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Abstract

Graph transformation systems (GTS) and constraint handling rules (CHR) are non-

deterministic rule-based state transition systems. CHR is well known for its powerful

confluence and program equivalence analyses, for which we provide the basis in this work to

apply them to GTS. We give a sound and complete embedding of GTS in CHR, investigate

confluence of an embedded GTS and provide a program equivalence analysis for GTS via

the embedding. The results confirm the suitability of CHR-based program analyses for other

formalisms embedded in CHR.
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1 Introduction

Graph transformation systems (GTS) are used to describe complex structures

and systems in a concise, readable and easily understandable way. They have

applications ranging from implementations of programming languages over model

transformations to graph-based models of computation (Blostein et al . 1995; Ehrig

et al . 2006). GTS see widespread use in many applications (Ehrig et al . 2006), and

hence performing program analysis on them is becoming more important.

Constraint handling rules (CHR) (Frühwirth 2009) on the other side allows

for rapid prototyping of constraint-based algorithms. Besides constraint reasoning,

CHR has been used for such diverse applications as type system design for Haskell

(Sulzmann et al . 2006), time tabling (Abdennadher and Marte 2000), computational

linguistics (Dahl and Maharshak 2009), chip card verification (Pretschner et al .

2004), computational biology (Bavarian and Dahl 2006) and decision support for

cancer diagnosis (Barranco-Mendoza 2005). Essentially, CHR performs guarded

multiset rewriting, extended by a complete and decidable constraint theory. A

specific strength of CHR is the wide array of available program analyses. Other

formalisms have been embedded in CHR in order to compare and mutually benefit

from different analysis approaches (cf. Section 6). In this work, we extend this line

of research by embedding GTS in CHR and comparing confluence and operational

equivalence analysis methods.
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Fig. 1. Confluence property for rules r1 and r2.

Fig. 2. Operational equivalence for programs P1 and P2.

First, we embed GTS in CHR (Raiser 2007) in Section 3. This encoding is intuitive

and offers a clear one-to-one correspondence between GTS and CHR rules. Our

proposed encoding characterizes a subset of CHR that closely corresponds to GTS,

and furthermore we prove its soundness and completeness. Then, we show that

CHR is capable of expressing infinite numbers of graphs, which we will call partial

graphs, and their transformations in a finite way, thus facilitating program analysis.

In non-deterministic rule-based systems, like GTS and CHR, two or more rules

can be applied to a state σ. An interesting property in that respect is the notion of

confluence, which holds, if for any case in which two rules are applicable there exist

computations yielding the same, or equivalent, results. This situation is displayed in

Figure 1, which due to its shape is referred to as the diamond property.

For terminating CHR programs a decidable automatic confluence test exists, based

on research in the area of term-rewriting (Baader and Nipkow 1998). However as

shown in Plump (2005), an analogous approach fails for GTS. Therefore, confluence

analysis is an important example for a program analysis of a GTS with methods

from CHR. In Section 4 we show that the confluence test for CHR coincides with the

strongest known sufficient criterion for confluence of a GTS (Raiser and Frühwirth

2009b).

In Section 5 we examine operational equivalence (Abdennadher and Frühwirth

1999) as a second example of a program analysis that is available for CHR and

can be applied to GTS. Operational equivalence, intuitively, decides if two programs

can compute equivalent results when given the same input, as shown in Figure 2.

The diamond shape in Figure 2 emphasizes the similarity to confluence, which is

also found in the respective program analysis methods. We introduce operational

equivalence in the GTS context in analogy to CHR (Raiser and Frühwirth 2009a).

Then, we prove that deciding operational equivalence of a CHR program, derived

from a GTS, is a sufficient criterion for operational equivalence of the corresponding

GTS.
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An interesting application of this result is the possibility to detect and remove

redundant rules using the test for operational equivalence. Redundant rules of GTS

have been formally defined in Kreowski and Valiente (2000); however, to the best

of our knowledge, this is the first available algorithm for detecting them in a GTS.

This work presents a unified treatment and considerable extension of previously

published works (Raiser 2007, 2009; Raiser et al. 2009; Raiser and Frühwirth

2009a, 2009b). In Raiser et al. (2009) a formal treatment of CHR state equivalence

is provided and, derived from that, a simplified formulation of the operational

semantics of CHR. This novel formulation allows us to unify our previous works

while simplifying presentation and formal proofs significantly. Furthermore, the state

equivalence definition from Raiser et al. (2009) is the basis for new insights on CHR

states that encode graphs.

2 Preliminaries

In this section, we introduce the required formalisms for GTS in Section 2.1 and

CHR in Section 2.2.

2.1 Graph transformation system

The following definitions for graphs and GTS have been adapted from Ehrig et al.

(2006).

Definition 2.1 (graph)

A graph G = (V , E, src, tgt) consists of a finite set V of nodes, a finite set E of

edges and two functions src, tgt : E → V specifying source and target of an edge,

respectively. A type graph TG is a graph with unique labels for all nodes and edges.

For simplicity, we avoid an additional label function in favour of identifying

variable names with labels. For multiple graphs we refer to the node set V of a

graph G as VG and analogously for edge sets and the src, tgt functions. We further

define the degree of a node as deg : V → �, v �→ #{e ∈ E | src(e) = v} + #{e ∈
E | tgt(e) = v}. As there may be multiple graphs containing the same node, we use

degG(v) to specify the degree of a node v with respect to the graph G. When the

context graph is clear the subscript is omitted.

In this work, we consider typed graphs, i.e. graphs in which nodes and edges are

assigned types from a type graph.

Definition 2.2 (graph morphism, typed graph)

Given graphs G1, G2 with Gi = (Vi, Ei, srci, tgti) for i = 1, 2 a graph morphism f :

G1 → G2, f = (fV , fE) consists of two functions fV : V1 → V2 and fE : E1 → E2 that

preserve the source target functions, i.e. fV ◦ src1 = src2 ◦fE and fV ◦ tgt1 = tgt2 ◦fE .

A graph morphism f is injective (or surjective) if both functions fV , fE are injective

(or surjective, respectively); f is called isomorphic if it is bijective. f is called an

inclusion if fV (V1) ⊆ V1 and fE(E1) ⊆ E1. When the context is clear, we simply refer

to graph morphisms as morphisms.
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Fig. 3. Example of a type graph and typed graph.

A typed graph G is a tuple (V , E, src, tgt, type, TG), where (V , E, src, tgt) is a graph,

TG is a type graph and type is a graph morphism with type = (typeV , typeE) and

typeV : V → TGV , typeE : E → TGE .

For a typed graph G = (V , E, src, tgt, type, TG) we define a subgraph H as a typed

graph (V ′, E ′, src′, tgt′, type′, TG) such that V ′ ⊆ V ∧ E ′ ⊆ E ∧ src′ = src |E ′ ∧ tgt′ =

tgt |E ′ ∧ type′V = typeV |V ′ ∧ type′E = typeE |E ′ with ∀e ∈ E ′. src′(e) ∈ V ′∧tgt′(e) ∈ V ′.

Example 2.1

Figure 3 shows an example for a type graph and a corresponding typed graph.

The type graph at the top defines two types of nodes: processes and resources.

Furthermore, it defines use edges going from processes to resources. The typed

graph is one possible instance of a graph modelling processes and resources being

used by those processes. The type graph morphism is represented by the dotted

lines, showing how the nodes are typed as processes or resources, respectively.

Definition 2.3 (GTS, rule)

A graph transformation system is a tuple consisting of a type graph and a set of

graph production rules. A graph production rule – simply called rule if the context is

clear – is a tuple p = (L
l← K

r→ R) of graphs L,K and R with inclusion morphisms

l : K → L and r : K → R.

We distinguish two kinds of typed graphs: rule graphs and host graphs. Rule

graphs are the graphs L,K, R of a graph production rule p and host graphs are

graphs to which the graph production rules are applied. This work is based on the

double-pushout approach (DPO) as defined in Ehrig et al. (2006). Most notably,

we require a match morphism m : L → G to apply a rule p to a typed host graph

G. The transformation yielding the typed graph H is written as G
p,m
=⇒ H . H is

given mathematically by constructing D as shown in Figure 4, such that (1) and (2)

are pushouts in the category of typed graphs. Intuitively, the graph L is matched

to a subgraph of G and its occurrence in G is then replaced by the graph R.

The intermediate graph K is the context graph, which contains the nodes and
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Fig. 4. Double-pushout approach.
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Fig. 5. Graph transformation system for recognizing cyclic lists.

edges in both L and R, i.e. all nodes and edges matched to K remain during the

transformation.

A graph production rule p can only be applied to a host graph G if the following

gluing condition is satisfied. In fact, Ehrig et al. (2006) shows that D and the

pushout (1) exist if and only if this gluing condition is satisfied. It is based on the

following three sets (Ehrig et al . 2006):

• gluing points: GP = l(K)

• identification points: IP = {v ∈ VL | ∃w ∈ VL, w �= v : m(v) = m(w)} ∪ {e ∈
EL | ∃f ∈ EL, e �= f : m(e) = m(f)}

• dangling points: DP = {v ∈ VL | ∃e ∈ EG \ m(EL) : srcG(e) = m(v) ∨ tgtG(e) =

m(v)}.

Definition 2.4 (gluing condition)

The gluing condition is defined as IP ∪ DP ⊆ GP .

If the gluing condition is satisfied for a rule p = (L
l← K

r→ R) the application of

the rule consists of transforming G into H by performing the construction described

above. An implementation-oriented interpretation of a rule application is that all

nodes and edges in m(L\l(K)) are removed from G to create D = (G\m(L))∪m(l(K))

and then all nodes and edges in n(R \ r(K)) are added to create H = D∪n(R \ r(K)).

Example 2.2

Figure 5 shows two graph production rules in a shorthand notation that defines the

morphisms l and r implicitly by the labels of the nodes which are mapped onto

each other. The resulting graph transformation system is implicitly defined over the

simple type graph consisting only of a single node with a loop, depicted in Figure 6.

The two rules constitute a graph transformation system for detecting cyclic lists.

The basic idea of the unlink rule is to remove intermediate nodes of the list, while

the twoloop rule replaces the cyclic list consisting of two nodes by a single node with
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Fig. 6. Simple type graph consisting of a node and edge.

a loop. Note that application of the twoloop rule requires that no additional edges

are adjacent to the removed node. Such dangling edges are discussed in more detail

in Section 3.

To detect if a host graph is a cyclic list, the GTS is applied to the host graph

until exhaustion, i.e. until no rule is applicable anymore. The initial host graph then

is a cyclic list if and only if the final graph consists of a single node with a loop (cf.

Bakewell et al. 2003).

In general, the match morphism m can be non-injective. However, for the

remainder of this work we only consider injective match morphisms, which have

the advantage that the set IP of identification points is guaranteed to be ∅.
Furthermore, non-injective match morphisms can be simulated as follows: given

a rule p = (L
l← K

r→ R) and a non-injective match morphism m it holds

∀v, w ∈ VL, v �= w with m(v) = m(w) that the rule is only applicable, if v, w ∈ l(VK ),

i.e. only nodes which are not removed by the rule application are allowed to be

matched non-injectively – otherwise IP �⊆ GP . Therefore, it is possible to add

another rule p′ which is derived from p by merging the nodes v and w into a node

vw in all three graphs of the rule. Thus, the non-injective matching with m(v) = m(w)

can be simulated by injectively matching vw to m(vw), where m(vw) is the same node

in G as m(v). The same argumentation holds for edges, analogously. Therefore, we

can restrict ourselves to injective match morphisms by extending the set of rules

with new rules for all possible merges of nodes and edges in the graph K . This

simplifies the generic gluing condition to DP ⊆ GP .

Finally, we require the following definition of the track morphism (Plump 1995).

Intuitively, the track morphism is defined for a node or edge, if it is not removed by

the rule application.

Definition 2.5 (track morphism)

Given G ⇒ H the track morphism trG⇒H : G → H is the partial graph morphism

defined by

trG⇒H (x) =

{
g(f−1(x)) if x ∈ f(D),

undefined otherwise.

Here f: D → G and g: D → H are the morphisms in the lower row of the pushout (1)

in Figure 4 and f−1 : f(D) → D maps each item f(x) to x.

The track morphism of a derivation Δ: G0 ⇒∗ Gn is defined by trΔ = idG0
if n = 0

and trΔ = trG1⇒∗Gn
◦ trG0⇒G1

otherwise, where idG0
is the identity morphism on G0.

2.2 Constraint handling rules

This section presents the syntax and operational semantics of CHR (Frühwirth 2009;

Sneyers et al . 2010). Constraints are first-order predicates which we separate into
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built-in constraints and user-defined constraints. Built-in constraints are provided by

the constraint solver while user-defined constraints are defined by a CHR program.

The notation c/n, where c is called the constraint symbol and n the arity, is used for

both types of constraints.

Its semantics is based on an underlying complete constraint theory CT on built-in

constraints for which satisfiability and entailment are decidable. In general, CHR

allows arbitrary constraint theories for CT, requiring only that it contains at least

Clark’s equality theory for syntactic equality. In addition to that, in this work we also

require CT to cover the elementary arithmetic operations + and −. Furthermore,

� denotes the built-in which is always true and ⊥ denotes false, respectively.

The survey (Sneyers et al . 2010) provides an overview over the different techniques

used in CHR implementations and the book (Frühwirth 2009) details the different

available operational semantics for CHR. In this work we abstract from specific

implementations and rely on the operational semantics given in Raiser et al. (2009),

which corresponds to the very abstract operational semantics in Frühwirth (2009).

CHR is a state transition system over the set of states given in the following

definition.

Definition 2.6 (CHR states)

A (CHR) state) is a tuple

〈�,�,�〉.
� is a multiset of user-defined constraints called the goal (or (user-defined )

constraint store), � is a conjunction of built-in constraints called the built-in

(constraint) store and � is the set of global variables.

In this work σ, τ, . . . denote CHR states and Σ denotes the set of all CHR states.

The following definition introduces the different types of variables we distinguish

for a given CHR state.

Definition 2.7 (Variable Types)

For the variables occurring in a state σ = 〈�,�,�〉 we distinguish three different

types:

(1) a variable v ∈ � is called a global variable,

(2) a variable v �∈ � is called a local variable,

(3) a variable v �∈ (� ∪ vars(�)) is called a strictly local variable.

The following equivalence relation ≡ between CHR states (Raiser et al . 2009) is

an important tool that facilitates a succinct definition of the operational semantics

of CHR and simplifies proofs.

Definition 2.8 (State Equivalence)

Equivalence between CHR states is the smallest equivalence relation ≡ over CHR

states that satisfies the following conditions:

(1) (Substitution)

〈�, x
.
= t ∧�,�〉 ≡ 〈�

[
x/t

]
, x

.
= t ∧�,�〉.
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(2) (Transformation of the Constraint Store) If CT |= ∃s̄.� ↔ ∃s̄′.�′, where s̄, s̄′

are the strictly local variables of �,�′, respectively, then:

〈�,�,�〉 ≡ 〈�,�′,�〉.

(3) (Omission of Non-Occurring Global Variables) If X is a variable that does not

occur in � or � then:

〈�,�, {X} ∪�〉 ≡ 〈�,�,�〉.

(4) (Equivalence of Failed States)

〈�,⊥,�〉 ≡ 〈�′,⊥,�〉.

The following lemma presents basic properties of this equivalence relation:

Lemma 1 (Properties of State Equivalence (Raiser et al. 2009))

The equivalence relation over CHR states, given in Definition 2.8, has the following

properties:

(1) (Renaming of Local Variables) Let x, y be variables such that x, y �∈ � and y

does not occur in � or �:

〈�,�,�〉 ≡ 〈�
[
x/y

]
,�

[
x/y

]
,�〉.

(2) (Partial Substitution) Let � [x � t] be a multiset, where some occurrences of x

are substituted with t:

〈�, x
.
= t ∧�,�〉 ≡ 〈� [x � t] , x .

= t ∧�,�〉.

(3) (Logical Equivalence) If

〈�,�,�〉 ≡ 〈�′,�′,�′〉,

then CT |= ∃ȳ.� ∧ � ↔ ∃ȳ′.�′ ∧ �′, where ȳ, ȳ′ are the local variables of

〈�,�,�〉, 〈�′,�′,�′〉, respectively.

Decidability of state equivalence is a result of the following theorem from Raiser

et al. (2009):

Theorem 2 (Criterion for ≡ (Raiser et al. 2009))

Let σ = 〈�,�,�〉, σ′ = 〈�′,�′,�〉 be CHR states with local variables ȳ, ȳ′ that have

been renamed apart.

σ ≡ σ′ iff CT |= ∀(� → ∃ȳ′.((� = �′) ∧�′)) ∧ ∀(�′ → ∃ȳ.((� = �′) ∧�)).

As CHR is a rule-based programming language we now introduce the different

types of possible CHR rules.

Definition 2.9 (CHR Rules, CHR Program)

For multisets H1, H2, Bc of user-defined constraints with H1, H2 �= ∅ and conjunctions

G,Bb of built-in constraints a CHR simpagation rule is of the form

H1\H2 ⇔ G | Bc, Bb.
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For the case H1 = ∅ we call the rule a simplification rule and denote it as

H2 ⇔ G | Bc, Bb,

and for the case H2 = ∅ we call the rule a propagation rule and denote it as

H1 ⇒ G | Bc, Bb.

If G = � it can be omitted together with the ‘ |′.
A CHR program is a set of CHR rules.

Next, we define the operational semantics of CHR by introducing its transition

relation � based on the formulation given in Raiser et al. (2009), which relies on

equivalence classes of CHR states. In the remainder of this work we take the liberty

of notationally identifying a CHR state σ with its equivalence class [σ]. Furthermore,

we simplify multiset expressions like {a} � {b} to a � b or a, b.

Definition 2.10 (Operational Semantics)

For a CHR program P we define the state transition system (Σ/≡,�) as follows.

The application of a rule r ∈ P assumes a copy of it that contains only fresh

variables.

r @ H1\H2 ⇔ G | Bc, Bb

[〈H1 �H2 ��, G ∧�,�〉] � [〈H1 � Bc ��, G ∧ Bb ∧�,�〉]

Simplification rules are only syntactically different, but operate as described by

Definition 2.10 with H1 = ∅, respectively. Note that propagation rules lead to trivial

non-termination in this formulation, however that is no problem here, because the

work at hand requires no propagation rules.

A rule r ∈ P is applicable to a state σ if and only if there exists a state τ such

that σ � τ. We say that a state σ is final if and only if there exists no state τ with

σ � τ. As usual, �∗ denotes the reflexive-transitive closure of �. When we want

to emphasize that a transition uses a specific rule r we denote this by �r . When

discussing multiple programs, �P denotes a transition using a rule of program P.

Example 2.3 (Example Computation)

In this comprehensive example, we present a complete computation in CHR. Readers

already familiar with CHR may want to skip this.

The following rule (Frühwirth 2009) is a program for computing the minimum of

a multiset of numbers:

min(N)\min(M) ⇔ N � M | �.

Intuitively, two min constraints are matched and the one with the larger number

is removed. We will now walk through the detailed computation of running the

following input σ on the above program, in order to determine the minimum of the

numbers 1, 3 and 4:

σ = 〈min(1) �min(3) �min(X), X = 4, {X}〉.
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First, we take a fresh copy of the rule as demanded by Definition 2.10:

min(N1)\min(M1) ⇔ N1 � M1 | �.

Next, we apply Definition 2.8 in order to show that σ is contained in the

equivalence class required for applying this rule (we use � = {X} here):

σ
CT≡ 〈min(1) �min(3) �min(X), N1 � M1 ∧X = 4 ∧N1 = 1 ∧M1 = 3,�〉

Subst≡ 〈min(N1) �min(M1) �min(X), N1 � M1 ∧X = 4 ∧N1 = 1 ∧M1 = 3,�〉
= 〈min(N1) �min(M1) ��, N1 � M1 ∧�,�〉.

Hence, all conditions for Definition 2.10 are satisfied, so we can apply the rule to

the equivalence class of σ, getting σ � τ, or more precisely, [σ] � [τ]:

σ � 〈min(N1) ��, N1 � M1 ∧ � ∧�,�〉
= 〈min(N1) �min(X), N1 � M1 ∧ � ∧X = 4 ∧N1 = 1 ∧M1 = 3,�〉

Subst≡ 〈min(1) �min(X), N1 � M1 ∧ � ∧X = 4 ∧N1 = 1 ∧M1 = 3,�〉
CT≡ 〈min(1) �min(X), X = 4,�〉 = τ.

Next, we repeat this procedure for another application of the above rule, based

on the following fresh copy:

min(N2)\min(M2) ⇔ N2 � M2 | �.

This results in the expected answer that 1 is the minimum of the numbers 1, 3

and 4:

τ
CT≡ 〈min(1) �min(X), N2 � M2 ∧N2 = 1 ∧M2 = X ∧X = 4,�〉

Subst≡ 〈min(N2) �min(M2), N2 � M2 ∧N2 = 1 ∧M2 = X ∧X = 4,�〉
� 〈min(N2), N2 � M2 ∧ � ∧N2 = 1 ∧M2 = X ∧X = 4,�〉

Subst≡ 〈min(1), N2 � M2 ∧ � ∧N2 = 1 ∧M2 = X ∧X = 4,�〉
CT≡ 〈min(1), X = 4,�〉.

We can also witness the difference between global and local variables in this

computation. While the variable X is no longer used in a CHR constraint in the

final state, we still have to keep track of the information X = 4, because it is a

global variable. The auxiliary variables N1,M1, . . . instead, are local when used in a

CHR constraint and strictly local, when only occurring in the built-in store. In the

latter case we may replace the built-in store by a logically equivalent representation

that removes the strictly local variables.

3 Embedding GTS in CHR

In this section we encode rules of a graph transformation system as CHR rules and

discuss how host graphs are encoded in CHR to work with these rules. Section 3.1

defines the necessary encoding and presents an example computation in CHR. We

then analyse formal properties of GTS embedded in CHR in Section 3.2. Finally,

Section 3.3 discusses the suitability of this encoding for program analysis and

variations of the encoding.
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In this work, we assume that the CHR programs resulting from encoding a GTS

are executed only with encodings of graphs. Naturally, we may provide the CHR

programs with completely different inputs or inconsistently encoded graphs. It is

clear that we cannot expect any meaningful results from such computations, hence,

for the remainder of this work we restrict all observations to programs and states

that correspond to GTS and graphs. We formalize this restriction in Section 3.2 by

means of an invariant. Therefore, on one hand any state that violates the invariant

will not be considered as input, and, on the other hand, any graph can be encoded

into a state that satisfies the invariant. We show in Section 3.2.2 that execution of

the encoded GTS in CHR for invariant-satisying states always leads to results that

also satisfy the invariant. In other words, when providing a graph as input to the

CHR program, the result will also be a graph, as is to be expected.

3.1 CHR encoding of a GTS

First, we determine the necessary constraint symbols for encoding rule and host

graphs. At this point we require the GTS to be typed, so this can be directly inferred

from the corresponding type graph as explained in Definition 3.1. Note that this is

not a restriction though, as every untyped graph can be typed over the type graph

consisting of a single node with a loop (cf. Figure 6).

Definition 3.1 (type graph encoding)

For a type graph TG we define the set C of required constraint symbols to encode

graphs typed over TG as the minimal set satisfying:

• If v ∈ VTG then v/2 ∈ C.

• If e ∈ ETG then e/3 ∈ C.

We assume that all constraints introduced by Definition 3.1 have unique names.

Furthermore, for graphs to be encoded with these constraints, we associate elements

of the set V of nodes with integer numbers or letters that can be used as arguments.

Definition 3.2 (typed graph encoding)

We define the following helpful mappings for an infinite set of variables VARS:

• typeG(x) denotes the corresponding constraint symbol for encoding a node or

edge of the given type.

• var : G → VARS, x �→ Xx such that Xx is a unique variable associated to x,

i.e. var is injective for X being the set of all graph nodes and edges.

• dvar : G → VARS, x �→ Xx such that Xx is a unique variable associated to

x, i.e. dvar is injective for X being the set of all graph nodes and edges and

different from var.

Using these mappings we define the following encoding of graphs:

chrG(E, x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

typeG(x)(var(x), degG(x)) if x ∈ VG ∧ E = ground,

typeG(x)(var(x), dvar(x)) if x ∈ VG ∧ E = keep,

typeG(x)(var(x), var(src(x)),

var(tgt(x))) if x ∈ EG.
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Fig. 7. Cyclic graph consisting of two nodes.

We use the notations chr(ground, G) = {chrG(ground, x) | x ∈ G} as well as

chr(keep, G) = {chrG(keep, x) | x ∈ G}. Furthermore, we omit the index G if the

context is clear. We call dvar(v) the degree variable for a node v.

A host graph G is encoded in CHR as 〈chr(ground, G),�,�〉, where � can be

chosen freely.

Example 3.1 (cont)

For our example of the GTS for recognizing cyclic lists we assume the type graph

in Figure 6. Based on this type graph we need the constraints node /2 and edge /3.

The host graph G given in Figure 7 that contains a cyclic list consisting of exactly

two nodes is encoded in chr(ground, G) as

node(N1, 2), node(N2, 2), edge(E1, N1, N2), edge(E2, N2, N1).

The same graph G encoded in chr(keep, G) has the following form:

node(N1, D1), node(N2, D2), edge(E1, N1, N2), edge(E2, N2, N1).

We can now encode a complete graph production rule based on these definitions:

Definition 3.3 (GTS rule in CHR)

For a graph production rule p = (L
l← K

r→ R) from a GTS we define �(p) =

(p @ CL ⇔ Cu
R, C

b
R) with

• CL = {chrL(keep, x) | x ∈ K} � {chrL(ground, x) | x ∈ L \K}
• Cu

R = {chrR(ground, x) | x ∈ R \K} � {chrR(keep, e) | e ∈ EK}
�{chrR(keep, v′) | v ∈ VK}

• Cb
R = {var(v) = var(v′) ∧ dvar(v′) = dvar(v)− degL(v)+ degR(v) | v ∈ VK}.

A CHR program that is created from a GTS according to the above definition,

will be referred to as a GTS–CHR program for the remainder of this work.

Example 3.2 (cont.)

As an example, consider the second rule from Example 2.2, which reduces two cyclic

nodes to a single node with a loop. Its encoding as a CHR simplification rule is

given below:

twoloop @ node(N1, D1) � node(N2, 2)�
edge(E1, N1, N2) � edge(E2, N2, N1)

⇔
node(N ′

1, D
′
1) � edge(E3, N1, N1), N

′
1 = N1 ∧ D′

1 = D1−2+2.

Note that it is also possible to simplify this encoding, as explained later in

Section 3.3.2.
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Fig. 8. Graph with a dangling edge if node 2 is removed by the twoloop rule.

When applying a GTS rule the gluing condition has to be satisfied. Due to our

restriction to injective match morphisms, the gluing condition is violated if there

exists x ∈ DP with x �∈ GP . Intuitively, when a node gets deleted by a rule, the

corresponding node in the host graph may have an edge adjacent to it which is not

explicitly given in the rule. In such a case, the remaining edge would be left dangling

as it is no longer adjacent to two nodes. Therefore, this situation has to be avoided

and before a rule is applied to a host graph, we first have to ensure that there are

no dangling edges according to the following definition:

Definition 3.4 (dangling edge)

A dangling edge is an edge e ∈ EG \ m(EL) such that there is a node v ∈ VL \ VK

with m(v) = src(e) ∨ m(v) = tgt(e).

Example 3.3 (cont.)

Consider the twoloop rule given in Example 3.2, along with the following encoded

host graph shown in Figure 8:

node(V1, 2), node(V2, 3), node(V3, 1),

edge(E1, V1, V2), edge(E2, V2, V1), edge(E3, V2, V3).

Applying the twoloop rule to this graph to remove the node V2 would leave the

edge E3 dangling. However, this is avoided as the encoding of the twoloop rule

contains the following constraint in its head: node(N2, 2). Hence, only a node with

a degree of exactly 2 can be removed by this rule. Nevertheless, the rule can be

applied with N2 = V1 as the node V1 has the required degree of 2.

3.1.1 Example computation

In this section we provide a complete computation for our cyclic list example

to demonstrate how our encoding works. The following two rules are the CHR

encoding of the rules in Figure 5:

unlink @ node(N1, D1) � node(N, 2) � node(N2, D2)�
edge(E1, N1, N) � edge(E2, N,N2)

⇔
node(N ′

1, D
′
1) � node(N ′

2, D
′
2) � edge(E,N1, N2),

N ′
1 = N1 ∧N ′

2 = N2 ∧ D′
1 = D1+1−1 ∧ D′

2 = D2+1−1

twoloop @ node(N1, D1) � node(N, 2)�
edge(E1, N1, N) � edge(E2, N,N1)

⇔
node(N ′

1, D
′
1) � edge(E,N1, N1),

N ′
1 = N1 ∧ D′

1 = D1+2−2.
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3

1 2

3

1

3

Fig. 9. Example computation.

The following state σ encodes a cycle consisting of three nodes. The following

computation is depicted in Figure 9. To demonstrate computations on partially

defined graphs, further discussed in Section 3.3, the degree of the third node is left

uninstantiated:

σ = 〈node(N1, 2) � node(N2, 2) � node(N3, D3) �
edge(E1, N1, N2) � edge(E2, N2, N3) � edge(E3, N3, N1),

�, {N1, N2, N3, E1, E2, E3, D3}〉.

Rule unlink is applied to state σ resulting in the state

〈node(N ′
1, D

′
1) � node(N ′

3, D
′
3) � edge(E,N1, N3) � edge(E3, N3, N1),

N ′
1 = N1 ∧ D′

1 = 2+1−1 ∧N ′
3 = N3 ∧ D′

3 = D3+1−1, {N1, N2, N3, E1, E2, E3, D3}〉,
which is equivalent to state σ′:

σ′ = 〈node(N1, 2) � node(N3, D3) � edge(E,N1, N3) � edge(E3, N3, N1),

�, {N1, N3, E3, D3}〉.
Finally, rule twoloop is applied to σ′ to remove node N1, resulting in σ′′:

σ′′ = 〈node(N3, D3) � edge(E ′, N3, N3),�, {N3, D3}〉.
As can be seen the built-in store may contain a chain of degree adjustments for

nodes with initially uninstantiated degree, although in this example it is not the case

as all degrees remain unchanged. The other interesting consequences of partially

uninstantiated encodings are investigated more thoroughly in Section 3.3.

3.2 Formal properties

This section examines formal properties of the encoding given in Section 3.1. First,

Section 3.2.1 analyses the special CHR states found when working with a GTS–

CHR program. Then we prove soundness and completeness of the encoding in

Section 3.2.2.

Our encoding is based on the assumption that the resulting CHR programs are

executed only for initial states that correspond to graphs. We are not interested in

executions for arbitrary CHR states.

3.2.1 States encoding graphs

In this section, we compare the different equivalence notions, i.e. graph isomorphism

and CHR state equivalence, and present a formal characterization of a CHR state σ

that is the encoding of a graph G.

In order to determine if a CHR state encodes a graph, we define a predicate

that holds if and only if this is the case. It is intuitively clear that starting with the

encoding of a graph and transforming it via a graph transformation rule yields the
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encoding of a graph again. Formally, this is an invariant according to the following

definition. The first appearance of invariants in CHR research is found in Lam and

Sulzmann (2006) in the context of agent programming.

Definition 3.5 (Invariant)

An invariant I is a predicate such that for all σ0 and σ1, we have that if σ0 � σ1

(or σ0 ≡ σ1) and I(σ0) then I(σ1).

The definition below introduces our desired property for CHR states. Note that it

is referred to as an invariant here, although we do not require it to be an invariant

throughout this section. In Section 3.2.2, more precisely Corollary 6, we will show

that it is indeed a proper invariant.

Definition 3.6 (Graph invariant)

Let σ = 〈�,�c ∧�a,�〉 be a state, where �c are constraints of the form X = c for

constants c and �a are constraints of the form X = Y +c1−c2 for constants c1, c2.

The graph invariant G holds for state σ if and only if there exists a graph G and

a conjunction B of equality constraints of the form X = c for a variable X and

constant c, such that

〈�,�c ∧�a ∧ B, ∅〉 ≡ 〈chr(ground, G),�, ∅〉

For a state σ for which G(σ) holds with a graph G we say σ is a G-state based on G.

Example 3.4

Consider again the final state σ′′ from the example computation in Section 3.1.1:

σ′′ = 〈node(N3, D3) � edge(E ′, N3, N3),�, {N3, D3}〉.

By using the equality constraint B = (D3 = 2) the resulting state for Definition 3.6

is equivalent to:

〈node(N3, 2) � edge(E ′, N3, N3),�, ∅〉.
Let G be the graph consisting of a node v with a loop, then chr(ground, G) =

node(Nv, 2) � edge(Ẽ, Nv, Nv). Therefore, the invariant G is satisfied for the above

state σ′′ as the corresponding states are equivalent by renaming of local variables.

This example further shows why the variable set � is disregarded for the two

states. The variable given by var for a node of the graph has to coincide with the

corresponding global variable for both states to be equivalent. Hence, for the above

graph with node v, knowledge of the state σ′′ would be necessary to determine that

var(v) = N3. Omitting global variables from both states, however, allows us to freely

map v to any variable through var(v).

Example 3.5

For the state σ = 〈chr(keep, G),�,�〉 there clearly exists such a graph G, for which

B simply assigns the corresponding degree variables. States may also be in-between

chr(ground, G) and chr(keep, G) in the sense that only some of the degree variables

are instantiated, resulting in a state σ′ = 〈chr(keep, G),�c,�〉 with �c being the

corresponding equality constraints. By instantiating the remaining degrees it is clear

that G(σ′) holds.
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Note that arithmetic built-in constraints, introduced by bodies of rules in order

to adjust a node’s degree, are covered by the above graph invariant definition: The

introduction of the corresponding degree equality constraint leads to a collapse of

the chain of arithmetic constraints. Hence, the concept of a G-state based on G also

applies to intermediate computation states, which gives rise to the following lemma.

Lemma 3 (Graph states)

Let G(σ) hold for a state σ, then there exists a graph G such that

σ ≡ 〈chr(keep, G),�c ∧�a,�〉

• �c is a conjunction of dvar(v) = degG(v) constraints

• �a is a conjunction of dvar(v′) = dvar(v)+c1−c2 constraints.

Proof

Let σ = 〈�,�c ∧�a,�〉, then by Definition 3.6 we have that 〈�,�c ∧�a ∧ B, ∅〉 ≡
〈chr(ground, G),�, ∅〉 for a graph G and X = k constraints B.

W.l.o.g. all identifier variables occurring in chr(ground, G) (and therefore in

chr(keep, G)) also occur in � as identifier variables. Due to the state equivalence the

difference between � and chr(keep, G) can then only consist in � specifying some

node degrees by constants (for degree variables we can again assume that they are

the same as in chr(keep, G)).

Let Θ be a conjunction of equality constraints of the form X = c for each degree

specified explicitly in �, using fresh variables for X. Interpreting Θ as a substitution,

replacing X with c for each of the equivalences, we have that

σ ≡ 〈chr(keep, G)Θ,�c ∧�a,�〉.

As all variables occurring in Θ are local, we get by Definition 2.8:

σ
CT≡ 〈chr(keep, G)Θ,�c ∧�a ∧Θ,�〉
Subst≡ 〈chr(keep, G),�c ∧�a ∧Θ,�〉
= 〈chr(keep, G),�′

c ∧�a,�〉. �

The reverse direction of Lemma 3 does not hold in general: The state σ = 〈∅, D =

0 ∧ X = 1 ∧ D = X+2−0, ∅〉 satisfies the conditions for an empty graph G, but of

course G(σ) does not hold, as 〈∅,⊥, ∅〉 �≡ 〈∅,�, ∅〉.
The following lemma presents an interesting fact of the correspondence between

state equivalence and graph isomorphism: equivalent CHR states encoding two

graphs imply that these graphs are isomorphic.

Lemma 4 (Equivalent G-states imply Graph Isomorphism)

Given a state σ1 = 〈chr(keep, G1),�1,�〉, a G-state based on G1, and a state

σ2 = 〈chr(keep, G2),�2,�〉, a G-state based on G2, then

σ1 ≡ σ2 ⇒ G1 � G2
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Proof

First, we note that �1,�2 consist only of degree equalities or adjustments. Therefore,

we consider the following states instead, which are already sufficient to imply the

isomorphism:

〈chr(keep, G1),�,�〉 ≡ 〈chr(keep, G2),�,�〉.
W.l.o.g. let the local variables occurring in the two states be disjoint (it is clear that

otherwise we can consider equivalent states that only differ by renaming of local

variables and that these states all provide corresponding graph isomorphisms).

Let ȳ1 and ȳ2 be the set of local variables of the two states. We can then apply

the criterion from Theorem 2 to get

CT |= ∃ȳ1.chr(keep, G1) = chr(keep, G2).

As there are only variable terms contained in this equivalence we have the following

conclusion, where c(̄t) is any constraint with argument terms, i.e. variables, t̄.

∃f : ȳ1 → ȳ2 with c(̄t) ∈ chr(keep, G1) → c(f(̄t)) ∈ chr(keep, G2).

We know that f is surjective (as the variables are disjoint and the above equality

demands that at least one variable from ȳ1 is mapped to each variable in ȳ2). A

consequence of this is that |ȳ1| � |ȳ2|.
Analogously, we get from CT |= ∃y2.chr(keep, G1) = chr(keep, G2) that |ȳ2| �

|ȳ1|, and hence, |ȳ1| = |ȳ2|. From this follows that f is also injective, and therefore,

bijective.

Next we realize that by the above equality, f has to map local variables

corresponding to node identifiers to local variables that also correspond to node

identifiers. Let ȳn1 ⊂ ȳ1, ȳn2 ⊂ ȳ2 be the local variables used for node identifiers,

then f′ : ȳn1 → ȳn2, y �→ f(y) is a well-defined and bijective function. We use this to

define the actual graph isomorphism function g : VG1
→ VG2

:

g(v) =

{
v if var(v) ∈ �,

v′ if var(v) ∈ ȳn1 and f′(var(v)) = var(v′),

g is well defined: for every node there is a corresponding node identifier variable

and it has to be either global or local. If it is local, then f′ has to map it to another

local variable, as otherwise the ≡ relation cannot hold. Furthermore, g is bijective

as well, because it is defined bijectively via f′ on local variables and the identity

function on global variables.

Finally, g is a graph isomorphism: By the above equality we have corresponding

pairs of edge constraints. For every edge adjacent to a node given by a global

variable, the corresponding edge has to be adjacent to the same node with the same

global variable in order to satisfy ≡. If the edge is adjacent to a node identified by

a local variable, then this variable is bijectively mapped to another local variable

and the above equality ensures that the corresponding edge is adjacent to the same

node as well. �

The reverse direction of Lemma 4 cannot hold in general: The encoding of the

graphs G1 and G2 are independent from determining the set � of global variables.
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Even a graph consisting of a single node only can be encoded in two ways, such

that the states are not equivalent:

〈node(N, 0),�, ∅〉 �≡ 〈node(N, 0),�, {N}〉.

As indicated in Section 3.1.1, states may contain node encodings with a variable

degree. As these states are fundamental for program analysis the following definition

characterizes the set of these nodes.

Definition 3.7 (Strong nodes)

For a CHR state σ ≡ 〈chr(keep, G),�,�〉 which is a G-state based on G we define

the set of strong nodes as

S(σ) = {v ∈ VG | dvar(v) = degG(v) �∈ �}.

The effect of strong nodes on computations and their use in program analysis is

discussed in detail in Section 3.3.

3.2.2 Soundness and completeness

In this section, we prove soundness and completeness of our embedding. That G
is an invariant for a GTS–CHR program and that termination of a GTS and its

GTS–CHR program coincide, are then derived as consequences of the main theorem

below.

Theorem 5 (Soundness and completeness)

Let σ ≡ 〈chr(keep, G),�,�〉 be a CHR state with G(σ) holding with graph G. Then

G
r,m

=⇒ H with {v ∈ VG | trG⇒H (v) defined} ⊇ S(σ)

if and only if

σ �r τ ≡ 〈chr(keep, H),�′,�〉 and G(τ) holds with graph H.

Proof

In order to shorten this proof we use k(G) and g(G) to denote chr(keep, G) and

chr(ground, G), respectively.

“=⇒”:

Let G
r,m

=⇒ H and let r : L← K → R.

Let � := k(G) = k(G\m(L))�k(m(EL))�k(m(VK))�k(m(VL\VK )) ⇒ σ ≡ 〈�,�,�〉.
Let �(r) = (r @ CL ⇔ Cb

R, C
u
R) with CL = k(K) � g(L \K).

For v ∈ VL we have typeG(v)(var(v), ) ∈ CL and

typeG(v)(var(m(v)), dvar(m(v))) ∈ k(m(VK )), as the types match due to m being a

graph morphism.

As we have a fresh rule using node v that does not occur elsewhere we can say

that σ
CT≡ 〈�, var(m(v)) = var(v) ∧�,�〉, and hence

σ
Subst≡ 〈�[var(m(v))/ var(v)], var(m(v)) = var(v) ∧�,�〉. (1)
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Consider v ∈ VL \ VK , then typeG(v)(var(v), degL(v)) ∈ CL. Assume that m(v) ∈
S(σ), then trG⇒H (m(v)) is defined, which is a contradiction to v ∈ VL\VK . Therefore,

m(v) �∈ S(σ) and hence dvar(m(v)) = degG(m(v)) ∈ �. As G
r,m

=⇒ H satisfies the gluing

condition, we know that degL(v) = degG(m(v)). Therefore, we have that

σ
Subst≡ 〈�[var(m(v))/ var(v)][dvar(m(v))/ degG(m(v))],

var(m(v)) = var(v) ∧�,�〉.

From (1) for nodes v ∈ VK and the above for nodes v ∈ VL \ VK follows for a

conjunction of equality constraints E that

σ ≡ 〈k(G \ m(L)) � k(m(EL)) � k(VK ) � g(VL \ VK ),� ∧ E,�〉 = 〈�′,� ∧ E,�〉.

Let e ∈ EL, than typeG(e)(var(e), var(src(e)), var(tgt(e))) ∈ CL and after the

previous substitutions have been made for node identifier variables, and as k(e) =

g(e), we get typeG(m(e))(var(m(e)), var(src(e)), var(tgt(e))) ∈ σ . We then have

σ ≡ 〈�′[var(m(e))/ var(e)], var(m(e)) = var(e) ∧� ∧ E,�〉. (2)

By applying this substitution for all edges e ∈ EL and extending E with the

required equalities to E ′ we get:

σ ≡ 〈k(G \ m(L)) � k(EK) � g(EL \ EK) � k(VK ) � g(VL \ VK ),� ∧ E ′,�〉.

Hence, σ ≡ 〈k(G \ m(L)) � CL,� ∧ E ′,�〉 such that we apply the rule �(r) to σ:

σ �r τ ≡ 〈k(G \ m(L)) � Cu
R,� ∧ E ′ ∧ Cb

R,�〉
≡ 〈k(G \ m(L)) � g(R \K) � k(EK ) � k(V ′

K ),� ∧ E ′ ∧ Cb
R,�〉.

As Cb
R contains var(v′) = var(v)∀v ∈ VK let C ′

R be Cb
R without these constraints,

then

τ
Subst≡ 〈k(G \ m(L)) � g(R \K) � k(EK ) � k(VK ),� ∧ E ′ ∧ Cb

R,�〉
CT≡ 〈k(G \ m(L)) � g(R \K) � k(EK ) � k(VK ),� ∧ E ′ ∧ C ′

R,�〉.

Let �̂ := k(G \ m(L)) � k(K), then τ
CT≡ 〈�̂ � g(R \ K),� ∧ E ′ ∧ C ′

R ∧ DR,�〉
with ∀v ∈ VR \ VK. dvar(v) = degR(v) ∈ DR . Furthermore, consider Θ a substitution

corresponding to the reverse reading of E ′ which undoes the ideas of (1) and (2) for

all affected nodes and edges. We then get

τ
Subst≡ 〈�̂ � k(R \K), DR ∧ C ′

R ∧� ∧ E ′,�〉
Subst≡ 〈k(G \ m(L \K)) � (k(R \K)Θ), DR ∧ C ′

R ∧� ∧ E ′,�〉
CT≡ 〈k(G \ m(L \K)) � (k(R \K)Θ), DR ∧ C ′

RΘ ∧�,�〉
≡ 〈k(H),�′,�〉

We get the graph H as its DPO construction corresponds to the removal of

m(L \ K) and addition of R \ K . Θ is needed to attach the new nodes of R \ K to

nodes from VK and C ′
R contains degree adjustments for those nodes that are correct

by construction. Hence, it also holds that G(τ) is satisfied with graph H .



20 F. Raiser and T. Frühwirth

“⇐=”:

Let σ �r τ with τ ≡ 〈k(H),�′,�〉 and G(τ) holds with graph H . Let �(r) =

(r @ CL ⇔ Cb
R, C

u
R with CL = k(K) � g(L \K). From Definition 2.10 follows that

σ ≡ 〈k(K) � g(L \K) � k(G \ L),�1,�〉 (3)

Using Lemma 3 and with E being a conjunction of var(m(x)) = var(x) constraints

for x ∈ L we get:

σ ≡ 〈k(G),�c ∧�a,�〉
≡ 〈k(K) � k(L \K) � k(G \ m(L)),�c ∧�a ∧ E,�〉
(3)
≡ 〈k(K) � g(L \K) � k(G \ m(L)),�c ∧�a ∧ E ′,�〉,

where E ′ is the extension of E with dvar(m(v)) = degG(v) constraints for v ∈ VL \VK

and �1 = �c ∧�a ∧ E ′.

m : L → G is well defined and injective by the multiset semantics of CHR

and it remains to be shown that m is a graph morphism. Therefore, let e ∈ EL,

then typeL(e)(var(e), var(src(e)), var(tgt(e))) ∈ CL and typeL(src(e))(var(src(e)), ) �
typeL(tgt(e))(var(tgt(e)), ) ∈ CL. Hence, var(m(e)) = var(e), var(m(src(e))) =

var(src(e)) and var(m(tgt(e))) = var(tgt(e)) are all in �1. Therefore, m(src(e)) =

src(m(e)) ∧ m(tgt(e)) = tgt(m(e)).

The gluing condition is satisfied, as ∀v ∈ VL \ VK the matched degree ensures

that there are no dangling edges, hence, r is GTS-applicable to G. Similarly to the

other proof direction, we show that the DPO construction of H coincides with the

construction of τ by CHR rule application:

σ �r τ ≡ 〈k(K) � g(R \K) � k(G \ m(L)),�c ∧�a ∧ E ′ ∧ Cb
R,�〉

CT≡ 〈k(K) � g(R \K) � k(G \ m(L)),�c ∧�a ∧ E ∧ Cb
R,�〉

Subst≡ 〈k(m(K)) � g(R \K) � k(G \ m(L)),�c ∧�a ∧ E ∧ Cb
R,�〉

= 〈g(R \K) � k(G \ m(L \K)),�c ∧�a ∧ E ∧ Cb
R,�〉

≡ 〈g(R \K)Θ � k(G \ m(L \K)),�c ∧�a ∧ Cb
R,�〉

≡ 〈k(H),�′,�〉

where Θ is the reverse substitution for E similar to the other proof direction. The

final equivalence comes from extracting the degrees of constraints in g(R \ K) into

equality constraints contained in �′. As can be seen here, the application of the rule

results in a state encoding the graph H , such that G(τ) holds.

Finally, for the set S(σ) we know that the nodes cannot be removed by rule r:

For a node v ∈ VL \ VK we have typeL(v)(var(v), degL(v)) ∈ CL, but this cannot be

matched with σ, as by Definition 3.7 the corresponding degree is unavailable. Hence,

none of the nodes from S(σ) are removed by the rule application G
r,m

=⇒ H , i.e.

trG⇒H (v) is defined for all v ∈ S(σ). �

As can be seen in the proof of Theorem 5, a GTS–CHR rule application on a

G-state based on G always results in a state encoding a corresponding graph H ,

which gives us the following corollary.
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Corollary 6 (G Invariant)

For a GTS–CHR program G is an invariant.

A closer look at the conditions required in Theorem 5 reveals that for a state σ

with S(σ) = ∅, i.e. for an encoding of a graph with all degrees explicitly given, we

have unrestricted soundness and completeness.

Corollary 7 (Unrestricted Soundness and Completeness)

Let σ ≡ 〈chr(ground, G),�,�〉 be a CHR state with G(σ) holding with graph G.

Then

G
r,m

=⇒ H

if and only if

σ �r τ ≡ 〈chr(ground, H),�,�〉 and G(τ) holds with graph H

Proof

This follows from Theorem 5 and the following insight: as all degrees of G are

specified explicitly and all nodes added by the rule are also given explicit degrees,

all degrees in H are given explicitly as well, which allows us to use chr(ground, H)

here. �

Finally, the soundness and completeness result induces a termination correspon-

dence between a GTS and its GTS–CHR program. Again, we restrict our observation

to graph-encoding states.

Corollary 8 (Termination Correspondence)

A GTS is terminating if and only if its corresponding GTS–CHR program is

G-terminating, i.e. terminating for all G-states.

Proof

If a GTS contains a non-terminating derivation, we have the corresponding compu-

tation in its GTS–CHR program by Corollary 7. Similarly, if the GTS–CHR program

has a non-terminating computation, there exists a corresponding non-terminating

GTS derivation according to Theorem 5. �

3.3 Discussion

In this section we discuss our previously presented encoding. First, Section 3.3.1

investigates that a GTS–CHR program works with partially defined graphs and

explains the suitability of these graphs for program analysis. Then we present ways

to simplify the encoding of GTS–CHR rules in Section 3.3.2.

3.3.1 Partially defined graphs

In the example computation given in Section 3.1.1 the input contains a node with a

variable degree: node(N3, D3). Nevertheless, computations on this input are possible

and the example resulted in the final state:

〈node(N3, D3) � edge(E ′, N3, N3),�, {N3, D3}〉
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In general, a variable node degree will cause a chain of degree adjustment

constraints to be created, i.e. constraints of the form X = Y +c1−c2. These stem

from the node being involved in a rule application that affects its degree.

It is important to realize that we can only match such a node in rules that do not

remove it. A rule that removes a node contains the explicit degree for that node in

the head, which cannot be matched through a variable degree. As a consequence,

specifying variable degrees in the input ensures that the corresponding nodes will

not be removed by the computation. This also becomes clear from the investigation

of strong nodes in the previous section.

While this is an interesting feature in its own right, it provides the basis for many

forms of program analysis. The aim of program analysis is to make statements on

an infinite number of graphs, while only having to investigate a small selection of

graphs. Graph encodings with variable degrees can here be thought of as partially

defined graphs, i.e. there may be any number of further edges being connected to a

node with a variable degree.

Note that partially defined graphs only exist within the CHR context. In a GTS

the degree of a node is implicitly given by the adjacent edges. As a consequence,

leaving a node’s degree undefined in the CHR encoding ensures that this node will

not be removed during computation. In the GTS context we have no such option

available for host graphs.

By the above argument, the state

〈node(N,D),�, {N,D}〉

therefore not only represents the graph consisting of a single node and no edges.

Instead, it represents the set of all graphs with at least one node. Similarly, the above

final state from Section 3.1.1 stands for the set of graphs that contain at least one

node with a loop.

Every computation performed on an input with variable degrees actually repre-

sents computations for an infinite set of graphs. This is a fundamental feature for

the usage of our encoding in program analysis and will be exploited in Sections 4

and 5.

3.3.2 Different encoding possibilities

The encoding proposed in this work can be varied in several different ways. We

chose the encoding in Definitions 3.2 and 3.3 for this work, because it is a verbose

encoding, hence, directly presenting all its components and simplifying the proofs.

In practice however, a less verbose encoding resulting in shorter rules can be used

instead. In this section we present different possible simplifications achieving this.

The different simplifications are illustrated by applying them to the twoloop rule

which is of the following form when encoded as specified in Definition 3.3:

twoloop @ node(N1, D1) � node(N2, 2)�
edge(E1, N1, N2) � edge(E2, N2, N1)

⇔
node(N ′

1, D
′
1) � edge(E3, N1, N1), N

′
1 = N1 ∧ D′

1 = D1−2+2
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There are two ways to specify the degree of nodes in L \ K . The one chosen in

Definition 3.3 explicitly specifies the respective degree in the head. Another way is to

keep the degree as a variable D in the head and add the built-in constraint D = k to

the guard of the rule. However, most current CHR compilers detect these equalities

and automatically transform between them to the representation most suitable for

an optimization. Therefore, in this work we directly specify the degree in the head

to avoid guards altogether.

Variable elimination As Definition 3.3 encodes a node v ∈ VK using a new node

identifier v′ with var(v) = var(v′) and var(v′) is not used elsewhere, this substitution

can be included directly into the rule encoding:

twoloop @ node(N1, D1) � node(N2, 2)�
edge(E1, N1, N2) � edge(E2, N2, N1)

⇔
node(N1, D

′
1) � edge(E3, N1, N1), D

′
1 = D1−2+2

Note that we perform variable elimination on node identifiers by default in the

remainder of this work. However, as we need to take degree adjustments into

account, the formulation of Definition 3.3 is simplified by the variable duplication.

Arithmetic simplification The degree adjustments in Definition 3.3 explicitly contain

the information on how many edges the rule deletes and creates. For the adjustment

itself, however, it is sufficient to simply adjust the degree by the actual change in the

number of edges. Additionally, if the change is 0, like in the twoloop rule, the extra

local variable used for the degree can be substituted, resulting in:

twoloop @ node(N1, D1) � node(N2, 2)�
edge(E1, N1, N2) � edge(E2, N2, N1)

⇔
node(N1, D1) � edge(E3, N1, N1)

Elimination of Edge Identifiers The edge identifier variables are used throughout

this work, because they simplify dealing with the multiset semantics of CHR with

respect to the edge constraint representing exactly one edge of a graph. In a CHR

implementation, however, every constraint is implemented as a unique object –

sometimes even annotated with an identifier number – which makes the explicit

edge identifiers redundant. Using this idea the twoloop rule can be further simplified

to:

twoloop @ node(N1, D1) � node(N2, 2)�
edge(N1, N2) � edge(N2, N1)

⇔
node(N1, D1) � edge(N1, N1)

Note that the same argumentation cannot be applied to node identifiers, as those

are required for specifying the source and target of edge constraints.
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Simpagation Rules Some nodes and edges of the left-hand rule graph L of a GTS

rule can occur only to specify a certain graph context and are unaffected by the rule

application. For nodes this can also happen if the modification to adjacent edges

results in no change to the degree, as in the twoloop rule. In those cases, the node or

edge is encoded in exactly the same way in the head and body of the rule. Therefore,

during the rule application the corresponding constraint is removed and introduced

again. Using a simpagation rule allows us to move such a constraint into the part of

the head which is not removed during the rule application. This reduces the textual

size of the rule as well as its execution time, because it avoids the generation of a

new constraint during the rule application.

After applying all the previous simplifications to the twoloop rule and transforming

it into a simpagation rule we get the following simplified rule:

twoloop @ node(N1, D1)\
node(N2, 2) � edge(N1, N2) � edge(N2, N1)

⇔
edge(N1, N1)

One might be tempted to always create simpagation rules in Definition 3.3,

based on the idea that the context graph K already identifies non-removed nodes.

However, the above creation of simpagation rules with node constraints among the

kept constraints, is only possible if the respective node’s degree remains unchanged

by the rule application.

Readers more familiar with CHR may also wonder if propagation rules could be

used as well. It is technically possible to define a GTS rule that does not remove any

elements, but only adds new nodes and edges. However, a thusly created GTS would

suffer from a problem that in CHR literatue is referred to as trivial non-termination

(see e.g. Frühwirth 2009), i.e. such a rule could be applied infinitely often. For this

reason, most CHR implementations restrict propagation rule applications, hence,

our encoding using simplification or simpagation rules remains more faithful to the

semantics of graph transformations.

4 Analysing confluence

The confluence property is relevant to both, GTS and CHR. It guarantees that any

terminating computation made for an initial state results in the same final state no

matter in which order applicable rules are applied.

In Section 4.1 we formally introduce confluence, both for GTS and CHR.

Furthermore, we give the definitions for critical pairs in both systems, which

are derived directly from the rules. Investigation of critical pairs for determining

confluence of a terminating rewrite system goes back to research about term rewriting

systems (Huet 1980), and both, GTS and CHR, have adapted the corresponding

criteria.

Next, Section 4.2 examines the relation between critical pairs of a GTS and its

corresponding GTS–CHR program. We then introduce the concept of observable

confluence (Duck et al . 2007). It is a technical means to restrict our observations to
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CHR states that correspond to graphs. This in turn results in a closer correspondence

between GTS and CHR for later results.

For terminating GTS, confluence analysis proved to be undecidable: (Plump 2005)

showed that the critical pair analysis gives only a sufficient criterion for confluence.

We show that the decidable observable confluence test of a GTS–CHR program

coincides with this criterion.

The discrepance in decidability of the two systems’ confluence properties is

discussed in Section 4.3 for exemplary critical pair analyses.

4.1 Preliminaries

This subsection introduces the necessary definitions for GTS and CHR confluence

before comparing the two notions. Unless noted otherwise, the involved GTS and

GTS–CHR programs are assumed to be terminating.

Definition 4.1 (GTS Confluence)

A GTS is called confluent if, for all typed graph transformations G
∗

=⇒ H1 and

G
∗

=⇒ H2, there is a typed graph X together with typed graph transformations

H1
∗

=⇒ X and H2
∗

=⇒ X. Local confluence means that this property holds for all

pairs of direct typed graph transformations G⇒ H1 and G⇒ H2 (Ehrig et al . 2006).

Newman’s general result for rewriting systems (Newman 1942) implies that it is

sufficient to consider local confluence for terminating GTS. To verify local confluence,

we particularly need to study critical pairs and their joinability, according to the

following definition based on (Ehrig et al . 2006; Plump 2005).

Definition 4.2 (Joinability of Critical GTS Pair)

Let r1 = (L1
l← K1

r→ R1), r2 = (L2
l← K2

r→ R2) be two GTS rules. A pair

P1

r1 ,m1⇐= G
r2 ,m2
=⇒ P2 of direct typed graph transformations is called a critical GTS pair

if it is parallel-dependent, and minimal in the sense that the pair (m1, m2) of matches

m1 : L1 → G and m2 : L2 → G is jointly surjective.

A pair P1

r1 ,m1⇐= G
r2 ,m2
=⇒ P2 of direct typed graph transformations is called parallel

independent if m1(L1) ∩ m2(L2) ⊆ m1(K1) ∩ m2(K2), otherwise it is called parallel

dependent.

A critical GTS pair P1

r1 ,m1⇐= G
r2 ,m2
=⇒ P2 is called joinable if there exist typed graphs

X1, X2 together with typed graph transformations P1
∗

=⇒ X1 � X2
∗⇐= P2. It is

strongly joinable if there is an isomorphism f : X1 → X2 such that for each node v,

for which trG⇒P1
(v) and trG⇒P2

(v) are defined, the following holds:

(1) trG⇒P1⇒X1
(v) and trG⇒P2⇒X2

(v) are defined and

(2) fV (trG⇒P1⇒X1
(v)) = trG⇒P2⇒X2

(v)

A similar notion of confluence has been developed for CHR. The following

definition is an adaptation of (Frühwirth 2009) to the operational semantics on

equivalence classes.
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Definition 4.3 (CHR Confluence)

A CHR program is called confluent if for all states σ, σ1, and σ2: If σ1
∗� σ �∗ σ2,

then σ1 and σ2 are joinable. Two states σ1 and σ2 are called joinable if there exists

a state τ such that σ1 �∗ τ ∗� σ2.

Analogous to a GTS, the confluence property for terminating CHR programs is

determined by local confluence which can be checked through critical pairs. The

following definition is adapted to the situation in this work, i.e. it only considers

simplification rules and no guards.

Definition 4.4 (Joinability of Critical CHR Pair)

Let ri, i = 1, 2 be two (not necessarily different) simplification rules of the following

kind with variables that have been renamed apart:

Hi � Ai ⇔ Bu
i , B

b
i

Then an overlap σCP of r1 and r2 is σCP = 〈H1�A1�H2, A1 = A2,�〉, provided A1

and A2 are non-empty multisets, � = vars(H1�A1�H2�A2) and CT |= ∃(A1 = A2).

Let σ1 = 〈Bu
1 � H2, B

b
1 ∧ (A1 = A2),�〉 and σ2 = 〈Bu

2 � H1, B
b
2 ∧ (A1 = A2),�〉.

Then the tuple CP = (σ1, σ2) is a critical CHR pair of r1 and r2. A critical CHR

pair (σ1, σ2) is joinable if σ1 and σ2 are joinable.

4.2 Analysing confluence via critical pairs

After defining the different notions of confluence we now further investigate the

difference between critical GTS pairs and critical CHR pairs for GTS–CHR

programs. The following lemma shows that there exists a corresponding overlap

for each critical GTS pair. Therefore, by examining the overlaps and using the

previous soundness result we can transfer joinability results to the critical GTS pair.

Lemma 9 (Overlap for Critical GTS Pair)

If P1

r1 ,m1⇐= G
r2 ,m2
=⇒ P2 is a critical GTS pair, then there exists an overlap σCP of

�(r1) = (r1 @ CL1 ⇔ Cu
R1, C

b
R1) and �(r2) = (r2 @ CL2 ⇔ Cu

R2, C
b
R2) which is a G-

state based on G and a critical CHR pair (σ1, σ2) such that σ1 is a G-state based on P1

and σ2 is a G-state based on P2.

Proof

Let the two GTS rules be Li ← Ki → Ri for i = 1, 2 and let M = m1(L1)∩m2(L2). We

then define the following sets of constraints from which we construct the overlap:

H1 = {chrL1
(keep, x) | x ∈ L1 ∧ m1(x) �∈M}

H2 = {chrL2
(keep, x) | x ∈ L2 ∧ m2(x) �∈M}

A1 = {chrL1
(keep, x) | x ∈ L1 ∧ m1(x) ∈M}

A2 = {chrL2
(keep, x) | x ∈ L2 ∧ m2(x) ∈M}

C1 = {dvar(v) = degL1
(v) | v ∈ VL1

\ VK1
}

C2 = {dvar(v) = degL2
(v) | v ∈ VL2

\ VK2
}

Let � = vars(H1 � H2 � A1 � A2) and let σ = 〈H1, C1,�〉, then σ ≡ σ′ =

〈{chrL1
(keep, x) | x ∈ K1 ∧ m1(x) �∈ M} � {chrL1

(ground, x) | x ∈ L1 \ K1 ∧ m1(x) �∈
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L K R 111

Fig. 10. Graph production rule for removing a loop.

M},�,�〉 =: 〈H ′
2,�,�〉 by applying C1 as a substitution to H1, and then removing

C1 as all dvar(v) variables for v ∈ VL1
\ VK1

are then strictly local.

Similarly, 〈A1, C1,�〉 ≡ 〈{chr(keep, x) | x ∈ K1 ∧ m1(x) ∈ M} � {chr(ground, x) |
x ∈ L1 \K1∧m1(x) ∈M,�,�〉 =: 〈A′1,�,�〉, and analogously, we define H ′

2 and A′2.

By Definition 3.3 we have that H ′
1 � A′1 = CL1 and H ′

2 � A′2 = CL2. As M �= ∅ it

follows that A′1 and A′2 are non-empty. To investigate if CT |= ∃(A′1 = A′2) we take

a closer look at the equality constraints imposed by A′1 = A′2:

{var(v1) = var(v2) | v1 ∈ VL1
∧ v2 ∈ VL2

, m1(v1) = m2(v2)}
∧ {dvar(v1) = dvar(v2) | v1 ∈ VK1

∧ v2 ∈ VK2
∧ m1(v1) = m2(v2)}

∧ {dvar(v1) = degL2
(v2) | v1 ∈ VK1

∧ v2 ∈ VL2
\ VK2

∧ m1(v1) = m2(v2)}
∧ {dvar(v2) = degL1

(v1) | v1 ∈ VL1
\ VK1

∧ v2 ∈ VK2
∧ m1(v1) = m2(v2)}

∧ {var(e1) = var(e2) | e1 ∈ EK1
∧ e2 ∈ EK2

∧ m1(e1) = m2(e2)}
∧ {degL1

(v1) = degL2
(v2) | v1 ∈ VL1

\ VK1
∧ v2 ∈ VL1

\ VK2
∧

m1(v1) = m2(v2)}

Except for the last row, the above equality constraints can easily be satisfied

under existential quantification. Hence, the only remaining problematic case is when

two node constraints with constant degrees are overlapped. However, the degree of

m1(v1) = m2(v2) equals the degree of v1 and the degree of v2 due to the gluing condi-

tion being satisfied, such that this case can only occur with equal constant degrees.

Hence, σCP = 〈H ′
1 �A′1 �H ′

2, A
′
1 = A′2,�〉 is an overlap of �(r1) and �(r2) with the

critical CHR pair (〈Cu
R1 �H ′

2, A
′
1 = A′2 ∧ Cb

R1,�〉, 〈CR2 �H ′
1, A

′
1 = A′2 ∧ Cb

R2,�〉. �

If we try to directly transfer the confluence property of a GTS to the corresponding

GTS–CHR program, we cannot succeed however, as in general there are too many

critical CHR pairs that could cause the GTS–CHR program to become non-

confluent. The following example provides a rule which only has one critical GTS

pair, but for which the corresponding CHR rule has three critical CHR pairs.

Example 4.1

Consider the graph production rule in Figure 10. It removes a loop from a node

and has the following corresponding CHR rule:

R @ node(N,D) � edge(E,N,N) ⇔ node(N,D′), D′ = D − 2

To investigate confluence one must overlap this rule with itself which yields the

following three CHR overlap states:

(1) 〈node(N,D) � edge(E,N,N) � edge(E ′, N ′, N ′), N = N ′, {N,D, E, E ′, N ′}〉
(2) 〈node(N,D) � node(N ′, D′) � edge(E,N,N), N = N ′, {N,D,N ′, D′, E}〉
(3) 〈node(N,D) � edge(E,N,N),�, {N,D, E}〉
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State (4.1) is not critical, because the corresponding pair of graph transformations

is parallel independent (cf. Ehrig et al. 2006), and hence, directly joinable by applying

the rule again. State (4.1) is an invalid state, i.e. it violates G, as it has multiple

encodings of the same node and state (4.1) is the encoding of the corresponding

critical pair for the graph production rule.

As we want to rule out invalid states, we use the following notion of observable

confluence presented in Duck et al. (2007). It is based on restricting confluence

investigations to states that satisfy an invariant. Based on these invariants, observable

confluence (or I-confluence) is defined as follows:

Definition 4.5 (Observable Confluence)

A CHR program P is I-confluent with respect to invariant I if the following holds

for all states σ, σ1 and σ2, where I(σ) holds: If σ1
∗� σ �∗ σ2 then σ1 and σ2 are

joinable.

In order to use the graph invariant G for the notion of observable confluence,

we have to investigate the properties of this invariant. We introduce the following

definitions from Duck et al. (2007). As overlap states themselves may not satisfy

the invariant we have to examine all possible extensions that satisfy it. Note that

in Duck et al. (2007) CHR states are defined as 5-tuples consisting of a goal, user

store, built-in store, token store and the set of global variables. As such a verbose

definition is not necessary for the remainder of this work, we use the more concise

state definition from Section 2.2 and have adjusted the work from Duck et al. (2007)

accordingly.

Definition 4.6 (Extension, Valid Extension)

A state σ = 〈�,�,�〉 can be extended by another state σe = 〈�e,�e,�e〉 as follows.

σ � σe = 〈� ��e,� ∧�e,�e〉

We say that σe is an extension of σ. A valid extension σe of a state σ is an extension

such that

v ∈ vars(�,�) ∧ v �∈ � ⇒ v �∈ vars(�e,�e,�e).

When applied to confluence checking with critical pairs there are generally

infinitely many possible extensions of a critical pair. To get a decidable criterion,

the following relation on extensions1 allows us to consider only minimal elements.

Definition 4.7 (Relation on Extensions)

Let σ = 〈�,�,�〉 be a state, and let σe1 = 〈�e1,�e1,�e1〉 and σe2 = 〈�e2,�e2,�e2〉
be valid extensions of σ. Then we define σe1 !σ σe2 to hold if

(1) there exists a valid extension σe3 of (σ�σe1) such that (σ�σe1)�σe3 ≡ σ�σe2

(2) �−�e1 ⊆ �−�e2 holds.

1 Originally, in Duck et al. (2007) this relation is defined as a partial order, despite being neither transitive
nor anti-symmetric. However, it is sufficient for this work to consider it as a reflexive binary relation.
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Note that for any extension σe = 〈�e,�e,�e〉 of a state σ = 〈�,�,�〉 there

exists a valid extension σ∅ = 〈∅,�,�〉 with σ∅ !σ σe, simply because the second

condition in Definition 4.7 is trivially satisfied and σe3 = 〈�e,�e,�e〉 satisfies the

first condition.

In the following we want to discuss overlap states that do not satisfy an

invariant I. Therefore, we are interested in extensions of those states, such that

the result satisfies the invariant I. The following definition introduces the set of all

those extensions and their minimal elements with respect to the previously defined

relation.

Definition 4.8

Let Σe(σ) be the set of all valid extensions of a state σ, and let ΣIe (σ) = {σe |
σe ∈ Σe(σ) ∧I(σ � σe)} be the set of all valid extensions satisfying the invariant I.

Finally, let MI
e (σ) be the ≺σ-minimal elements of ΣIe (σ).

As shown in Duck et al. (2007) the analysis of critical pairs can be extended

to this context. Instead of requiring joinability of a critical pair – which might

not satisfy the invariant G – we require joinability for all possible extensions of a

critical pair that satisfy G. We make use of the relation on extensions here, such that

we only have to investigate minimal extensions. Note that we implicitly consider

minimal elements modulo built-in equivalence, e.g. the built-in store D = 1 subsumes

equivalent stores, like D = D′ + 1 ∧ D′ = 0.

Definition 4.9

A program P is minimal extension joinable if for all critical pairs CP = (σ1, σ2) with

overlap σCP, and for all σe ∈ MI
e (σCP), we have that (σ1 � σe, σ2 � σe) is joinable.

It has been shown in Duck et al. (2007) that joinability of critical pairs, stemming

from overlaps with minimal extensions, is a necessary and sufficient criterion for

I-local-confluence if the relation on extensions is well founded.

Lemma 10 (Deciding I-Local-Confluence)

Given that ≺σCP is well founded for all overlaps σCP, then: P is I-local-confluent if

and only if P is minimal extension joinable.

Although, in our programs built-in constraints + and − occur, we can consider

≺σCP well founded for the following reason: On state components other than the

built-in store the ≺σCP-relation corresponds to the well-founded subset ordering with

the minimal element ∅ (cf. Duck et al. 2007). For the built-ins, we can consider +

and − as successor/predecessor terms (as they are only used with constants in rules),

and hence, we get well foundedness via proposition 1 of Duck et al. (2007).

We further note that for any extension σe and state σCP holds that σ∅ ≺σCP σe. The

following discussion shows that either MG
e (σCP) = {σ∅} or ΣGe (σCP) = MG

e (σCP) = ∅.
Whether the minimal element σ∅ exists depends solely on G(σCP) holding as the

following lemma shows.

Lemma 11 (No Minimal Elements)

If G(σCP) is violated for an overlap σCP then no extension σe exists such that

G(σCP � σe) is satisfied, i.e. ΣG
e (σCP) = MG

e (σCP) = ∅.
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Proof

We proof this by a structural analysis of the overlap which gives the different

possibilities for G(σCP) to be violated. W.l.o.g. the overlap stems from the two

rules �(r1) = (r1 @ CL1
⇔ Cu

R1
, Cb

R1
) and �(r2) = (r2 @ CL2

⇔ Cu
R2
, Cb

R2
) with the

corresponding rule graphs L1, L2, K1, K2, R1 and R2.

First consider the case of nodes v1 and v2 being overlapped:

Let typeL1
(v1)(var(v1), D1) ∈ CL1

and typeL2
(v2)(var(v2), D2) ∈ CL2

be overlapped with

typeL1
(v1) = typeL2

(v2). The equality constraint var(v1) = var(v2) ∈ σCP resembles

the merging of the two graph nodes v1 and v2. However, for the degree equalities

different possibilities exist:

• D1 and D2 are constants: Then D1 = D2 = degL1
(v1) = degL2

(v2) = k,

as the overlap is impossible otherwise. Then σCP contains only one con-

straint typeL1
(v1)(var(v1), degL1

(v1)). As in L1 and L2 the nodes each have

k adjacent edges, all constraints corresponding to adjacent edges in both

rule graphs have to be contained in the overlap as well. If at least one such

constraint is not part of the overlap then σCP contains more than k constraints

corresponding to edges adjacent to v1 = v2. As the degree for the node is

a constant it cannot be changed by any extension and the additional edge

constraints cannot be removed either. Therefore in such a case, no extension σe
can correct the degree inconsistency and G(σCP � σe) cannot hold.

• D1 and D2 are variable: In this case the overlap is possible without any

problems. Depending on the number of overlapped adjacent edge constraints

the degree variables can always be instantiated with the correct degree, thus

satisfying the invariant G.

• w.l.o.g. D1 = k and D2 is a variable: this means D2 = k ∈ σCP, therefore,

all edge constraints of CL2
of edges adjacent to v2 have to be overlapped

with edge constraints of CL1
corresponding to edges adjacent to v1. If there is

such an edge constraint from CL2
which is not contained in the overlap, then

σCP contains more than k edge constraints corresponding to edges adjacent

to v1. Again the degree of v1 is specified as the constant k in σCP, and thus,

an extension cannot correct this degree inconsistency. If however, all these

edge constraints are contained in the overlap, G is satisfied again, as there are

exactly k such edge constraints coming from CL1
.

Finally, consider an edge being overlapped:

Let typeL1
(var(e1), var(src(e1)), var(tgt(e1))) ∈ CL1

and

typeL2
(var(e2), var(src(e2)), var(tgt(e2))) ∈ CL2

, then

var(e1) = var(e2) ∧ var(src(e1)) = var(src(e2)) ∧ var(tgt(e1)) = var(tgt(e2)) ∈ σCP.

By Definition 3.3 we have constraints typeL1
(src(e1))(var(src(e1)), ) ∈ CL1

and

typeL2
(src(e2))(var(src(e2)), ) ∈ CL2

. If these two constraints are not part of the

overlap, the corresponding equality constraint var(src(e1)) = var(src(e2)) ∈ σCP
results in a single graph node being represented by two constraints. This is a

violation of G, as chr(ground, G) contains exactly one constraint for each node.

This violation cannot be fixed by an extension, as the conflicting additional node
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constraint cannot be removed. Analogously, the two node constraints corresponding

to tgt(e1) and tgt(e2) have to be contained in the overlap.

Therefore, an overlap σCP which violates the invariant G has to violate it due to

one of the above reasons for which it cannot be extended by an extension σe such

that G(σCP � σe) is satisfied. �

Combining these two results yields the criterion in Corollary 12 for deciding

G-local-confluence. Note that this decision criterion is essentially the same criterion

as used for traditional local confluence, except that the invariant G restricts the set

of investigated overlaps.

Corollary 12 (Deciding G-Local-Confluence)

P is G-local-confluent if and only if for all critical pairs CP = (σ1, σ2) with

overlap σCP, for which G(σCP) holds, CP is joinable.

Proof

This follows from the combination of Lemma 10, Lemma 11 and the insight that σ∅
is the unique minimal extension in the case of G(σCP) holding. �

Next we transfer the joinability of critical CHR pairs to strong joinability in

GTS:

Lemma 13 (G-Confluence Implies Strong Joinability)

If a terminating GTS–CHR program is G-confluent, then all critical GTS pairs are

strongly joinable.

Proof

Let P1

r1 ,m1⇐= G
r2 ,m2
=⇒ P2 be a critical GTS pair. Let ri = (Li ← Ki → Ri) and

�(ri) = (ri @ CLi
⇔ Cu

Ri
, Cb

Ri
) for i = 1, 2.

By Lemma 9 there exists an overlap σCP which is a G-state based on G. As the

critical pair (σ1, σ2) created by the overlap σCP is joinable we have the computations

σCP � σ1 �∗ τ1 and σCP � σ2 �∗ τ2 with τ1 ≡ τ2. From Theorem 5 we know that

there exist corresponding GTS transformations G
r1 ,m1
=⇒ P1 =⇒∗ X1 � X2

∗⇐= P2

r2 ,m2⇐=

G. The isomorphism between X1 and X2 follows from Lemma 4. Hence, the critical

GTS pair is joinable.

To see that it is strongly joinable consider the set S(σCP). Every node v for

which trG⇒P1
(v) and trG⇒P2

(v) are defined is a node which is not deleted by either

r1 or r2. As m1 and m2 are jointly surjective w.l.o.g. there exists a node v′ ∈ VL1
of

rule r1 with m(v′) = v. As the node is not removed we know v′ ∈ VK1
, and therefore,

typeK1
(v′)(var(v′), dvar(v′)) ∈ CL1

. Either the node is not part of the overlap in σCP,

or if it is overlapped with a node v′′ ∈ VL2
such that m(v′) = m(v′′), then we also

know that v′′ ∈ VK2
due to the defined track morphism. Therefore, we always have

the node constraint typeK1
(v′)(var(v), dvar(v)) ∈ σCP and v ∈ S(σCP). As this node

cannot be removed during the transformation, a variant of this constraint with

adjusted degree is also present in τ1 and τ2. These two variant constraints are

uniquely determined, as var(v) ∈ � by Definition 4.4, and hence, they both have to

use var(v) for the node identifier variable. This means we still have to showfor such
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a node v that the two conditions from Definition 4.2 are satisfied:

(1) trG⇒P1⇒X1
(v) and trG⇒P2⇒X2

(v) are defined:

By Theorem 5 we know that the GTS transformations are strong w.r.t.

S(σCP). As v ∈ S(σCP) this implies v ∈ m(K) ∨ v �∈ m(L) for each of the

applied rules, i.e. the node remains during the transformation and hence the

track morphisms are defined as in Definition 2.5.

(2) fV (trG⇒P1⇒X1
(v)) = trG⇒P2⇒X2

(v):

As the isomorphism f is derived from τ1 ≡ τ2 and var(v) ∈ � this isomorphism

correctly relates the original node v with its occurrences in τ1, resp. X1 and

τ2, resp. X2. �

The reverse direction holds as well, as the following lemma shows.

Lemma 14 (Strong Joinability Implies G-Confluence)

If all critical GTS pairs of a terminating GTS are strongly joinable, then the

corresponding GTS–CHR program is G-confluent.

Proof

Consider an overlap σCP for the critical CHR pair (σ1, σ2). W.l.o.g. G(σCP) holds

according to Corollary 12. Therefore, σCP is a G-state based on G and σ1, σ2

correspond to graphs G1, G2. Consider now G1

r1 ,m1⇐= G
r2 ,m2
=⇒ G2.

We now show that either the critical CHR pair is non-critically joinable, or it

corresponds to a critical GTS pair and can thus be joined, because all critical GTS

pairs are strongly joinable.

First, we want to point out that G is minimal by the definition of the CHR

overlap, i.e. every occurring node and edge is part of a match, hence, m1 and m2 are

jointly surjective.

Next, we distinguish two cases: First, let G1

r1 ,m1⇐= G
r2 ,m2
=⇒ G2 be parallel independent.

Therefore, the second rule can be applied after the first, because none of the required

nodes or edges has been removed. The following diagram depicts this situation:

G
r1

�� ��
��

��
�

��
��

��
�

r2

��
��

��
��

�

��
��

��
�

G1

r2

��
��

��
��

�

��
��

��
�

G2

r1

�� ��
��

��
�

��
��

��
�

X
By Theorem 5 we can apply the corresponding rules to σCP in order to join the

critical CHR pair, because S(σCP) contains only nodes not deleted by r1 and r2.

Secondly, let G1

r1 ,m1⇐= G
r2 ,m2
=⇒ G2 be parallel dependent. It follows that m(L1) ∩

m(L2) �⊆ m(K1) ∩ m(K2). However, this is now a critical GTS pair, and hence,
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strongly joinable as depicted on the left of the following diagram:

G
r1

�� ���������

���������
r2

�����������

��������� σCP
r1

�����������
r2

�����������

G1

∗

����
��

��
��

�

��
��

��
��

� (GTS) G2

∗

		 		
		

		
		

	

		
		

		
		

	
σ1

∗

��














 (CHR) σ2

∗

����
��

��
��

�

X1 � X2 σ′1 ≡ σ′2
The right part of the diagram shows the situation for the critical CHR pair which

is joinable by Theorem 5. This is possible, because ∀v ∈ S(σCP) we know that

trG⇒G1
(v) and trG⇒G2

(v) are defined, thus by Definition 4.2, v is never removed and

still present in X1 and X2. Finally, the isomorphism implied by X1 � X2 gives us

σ′1 ≡ σ′2. Note that despite Lemma 4 not being reversible in general this holds here,

as it is clearly determined for both σ′1 and σ′2 which node identifier variables are

global and the strong joinability condition reflects this in the isomorphism.

Therefore, for all overlaps σCP with G(σCP) holding we know that the correspond-

ing critical CHR pair is joinable, and hence, by Corollary 12 that the CHR program

is G-local-confluent. As it is terminating as well, it is G-confluent. �

The combination of the previous two lemmata gives us our main result:

Theorem 15 (Strong Joinability iff G-Confluence)

All critical GTS pairs of a terminating GTS are strongly joinable if and only if the

corresponding GTS–CHR program is G-confluent.

Proof

Direct combination of Lemmas 13 and 14. �

Corollary 16 (G-Confluence Implies GTS Confluence)

If a terminating GTS–CHR program is G-confluent, then the corresponding GTS is

confluent.

Proof

Strong joinability is a sufficient criterion for confluence of a terminating GTS (cf.

Plump 2005). Therefore, this follows directly from Theorem 15. �

Practically, with Theorem 15 we can reuse the automatic confluence check for

terminating CHR programs (Abdennadher et al . 1999; Frühwirth 2009) to prove

confluence of a terminating GTS–CHR program. As Lemma 11 showed, it is

sufficient to only consider overlaps satisfying the graph invariant G. Whenever all

the resulting critical CHR pairs are joinable, the CHR program is G-confluent

according to Corollary 12. This, in turn, is sufficient for proving confluence of the

original GTS.

4.3 Discussion

In this section we elaborate on some canonical examples that highlight different

properties of critical pairs. These examples are inspired by Plump (2005).



34 F. Raiser and T. Frühwirth

Example 4.2

Consider the following rules which use two different edge types: (a) and (b)

yx

yx

K
yx

K
yx

R
yx b

L
r1:

r2:
L

a

R
yx b

The only critical GTS pair of these rules is joinable. This is possible in the GTS

case, because the resulting graphs, shown below, are isomorphic.

a
r1r2

b‘b

However, the track morphisms of the above derivations are incompatible, i.e. the

strong joinability condition from Definition 4.2 cannot be satisfied. As the following

derivation shows, this hinders monotonicity and joinability is lost, when the critical

pair is embedded into a larger context.

bb b

r1r2

b‘b

a

The two resulting states are no longer isomorphic and also cannot be joined, as

no more rules are applicable to them. Therefore, this GTS is not locally confluent,

although all its critical GTS pairs are joinable.

We now examine this scenario in CHR. The two GTS rules then become the

following CHR rules:

r1 @ node(Nx,Dx) � node(Ny,Dy) � a(E,Nx,Ny)

⇔
node(Nx,D

′
x) � node(Ny,D

′
y) � b(E ′, Nx,Nx),

D′
x = Dx+1 ∧ D′

y = Dy−1

r2 @ node(Nx,Dx) � node(Ny,Dy) � a(E,Nx,Ny)

⇔
node(Nx,D

′
x) � node(Ny,D

′
y) � b(E ′, Ny, Ny),

D′
x = Dx−1 ∧ D′

y = Dy+1

We now consider the critical CHR pair corresponding to the above critical GTS

pair. It is generated by fully overlapping both rule heads, resulting in the overlap

σCP = 〈node(N1, D1) � node(N2, D2) � a(E,N1, N2),�,�〉

with � = {N1, N2, D1, D2, E}. The resulting critical CHR pair (σ1, σ2) is:

〈node(N1, D
′
1) � node(N2, D

′
2) � b(E ′, N1, N1), D

′
1 = D1+1 ∧ D′

2 = D2−1,�〉,
〈node(N1, D̃1) � node(N2, D̃2) � b(Ẽ, N2, N2), D̃1 = D1−1 ∧ D̃2 = D2+1,�〉
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It is clear that σ1 �≡ σ2, because CT �|= (D′
1 = D1+1 ∧ D′

2 = D2−1) → ∃∅N1 = N2 as

required by Theorem 2.

The strong nodes N1 and N2, i.e. N1, N2 ∈ �, enforce compatible track morphisms,

and hence are responsible for the non-joinability above. If we instead want to test

non-strong joinability, we can do so as well by setting � = ∅. Then, the two states

σ1 and σ2 are indeed equivalent by Definition 2.8, as N2 is existentially quantified

and the remaining conditions of Theorem 2 hold as well.

Example 4.3

Another example from Plump (2005) is the following GTS which is terminating and

confluent; however, the critical GTS pair from the overlap of rule r1 with itself is

not strongly joinable. This is a counterexample used to show that strong joinability

of critical GTS pairs is only a sufficient criterion for confluence of a terminating

GTS.

yx KL

r1:

L K R

r2:

yx R yx

x y x yx y

The GTS works as follows: If there is at least one loop in the graph, then all

but a last loop are removed by the first rule. Additionally, all non-loop edges are

removed by the second rule. Therefore, the remaining final graph contains zero or

one loops and no other edges, and hence the GTS is terminating and confluent due

to graph isomorphism. The first rule is encoded in CHR as follows:

r1 @ node(Nx,Dx) � node(Ny,Dy)�
a(Ex,Nx,Nx) � a(Ey,Ny,Ny)

⇔
node(Nx,Dx) � node(Ny,D

′
y) � a(Ex,Nx,Nx),

D′
y = Dy − 2

Completely overlapping the rule with itself yields the overlap

σCP = 〈node(N1, D1) � node(N2, D2) � a(E1, N1, N1) � a(E2, N2, N2),�,�〉

with � = {N1, N2, D1, D2, E1, E2} resulting in the critical CHR pair (σ1, σ2) with:

σ1 = 〈node(N1, D1) � node(N2, D
′
2) � a(E1, N1, N1), D

′
2 = D2 − 2,�〉

σ2 = 〈node(N1, D
′
1) � node(N2, D2) � a(E2, N2, N2), D

′
1 = D1 − 2,�〉

Analogously to the previous example, the two states are not equivalent and cannot

be joined, therefore the corresponding critical GTS pair is not strongly joinable.

Again, setting � = ∅ results in both states becoming equivalent. As before, this

reflects that for the critical GTS pairs the two corresponding graphs are isomorphic.
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5 Analysing operational equivalence

Constraint Handling Rules is well known for its decidable, sufficient, and neces-

sary criterion for operational equivalence of terminating and confluent programs

(Abdennadher and Frühwirth 1999; Frühwirth 2009). After presenting this result

in Section 5.1, we introduce the concept of operational equivalence for GTS in

Section 5.2. Then we investigate operational equivalence of GTS–CHR programs

and show that it is sufficient for operational equivalence of the original GTS. We

further demonstrate its application to detect redundant rules of a GTS.

The contents of this section are a revised and extended version of (Raiser and

Frühwirth 2009a).

5.1 Operational equivalence in CHR

Operational equivalence, intuitively, means that two programs should be able to

compute equivalent outputs given the same input. Applied to a single state, this

behaviour is called P1,P2-joinability:

Definition 5.1 (P1,P2-joinability)

Let P1,P2 be CHR programs. A state σ is P1,P2-joinable, if and only if there are

computations σ �∗
P1

σ1 and σ �∗
P2

σ2 with σ1 ≡ σ2, where all σi are final states

with respect to Pi.

If P1,P2-joinability is given for all states the programs are considered opera-

tionally equivalent:

Definition 5.2 (Operational Equivalence)

Let P1,P2 be CHR programs.

P1,P2 are operationally equivalent if and only if all states σ are P1,P2-joinable.

As mentioned before, operational equivalence is decidable for terminating and

confluent CHR programs. Similarly to confluence, the decision algorithm investigates

critical states created from rule heads.

Definition 5.3 (Critical States)

Let P1,P2 be CHR programs. The set of critical states of P1 and P2 is defined as

{〈H,�, vars(H)〉 | (H ⇔ Bc, Bb) ∈ P1 ∪P2}.

Note that we had to consider observable confluence for CHR, because over-

lap states constructed for critical pair analysis may not always encode a graph.

The critical states used for operational equivalence here, however, stem directly

from a complete head of a rule, which in turn was derived from a GTS rule

graph. Therefore, all critical states of GTS–CHR programs are valid encodings of

graphs.

The following theorem, adapted from Abdennadher and Frühwirth (1999), is based

on the idea to determine P1,P2-joinability of these critical states. The monotonicity

property of CHR ensures that if all critical states are P1,P2-joinable, then all states

are. Additionally demanding termination and confluence of the programs, allows
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us to decide P1,P2-joinability simply by executing a critical state in each of the

programs and then comparing the resulting final states.

Theorem 17 (Operational Equivalence via Critical States)

Let P1,P2 be terminating and confluent CHR programs. P1,P2 are operationally

equivalent if and only if for all critical states σ of P1 and P2 it holds that σ is

P1,P2-joinable.

Proof

Given in Abdennadher and Frühwirth (1999). �

Note that in contrast to confluence, Theorem 17 will always consider states

satisfying the G-invariant, when applied to a GTS–CHR program. This follows

from the fact that each critical state is the head of a rule, and in turn, corresponds

to a rule graph from the GTS by construction.

5.2 Analysing operational equivalence in GTS

In this section we introduce the notion of operational equivalence for GTS. Based

on the previous embedding of GTS in CHR, we use the existing decision algorithm

from CHR as a sufficient criterion for operational equivalence of two GTS.

First, we define the property of S1,S2-joinability for two GTS S1,S2, analo-

gously to P1,P2-joinability.

Definition 5.4 (S1,S2-joinability)

Let S1,S2 be two GTS. A typed graph G is S1,S2-joinable if and only if there are

derivations G ⇒∗
S1

G1 and G ⇒∗
S2

G2 with G1 � G2 being final with respect to S1

and S2.

Here � denotes traditional graph isomorphism and a graph G is considered final

with respect to S iff there is no transition G⇒S H for any graph H .

Building on S1,S2-joinability, we now define operational equivalence for GTS

with the same intuitive understanding: two operationally equivalent GTS should

be able to produce the same result graphs up to isomorphism given an input

graph:

Definition 5.5 (GTS Operational Equivalence)

Let S1 = (P1, TG) and S2 = (P2, TG) be two GTS.

S1,S2 are operationally equivalent if and only if for all graphs G typed over TG

it holds that G is S1,S2-joinable.

Similar to operational equivalence in CHR, where it is futile to directly compare

programs that use different constraints, Definition 5.5 requires S1 and S2 to be

based on the same type graph TG. With the previous results from Raiser and

Frühwirth (2009b) we can directly use CHR’s operational equivalence as a sufficient

criterion for deciding operational equivalence of two GTS:
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r2

Fig. 11. Example of a graph transformation system.

Theorem 18 (GTS–CHR Operational Equivalence)

Let S1,S2 be GTS and P1,P2 their corresponding GTS–CHR programs. S1,S2

are operationally equivalent if P1,P2 are operationally equivalent.

Proof

Let G be a graph typed over TG. Then the state σ = 〈chr(ground, G),�, ∅〉 is

P1,P2-joinable by Definition 5.1. Therefore, there exist the final states σ1 ≡ σ2 with

σ �∗
P1

σ1 and σ �∗
P2

σ2.

By Theorem 5 we know that there exist corresponding derivations G⇒∗
S1

G1 and

G⇒∗
S2

G2 such that σ1 is a G-state based on G1 and σ2 is a G-state based on G2.

The graphs G1 and G2 are final states w.r.t. S1 and S2, and finally, the

isomorphism between G1 and G2 is implied by σ1 ≡ σ2 according to Lemma 4.

Therefore, G is S1,S2-joinable. �

An interesting application of the above theorem is the removal of redundant rules.

Originally proposed in Abdennadher and Frühwirth (1999), decidable operational

equivalence of CHR programs implies a straightforward redundant rule removal

algorithm: Remove a single rule from the program, then compare the operational

equivalence of the program thus created and the original program. If the two

programs are operationally equivalent the selected rule is shown to be redundant

and can be removed.

Clearly, program equivalence in general is undecidable, and hence, we cannot

expect such an algorithm to correctly identify all redundant rules. Nevertheless, the

algorithm was applied in CHR research to great success on automatically generated

programs (Abdennadher and Sobhi 2007; Raiser 2008). These generations tend to

create rules which subsume each other, in which case the algorithm works well as

the following example demonstrates.

Example 5.1

Consider the graph transformation system S1 given in Figure 11. It depicts a typical

case, in that the rule r2 is subsumed by rule r1. While this is easily verified by a

human reader, Theorem 17 gives us the means for an automated verification.

In order to verify the redundancy of rule r2, consider a second graph trans-

formation system S2, which contains only rule r1. Proving that S1 and S2 are

operationally equivalent then proves the redundancy of rule r2.



Analysing GTS through CHR 39

Encoding the graph transformation system S1 from Figure 11 in CHR results in

the following two rules:
r1 @ node(Nx,Dx) � node(Ny,Dy) � a(E,Nx,Ny)

⇔
node(Nx,Dx) � node(Ny,Dy) � b(E ′, Nx,Ny)

r2 @ node(Nx,Dx) � node(Ny,Dy) � node(Nz, Dz)�
a(Ey,Nx,Ny) � a(Ez,Nx,Nz)

⇔
node(Nx,Dx) � node(Ny,Dy) � node(Nz, Dz)�
b(E1, Nx,Ny) � b(E2, Nx,Nz)

This GTS–CHR program P1 is confluent and terminating and the same holds for

P2, which encodes S2 respectively. Next, we investigate the P1,P2-joinability of all

critical states, of which there are two. The critical state derived from r1 is clearly

P1,P2-joinable, as the same rule can be applied to it in both programs, resulting in

equivalent final states.

The critical state derived from rule r2 contains two a-edges, which can be converted

to b-edges either by applying rule r2 or rule r1 twice. Therefore, the final states

in both programs are equivalent again, and hence, the programs are operationally

equivalent. As a conclusion, S1 and S2 are operationally equivalent, which in turn

proves the redundancy of rule r2.

In general, Theorem 18 cannot be reversed, i.e. it is only a sufficient, not a

necessary criterion. A counterexample for the reverse direction is given in the

following example. Notice that it is based on the example used by Plump (2005) in

order to demonstrate why the critical pair lemma is not a necessary criterion for

confluence. This might be seen as an indication that a similar situation exists for

GTS program equivalence.

Example 5.2

Consider two GTS with the first being the one from Example 4.3 and the second

GTS is identical to the first except for rule r1, in which the loop for node x is

removed instead. It is clear that both programs are terminating, confluent and

operationally equivalent. The following two rules are from the corresponding GTS–

CHR programs P1 and P2:
r1 @ node(Nx,Dx) � node(Ny,Dy)�

a(Ex,Nx,Nx) � a(Ey,Ny,Ny)

⇔
node(Nx,Dx) � node(Ny,D

′
y) � a(Ex,Nx,Nx),

D′
y = Dy−2

r1′ @ node(Nx,Dx) � node(Ny,Dy)�
a(Ex,Nx,Nx) � a(Ey,Ny,Ny)

⇔
node(Nx,D

′
x) � node(Ny,Dy) � a(Ey,Ny,Ny),

D′
x = Dx−2



40 F. Raiser and T. Frühwirth

We can now investigate the following critical state σ according to Theorem 18,

where � = {Nx,Ny, Dx, Dy, Ex, Ey}:

σ = 〈node(Nx,Dx) � node(Ny,Dy) � a(Ex,Nx,Nx) � a(Ey,Ny,Ny),�,�〉

The critical state σ is not P1,P2-joinable, as there is only one rule applicable in

each program and the resulting states are not equivalent:

σ �r1
P1
〈node(Nx,Dx) � node(Ny,D

′
y) � a(Ex,Nx,Nx), D

′
y = Dy−2,�〉 = τ1

�≡
σ �r1′

P2
〈node(Nx,D

′
x) � node(Ny,Dy) � a(Ey,Ny,Ny), D

′
x = Dx−2,�〉 = τ2

6 Related and future work

The relation of CHR to other formalisms has been thoroughly investigated in the

literature. This includes comparison to logical formalisms (e.g. linear logic Betz

and Frühwirth 2005), term rewriting (Duck et al . 2006), Join-Calculus (Lam and

Sulzmann 2008) and Petri nets (Betz 2007). More detailled surveys of these relations

can be found in Sneyers et al. (2010) and Frühwirth (2009).

The relation of GTS to CHR differs from these other formalisms, because firstly,

it is a graph-based formalism, and secondly, there are significant differences in

program analysis results. Most importantly, confluence of terminating GTS is

undecidable (Plump 2005), whereas confluence of terminating CHR programs is

decidable (Abdennadher et al . 1999). Furthermore, no operational equivalence

analysis exists for GTS, as opposed to the situation in CHR (Abdennadher and

Frühwirth 1999).

The operational equivalence test presented in Section 5 yields a method for

removal of redundant rules, which is remarkable for another reason: In Kreowski and

Valiente (2000) the notions of redundancy and subsumptions have been introduced

for GTS, however, the authors only gave the definitions and a sufficient condition

for redundancy, but no verification procedure. While the notion of redundancy in

that paper is slightly different from the one found in Abdennadher and Frühwirth

(2003), the adaptation of the algorithm to GTS–CHR programs is to the best of

our knowledge the only available verification procedure for redundant GTS rules.

Note that operational equivalence, as defined here, is only one possible notion

of equivalence between programs. It was used in this work as an example of CHR

program analyses applied to embedded GTS. Another, more popular, notion of

equivalence of GTS is bisimilarity, introduced in the GTS context in Ehrig and

König (2004). It has been successfully applied to determine behavioural equivalence

of GTS in Rangel et al. (2008). While bisimilarity originated from process calculi

and is focused on the transitions made during computations of a result, operational

equivalence on the other hand, only compares the final computational results,

independently of how they are reached.

The encoding of GTS in CHR, as presented in Section 3, is based on the double-

pushout approach for GTS. A related graph rewriting mechanism, the single-pushout

approach, was introduced in Löwe (1993). Instead of demanding two pushouts, as
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in Figure 4, rewriting is defined there over a category of partial graph morphisms,

hence only a single pushout construction is used. Intuitively, this results in a different

behaviour with respect to dangling edges: While the double-pushout approach

prohibits a rule application in case a dangling edge would remain, the single-

pushout approach removes all dangling edges instead. In Löwe and Müller (1993)

the authors investigate confluence for single-pushout graph rewriting. In particular,

the critical pair analysis is shown to be only a sufficient criterion as well, not a

necessary one.

In this work, we based our encoding on the DPO approach as the non-applicability

of rules due to the dangling edge condition corresponds nicely to non-applicability

of corresponding CHR rules. In order to support the approach from Löwe (1993),

remaining dangling edges would need to be removed by an additional rule, hence,

we would lose the one-on-one correspondence of GTS and CHR rules.

Our encoding further serves as the foundation of the extensible platform for the

analysis of GTS using CHR presented in the diploma thesis (Wasserthal 2009). This

platform is based on JCHR (Van Weert 2008), a Java-based implementation of

CHR and the work presented in Section 3. The developed tool presents a graphical

view of a GTS which is synchronized with the corresponding GTS–CHR program

at all times. Furthermore, it provides an interface for program analysis plug-ins,

which can work directly on the GTS or on the GTS–CHR program.

As this work demonstrated, our embedding leads to cross-fertilizations of CHR

and GTS research. Future work should therefore concentrate on further comparing

the different approaches to program analysis. In particular, CHR provides several

approaches to termination analysis (Frühwirth 2000; Voets et al . 2008; Pilozzi and

De Schreye 2008) that GTS research may profit from.

Research on GTS contains several extensions for the typed graphs and rules con-

sidered in this work. One such extension adds attributes (Ehrig et al . 2006) to graphs,

which can then be modified by rules. We assume that built-in constraints available

in CHR could closely correspond to attributes. Another important extension, is the

addition of negative application conditions (Ehrig et al . 2006), i.e. applying a rule

requires the absence of certain graph structures. This is more difficult to achieve in

CHR, as it traditionally has no support for negation as absence. However, there

exist proposed extensions of CHR with negation as absence (Van Weert et al . 2006)

and aggregates (Van Weert et al . 2008), which could help in extending our encoding

to allow application conditions.

Our work on operational equivalence for GTS yielded a first useable criterion.

However, there is lot of remaining work in this field. From a decidability point of

view, operational equivalence is in a similar situation as confluence: Plump (2005)

showed that confluence is undecidable even for terminating GTS and we expect a

similar result for operational equivalence. Therefore, our criterion might only be

applicable to a small subset of all GTS.

Similarly, in CHR research, the operational equivalence result assumes that both

programs use the same constraint symbols in the same manner. While this restriction

yields a decidable criterion, it also means that it seldomly applies to real-world

programs. Traditionally, one may be able to manually show operational equivalence
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for two concrete programs by taking into account known restrictions on data

structures or inputs and ignoring irrelevant states. The same situation was present

for confluence (e.g. Frühwirth 2005) until observable confluence (Duck et al . 2007)

succeeded in providing an extended approach.

We plan to develop such an invariant-based approach for operational equivalence

in CHR as well, which extends Theorem 17. Combined with a better criterion

for operational equivalence in GTS, including the track morphism similarly to the

critical pair approach, this might reveal a closer correspondence between operational

equivalence in both systems.

7 Conclusion

We have shown thatCHR provides an elegant way for embeddingGTS. The resulting

rules are concise and directly related to the corresponding graph production rules. We

proved soundness and completeness of this embedding and verified formal properties

of CHR states that encode graphs. Furthermore, we considered partial graphs

and showed that the CHR embedding naturally supports these, hence facilitating

program analysis.

Next, we analysed confluence and showed that observable confluence of a

GTS–CHR program is a sufficient criterion for confluence of the analysed GTS.

Furthermore, we transferred the notion of operational equivalence from CHR to

GTS and discussed the CHR-based decision algorithm for redundant rule removal.
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Kreowski, H.-J. and Valiente, G. 2000. Redundancy and subsumption in high-level

replacement systems. In TAGT’98: Selected papers from the 6th International Workshop on

Theory and Application of Graph Transformations, H. G. Ehrig, G. Engels, H.-J. Kreowski

and G. Rozenberg, Eds. Lecture Notes in Computer Science, vol. 1765. Springer-Verlag,

215–227.

Lam, E. S. and Sulzmann, M. 2006. Towards Agent Programming in CHR. In CHR ’06:

Proc. 3rd Workshop on Constraint Handling Rules, T. Schrijvers and T. Frühwirth, Eds.
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T. Frühwirth, Eds. RISC Report Series 08-10, University of Linz, Austria, 51–66.

Löwe, M. 1993. Algebraic approach to single-pushout graph transformation. Theoretical

Computer Science 109, 1&2, 181–224.
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