
TERMGRAPH 2009

Strong Joinability Analysis for
Graph Transformation Systems in CHR

Frank Raiser1 Thom Frühwirth2

Institute for Software Engineering and Compiler Construction
Ulm University

Abstract

The notion of confluence is prevalent in graph transformation systems (GTS) as well as constraint handling
rules (CHR). This work presents a generalized embedding of GTS in CHR that allows to consider strong
derivations in confluence analyses. Confluence of a terminating CHR program is decidable, but confluence
of a terminating GTS is undecidable. We show that observable confluence in CHR is a sufficient criterion
for confluence of the embedded GTS. For this purpose the automatic confluence check for CHR can be
reused.

Keywords: Graph Transformation Systems, Constraint Handling Rules, Confluence

1 Introduction

Constraint handling rules (CHR) [6] allow for rapid prototyping and efficient im-
plementation of constraint-based algorithms. Besides constraint reasoning, CHR
have been used for various tasks including theorem proving, parsing, and multiset
rewriting [6].

Graph transformation systems (GTS) are used to describe complex structures
and systems in a concise, readable, and easily understandable way. They have
applications ranging from implementations of programming languages over model
transformations to graph-based models of computation [5,3].

In this work we present an embedding of graph transformation systems in CHR
allowing us to perform strong derivations on partially defined graphs. This behavior
provides the basis for the analysis of strong joinability of critical pairs presented in
this work. In [9] we provided a similar embedding and used it to analyze non-strong
joinability of critical pairs. The generalized embedding presented in this work,
together with the recently introduced notion of observable confluence [4], allows
us to improve upon this result. Deciding strong joinability of critical pairs comes

1 frank.raiser@uni-ulm.de
2 thom.fruehwirth@uni-ulm.de

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:frank.raiser@uni-ulm.de
mailto:thom.fruehwirth@uni-ulm.de


Raiser, Frühwirth

for free as a result of the observable confluence check of the corresponding CHR
program containing the embedded GTS.

We begin with the introduction of the necessary notions of graph transformation
systems and CHR in Sect. 2. Section 3 then presents our proposed encoding of a
GTS in CHR, for which Sect. 4 proves soundness and completeness. Finally, Sect. 5
introduces observable confluence and its application as a sufficient criterion for
confluence of an embedded GTS, before we conclude in Sect. 6.

2 Preliminaries

In this section we introduce the required formalisms for graph transformation sys-
tems and constraint handling rules.

2.1 Graph Transformation System (GTS)

The following definitions for graphs and graph transformation systems have been
adapted from [5].

A graph G = (V,E, src, tgt) consists of a set V of nodes, a set E of edges and two
morphisms src, tgt : E → V specifying source and target of an edge, respectively.
A type graph TG is a graph with unique labels for all nodes and edges.

For the purpose of simplicity, we avoid an additional label morphism in fa-
vor of identifying variable names with labels. For multiple graphs we refer to the
node set V of a graph G as VG and analogously for edge sets and the src, tgt mor-
phisms. We further define the degree of a node as deg : V → N, v 7→ #{e ∈ E |
src(e) = v}+ #{e ∈ E | tgt(e) = v}. As there are often multiple graphs containing
the same node due to inclusion morphisms we use degG(v) to specify the degree of a
node v with respect to the graph G. When the context graph is clear the subscript
is omitted.

A typed graph G is a tuple (V,E, src, tgt, type, TG) where (V,E, src, tgt) is a
graph, TG a type graph, and type a morphism with type = (typeV , typeE) and
typeV : V → TGV , typeE : E → TGE . The type morphism is a graph mor-
phism, therefore, it has to satisfy the following condition: ∀e ∈ E : typeV (src(e)) =
srcTG(typeE(e)) ∧ typeV (tgt(e)) = tgtTG(typeE(e))

A Graph Transformation System (GTS) is a tuple consisting of a type graph
and a set of graph production rules. A graph production rule – also simply called
rule if the context is clear – is a tuple p = (L l← K

r→ R) of typed graphs L,K, and
R with inclusion morphisms l : K → L and r : K → R.

We distinguish two kinds of typed graphs: rule graphs and host graphs. Rule
graphs are the graphs L,K,R of a graph production rule p and host graphs are
graphs to which the graph production rules can be applied. We, furthermore, make
use of graph transformations based on the double-pushout approach (DPO) as de-
fined in [5]. Most notably, we require a so-called match morphism m : L → G to
apply a rule p to a typed host graph G. The transformation yielding the typed
graph H is written as G

p,m
=⇒ H. H is given mathematically by constructing D as

shown in Figure 1, such that (1) and (2) are pushouts. Intuitively, the graph L on
the left-hand side is matched as a subgraph of G and its occurrence in G is then

2



Raiser, Frühwirth

L

m

��
(1)

K
loo

k
��

r //

(2)

R

n

��
G D

coo c′ //H

Fig. 1. Double-pushout approach

1 2 1 2 1 2

L

L
1 1 1

unlink:

twoloop:

K R

K R

Fig. 2. Graph transformation system for recognizing cyclic lists

replaced by the right-hand side graph R. The intermediate graph K is the context
graph containing those items in L that are preserved by the rule.

A graph production rule p can only be applied to a host graph G if the following
gluing condition is satisfied. The gluing condition [5] is based on the set of gluing
points GP = l(K), the set of identification points IP = {v ∈ VL | ∃w ∈ VL, w 6= v :
m(v) = m(w)} ∪ {e ∈ EL | ∃f ∈ EL, e 6= f : m(e) = m(f)}, and the set of dangling
points DP = {v ∈ VL | ∃e ∈ EG \m(EL) : srcG(e) = m(v) ∨ tgtG(e) = m(v)} and
it is defined as IP ∪DP ⊆ GP .

Example 2.1 Figure 2 shows two graph production rules which make up a graph
transformation system for detecting cyclic lists. The basic idea of the unlink rule is
to remove intermediate nodes of the list, while the twoloop rule replaces the cyclic
list consisting of two nodes by a single node with a loop. To detect if a host graph is
a cyclic list the GTS is applied to the host graph until exhaustion. The host graph
then is a cyclic list if and only if the final graph consists of a single node with a
loop [3].

Note that the example makes use of the type graph consisting only of a single
node with a loop. Furthermore, we use a shorthand notation that only shows the
morphisms l and r implicitly by the labels of the nodes which are mapped onto each
other. Nodes and edges which are removed or added in the graphs L or R are not
labeled, as there is no node or edge in K which is mapped to them.

In general, the DPO approach allows for the match morphism m to be non-
injective. For injective match morphisms the set IP of identification points is
guaranteed to be ∅. For the remainder of this work we only consider injec-
tive match morphisms, as non-injective ones can be simulated as follows: given
a rule p = (L l← K

r→ R) and a non-injective match morphism m it holds
∀v, w ∈ VL, v 6= w withm(v) = m(w) that the rule is only applicable, if v, w ∈ l(VK),
i.e. only nodes which are not removed by the rule application are allowed to be
matched non-injectively – otherwise IP 6⊆ GP . Therefore, it is possible to add an-
other rule p′ which is derived from p by merging the nodes v and w into a node vw
in all three graphs of the rule. Thus, the non-injective matching with m(v) = m(w)
can be simulated by injectively matching vw to m(vw) where m(vw) is the same node

3



Raiser, Frühwirth

in G as m(v). The same argumentation holds for edges, analogously. Therefore, we
can restrict ourselves to injective match morphisms by extending the set of rules
with new rules for all possible merges of nodes and edges in the graph K. This
simplifies the generic gluing condition to DP ⊆ GP .

In Sect. 5 we also require the following definition of a track morphism. Intu-
itively, the track morphism is defined for a node or edge, if it is not removed by the
rule application.

Definition 2.2 [Track Morphism] Given G =⇒ H the track morphism trG⇒H :
G→ H is the partial graph morphism defined by

trG⇒H(x) =
{
c′(c−1(x)) if x ∈ c(D),
undefined otherwise.

Here c : D → G and c′ : D → H are the morphisms in the lower row of the
pushout (1) in Fig. 1 and c−1 : c(D)→ D maps each item c(x) to x.

The track morphism of a derivation ∆ : G0 ⇒∗ Gn is defined by tr∆ = idG0 if
n = 0 and tr∆ = trG1⇒∗Gn ◦ trG0⇒G1 otherwise, where idG0 is the identity morphism
on G0.

2.2 Constraint Handling Rules (CHR)

This section presents the syntax and operational semantics of constraint handling
rules [6]. Constraints are first-order predicates which we separate into built-in con-
straints and user-defined constraints. Built-in constraints are provided by the con-
straint solver while user-defined constraints are defined by a CHR program. In this
work we consider a subset of CHR where Simplification rules are of the form

Rulename @ H1, . . . ,Hi ⇔ B1, . . . , Bk

where Rulename is an optional unique identifier of a rule, the head H =
H1, . . . ,Hi is a non-empty conjunction of user-defined constraints, and the body
B = B1, . . . , Bk is a conjunction of built-in and user-defined constraints. Note that
we make sloppy use of the terms conjunction, sequence, and multiset with respect
to H1, . . . ,Hi and B1, . . . , Bk.

The operational semantics is based on an underlying constraint theory CT for the
built-in constraints and a state, which is a tuple 〈G,C,V〉 where G is a goal store,
i.e. a multiset of user-defined constraints, C is a conjunction of built-in constraints,
and V is the set of global variables-of-interest [6].

A simplification rule of the form r @ H ⇔ B is applicable to a state 〈E∧G,C,V〉
if CT |= ∀(C → ∃x(H = E)) where x are the variables in H and = is syntactic
equality. We then define the following state transition for its application: 〈E ∧
G,C,V〉 7→r 〈Bu ∧ G, (H = E) ∧ C ∧ Bb,V〉 where B = Bu ∪ Bb with Bu being
user-defined and Bb being built-in constraints. We use 7→ when the applied rule is
not of interest, and as usual, 7→∗ denotes the reflexive-transitive closure of the 7→
relation.

Given a simplification rule p @ H ⇔ B and a state S = 〈E ∪G,C,V〉 such that
p is applicable to S we define for the involved match η(p, S) = (E,C ∧ (H = E)).

4



Raiser, Frühwirth

When comparing different states for confluence we make use of an equivalence
relation ≡ on CHR states [6]. This equivalence accounts for different syntactical
representations, including renaming of local variables, equality substitutions, and
logically equivalent built-in stores.

Example 2.3 The following two rules are part of a CHR handler for the boolean
and constraint. The and constraint is ternary here with the meaning that
and(X,Y, Z) holds iff X ∧ Y = Z.

r1 @ and(X,X,Z) ⇔ Z = X

r2 @ and(X,Y, 1) ⇔ X = 1, Y = 1
For a CHR program consisting of these two rules we can consider an initial

state 〈and(0, 0, N) ∪ and(A,B,C), C = 1, {N,A,B,C}〉 as input, resulting in the
following computation. The underlined constraints are matched to one of the rule
heads and removed by the rule application.
〈and(0, 0, N) ∪ and(A,B,C), C = 1, {N,A,B,C}〉

7→r1 〈and(A,B,C), C = 1 ∧ (X = 0 ∧ Z = N ∧ Z = X), {N,A,B,C}〉
7→r2 〈∅, C = 1 ∧ (X = 0 ∧ Z = N ∧ Z = X) ∧ (X ′ = A ∧ Y ′ = B ∧ C = 1 ∧X ′ =
1 ∧ Y ′ = 1), {N,A,B,C}〉

As this example shows the built-in store can include redundant information when
the above transition definition is applied directly. CHR implementations simplify
the built-in store with respect to the variables of interest using the built-in solver for
the constraint theory CT . This yields the following simplification of the final state
above: 〈∅, N = 0 ∧ A = 1 ∧ B = 1 ∧ C = 1, {N,A,B,C}〉. This state is equivalent
to the final state above, i.e. the two states are contained in the ≡ relation.

Example 2.4 An important property of the equivalence relation ≡ between CHR
states is equivalence modulo renaming of local variables. In this work we make use
of this property to deal with graph isomorphism in CHR. Without going into details
on the encoding of graphs in CHR yet, consider the following states σ1, σ2, and σ3:
σ1 = 〈node(N, 1) ∪ node(M, 1) ∪ edge(E,D,N,M),>, {N}〉
σ2 = 〈node(N, 1) ∪ node(M ′, 1) ∪ edge(E′, D′, N,M ′),>, {N}〉
σ3 = 〈node(N ′, 1) ∪ node(N, 1) ∪ edge(Ê, D̂,N ′, N),>, {N}〉

The variable N is a global variable in all these states and the remaining variables
are local. Therefore, σ1 ≡ σ2 as they differ only by renaming of local variables. This
is similar to considering isomorphism between two graphs, each consisting of two
nodes connected by an edge. However, in CHR we can also consider these graphs
in a different way, as it holds that σ3 6≡ σ1 although the graph described by σ3 is
an isomorphic graph. This is due to the global variable N occurring as a source
of the edge in σ1, but as a target in σ3. This distinction is the basis of our strong
joinability analysis.

3 Representation of Graphs in CHR

In order to embed a GTS in CHR, we have to encode its graph production rules
as CHR rules and provide a conjunction of goal constraints corresponding to the
host graph. To this end, we provide a correspondence between graphs and their
representation by CHR constraints given by the constructions in Sect. 3.1. Sec-

5



Raiser, Frühwirth

tion 3.2 presents the encoding of the rules of the GTS for recognizing cyclic lists
and a complete example derivation.

3.1 CHR Encoding of a GTS

For encoding a GTS in CHR we first determine the constraints needed for encoding
the rules and host graph. At this point we require the GTS to be typed, so we
can directly infer the necessary constraints from the corresponding type graph as
explained in Def. 3.1. Note that this is not a restriction though, as every untyped
graph can be typed over the type graph consisting of a single node with a loop.

Definition 3.1 [Type Graph Encoding] For a type graph TG we define the set C of
required constraints to encode graphs typed over TG as the minimal set including
v/2 ∈ C for v ∈ VTG and e/4 ∈ C for e ∈ ETG.

We assume all nodes and edges of the type graph TG to be uniquely labeled
such that the introduced constraints have unique names as well. Note that when
annotating host graphs with these labels they can occur multiple times, i.e. their
uniqueness is restricted to the type graph only.

Definition 3.2 [Typed Graph Encoding] For a typed graph G based on a type
graph TG the set of constraints encoding G is defined differently for host and rule
graphs. We define the following mappings for the encoding for an infinite set of
variables VARS:

• [typeG(x)] denotes the corresponding constraint name for encoding a node or edge
of the given type.

• var : G → VARS, x 7→ Xx such that Xx is a unique variable associated to x, i.e.
var is injective for the set of all graph nodes and edges.

• dvar : G→ VARS, x 7→ Xx such that Xx is a unique variable associated to x, i.e.
dvar is injective for the set of all graph nodes and edges.

Using these mappings we define the following encoding of graphs:

chrG(host, x) =
{

[typeG(x)](var(x), degG(x)) if x ∈ VG
[typeG(x)](var(x), del, var(src(x)), var(tgt(x))) if x ∈ EG

chrG(keep, x) =
{

[typeG(x)](var(x), dvar(x)) if x ∈ VG
[typeG(x)](var(x), dvar(x), var(src(x)), var(tgt(x))) if x ∈ EG

We use the notations chr(host, G) = {chrG(host, x) | x ∈ G} and
chr(keep, G) = {chrG(keep, x) | x ∈ G}. Furthermore, we omit the index G if
the context is clear. Edges e encoded with chr(host, e), such that the second argu-
ment of the constraint is del are called deletion edges. If the encoding of the edge
as chr(keep, e) uses dvar(e) instead, we call dvar(e) the deletion variable. Similarly,
dvar(v) for a node v is called the degree variable.

Section 4 discusses the importance of deletion and degree variables with respect
to the encoded GTS. Intuitively, nodes and edges using these cannot be removed by

6



Raiser, Frühwirth

a rule application. These nodes and edges prove to be vital for the strong joinability
analysis presented in Sect. 5.

Example 3.3 [cont] For our example of the GTS for recognizing cyclic lists every
node in the typed graph has the same type, just like every edge has the same type.
Based on this we need the following constraints: node /2, edge /4

The host graph G that contains a cyclic list consisting of exactly two nodes is
encoded in chr(host, G) as follows:

node(N1, 2),node(N2, 2), edge(E1, del, N1, N2), edge(E2, del, N2, N1)
The same graph G occurring as a rule graph is encoded in chr(keep, G) as

follows:
node(N1, D1), node(N2, D2), edge(E1, F1, N1, N2), edge(E2, F2, N2, N1).

We can now encode a complete graph production rule based on these definitions:

Definition 3.4 [GTS Rule in CHR] For a graph production rule p = (L l← K
r→

R) from a GTS we define ρ(p) = (CL, CR) with

• CL = {chr(keep, x) | x ∈ K} ∪ {chr(host, x) | x ∈ L \K}
• CR = {chr(host, x) | x ∈ R \K} ∪{chr(keep, e) | e ∈ EK}
∪{chr(keep, v′), var(v) = var(v′),dvar(v′) = dvar(v)−degL(v)+ degR(v) | v ∈
VK}

The rule p is then encoded in CHR using ρ(p) = (CL, CR) and in abuse of
notation we use ρ(p) for the CHR rule p@ CL ⇔ CR as well as for the tuple (CL, CR).

Example 3.5 [cont.]As an example, consider the second rule from our example
GTS, which reduces two cyclic nodes to a single node with a loop. Its encoding as
a CHR simplification rule is given below:
twoloop @ node(N1, D1),node(N2, 2), edge(E1, del, N1, N2), edge(E2, del, N2, N1)

⇔
node(N ′1, D

′
1), N ′1 = N1, D

′
1 = D1−2+2, edge(E3, del, N1, N1)

It is also possible to simplify such rules resulting in the following rule:
twoloop @ node(N1, D1),node(N2, 2), edge(E1, del, N1, N2), edge(E2, del, N2, N1)

⇔
node(N1, D1), edge(E3, del, N1, N1)

3.2 Example Computation

Soundness and completeness of the above encoding is shown in Sect. 4, however, to
ease the understanding, we present a complete computation here for our cyclic list
example. The following two rules are the CHR encoding of the rules from Fig. 2:

7



Raiser, Frühwirth

unlink @ node(N1, D1),node(N, 2),node(N2, D2),
edge(E1, del, N1, N), edge(E2, del, N,N2)
⇔
node(N ′1, D

′
1), N ′1 = N1, D

′
1 = D1+1−1,

node(N ′2, D
′
2), N ′2 = N2, D

′
2 = D2+1−1, edge(E, del, N1, N2)

twoloop @ node(N1, D1), node(N, 2), edge(E1, del, N1, N), edge(E2, del, N,N1)
⇔
node(N ′1, D

′
1), N ′1 = N1, D

′
1 = D1+2−2, edge(E, del, N1, N1)

The following state S is the encoding of a simple cycle consisting of three nodes.
To demonstrate strong computations the degree of the third node is left uninstan-
tiated:
S = 〈node(N1, 2) ∪ node(N2, 2) ∪ node(N3, D3) ∪ edge(E1, del, N1, N2)
∪ edge(E2, del, N2, N3) ∪ edge(E3, del, N3, N1),>, {N1, N2, N3, E1, E2, E3, D3}〉

Rule unlink can then be applied to the state S resulting in the following state S′:
S′ = 〈node(N1, 2) ∪ node(N3, D

′
3) ∪ edge(E, del, N1, N3) ∪ edge(E3, del, N3, N1),

D′3 = D3+1−1, {N1, N2, N3, E1, E2, E3, D3}〉
Finally, rule twoloop can be applied to S′ to remove node N1, resulting in the

following final state S′′:
S′′ = 〈node(N3, D

′′
3) ∪ edge(E′, del, N3, N3), D′3 = D3+1−1

∧D′′3 = D′3+2−2, {N1, N2, N3, E1, E2, E3, D3}〉
As can be seen from the state S′′ the built-in store contains a chain of degree

adjustments for nodes with initially uninstantiated degree and the node N3 remains
throughout the whole computation. These properties are investigated more thor-
oughly in Sect. 4.

4 Soundness and Completeness

In this section we show soundness and completeness of our encoding. Whereas
in [9] we showed soundness and completeness only for an encoding corresponding
to chr(host, G) we generalize these results in this work for an encoding based on
chr(keep, G). The following definitions specify these strictly more generic host
graph encodings, as well as some properties of our encoding used throughout the
remainder of this section.

We then discuss in Sect. 4.1 that CHR rule application respects the gluing
condition, before Sect. 4.2 shows that rule applicability of GTS and CHR coincide.
Finally, Sect. 4.3 combines these results to prove soundness and completeness.

In Sect. 3.2 the example shows that during the CHR computations we may en-
counter states which are not a direct encoding of a host graph. Nevertheless, these
states represent a graph G without explicitly specifying node degrees or del con-
stants. In order to uniformly argue on all of these states we introduce an invariant
on states which, intuitively, is satisfied when a state is an encoding of a graph.

Definition 4.1 [Invariant]An invariant I(S) is a property such that for all S0 and
S1, we have that if S0 → S1 (or S0 ≡ S1) and I(S0) holds then I(S1) holds.

Definition 4.2 [Graph Invariant]The graph invariant G(S) with S = 〈E,C,V〉

8



Raiser, Frühwirth

holds if there exist a graph G and a conjunction of equality constraints C ′, such
that 〈E,C ∧ C ′, ∅〉 ≡ 〈chr(host, G),>, ∅〉. For a state S for which G(S) holds with
a graph G we say S is a G-state based on G.

The fact, that G is an invariant is shown in Cor. 4.12 using other results from
this section which only make use of the definition of G, but do not require it to be
an invariant. The following definition allows us to argue directly on those nodes
and edges of a G-state based on G for which the state has uninstantiated degree or
deletion variables:

Definition 4.3 [Strong Nodes and Edges] For a CHR state S =
〈chr(keep, G), C,V〉 which is a G-state based on G we define the set of strong nodes
and edges as: S(S) = {v ∈ VG | dvar(v) = degG(v) 6∈ C} ∪ {e ∈ EG | dvar(e) =
del 6∈ C}

A consequence of the degree of a node not being specified as a constant is that
such a strong node cannot be deleted by any rule, just like strong edges cannot be
deleted either. This feature is used in Sect. 5 where overlaps of rules are investigated
and strong nodes and edges are responsible for enforcing strong joinability.

Next we show how a matching in one formalism can be transferred to the other
formalism:

Definition 4.4 [GTS Match Implies CHR Match] Let G be a host graph, p = (L l←
K

r→ R) a GTS rule, and m a match morphism such that G
p,m
=⇒ G′. Furthermore,

let S = 〈chr(keep, G), C,V〉 be a G-state based on G and ρ(p) = (CL, CR).
Then m implies the CHR match η(ρ(p), S) = (G̃, Eq) with
G̃ = {chr(keep, x) | x ∈ m(L)}
Eq = C ∧ {var(v) = var(m(v)) | v ∈ VL} ∧ {var(e) = var(m(e)) | e ∈ EL}
∧{dvar(v) = dvar(m(v)) | v ∈ VK} ∧ {dvar(e) = dvar(m(e)) | e ∈ EK}

Definition 4.5 [CHR Match Implies GTS Match] Let S = 〈chr(keep, G), C,V〉 be
a G-state based on G, ρ(p) be the CHR rule for p = (L l← K

r→ R) , and S 7→ S′

using rule ρ(p) with match η(p, S) = (G̃, Eq).
Then η(p, S) implies the injective GTS match morphism m : L→ G with
v 7→ v′ with var(v) = var(v′) ∈ Eq ∧ [typeL(v)](var(v′), ) ∈ G̃
e 7→ e′ with var(e) = var(e′) ∈ Eq ∧ [typeL(e)](var(e′), , , ) ∈ G̃

Note that the implied CHR match from Def 4.4 matches all constraints in the
head of the corresponding CHR rule and the implied match m from Def. 4.5 always
corresponds to an injective total graph morphism.

4.1 Gluing Condition

As applicability of GTS rules is tied to satisfaction of the gluing condition we first
ensure that our encoding given in Sect. 3 adheres to this restriction as well. It follows
from the definition of a dangling edge, that one exists if and only if DP 6⊆ GP .

Lemma 4.6 (Dangling Edges) If the application of rule p = (L l← K
r→ R) to

G using match m violates the gluing condition, such that DP 6⊆ GP , then the

9



Raiser, Frühwirth

corresponding CHR rule ρ(p) = (CL, CR) is not applicable to a G-state based on G

using the match implied by Def. 4.4.

4.2 Applicability

Next we show that applicability of GTS rules and the corresponding rules encoded
in CHR coincides. The following two lemmata show that the implied matchings are
sufficient for the corresponding rule applicability:

Lemma 4.7 (GTS Rule Applicability) Let ρ(p) = (CL, CR) be applicable to a
G-state based on G then p = (L l← K

r→ R) is applicable to G using the implied
match morphism m from Def. 4.5.

Lemma 4.8 (Graph Rule Applicability) Let p = (L l← K
r→ R) , G

p,m
=⇒ G′,

and let S = 〈chr(keep, G), C,V〉 be a G-state based on G.
If ∀x ∈ L \K : m(x) 6∈ S(S), then ρ(p) = (CL, CR) is applicable to S using the

implied match η(p, S) = (G̃, Eq) from Def. 4.4.

With the above lemmata it can be shown that applicability directly coincides
with respect to states that fully encode a host graph:

Theorem 4.9 (Applicability For Host Graphs) A graph production rule p =
(L l← K

r→ R) is applicable to a typed host graph G if and only if ρ(p) is applicable
to S = 〈chr(host, G),>,V〉.

Proof. As G(S) holds S is a variant of a G-state based on G. The proof is then
immediate from the combination of Lemma 4.7 and Lemma 4.8. Note that for
Lemma 4.8 the additional demand on S(S) is satisfied, as using chr(host, G) implies
S(S) = ∅. 2

4.3 Soundness and Completeness

In order to argue on the relationship between computations in CHR and the corre-
sponding GTS derivations w.r.t. a defined track morphism we define strong deriva-
tions:

Definition 4.10 [Strong Derivation] A GTS derivation G
p,m
=⇒ G′ using p = (L l←

K
r→ R) is strong with respect to S ⊂ (VG ∪ EG) if ∀s ∈ S : s ∈ m(K) ∨ s 6∈ m(L).

Def. 4.10 implies that the track morphism is defined ∀x ∈ m(S). Together with
the soundness result below this allows us to consider strong derivations. The basic
notion behind these is that the initial state S contains only partial instantiations
of deletion and degree variables. Then all rule applications correspond to strong
derivations with respect to S(S), and hence, the track morphism is defined ∀x ∈
S(S) over all the involved rule applications, because the final state still contains all
constraints corresponding to nodes and edges in S(S).

Theorem 4.11 (Soundness) Let ρ(p) = (CL, CR) be applicable to S =
〈chr(keep, G), C,V〉 where G(S) holds with match η(p, S) = (G̃, Eq), such that
S 7→ S′.

10



Raiser, Frühwirth

Then p = (L l← K
r→ R) is applicable to G using the implied match mor-

phism m from Def. 4.5 such that G
p,m
=⇒ G′ is strong w.r.t. S(S). Furthermore,

S′ ≡ 〈chr(keep, G′), C ′,V〉 and G(S′) holds.

From this soundness result it follows directly that G is indeed an invariant:

Corollary 4.12 (G is an Invariant) For CHR programs consisting of rules en-
coding a GTS the graph invariant G is an invariant according to Definition 4.1.

Proof. This is a direct consequence of Thm. 4.11. 2

As uninstantiated degree and deletion variables inhibit the application of rules
that remove the corresponding nodes or edges we can only have completeness if the
removed elements are not among the set of strong nodes and edges. When con-
sidering a chr(host, G) encoding completeness is given as the following strongness
condition is always satisfied.

Theorem 4.13 (Completeness) Let p = (L l← K
r→ R) , G

p,m
=⇒ G′, and let

S = 〈chr(keep, G), C,V〉 be a G-state based on G.
If ∀x ∈ L \ K : m(x) 6∈ S(S), then ρ(p) = (CL, CR) is applicable to S using

the implied match η(p, S) from Def. 4.4. Furthermore, for S 7→ S′ using this match
S′ ≡ 〈chr(keep, G′), C ′,V〉 and G(S′) holds.

Analogously to before, when working on a chr(host, G)-based encoding, i.e. an
encoding without variable degrees or deletion variables, Thm. 4.11 and Thm. 4.13
yield full soundness and completeness as S(S) = ∅ for such a state S.

5 Confluence

Both graph transformation systems and constraint handling rules provide the notion
of a confluence property. This property guarantees that any derivation made for
an initial state results in the same final state no matter which applicable rules are
applied. This section introduces the necessary definitions used for GTS and CHR
confluence before comparing the two notions. It is shown how automatic observable
confluence checking in CHR can be reused to yield a decidable sufficient criterion
for confluence of a GTS encoded in CHR.

Note that for the remainder of this section a CHR program always assumes a
program consisting only of rules encoding a GTS as explained above. Furthermore,
all CHR programs, and therefore graph transformation systems, are assumed to be
terminating.

5.1 Preliminaries

Definition 5.1 [GTS Confluence]A GTS is called confluent if, for all typed graph
transformations G ∗=⇒ H1 and G

∗=⇒ H2, there is a typed graph X together with
typed graph transformations H1

∗=⇒ X and H2
∗=⇒ X. Local confluence means

that this property holds for all pairs of direct typed graph transformations G⇒ H1

and G⇒ H2 [5].

11



Raiser, Frühwirth

Newman’s general result for rewriting systems implies that it is sufficient to
consider local confluence for terminating graph transformation systems. To verify
local confluence we particularly need to study critical pairs and their joinability,
according to the following definition based on [5,8].

Definition 5.2 [Joinability of Critical GTS Pair] Let r1 = (L1
l← K1

r→ R1), r2 =
(L2

l← K2
r→ R2) be two GTS rules. A pair P1

r1,m1⇐= G
r2,m2=⇒ P2 of direct typed graph

transformations is called a critical GTS pair if it is parallel dependent, and minimal
in the sense that the pair (m1,m2) of matches m1 : L1 → G and m2 : L2 → G is
jointly surjective.

A pair P1
r1,m1⇐= G

r2,m2=⇒ P2 of direct typed graph transformations is called parallel
independent if m1(L1) ∩m2(L2) ⊆ m1(K1) ∩m2(K2), otherwise it is called parallel
dependent.

A critical GTS pair P1
r1,m1⇐= G

r2,m2=⇒ P2 is called joinable if there exists a typed
graph X together with typed graph transformations P1

∗=⇒ X1 ' X2
∗⇐= P2. It is

strongly joinable if there is an isomorphism f : X1 → X2 such that for each node v,
for which trG⇒P1(v) and trG⇒P2(v) are defined, the following holds:

(i) trG⇒P1⇒X1(v) and trG⇒P2⇒X2(v) are defined and

(ii) fV (trG⇒P1⇒X1(v)) = trG⇒P2⇒X2(v)

A similar notion of confluence has been developed for CHR [6]:

Definition 5.3 [CHR Confluence] A CHR program is called confluent if for all
states S, S1, and S2: If S 7→∗ S1 and S 7→∗ S2, then S1 and S2 are joinable. Two
states S1 and S2 are called joinable if there exist states T1 ≡ T2 such that S1 7→∗ T1

and S2 7→∗ T2.

Analogous to a GTS, the confluence property for terminating CHR programs is
determined by local confluence which can be checked through critical pairs:

Definition 5.4 [Joinability of Critical CHR Pair] Let r1 be a simplification rule
and r2 be a (not necessarily different) rule whose variables have been renamed apart.
Let Hi]Ai be the head, Gi be the guard, and Bi be the body of rule ri(i = 1, 2), then
an overlap σCP of r1 and r2 is σCP = 〈H1∪A1∪H2, (A1 = A2)∧G1∧G2,V〉, provided
A1 and A2 are non-empty conjunctions, V = vars(H1∪A1∪H2∪A2∪G1∪G2) and
CT |= ∃((A1 = A2) ∧G1 ∧G2).

Let S1 = 〈B1 ∪ H2, (A1 = A2) ∧ G1 ∧ G2,V〉 and S2 = 〈B2 ∪ H1, (A1 = A2) ∧
G1 ∧ G2,V〉. Then the tuple CP = (S1, S2) is a critical CHR pair of r1 and r2. A
critical CHR pair (S1, S2) is joinable if S1 and S2 are joinable.

5.2 Critical Pair Properties

After defining the different notions of confluence we now further investigate the
difference between critical GTS pairs and critical CHR pairs for CHR programs
encoding a GTS. The following lemma shows that there exists a corresponding
CHR overlap for each critical GTS pair. Therefore, by examining the overlaps and
using the previous soundness result we can transfer joinability results to the critical
GTS pair.

12



Raiser, Frühwirth

Lemma 5.5 (Overlap for Critical GTS Pair) If P1
r1,m1⇐= G

r2,m2=⇒ P2 is a crit-
ical GTS pair, then there exists an overlap σCP of ρ(r1) = (C1

L, C
1
R) and ρ(r2) =

(C2
L, C

2
R) which is a G-state based on G and a critical CHR pair (S1, S2) such that

S1 is a G-state based on P1 and S2 is a G-state based on P2.

If we try to directly transfer the confluence property of a GTS to the corre-
sponding CHR program, we cannot succeed however, as in general there are too
many critical CHR pairs that could cause the CHR program to be non-confluent.
The following example provides a rule, which only has one critical GTS pair, but
for which the corresponding CHR rule has three critical CHR pairs.

Example 5.6 Consider a graph production rule for removing a loop from a node
and its corresponding CHR rule:

R@ node(N,D), edge(E, del, N,N)⇔ node(N,D′), D′ = D − 2
For investigating confluence one must overlap this rule with itself which yields

the following three CHR overlap states:

(i) 〈node(N,D) ∪ edge(E, del, N,N) ∪ edge(E′, del, N ′, N ′), N = N ′,V〉
(ii) 〈node(N,D) ∪ node(N ′, D′) ∪ edge(E, del, N,N), N = N ′,V〉
(iii) 〈node(N,D) ∪ edge(E, del, N,N),>,V〉

State 1 is not critical, because the corresponding pair of graph transformations
is parallel independent, and hence, directly joinable by applying the rule again.
State 2 is an invalid state as it has multiple encodings of the same node and state 3
is the encoding of the corresponding critical pair for the graph production rule.

As we want to rule out invalid states, we use the following notion of observable
confluence presented in [4]. It is based on restricting confluence investigations to
states that satisfy an invariant. Based on these invariants, observable confluence
(or I-confluence) is defined as follows:

Definition 5.7 [Observable Confluence] A CHR program P is I-confluent with
respect to invariant I if the following holds for all states S0, S1, and S2 where I(S0)
holds: If S0 →∗ S1 and S0 →∗ S2 then S1 and S2 are joinable.

In order to use the graph invariant G for the notion of observable confluence,
we have to investigate the properties of this invariant. We introduce the following
definitions from [4]. As overlap states themselves may not satisfy the invariant we
have to examine all possible extensions that satisfy it [4].

Definition 5.8 [Extension, Valid Extension] A state σ = 〈G,B,V〉 can be extended
by another state σe = 〈Ge, Be,Ve〉 as follows σ ⊕ σe = 〈G ] Ge, B ∧ Be,Ve〉. We
say that σe is an extension of σ. A valid extension σe = 〈Ge, Be,Ve〉 of a state σ =
〈G,B,V〉 is an extension such that v ∈ vars(G∪B)∧v 6∈ V ⇒ v 6∈ vars(Ge∪Be∪Ve).

To minimize the number of extensions that have to be investigated only minimal
extensions w.r.t. a partial order ≺σ on extensions [4] are considered. MIe (σ) denotes
the set of these minimal extensions of a state σ and is used in the following decision
criterion of I-local-confluence.

Note that for any extension σe = 〈Ge, Be,Ve〉 of a state σ = 〈G,B,V〉 there

13



Raiser, Frühwirth

exists a valid extension σ∅ = 〈∅,>,V〉 that is smaller than σe w.r.t. the partial
order on extensions. This results in MIe (σ) = {σ∅} iff I(σ) holds.

Lemma 5.9 (Deciding I-Local-Confluence [4]) Given that ≺σCP is well-
founded for all overlaps CP, then: P is I-local-confluent iff for all critical pairs
CP = (σ1, σ2) with overlap σCP , and for all σe ∈ MIe (σCP), we have that
(σ1 ⊕ σe, σ2 ⊕ σe) is joinable.

Although, in our programs built-in constraints + and − occur, we can consider
≺σCP well-founded, as σ∅ is always smaller than any other extension. The following
discussion shows that either MGe (σCP) = {σ∅} or ΣGe (σCP) = MGe (σCP) = ∅. This
means, that for all elements σe ∈ ΣGe (σCP) we have σ∅ �σCP σe, and hence, ≺σCP is
well-founded. Whether σ∅ is the minimal element depends solely on G(σCP) holding
as the following lemma shows.

Lemma 5.10 (No Minimal Elements) If G(σCP) is violated for an overlap σCP
then no extension σe exists such that G(σCP ⊕ σe) is satisfied, i.e. ΣGe (σCP) =
MGe (σCP) = ∅.

Combining these two results yields the criterion in Cor. 5.11 for deciding G-
local-confluence. Note that this decision criterion is essentially the same criterion
as used for traditional local confluence, except that the invariant G restricts the set
of investigated overlaps.

Corollary 5.11 (Deciding G-Local-Confluence) P is G-local-confluent if and
only if for all critical pairs CP = (σ1, σ2) with overlap σCP , for which G(σCP) holds,
CP is joinable.

Proof. This follows from the combination of Lemma 5.9, Lemma 5.10 and the
insight that σ∅ is the minimal extension in the case of G(σCP) holding. 2

Next we transfer the joinability of critical CHR pairs to strong joinability in
GTS:

Lemma 5.12 (G-Confluence Implies Strong Joinability) If the CHR pro-
gram for a terminating GTS is G-confluent, then all critical GTS pairs are strongly
joinable.

Proof. Let P1
r1,m1⇐= G

r2,m2=⇒ P2 be a critical GTS pair. Let ri = (Li ← Ki → Ri)
and ρ(ri) = (CiL, C

i
R) for i = 1, 2.

By Lemma 5.5 there exists an overlap σCP which is a G-state based on G. As the
critical pair (S1, S2) created by the overlap σCP is joinable we have the computations
σCP 7→ S1 7→∗ T1 and σCP 7→ S2 7→∗ T2 with T1 ≡ T2. From Thm. 4.11 we know
that there exist corresponding GTS transformations G

r1,m1=⇒ P1 =⇒∗ X1 ' X2
∗ ⇐=

P2
r2,m2⇐= G. The isomorphism between X1 and X2 follows from T1 ≡ T2. Hence, the

critical GTS pair is joinable.
To see that it is strongly joinable consider the set S(σCP). Every node v for

which trG⇒P1(v) and trG⇒P2(v) are defined is a node which is not deleted by either
r1 or r2. As m1 and m2 are jointly surjective w.l.o.g. there exists a node v′ ∈ VL1

of rule r1 with m(v′) = v. As the node is not removed we know v′ ∈ VK1, and

14



Raiser, Frühwirth

therefore, [typeK1
(v′)](var(v′), dvar(v′)) ∈ C1

L. Either the node is not part of the
overlap, or if it is overlapped with a node v′′ ∈ VL2 such that m(v′) = m(v′′), then
we also know that v′′ ∈ VK2 due to the defined track morphism. Therefore, we always
have the node constraint [typeK1

(v′)](var(v),dvar(v)) ∈ σCP and v ∈ S(σCP). As
this node cannot be removed during the transformation a variant of this constraint
with adjusted degree is also present in T1 and T2. These two variant constraints are
uniquely determined, as var(v) ∈ V, and hence, they both have to use var(v) for the
node identifier variable. This means we still have to show for such a node v that
the two conditions from Def. 5.2 are satisfied:

(i) trG⇒P1⇒X1(v) and trG⇒P2⇒X2(v) are defined:
By Thm. 4.11 we know that the GTS transformations are strong w.r.t. S(σCP).
As v ∈ S(σCP) this implies v ∈ m(K)∨ v 6∈ m(L) for each of the applied rules,
i.e. the node remains during the transformation and hence the track morphisms
are defined as in Def. 2.2.

(ii) fV (trG⇒P1⇒X1(v)) = trG⇒P2⇒X2(v):
An isomorphism f ′ between T1 and T2 exists, because T1 ≡ T2. Consider the
constraints in T1 and T2 which are the encoding of node v in σCP and let them
use the degree variables dvar(v1) and dvar(v2) (with the corresponding chain of
constraints dvar(vi) = dvar(v′i)−n′+m′ = . . . = dvar(v)−n+m for i = 1, 2 that
have been accumulated during the computation). Then there exist corresponding
nodes trG⇒P1⇒X1(v) = v1 ∈ VX1 and trG⇒P2⇒X2(v) = v2 ∈ VX2 and the
isomorphism f ′ between T1 and T2, which equalizes dvar(v1) and dvar(v2),
implies an isomorphism f with fV (v1) = v2.

2

Finally, this gives the following connection of confluence between both systems:

Theorem 5.13 (G-Confluence Implies GTS Confluence) A terminating
GTS is confluent if the corresponding CHR program is G-confluent.

Proof. By Lemma 5.12 all critical GTS pairs are strongly joinable. Hence, the
GTS is locally confluent and as it is terminating it is also confluent [5]. 2

In practical terms Theorem 5.13 effectively means that the automatic confluence
check for terminating CHR programs [2,6] can be reused to prove confluence of a
terminating GTS encoded as a CHR program. Due to the earlier results presented
in this section we can apply the standard confluence checker only to those overlaps
satisfying the invariant G. The possible causes for an overlap to not satisfy G are
duplicate node constraints or inconsistent degrees which can easily be checked. If all
critical CHR pairs stemming from these overlaps are joinable we know by Cor. 5.11
that the CHR program is G-confluent, and hence by Thm. 5.13, that the GTS is
confluent. As no modification is needed for the confluence checker itself this means
that by a simple restriction of inputs to the confluence checker we can decide G-
confluence and in turn get a sufficient criterion for GTS confluence for free.

15



Raiser, Frühwirth

6 Conclusion

In [9] we have shown that constraint handling rules (CHR) provide an elegant way
for embedding graph transformation systems (GTS). The resulting rules are concise
and directly related to the corresponding graph production rules. We presented a
generalization of this encoding. It allows to model strong derivations that are used
to analyze strong joinability.

The combination of our work with the research on observable confluence [4]
resulted in a direct application of the CHR confluence check to decide G-confluence.
Invalid overlaps introduced by the CHR encoding of a GTS can elegantly be handled
by considering G-confluence which reduces the confluence analysis to the essential
overlaps that yield strong joinability of critical GTS pairs.

The connection between CHR and GTS provides room for further research.
This work only considers typed graphs, but could be extendend to support typed
attributed graphs as well. As our generalized encoding allows computations on
partially defined graphs this allows considering derivations as being applicable to
the corresponding set of fully defined graphs.

Furthermore, it seems possible to transfer other results from CHR to GTS and
vice versa. The approaches used for termination analysis of CHR [7] and GTS
[5] seem to be distinct, such that both may profit from applying the approaches
from the other formalism. Similarly, CHR provides a strong result on operational
equivalence [1] that may provide a decidable criterion for equivalence of embedded
graph transformation systems.

References

[1] Abdennadher, S. and T. Frühwirth, Operational equivalence of CHR programs and constraints, in:
J. Jaffar, editor, Principles and Practice of Constraint Programming, CP 1999, Lecture Notes in
Computer Science 1713 (1999), pp. 43–57.

[2] Abdennadher, S., T. Frühwirth and H. Meuss, Confluence and semantics of constraint simplification
rules, Constraints 4 (1999), pp. 133–165.

[3] Bakewell, A., D. Plump and C. Runciman, Specifying pointer structures by graph reduction., in:
J. L. Pfaltz, M. Nagl and B. Böhlen, editors, Applications of Graph Transformations with Industrial
Relevance, Second International Workshop, AGTIVE 2003, Revised Selected and Invited Papers, Lecture
Notes in Computer Science 3062 (2003), pp. 30–44.

[4] Duck, G. J., P. J. Stuckey and M. Sulzmann, Observable confluence for constraint handling rules, in:
V. Dahl and I. Niemelä, editors, Logic Programming, 23rd International Conference, ICLP 2007, Lecture
Notes in Computer Science 4670 (2007), pp. 224–239.

[5] Ehrig, H., K. Ehrig, U. Prange and G. Taentzer, “Fundamentals of Algebraic Graph Transformation,”
Springer-Verlag, 2006.

[6] Frühwirth, T., “Constraint Handling Rules,” Cambridge University Press, 2009, to appear.

[7] Pilozzi, P. and D. De Schreye, Termination analysis of CHR revisited, in: T. Schrijvers, F. Raiser and
T. Frühwirth, editors, Constraint Handling Rules, 5th Workshop, CHR 2008, Hagenberg, Austria, 2008,
pp. 35–50.

[8] Plump, D., Confluence of graph transformation revisited, in: A. Middeldorp, V. van Oostrom, F. van
Raamsdonk and R. C. de Vrijer, editors, Processes, Terms and Cycles, Lecture Notes in Computer
Science 3838 (2005), pp. 280–308.

[9] Raiser, F., Graph Transformation Systems in CHR, in: V. Dahl and I. Niemelä, editors, Logic
Programming, 23rd International Conference, ICLP 2007, Lecture Notes in Computer Science 4670
(2007), pp. 240–254.

16



Raiser, Frühwirth

A Proofs

Lemma A.1 (Match Graph Morphism) Let S = 〈chr(keep, G), C,V〉 be a G-
state based on G, ρ(p) be the CHR rule for p = (L l← K

r→ R) , and S 7→ S′ using
rule ρ(p) with match η(p, S) = (G̃, Eq). Then the implied match m from Def. 4.5
is an injective total graph morphism.

Proof.

Let m be defined as in Def. 4.5. As every node constraint in CL is matched
for the CHR rule to be applied, we know that there is the corresponding constraint
[typeL(v)](var(v′), ) ∈ G̃. As it is matched to CL the corresponding constraint in
the head is set equal to it, hence, var(v) = var(v′) ∈ Eq, respectively m(v) = v′.
Analogously, m is also defined for all edges in EL.

Furthermore, m is a graph morphism, as all encoded nodes and edges originate
from graphs with correct type morphisms. Due to the multiset semantics of CHR
every node and edge in CL is matched to a different constraint in G̃, which ensures
injectivity of m. 2

Lemma A.2 (Matched Constraints) Let G be a host graph, p = (L l← K
r→ R)

a GTS rule, and m a match morphism such that G
p,m
=⇒ G′. Furthermore, let

S = 〈chr(keep, G), C,V〉 be a G-state based on G and ρ(p) = (CL, CR) satisfying
∀x ∈ L\K : m(x) 6∈ S(S). Then the implied CHR match η(p, S) = (G̃, Eq) matches
all constraints in CL.

Proof.

Let η(p, S) be defined as in Def. 4.4. We know that CL contains exactly one
constraint for each node and each edge in L. For every node v ∈ VL we have
a node m(v) ∈ G, the constraint [typeL(v)](var(v), ) ∈ CL, and the constraint
[typeL(v)](var(m(v)),dvar(m(v))) ∈ G̃. var(v) = var(m(v)) ∈ Eq by definition, and
then there are two cases: if v ∈ VL \ VK we have [typeL(v)](var(v), degL(v)) ∈ CL
and dvar(m(v)) = degG(m(v)) ∈ C ⊆ Eq. As the application of the GTS rule
satisfies the gluing condition it follows that degL(v) = degG(m(v)). If v ∈ VK we
have [typeL(v)](var(v),dvar(v)) ∈ CL and dvar(v) = dvar(m(v)) ∈ Eq, hence, the
two constraints can be matched. Analogously, the corresponding edge constraints
match as well. 2

Proof. [of Lemma 4.6]
As DP 6⊆ GP there exists a dangling edge. Let e ∈ EG be a dangling edge

which is adjacent to vG ∈ VG, such that for a v ∈ VL \ VK : m(v) = vG. Due
to Definition 3.4, [typeL(v)](var(v), k) ∈ CL with k = degL(v). This means that
there are k edges adjacent to the node v in the rule graph L. When matching this
rule graph injectively to the host graph G we need to identify each of these edges
with an edge in EG adjacent to m(v) = vG. By the definition of a dangling edge,
the edge e is not among those k edges as e ∈ EG \ m(EL). Therefore, we have
degG(vG) = l > k.

The constraint corresponding to vG in the goal state is [typeG(vG)](var(vG), l),
or [typeG(vG)](var(vG), dvar(vG)) depending on whether the degree variable is in-
stantiated in C or not. In the first case a match is impossible due to l 6= k and in

17



Raiser, Frühwirth

the latter case a match is impossible, as a variable cannot be matched to a constant
in CHR. Therefore, the rule is not applicable as the gluing condition is violated. 2

Proof. [of Lemma 4.7]
Let m be the match implied by Def. 4.5. For p to be applicable to G the gluing

condition has to be satisfied. As m is injective this is equivalent to showing the non-
existence of a dangling edge. However, if the application of p to G using match m

violates the gluing condition, Lemma 4.6 states that ρ(p) will not be applicable using
this match, which is a contradiction. Therefore, the gluing condition is satisfied, no
dangling edge exists, and p is applicable to G. 2

Proof. [of Lemma 4.8]
For the CHR rule to be applicable we have to show that C implies a possible

match. We show this individually for nodes and edges:
Consider a node v ∈ VK . Then there is a constraint [typeL(v)](var(v),dvar(v)) ∈

CL. As m is a graph morphism it holds that typeL(v) = typeG(m(v)). We also
have [typeG(m(v))](var(m(v)),dvar(m(v))) ∈ G̃, var(v) = var(m(v)) ∈ Eq, and
dvar(v) = dvar(m(v)) ∈ Eq. The node identifier variables var(v) and var(m(v))
can always be matched as requested by Eq. If dvar(m(v)) = degG(m(v)) ∈ C a
match is possible with dvar(v) = degG(m(v)). Otherwise, the match only requires
dvar(v) = dvar(m(v)) which is also possible.

Next consider a node v ∈ VL \ VK . Then there is a constraint
[typeL(v)](var(v), degL(v)) ∈ CL. Again typeL(v) = typeG(m(v)) holds and we
have [typeG(m(v))](var(m(v)),dvar(m(v))) ∈ G̃. As the applicability of m ensures
the gluing condition is satsified we know that degL(v) = degG(m(v)) and due to
dvar(m(v)) = degG(m(v)) ∈ C the match is possible by identifying the node iden-
tifier variables var(v) and var(m(v)).

For an edge e ∈ EL we have [typeL(srcL(e))](var(srcL(e)), ),
[typeL(tgtL(e))](var(tgtL(e)), ), and [typeL(e)](var(e), , var(src(e)), var(tgt(e))) ∈
CL. Due to m being a graph morphism, there exist constraints
[typeL(srcL(e))](var(m(src(e))), ) ∈ G̃ and [typeL(tgtL(e))](var(m(tgt(e))), ) ∈ G̃.
By the previous argumentation on nodes the matchings var(src(e)) = var(m(src(e)))
and var(tgt(e)) = var(m(tgt(e))) are possible.

There further exists an edge m(e) ∈ G with
srcG(m(e)) = m(srcL(e)), tgtG(m(e)) = m(tgtL(e)) that is represented by
[typeL(e)](var(m(e)),dvar(m(e)), var(m(src(e))), var(m(tgt(e)))) ∈ G̃ which can be
matched to the corresponding constraint in CL with var(e) = var(m(e)), except for
the second argument which needs another case distinction:

If e ∈ EK , then [typeL(e)]( ,dvar(e), , ) ∈ CL. This can either be matched by
dvar(e) = del or dvar(e) = dvar(m(e)) depending on whether dvar(m(e)) = del ∈
C or not. If e ∈ EL \EK , then [typeL(e)]( , del, , ) ∈ CL. As dvar(m(e)) = del ∈
C in this case the match is possible again. 2

Proof. [of Thm. 4.11] Let S = 〈chr(keep, G), C,V〉 be a G-state based on G and
let ρ(p) = (CL, CR) be applicable to S with match η(p, S) = (G̃, Eq), such that
S 7→ S′. We have to show that G(S′) holds, i.e. that S′ ≡ 〈chr(keep, G′), C ′,V〉 for
the graph G′ with G

p,m
=⇒ G′ using the implied match m from Def. 4.5.

18



Raiser, Frühwirth

To show that S′ is the encoding of the graph G′ we show that its construction
is analogous to the GTS construction of G′:
First the nodes and edges in m(L) get deleted from G, but nodes and edges in m(K)
are kept. For a node v ∈ VK we have chr(keep, v) ∈ CL and chr(keep, v′), var(v) =
var(v′) ∈ CR. Hence, the node constraint corresponding to m(v) is removed and a
variant of it introduced by the rule application. For a node v ∈ VL \ VK instead
chr(host, v) ∈ CL and no variant of it is in CR which results in the removal of that
node. Analogously, edges in m(L) \m(K) are removed, while edges in m(K) are
kept.

Next for the GTS transformation we add nodes and edges in R\K. As for every
x ∈ R \K we have chr(host, x) ∈ CR the corresponding constraints are also added
to S′, taking into account the matching Eq. As the nodes and edges not matched to
L remain unchanged in both systems all nodes and edges of G′ are also represented
in S′. Furthermore, no additional constraints are in S′, as all constraints in CR are
directly modeling nodes or edges from R.

It is now shown, that S′ contains the constraints in chr(keep, G′). For
G(S′) to hold we require a graph G′ and equality constraints C ′′, such that
〈chr(keep, G′), C ′∧C ′′, ∅〉 ≡ 〈chr(host, G′),>, ∅〉. The corresponding graph is cleary
the graph G′ from the GTS rule application, so it remains to investigate if C ′ can be
extended with equality constraints C ′′ such that G(S′) holds. chr(host, G′) instan-
tiates all deletion variables with del. This instantiation could already be present in
C ′ (due to the edge being introduced through CR, or due to already being present
in C), or we can include it in C ′′.

As all node degrees are instantiated to constants in chr(host, G′) there are two
cases: either the corresponding degree variable is instantiated in S′ as well, or it
can easily be instantiated to the correct degree through an equality constraint in
C ′′. There are three cases for how the degree variable can be instantiated in S′

depending on whether the node corresponds to a node v ∈ K, v ∈ R \K, or v 6∈ R.
For the last case the node was unaffected by the transformation and as G(S) holds
its degree can be instantiated correctly via C ′′. If v ∈ R\K then chr(host, v) ∈ CR,
i.e. the corresponding node constraint in S′ contains the correct degree degR(v) in
C. Finally, if v ∈ K, then dvar(v) = dvar(v′) − n + m ∈ CR with v′ ∈ VG. Before
the application of p there are n + c edges adjacent to v′ and after its application
m + c edges, hence, the degree of v′ changes by m + c − (n + c) = m − n which is
correctly represented in dvar(v). Therefore, the instantiation needs to instantiate
dvar(v′) = degG(v′) which is possible, as G(S) holds.

To prove the strongness consider a v ∈ S(S) with v ∈ VG. If v 6∈ m(L) the node is
unaffected by the transformation, hence, we assume v ∈ m(L). Let v ∈ m(L)\m(K),
then there exists a node v′ ∈ VL \ VK with m(v′) = v with var(v) = var(v′) ∈ Eq
and [typeL(v′)](var(v′), degL(v′)) ∈ CL. However, as dvar(v) = degG(v) 6∈ C this is
a contradiction to the CHR rule application using this match. Therefore, v ∈ m(K)
or v 6∈ m(L). Analogously, for an edge e ∈ S(S) the corresponding head constraint
could not be matched, unless e ∈ m(K) or e 6∈ m(L). 2

Proof. [of Thm. 4.13] Let p = (L l← K
r→ R) , G

p,m
=⇒ G′, and let S =

〈chr(keep, G), C,V〉 be a G-state based on G. Further let ∀x ∈ L\K : m(x) 6∈ S(S).

19



Raiser, Frühwirth

Then the applicability of ρ(p) = (CL, CR) to S using the implied η(p, S) from
Def. 4.4 follows from Lemma 4.8.

Therefore, it remains to be shown that the result of applying ρ(p) to S is a
variant of 〈chr(keep, G′), C ′,V〉. This is done analogously to the proof of Thm. 4.13
by comparing the GTS construction of G′ and the operational semantics of the CHR
rule application. Similarly, C ′ = C ∧ C ′′ where C ′′ consists of equality constraints
grounding the corresponding degree and edge deletion variables. Note that we
assume that the resulting graph G′ uses the same nodes as the graph G for nodes
which have not been removed instead of explicitly dealing with an isomorphic graph
and performing an additional variable renaming.

Finally, the satisfaction of G(S′) follows from Cor. 4.12. 2

Proof. [of Lemma 5.5]
Let M = m1(L1) ∩m2(L2). We then define the following sets of constraints:

H1 = {chr(keep, x) | x ∈ L1 ∧m1(x) 6∈M}
H2 = {chr(keep, x) | x ∈ L2 ∧m2(x) 6∈M}
A1 = {chr(keep, x) | x ∈ L1 ∧m1(x) ∈M}
A2 = {chr(keep, x) | x ∈ L2 ∧m2(x) ∈M}
C1 = {var(v) = degL1

(v) | v ∈ VL1 \ VK1} ∪ {dvar(e) = del | e ∈ EL1 \ EK1}
C2 = {var(v) = degL2

(v) | v ∈ VL2 \ VK2} ∪ {dvar(e) = del | e ∈ EL2 \ EL2}

Let V = vars(H1 ∪ H2 ∪ A1 ∪ A2}. By combining H1 and C1 to a state S =
〈H1, C1,V〉 we know that S ≡ S′ = 〈{chr(keep, x) | x ∈ K1 ∧ m1(x) 6∈
M} ∪ {chr(host, x) | x ∈ L1 \ K1 ∧ m1(x) 6∈ M},>,V〉 = 〈H ′1,>,V〉. Simi-
larly, 〈A1, C1,V〉 ≡ 〈{chr(keep, x) | x ∈ K1 ∧ m1(x) ∈ M} ∪ {chr(host, x) | x ∈
L1 \K1 ∧m1(x) ∈M},>,V〉 = 〈A′1,>,V〉. Analogously, we define H ′2 and A′2.

It follows from the definition of CL, that H ′1 ∪A′1 matches C1
L and analogously,

H ′2 ∪ A′2 matches C2
L. As M 6= ∅ A′1 and A′2 are non-empty. To investigate if

CT |= ∃(A1 = A2) we take a closer look at the equality constraints imposed by
A1 = A2:

(A1 = A2) = {var(v1) = var(v2) | v1 ∈ VL1 ∧ v2 ∈ VL2 ,m1(v1) = m2(v2)}
∪ {dvar(v1) = dvar(v2) | v1 ∈ VK1 ∧ v2 ∈ VK2 ∧m1(v1) = m2(v2)}
∪ {dvar(v1) = degL2

(v2) | v1 ∈ VK1 ∧ v2 ∈ VL2 \ VK2 ∧m1(v1) = m2(v2)}
∪ {dvar(v2) = degL1

(v1) | v1 ∈ VL1 \ VK1 ∧ v2 ∈ VK2 ∧m1(v1) = m2(v2)}
∪ {var(e1) = var(e2) | e1 ∈ EK1 ∧ e2 ∈ EK2 ∧m1(e1) = m2(e2)}
∪ {var(e) = del | e ∈ EK1 ∧ e′ ∈ EL2 \ EK2 ∧m1(e) = m2(e′)}
∪ {var(e) = del | e ∈ EK2 ∧ e′ ∈ EL1 \ EK1 ∧m1(e′) = m2(e)}

The above equality constraints can easily be satisfied and hence the only re-
maining problematic case is when two nodes constraints with constant degrees are
overlapped. However, the degree of m1(v1) = m2(v2) equals the degree of v1 and
the degree of v2 due to the gluing condition being satisfied, such that this case can
only occur with equal constant degrees.

20



Raiser, Frühwirth

Hence, σCP = 〈H ′1 ∪A′1 ∪H ′2, A′1 = A′2,V〉 is an overlap of ρ(r1) and ρ(r2) with
the critical CHR pair (〈C1

R ∪H ′2, A′1 = A′2,V〉, 〈C2
R ∪H ′1, A′1 = A′2,V〉. 2

Proof. [of Lemma 5.10]
We proof this by a structural analysis of the overlap which gives the different

possibilities for G(σCP) to be violated. W.l.o.g. the overlap stems from the two
rules ρ(r1) = (C1

L, C
1
R) and ρ(r2) = (C2

L, C
2
R) with the corresponding rule graphs

L1, L2,K1,K2, R1, and R2.
First consider the case of a node being overlapped. Let

[typeL1
(v1)](var(v1), D1) ∈ C1

L and [typeL2
(v2)](var(v2), D2) ∈ C2

L be overlapped
with typeL1

(v1) = typeL2
(v2). The equality constraint var(v1) = var(v2) ∈ σCP

resembles the merging of the two graph nodes v1 and v2. However, for the degree
equalities different possibilities exist:

• D1 and D2 are constants: Then D1 = D2 = degL1
(v1) = degL2

(v2) = k,
as the overlap is impossible otherwise. Then σCP contains only one con-
straint [typeL1

(v1)](var(v1),degL1
(v1)). As in L1 and L2 the nodes each have

k adjacent edges, all constraints corresponding to adjacent edges in both rule
graphs have to be contained in the overlap as well. If at least one such constraint
is not part of the overlap then σCP contains more than k constraints correspond-
ing to edges adjacent to v1 = v2. As the degree for the node is a constant it
cannot be changed by any extension and the additional edge constraints cannot
be removed either. Therefore, no extension can correct the degree inconsistency
in such a case.

• D1 and D2 are variable: In this case the overlap is possible without any problems.
Depending on the number of overlapped adjacent edge constraints the degree
variables can always be instantiated with the correct degree, thus satisfying the
invariant G.

• w.l.o.g. D1 = k and D2 is a variable: this means D2 = k ∈ σCP , therefore, all
edge constraints of C2

L of edges adjacent to v2 have to be overlapped with edge
constraints of C1

L corresponding to edges adjacent to v1. If there is such an edge
constraint from C2

L which is not contained in the overlap, then σCP contains more
than k edge constraints corresponding to edges adjacent to v1. Again the degree
of v1 is specified as the constant k in σCP , and thus, an extension cannot correct
this degree inconsistency. If however, all these edge constraints are contained
in the overlap G is satisified again, as there are exactly k such edge constraints
coming from C1

L.

Finally, consider an edge being overlapped:
Let [typeL1

](var(e1), F1, var(src(e1)), var(tgt(e1))) ∈ C1
L and

[typeL2
](var(e2), F2, var(src(e2)), var(tgt(e2))) ∈ C2

L, then
var(e1) = var(e2) ∧ var(src(e1)) = var(src(e2)) ∧ var(tgt(e1)) ∧ var(tgt(e2)) ∈
σCP . By Def. 3.4 we have constraints [typeL1

(src(e1))](var(src(e1)), ) ∈ C1
L and

[typeL2
(src(e2))](var(src(e2)), ) ∈ C2

L. If these two constraints are not part of the
overlap the corresponding equality constraint in σCP results in a single graph node
being represented by two constraints. This is a violation of G, as chr(host, G) con-
tains exactly one constraint for each node. This violation cannot be fixed by an

21



Raiser, Frühwirth

extension, as the conflicting additional node constraint cannot be removed. Anal-
ogously, the two node constraints corresponding to tgt(e1) and tgt(e2) have to be
contained in the overlap.

Similarly to node degrees, there are three distinct cases for the deletion variables
F1 and F2 of the overlapped edges. However, these cannot cause any violation of G,
as they either remain variable, or are instantiated to the only possible value del,
both of which is sufficient for satisfying G.

Therefore, an overlap σCP which violates the invariant G has to violate it due to
one of the above reasons for which it cannot be extended by an extension σe such
that G(σCP ⊕ σe) is satisfied. 2

22


	Introduction
	Preliminaries
	Graph Transformation System (GTS)
	Constraint Handling Rules (CHR)

	Representation of Graphs in CHR
	CHR Encoding of a GTS
	Example Computation

	Soundness and Completeness
	Gluing Condition
	Applicability
	Soundness and Completeness

	Confluence
	Preliminaries
	Critical Pair Properties

	Conclusion
	References
	Proofs

