called match morphism m : L→ G
to apply a rule p to a typed host graph G. In this work we only consider injective
match morphisms (see [3]). The transformation yielding the typed graph H is

written as G
p,m
=⇒ H. H is given mathematically by constructing D as shown in

Fig. 3, such that (1) and (2) are pushouts in the category of typed graphs [2].
Intuitively, the graph L on the left-hand side is matched as a subgraph of G
and its occurrence in G is then replaced by the right-hand side graph R. The
intermediate graph K is the context graph, which contains the nodes and edges
in both, L and R, i.e. all nodes and edges matched to K remain unchanged
during the transformation.

L

m

��

(1)

K
loo

k

��

r //

(2)

R

n

��

G D
f

oo
g

// H

Fig. 3. Double-pushout approach

The application of a rule p = (L
l
← K

r
→ R) to G consists of transforming

G into H by performing the construction of D and H such that (1) and (2)
in Fig. 3 are pushouts. A more implementation-oriented interpretation of a rule
application is that all nodes and edges in m(L \ l(K)) are removed from G to
create D = (G \m(L)) ∪m(l(K)) and then all nodes and edges in n(R \ r(K))
are added to create H = D ∪ n(R \ r(K)).

Example 3. In Fig. 1 two graph production rules are shown in their shorthand
notation. The numbers for the nodes imply the l and r morphisms and the
graph K is implied as well and consists of the nodes with no edges for the first

Operational Equivalence of Graph Transformation Systems 5

rule and a single edge of type a for the second rule. The first rule when applied
to a graph G replaces an edge of type a by an edge of type b, whereas the second
rule makes a similar replacement within a larger context.

2.2 Constraint Handling Rules (CHR)

This section presents the syntax and operational semantics of constraint handling
rules [5]. Intuitively, CHR is a rule-based multiset rewriting system. For this work
we consider a subset of CHR by considering only one kind of rule and omitting
guards. For the complete possibilities of CHR see [4, 5].

The constraints manipulated by CHR are first-order predicates which we sep-
arate into built-in constraints and user-defined constraints. Built-in constraints
are handled by a constraint solver while user-defined constraints are defined by
a CHR program. In this work the required built-in constraints are syntactic
equalities and basic arithmetics.

Simplification rules are of the form

Rulename @ H1, . . . ,Hi ⇔ B1, . . . , Bk

where Rulename is an optional unique identifier of a rule, the head H =
H1, . . . ,Hi is a non-empty conjunction of user-defined constraints, and the body
B = B1, . . . , Bk is a conjunction of built-in and user-defined constraints. Note
that we make sloppy use of the terms conjunction, sequence, and multiset with
respect to H1, . . . ,Hi and B1, . . . , Bk.

The operational semantics is based on an underlying constraint theory CT for
the built-in constraints and a state, which is a tuple 〈G,C,V〉 where G is a goal
store, i.e. a multiset of user-defined constraints, C is a conjunction of built-in
constraints, and V is the set of global variables. The variables in V are also called
variables-of-interest and, intuitively, differ from other variables occurring in the
state by being considered universally quantified [5]. When comparing different
states we make use of an equivalence relation ≡ on CHR states. This equivalence
accounts for different syntactical representations, including renaming of local
variables, equality substitutions, and logically equivalent built-in stores.

A simplification rule of the form H ⇔ B is applicable to a state 〈E∪G,C,V〉
if CT |= ∀(C → ∃x(H = E)) where x are the variables in H and = is syntactic
equality. The above condition intuitively corresponds to finding a subset E of
constraints in the state that, together with the built-in store C, match the head of
a rule (H = E). We then define the following state transition for the application
of the rule: 〈E∪G,C,V〉֌ 〈Bu∪G, (H = E)∧C∧Bb,V〉 where B = Bu∪Bb with
Bu being user-defined and Bb being built-in constraints. As usual, ֌

∗ denotes
the reflexive-transitive closure of the ֌ relation. When considering multiple
programs ֌P denotes a transition based on a rule from program P.

2.3 GTS in CHR

In this section we present how a graph transformation system can be embedded
into CHR based on previous work in [3]. In order to embed a GTS in CHR, we

6 Frank Raiser and Thom Frühwirth

have to encode its graph production rules as CHR rules and provide a conjunction
of goal constraints corresponding to the host graph. We then recapitulate the
soundness and completeness results of our embedding.

For encoding a GTS in CHR we first determine the constraints needed for
encoding the rules and host graph based on the type graph:

Definition 3 (Type Graph Encoding).
For a type graph T G we define the set C of required constraints to encode

graphs typed over T G as the minimal set including v/2 ∈ C for v ∈ VT G and
e/3 ∈ C for e ∈ ET G.

Example 4 (cont). For our example of the GTS, every node in the typed graph
has the same type and we have two edge types. Based on this we need the
following constraints: n /2, a/3,b/3

We assume all nodes and edges of the type graph TG to be uniquely labeled
such that the introduced constraints have unique names as well. Note that this
is no restriction on the typed graphs as there can be any number of nodes or
edges of the same type. These constraints allow us to encode typed graphs. The
following definition of chr distinguishes between chr(host, ·) and chr(keep, ·)
which intuitively correspond to host and rule graphs.

Definition 4 (Typed Graph Encoding).
For a typed graph G based on a type graph TG the set of constraints encod-

ing G is defined differently for host and rule graphs. We define the following
mappings for the encoding for an infinite set of variables VARS:

– [typeG(x)] denotes the corresponding constraint name for encoding a node
or edge of the given type.

– var : G→ VARS, x 7→ Xx such that Xx is a unique variable associated to x,
i.e. var is injective for the set of all graph nodes and edges.

– dvar : G → VARS, x 7→ Xx such that Xx is a unique variable associated to
x, i.e. dvar is injective for the set of all graph nodes and edges.

Using these mappings we define the following encoding of graphs:

chrG(host, x) =

{

[typeG(x)](var(x),degG(x)) if x ∈ VG

[typeG(x)](var(x), var(src(x)), var(tgt(x))) if x ∈ EG

chrG(keep, x) =

{

[typeG(x)](var(x),dvar(x)) if x ∈ VG

[typeG(x)](var(x), var(src(x)), var(tgt(x))) if x ∈ EG

We make use of the notations chr(host, G) = {chrG(host, x) | x ∈ G} and
chr(keep, G) = {chrG(keep, x) | x ∈ G}. Furthermore, we omit the index G if
the context is clear. For a node v encoded with chr(keep, v) we call dvar(v) the
degree variable.

Example 5 (cont). When using the left-hand side graph of the first rule as a host
graph G it is encoded in chr(host, G) as follows:

Operational Equivalence of Graph Transformation Systems 7

n(N1, 1),n(N2, 1), a(E1, N1, N2)

The same graph G occurring as a rule graph is encoded in chr(keep, G) as
follows:

n(N1,D1),n(N2,D2), a(E1, N1, N2)

We can now encode a complete graph production rule based on these defini-
tions:

Definition 5 (GTS Rule in CHR).

For a graph production rule p = (L
l
← K

r
→ R) from a GTS we define

ρ(p) = (CL, CR) with

– CL = {chr(keep, x) | x ∈ K} ∪ {chr(host, x) | x ∈ L \K}
– CR = {chr(host, x) | x ∈ R \K} ∪{chr(keep, e) | e ∈ EK}
∪{chr(keep, v′), var(v) = var(v′),dvar(v′) = dvar(v)− degL(v)+ degR(v) |
v ∈ VK}

The rule p is then encoded in CHR using ρ(p) = (CL, CR) and in abuse
of notation we use ρ(p) for the CHR rule p @ CL ⇔ CR as well as for the
tuple (CL, CR).

Example 6 (cont.). As an example, consider the first rule from our example GTS,
which replaces the a-edge by a b-edge. Its encoding as a CHR simplification rule
is given below:

r1 @ n(N1,D1),n(N2,D2), a(E1, N1, N2)
⇔
n(N ′

1
,D′

1
), N ′

1
= N1,D

′
1

= D1−1+1,
n(N ′

2
,D′

2
), N ′

2
= N2,D

′
2

= D2−1+1,
b(E2, N1, N2)

The above rule is created strictly according to Def. 5, but contains numerous
superfluous constructs, like D′

1
= D1−1+1. Eliminating redundant expressions

leads to the following simpler, yet equivalent, rule:

r1 @ n(N1,D1),n(N2,D2), a(E1, N1, N2)
⇔
n(N1,D1),n(N2,D2),b(E2, N1, N2)

For the soundness and completeness results of this embedding we have to
make sure, that the CHR programs only work on valid encodings of graphs.
While in CHR any combination of node and edge constraints can be considered
as input, not all of those make sense in terms of a GTS. To avoid such problems
– like inconsistent degree encodings or dangling edges – we make use of the
following graph invariant. This invariant holds for all states that are the valid
encoding of a corresponding graph.

8 Frank Raiser and Thom Frühwirth

Definition 6 (Invariant, Graph Invariant).

I(S) is a property such that for all S0 and S1, we have that if S0 → S1 (or
S0 ≡ S1) and I(S0) holds then I(S1) holds.

The graph invariant G(σ) with σ = 〈E,C,V〉 holds if there exist a graph G
and a conjunction of equality constraints C ′, such that

〈E,C ∧ C ′, ∅〉 ≡ 〈chr(host, G),⊤, ∅〉.

For a state σ where G(σ) holds with a graph G we say σ is a G-state based on G.

Another characterization of σ being a G-state based on G is the expression
σ ≡ 〈chr(keep, G), C,V〉.

Using the notion of a G-state based on G we can further identify the set of
strong nodes. Those nodes are special to the CHR encoding of a GTS as the
operational semantics of CHR ensures they cannot be deleted by rule applica-
tions. In [3] it is shown that they are the key to the strong joinability analysis
of critical pairs, but we also need them here for the completeness result.

Definition 7 (Strong Nodes and Derivations).

For a CHR state S = 〈chr(keep, G), C,V〉 which is a G-state based on G we
define the set of strong nodes as: S(S) = {v ∈ VG | dvar(v) = degG(v) 6∈ C}

A GTS derivation G
p,m
=⇒ G′ using p = (L

l
← K

r
→ R) is strong with respect

to S ⊂ VG if ∀s ∈ S : s ∈ m(K) ∨ s 6∈ m(L).

Finally, we present the soundness and completeness results from [3]. The
soundness result states that CHR computations correspond to strong derivations:

Theorem 1 (Soundness).

Let ρ(p) = (CL, CR) be a rule applicable to σ = 〈chr(keep, G), C,V〉 where
G(σ) holds, such that σ ֌ σ′.

Then p = (L
l
← K

r
→ R) is applicable to G such that G

p,m
=⇒ G′ is strong

w.r.t. S(σ). Furthermore, σ′ ≡ 〈chr(keep, G′), C ′,V〉 and G(σ′) holds.

As mentioned previously the set of strong nodes cannot be deleted by CHR
rule applications. Therefore, our completeness result is restricted such that only
strong GTS derivations are possible in CHR. Note that this restriction becomes
redundant if S(σ) = ∅, which is especially true, when σ is a chr(host, G)-based
encoding of a graph G.

Theorem 2 (Completeness).

Let p = (L
l
← K

r
→ R) , G

p,m
=⇒ G′, and let σ = 〈chr(keep, G), C,V〉 be a

G-state based on G.

If ∀x ∈ L \ K : m(x) 6∈ S(σ), then ρ(p) = (CL, CR) is applicable to σ.
Furthermore, for σ ֌ σ′ it follows that σ′ ≡ 〈chr(keep, G′), C ′,V〉 and G(σ′)
holds.

Operational Equivalence of Graph Transformation Systems 9

2.4 Operational Equivalence in CHR

CHR is well-known for its decidable, sufficient, and necessary criterion for oper-
ational equivalence of terminating and confluent CHR programs [5, 6].

The understanding of operational equivalence within the CHR community
intuitively means that the two programs should be able to compute equivalent
outputs given the same input. Applied to a single state this behavior is called
P1,P2-joinability:

Definition 8 (P1,P2-Joinable, Operational Equivalence).
Let P1,P2 be CHR programs. A state σ is P1,P2-joinable, iff there are com-

putations σ ֌
∗
P1

σ1 and σ ֌
∗
P2

σ2 with σ1 ≡ σ2 where all σi are final states
with respect to Pi.
P1,P2 are operationally equivalent iff all states σ are P1,P2-joinable.

A decision algorithm for operational equivalence of CHR programs is pre-
sented in [6]. It is based on the analysis of critical states:

Definition 9 (Critical States).
Let P1,P2 be CHR programs. The set of critical states of P1 and P2 is defined

as {〈H,⊤, vars(H)〉 | (H ⇔ B) ∈ P1 ∪ P2}

Theorem 3 (Operational Equivalence via Critical States).
Let P1,P2 be terminating and confluent CHR programs. P1,P2 are opera-

tionally equivalent iff for all critical states σ of P1 and P2 it holds that σ is
P1,P2-joinable.

3 Operational Equivalence of Graph Transformation

Systems

In this section we introduce our notion of operational equivalence for GTS. Based
on the embedding of GTS in CHR from [3] we use the existing decision algorithm
from CHR for operational equivalence of two graph transformation systems.

As a basis we define the property of S1,S2-joinability for two graph trans-
formation systems S1,S2. It is motivated by P1,P2-joinability in the context of
CHR as given in Def. 8.

Definition 10 (S1,S2-joinability).
Let S1,S2 be two graph transformation systems. A typed graph G is S1,S2-

joinable iff there are derivations G ⇒∗
S1

G1 and G ⇒∗
S2

G2 with G1 ≃ G2

being final w.r.t. S1 and S2. Here ≃ denotes traditional graph isomorphism and
a graph G is considered final w.r.t. S if there is no transition G⇒S H for any
graph H.

Building on S1,S2-joinability we can now define operational equivalence for
graph transformation systems with the same intuitive understanding that two
equivalent GTS should be able to produce the same result graphs up to isomor-
phism given an input graph:

10 Frank Raiser and Thom Frühwirth

Definition 11 (GTS Operational Equivalence).
Let S1 = (P1, T G) and S2 = (P2, T G) be two graph transformation systems.

S1,S2 are operationally equivalent iff for all graphs G typed over T G it holds
that G is S1,S2-joinable.

Similar to operational equivalence in CHR where it is futile to directly com-
pare programs that use different constraints, Def. 11 requires S1 and S2 to be
based on the same type graph T G. With the previous results from [3] we can
directly use CHR’s operational equivalence as a sufficient criterion for deciding
operational equivalence of two GTS:

Theorem 4 (CHR Operational Equivalence Implies GTS Operational
Equivalence).

Let S1,S2 be graph transformation systems and P1,P2 their corresponding
CHR programs. S1,S2 are operationally equivalent if P1,P2 are operationally
equivalent.

Proof. Let G be a graph typed over T G. Then the state σ = 〈chr(host, G),⊤, ∅〉
is P1,P2-joinable by Def. 8. Therefore, there exist the final states σ1 ≡ σ2 with
σ ֌

∗
P1

σ1 and σ ֌
∗
P2

σ2. By Thm. 1 we know that there exist corresponding
derivations G⇒∗

S1
G1 and G⇒∗

S2
G2 such that σ1 is a G-state based on G1 and

σ2 is a G-state based on G2. Due to Thm. 2 G1 and G2 are final states w.r.t. S1

and S2, and finally, the isomorphism between G1 and G2 is implied by σ1 ≡ σ2.
Therefore, G is S1,S2-joinable. ⊓⊔

The reverse direction of Thm. 4 cannot be proved in a similarly simple way.
This is due to the problem, that P1,P2-joinability is required for all states, in-
cluding states that have no corresponding graph. By restricting observation to
valid states we plan to derive a stronger characterization of operational equiva-
lence of GTS (see Sect. 4).

3.1 Redundant Rule Removal

The redundant rule removal algorithm is an application of operational equiva-
lence presented in [11]. It can be applied to graph transformation systems em-
bedded in CHR. It requires the CHR program to be terminating and confluent
with respect to states corresponding to graphs. This implies that the GTS is
required to be confluent and terminating as well [3]. Any redundant rule of such
a program then corresponds to a redundant rule for derivations of the GTS.

The basic idea of the algorithm is to try to remove a rule from the pro-
gram and compare this modified program with the original program. If both are
operationally equivalent the rule is redundant and can be removed. Note that
depending on the order in which rules are tried different results are possible and
this algorithm, hence does not guarantee to yield an operationally equivalent
program with the minimal number of rules possible. Nevertheless, it proved to
be an important algorithm especially in the context of automatically generated
programs [7, 8].

Operational Equivalence of Graph Transformation Systems 11

Example 7. Consider again the GTS given in Fig. 1 and its embedding in CHR:

n(N1,D1),n(N2,D2), ⇔ n(N1,D1),n(N2,D2),
a(E,N1, N2) b(E′, N1, N2)

n(N1,D1),n(N2,D2),n(N3,D3),⇔ n(N1,D1),n(N2,D2),n(N3,D3),
a(E1, N1, N2), a(E2, N1, N3) b(E′

1
, N1, N2), a(E2, N1, N3)

The algorithm tries to remove the second rule from the program and then
compare the two programs according to the operational equivalence test. The
only relevant case is considering the head of the removed rule as input to both
programs. The two computations may use different rules, but both programs
compute a final state consisting of a graph with three nodes, an a-edge from the
first to the third node, and an a-edge from the first to the second node.

The previous example shows that our approach uses strong derivations for
testing operational equivalence. This is an important feature and as the following
example demonstrates implementing our approach directly in GTS, that use non-
strong derivations, is not possible.

Example 8. Consider the two graph transformation systems shown in Fig. 4. Us-
ing the graph on the left-hand sides of the two rules as input to both GTSs leads
to isomorphic results as shown in Fig. 5 (1). However, assuming the slightly ex-
tended graph shown in Fig. 5 (2) instead gives two non-isomorphic result graphs.
Therefore, only examining the critical states within the GTS using non-strong
derivations is insufficient. Applying our approach to the GTS in Fig. 4, however,
gives the intended result. We assume this difference is due to the isomorphism
function and the track morphisms (see [12]) for the two GTS derivations being
inconsistent (see also Sect. 4).

1 32

1

1

12

2

23 3

3

r2:

r1:

Fig. 4. Two operationally non-equivalent graph transformation systems

4 Conclusion

In this work we introduced operational equivalence of graph transformation sys-
tems. The proposed notion of operational equivalence is motivated by research
in the context of CHR based on joinability of states. Interestingly, our previ-
ous work on embedding GTS in CHR [3] provides the means to directly derive

12 Frank Raiser and Thom Frühwirth

1 2 3

1 12 23 3

r1 r2

1 2 3

1 12 23 3

r1 r2

(1) (2)

Fig. 5. Derivations for two initial graphs

a sufficient criterion for operational equivalence of two graph transformation
systems.

As a direct application of this work we showed that our criterion is suitable
for automatically removing redundant rules from a GTS. Finally, we have given
an example demonstrating that a direct translation of our approach into the
GTS context does not yield the expected outcome.

4.1 Future Work

As the final example showed for a GTS embedded in CHR nodes are implicitly
tracked. We exploited this behavior earlier in [3] in order to decide strong join-
ability which in the GTS context is formulated via an explicit track morphism
[12]. We hope to find a similar formulation of the operational equivalence test,
in which an explicit check involving the track morphism allows us to reach a
corresponding sufficient criterion within the GTS context.

The redundant rule used in the example in Fig. 1 in this work is subsumed
by the other rule. This notion of subsumption for graph transformation systems
is discussed by Kreowski and Valiente in [13] and an interesting future line of
research is to compare our approach with that work. Because our approach relies
on termination it cannot be as generic as their sufficient condition. However,
to the best of our knowledge and as stated in [13] it remains open to find a
verification procedure for that condition. Our approach might, hence, be able to
verify redundancy for a subset of the rules that are redundant according to the
criterion of Kreowski and Valiente.

Furthermore, in the context of CHR the notion of operational c-equivalence
for a constraint c was introduced to extend the classes of programs that can be
operationally equivalent. This notion is not suitable for the context of GTS as it
corresponds to two graph transformation systems defined over two type graphs
that share exactly one node. A more realistic case is the sharing of a subgraph of
the type graphs which in turn gives rise to the idea of operational C-equivalence
for a set of constraints C. Another reason to examine this also in the context
of CHR is that a notion of operational C-equivalence is a generalization of both
previous equivalence notions.

Operational Equivalence of Graph Transformation Systems 13

References

1. Blostein, D., Fahmy, H., Grbavec, A.: Practical use of graph rewriting. In: 5th
Workshop on Graph Grammars and Their Application To Computer Science. Vol-
ume 1073 of Lecture Notes in Computer Science., Springer-Verlag (1995) 38–55

2. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer-Verlag (2006)

3. Raiser, F., Frühwirth, T.: Strong joinability analysis for graph transformation
systems in CHR. In: 5th International Workshop on Computing with Terms and
Graphs, TERMGRAPH’09. (2009)

4. Sneyers, J., Van Weert, P., Schrijvers, T., De Koninck, L.: As time goes by: Con-
straint Handling Rules – A survey of CHR research between 1998 and 2007. Ac-
cepted to Journal of Theory and Practice of Logic Programming (2009)

5. Frühwirth, T.: Constraint Handling Rules. Cambridge University Press (2009) to
appear.

6. Abdennadher, S., Frühwirth, T.: Operational equivalence of CHR programs and
constraints. In Jaffar, J., ed.: Principles and Practice of Constraint Programming,
CP 1999. Volume 1713 of Lecture Notes in Computer Science., Springer-Verlag
(1999) 43–57

7. Raiser, F.: Semi-automatic generation of CHR solvers for global constraints. In
Stuckey, P.J., ed.: Principles and Practice of Constraint Programming, 14th Inter-
national Conference, CP 2008. Volume 5202 of Lecture Notes in Computer Science.,
Sydney, Australia, Springer-Verlag (September 2008) 588–592

8. Abdennadher, S., Sobhi, I.: Generation of rule-based constraint solvers: Combined
approach. In King, A., ed.: Logic-Based Program Synthesis and Transformation,
17th International Symposium, LOPSTR 2007, Kongens Lyngby, Denmark, Au-
gust 23-24, 2007, Revised Selected Papers. Volume 4915 of Lecture Notes in Com-
puter Science., Springer-Verlag (2007) 106–120

9. Rangel, G., Lambers, L., König, B., Ehrig, H., Baldan, P.: Behavior preservation
in model refactoring using DPO transformations with borrowed contexts. In: Proc.
of ICGT ’08 (International Conference on Graph Transformation). Volume 5214 of
Lecture Notes in Computer Science., Springer-Verlag (2008) 242–256

10. Ehrig, H., König, B.: Deriving bisimulation congruences in the DPO approach
to graph rewriting. In Walukiewicz, I., ed.: Foundations of Software Science and
Computation Structures, 7th International Conference, FOSSACS 2004. Volume
2987 of Lecture Notes in Computer Science., Barcelona, Spain, Springer-Verlag
(2004) 151–166

11. Abdennadher, S., Frühwirth, T.: Integration and optimization of rule-based con-
straint solvers. In Bruynooghe, M., ed.: Logic Based Program Synthesis and Trans-
formation, 13th International Symposium LOPSTR 2003, Uppsala, Sweden, Au-
gust 25-27, 2003, Revised Selected Papers. Volume 3018 of Lecture Notes in Com-
puter Science., Springer-Verlag (2003) 198–213

12. Plump, D.: Confluence of graph transformation revisited. In Middeldorp, A.,
van Oostrom, V., van Raamsdonk, F., de Vrijer, R.C., eds.: Processes, Terms and
Cycles. Volume 3838 of Lecture Notes in Computer Science., Springer-Verlag (2005)
280–308

13. Kreowski, H.J., Valiente, G.: Redundancy and subsumption in high-level replace-
ment systems. In: TAGT’98: Selected papers from the 6th International Workshop
on Theory and Application of Graph Transformations, Springer-Verlag (2000) 215–
227

