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Abstract. Parallel multiset rewriting is usually restricted to be free of
overlaps, such that multiple rule applications cannot remove the same
object. In this work, we present a parallel execution strategy for Con-
straint Handling Rules that allows multiple removals of constraints, for
which different multiplicities have no effect on results. We show that
the resulting operational semantics is sound with respect to sequential
execution and discuss exemplary applications.

1 Introduction

Rewriting is an important subject in computer science and numerous flavors of
rewriting systems (term rewriting, graph rewriting, etc.) have been developed.
Their non-deterministic application of rules facilitates parallel execution strate-
gies. Modern processors and graphics cards, with their large number of cores,
further increase demand for parallel rule application. However, multiple rules
applied in parallel can lead to two kinds of conflicts: Firstly, rule applications
may need to remove the same object (i.e., term, graph node, etc.), and secondly,
an object removed by one rule application may be required by another.

This work focuses on multiset rewriting of objects, as found in Gamma [1], the
chemical abstract machine (CHAM) [2], or Constraint Handling Rules (CHR) [3].
We investigate parallelism with respect to special kinds of objects: formultiplicity-
independent objects their multiplicity has no effect on the computed answer. This
fact can be exploited and leads to a new parallel rewriting approach without the
above conflicts.

In the literature, however, many implementations restrict parallelism such
that these conflicts do not occur. For example, in [4] rewriting is performed on
independent parts of a graph. More recent work, like [5], approaches massively
parallel graph rewriting, but still performs independent rewriting steps. In [5]
multiple transformation processes of the same graph are executed in parallel
such that each process may select different non-deterministic possibilities.

We investigate our approach for Constraint Handling Rules (CHR) [3], which
is a committed-choice multiset rewriting language. It performs exhaustive, for-
ward chaining, multiset constraint rewriting and furthermore offers a first-order
logical reading, as well as a linear logical reading [3]. Additionally, it provides
support for built-in constraints and a corresponding built-in constraint theory.



The potential for parallelism inherent in CHR has already been recognized
during its early development. Recent results include parallel union-find [6] and
preflow-push [7] implementations, which have been formulated on an abstract
level, again assuming non-overlapping rewriting.

A pragmatic approach to rewriting of overlapping objects in CHR has been
presented in [8]: based on Haskell’s support for shared transaction memory, rule
applications are evaluated in parallel and committed to the store. In case of two
rules that want to remove the same constraint, only the first rule’s commit gets
executed. The second commit fails and is rolled back, i.e. the rule application
is hindered. A related approach is given in [9], in which an atomic operational
semantics for CHR is given.

The core idea of our work is as follows: The semantics of multiplicity-in-
dependent objects allows us to consider additional copies of them, such that
a duplicate removal of one can be replaced by removing two distinct objects.
Therefore, our proposed parallel execution strategy is free of these removal con-
flicts, while still remaining sound. As additional distinct objects are not explicitly
created, our approach can also be interpreted as allowing multiple removals of
an object within one parallel step.

Example 1. Consider the following CHR program for computing prime numbers.

prime(N)\prime(M) ⇔ M%N = 0 | ⊤

Without going into details of an execution strategy, the core idea of this
program is as follows: candidates for prime numbers are encoded as prime(i)
constraints for some number i. A candidate with number i can then remove all
candidates with numbers that are multiples of i, similar to the sieve of Eratos-
thenes. Having a number i available as a prime candidate multiple times makes
no difference: if it is not prime, then the candidate with a prime factor of i will
remove all of its occurrences, otherwise additional copies redundantly denote
that i is a prime number.

To demonstrate the effect of our proposed parallel execution strategy, con-
sider the non-prime number 30 encoded in prime(30), that has multiple prime
factors. Hence, the above rule can remove prime(30) via prime(2), prime(3),
prime(4), prime(5), prime(6), prime(10), and prime(15). With only one prime(30)
constraint available, this leads to several possible rule applications that require
the removal of the same object. With our approach instead, we remove the
prime(30) constraint multiple times – once, for each of the possible rule appli-
cations.

A consequence of this approach is that all applicable rules can be applied in
one parallel step. We show that this execution strategy is sound with respect
to sequential execution. As this work is a first foray into massive parallelism for
CHR, we assume an unlimited number of processors to be available, nevertheless
we show that execution with any finite number of processors is still sound. We
present CHR programs for the computation of minima, maxima, prime numbers,
and sorting, that require only a constant number of parallel rule applications.



These results, based on an unlimited number of processors, are consistent
with similar ones in the literature. For example, [10] presents constant-time
parallel sorting and [5] discusses how NP-complete problems can be solved in
polynomial time with a massive number of processors.

Clearly not all objects in multiset rewriting have this multiplicity-independent
nature. However, the presented programs are essential algorithms found in many
applications. It may thus be desirable to create a parallel execution strategy that
allows for both, our proposed rewriting strategy and another strategy from ex-
isting literature.

The remainder of this work is structured as follows. After introducing the
operational semantics of CHR in Section 2, we present our set-based parallel
formulation in Section 3. In that section we further present applications and
discuss properties of the proposed parallel execution scheme, in particular its
soundness with respect to sequential execution. Finally, we conclude in Section 4
and give an overview of possible further research directions.

2 Preliminaries

In this section, we present the equivalence-based operational semantics ωe for
Constraint Handling Rules [11]. It corresponds to the very abstract operational
semantics ωva in [3]. We chose this formulation, because it clearly separates
CHR constraints (also called user-defined constraints) which are rewritten, from
built-in constraints, which are handled by a constraint theory CT .

Formally, CHR is a state transition system, hence we begin with the definition
of a state.

Definition 1 (State). A (CHR) state σ is a tuple 〈G;B;V〉. The user-defined
(constraint) store G is a multiset of CHR constraints. The built-in (constraint)
store B is a conjunction of built-in constraints. V is a set of variables, called the
global variables. We use Σe to denote the set of all states.

For clarity we usually omit curly brackets and denote (multi-)set union with
comma, i.e. 〈{a} ⊎ {b};⊤; ∅〉 = 〈a, b;⊤; ∅〉. A CHR state contains different kinds
of variables, defined as follows.

Definition 2 (Variable Types). For the variables occurring in a state σ =
〈G;B;V〉 we distinguish three different types:

1. a variable v ∈ V is called a global variable

2. a variable v 6∈ V is called a local variable

3. a variable v 6∈ (V ∪G) is called a strictly local variable

The equivalence-based operational semantics is founded on the following
equivalence relation between CHR states. State equivalence and the resulting
transition system are discussed in more detail in [11].



Definition 3 (State Equivalence).
Equivalence between CHR states is the smallest equivalence relation ≡ over

CHR states that satisfies the following conditions:

1. (Equality as Substitution) 〈G;x
.
= t ∧ B;V〉 ≡ 〈G [x/t] ;x

.
= t ∧ B;V〉

2. (Transformation of the Constraint Store) If CT |= ∃s̄.B ↔ ∃s̄′.B′ where
s̄, s̄′ are the strictly local variables of B,B′, respectively, then: 〈G;B;V〉 ≡
〈G;B′;V〉

3. (Omission of Non-Occurring Global Variables) If x is a variable that does
not occur in G or B then: 〈G;B; {x} ∪ V〉 ≡ 〈G;B;V〉

4. (Equivalence of Failed States) 〈G;⊥;V〉 ≡ 〈G′;⊥;V〉

The following formulation of transitions regards CHR as a rewriting system
for equivalence classes of states. Note that we freely mix equivalence classes and
their representatives, though, i.e. we often write σ  τ instead of [σ]  [τ ].
Syntactically, a CHR rule is of the form r @ H1\H2 ⇔ G | Bc, Bb where r is an
optional rulename, H1 is the kept head, H2 the removed head, G the guard, and
the body consists of user-defined constraints Bc and built-in constraints Bb.

A variant of a rule (r @ H1\H2 ⇔ G | Bc, Bb) with variables x̄ is a rule of
the form (r @ H1\H2 ⇔ G | Bc, Bb)[x̄/ȳ] for any sequence of pairwise distinct
variables ȳ. For any rule (r @ H1\H2 ⇔ G | Bc, Bb), its local variables l̄r are
defined as l̄r ::= vars(G,Bc, Bb) \ vars(H1, H2).

Definition 4 (Transitions).
For a CHR program P, the state transition system (Σe/≡,) is defined as

follows. The transition is based on a variant of a rule r in P such that its local
variables are disjoint from the variables occurring in the pre-transition state.

r @ H1 \H2 ⇔ G | Bc, Bb

[〈H1, H2,G;G ∧ B;V〉]r [〈H1, Bc,G;G ∧Bb ∧ B;V〉]

3 Exhaustive Parallel Execution

In this section, we present our proposal for a parallel execution strategy suitable
for multiplicity-independent objects. After formally introducing our proposed
parallel operational semantics CHRmp, Section 3.1 presents possible applications.
Section 3.2 then shows its soundness with respect to sequential execution.

Based on the definition of CHR states, we first define a CHRmp state that
adheres to set-semantics.

Definition 5 (CHRmp state). A CHRmp state is a tuple 〈G;B;V〉 with a
set G of CHR constraints, a conjunction B of built-in constraints, and a set
of global variables V. The set G is considered modulo B, i.e. for different con-
straints c(x̄1), c(x̄2) ∈ G holds that CT 6|= B → (c(x̄1) = c(x̄2)).

The equivalence relation ≡ between CHR states directly transfers to CHRmp

states, with the exception that failed states may not turn the set of CHR con-
straints into a multiset under ≡.



Finally, the transition relation  applies to CHRmp states as defined for
CHR states.1

Example 2. The CHR state 〈c(X), c(3);X = 3; ∅〉 is not a CHRmp state, as
X = 3 → c(X) = c(3). We can turn any CHR state into a CHRmp state by
eliminating duplicate CHR constraints, hence creating a set from the multiset
of CHR constraints: 〈c(X);X = 3; ∅〉 ≡ 〈c(3);⊤; ∅〉.

We now define the parallel state transition system of CHRmp. It works as
follows: for all considered sequential rule applications the removed constraints
are removed from the state and all bodies are added. As the constraints are
kept in a set we have no means to refer to a specific constraint. Therefore, we
build upon state equivalence ≡ and consider a conjunction of all involved built-in
stores, assuming rule variants with distinct variables.

Definition 6. Let σ = 〈G;B;V〉 be a CHRmp state and let R be the smallest set
such that for each rule r @ H1\H2 ⇔ G | Bc, Bb with σ ≡ 〈H1, H2,G

′;G∧B
′;V〉

holds (H1, H2, Bc, Bb,B
′) ∈ R. We then define for R ⊆ R:

– the set of removed constraints: D = {c | ∃( , H2, , ,B′) ∈ R, c ∈ G : CT |=
(H2 ∧ B

′) → c}
– the set of added constraints: A = {c | ∃( , , Bc, , ) ∈ R : c ∈ Bc}
– the conjunction of added built-in constraints: B =

∧

( , , ,Bb,B′)∈R

B
′ ∧Bb

A parallel transition (step) of σ is defined as:

σ ։R 〈(G \D) ∪A;B ∧B;V〉

If the specific set R is not of importance we also write ։ instead of ։R.

Example 3. Reconsider the CHR program for computing prime numbers and the
state σ = 〈prime(2), prime(3), prime(4), prime(5), prime(X);X = 6; {X}〉.

There are a total of three possible rule applications, removing the non-prime
numbers 4 and 6, where 6 is removed twice. We therefore have the following:

σ ≡ 〈prime(N1), prime(M1), . . . ;X = 6 ∧N1 = 2 ∧M1 = 4; {X}〉
σ ≡ 〈prime(N2), prime(M2), . . . ;X = 6 ∧N2 = 2 ∧M2 = 6; {X}〉
σ ≡ 〈prime(N3), prime(M3), . . . ;X = 6 ∧N3 = 3 ∧M3 = 6; {X}〉

⇒ R =







({prime(N1)}, {prime(M1)}, ∅,⊤, X = 6 ∧N1 = 2 ∧M1 = 4),
({prime(N2)}, {prime(M2)}, ∅,⊤, X = 6 ∧N2 = 2 ∧M2 = 6),
({prime(N3)}, {prime(M3)}, ∅,⊤, X = 6 ∧N3 = 3 ∧M3 = 6)







We can now perform all three possible rule applications in parallel, i.e.R = R,
resulting in the following sets: D = {prime(4), prime(X)}, A = ∅, and B = (X =

1 Rule heads may require a multiset for matching, in which case additional rules can
be considered, which overlap these multiset constraints to make them matchable by
a single constraint.



6∧N1 = 2∧M1 = 4)∧ (X = 6∧N2 = 2∧M2 = 6)∧ (X = 6∧N3 = 3∧M3 = 6).
This leads to the parallel step:

σ ։R 〈prime(2), prime(3), prime(5);X = 6 ∧B; {X}〉
≡ 〈prime(2), prime(3), prime(5);X = 6; {X}〉

Hence, a single parallel step is sufficient to filter all non-prime numbers. The
following section presents further examples of such filter algorithms.

3.1 Applications

In this section, we examine different applications and the effect of executing
these programs in CHRmp. All constraints in this section have multiplicity-
independent semantics, such that adding additional copies does not affect re-
sults.

Filter Programs There exists a class of programs that filter constraints from a
set of available constraints based on some given criteria. Typical representatives
of this class are programs for computing minima, maxima, or prime numbers.
They usually consist of a single rule, that takes two constraints and removes one
of them if the guard is satisfied. For example, the following two rules compute
the minimum and maximum of a set of available numbers, respectively.

min(A)\min(B) ⇔ A < B | ⊤
max(A)\max(B) ⇔ A > B | ⊤

Executing these programs with CHRmp requires only a single exhaustive par-
allel step: Assume that there are n min /1-constraints in the store, then there
exists one such constraint min(n0) such that n0 is the smallest of the n argu-
ments. In the original state this constraint can be used to remove any other
min /1-constraint. Therefore, in CHRmp all of these removals are combined into
one exhaustive parallel step, leaving only min(n0) as a result.

The computations made for such filter programs are sound with respect to
sequential execution if the programs are deletion-acyclic, according to Defini-
tion 7. For the above two programs this is straightforward, because e.g., min /1-
constraints can only be removed by ones with a smaller argument.

Sorting A more interesting application of CHRmp is to perform exhaustive
parallel sorting. The following rule performs sorting in CHR. It assumes the
distinct input numbers n1, . . . , nN as constraints of the form 0 ni∀1 ≤ i ≤ N :

A B\A C ⇔ B < C | B  C



The following is a sequential computation to sort the numbers 1,. . . ,4:

〈0 1, 0 3, 0 2, 0 4;⊤; ∅〉
 〈0 1, 1 3, 0 2, 0 4;⊤; ∅〉
 〈0 1, 1 3, 1 2, 0 4;⊤; ∅〉
 〈0 1, 1 2, 2 3, 0 4;⊤; ∅〉
 〈0 1, 1 2, 2 3, 1 4;⊤; ∅〉
 〈0 1, 1 2, 2 3, 2 4;⊤; ∅〉
 〈0 1, 1 2, 2 3, 3 4;⊤; ∅〉

Executing this program without any changes in CHRmp results in the fol-
lowing computation:

〈0 1, 0 3, 0 2, 0 4;⊤; ∅〉
։ 〈0 1, 1 3, 1 2, 1 4, 2 3, 2 4, 3 4;⊤; ∅〉
։ 〈0 1, 1 2, 2 3, 2 4, 3 4;⊤; ∅〉
։ 〈0 1, 1 2, 2 3, 3 4;⊤; ∅〉

Here, we add constraints, e.g., 2  4, that have already been removed in
the same step, resulting in an unwanted reintroduction. Hence, the first parallel
step generates O(N2) constraints of the form ni  nj with i < j. There remains
exactly one constraint 0 nk such that nk is the smallest number. In the second
step, the second smallest number is computed and again O(N2) constraints
are regenerated. Therefore, all computations involving larger numbers than the
currently minimal one are wasted and a total of O(N) parallel steps are required.

This can be improved upon by slightly modifying the program such that it
becomes a filter program. The idea is to compare all numbers with all other
numbers in one step, and then compute the minimum of all comparisons for
each number. This is realized by the following program:

A B,A C ⇔ B < C | A ⊳ B,B ⊳ C
A ⊳ B\A ⊳ C ⇔ B < C | ⊤

The computation is split into two phases, represented by the constraint sym-
bols  and ⊳. Below is the execution of the program in CHRmp, again for the
numbers 1, . . . , 4.

〈0 1, 0 3, 0 2, 0 4;⊤; ∅〉
։ 〈0 ⊳ 1, 0 ⊳ 2, 0 ⊳ 3, 1 ⊳ 2, 1 ⊳ 3, 1 ⊳ 4, 2 ⊳ 3, 2 ⊳ 4, 3 ⊳ 4;⊤; ∅〉
։ 〈0 ⊳ 1, 1 ⊳ 2, 2 ⊳ 3, 3 ⊳ 4;⊤; ∅〉

After this modification the program is able to compute all ⊳-pairs in one
parallel step and filter unwanted pairs in a second step. Therefore, sorting any
amount of numbers requires a constant number of transitions. As the first rule
generates O(N2) ⊳-pairs, O(N4) processors are required for filtering. Again, we
find the typical trade-off that requires more processors in order to reduce runtime
complexity.



3.2 Soundness of CHRmp

While the CHRmp execution strategy is worthwhile on its own, it may sometimes
be desirable to ensure that a corresponding computation exists on a sequential
processor. Hence, in this section we investigate soundness of CHRmp with respect
to sequential execution. In general, this is not always possible as the following
example shows.

Example 4. Consider the program with the rule c(X)\c(Y ) ⇔ ⊤. An applica-
tion of the rule removes a c-constraint only when another one is present in the
store. Hence, the final result of exhaustively applying this rule sequentially con-
tains a single remaining c-constraint (or none, if the initial goal contains no
c-constraints).

Contrary to that, consider the state σ = 〈c(1), c(2);⊤; ∅〉, which allows for
the following CHRmp computation: σ ։R 〈∅;⊤; ∅〉. Thus, as both c-constraints
could potentially be removed, the exhaustive parallel execution strategy removes
all of them – resulting in a state that is not reachable by sequential computation.

The above example shows that a program, in which two constraints are re-
sponsible for their mutual removal, is no longer sound in CHRmp with respect to
sequential execution. However, we can get soundness for the subset of programs
which allow no mutual removal. More precisely, soundness requires that the
programs are deletion-acyclic according to the following definition. The binary
relation D(σ,R) represents a deletion dependency, i.e. (c, d) ∈ D(σ,R) means
the constraint c is required to remove constraint d when applying one of the
rules in R.

Definition 7 (Deletion Dependency, Deletion-Acyclic).
Let σ = 〈G;B;V〉 ։R τ , then the deletion dependency D(σ,R) is a bi-

nary relation such that (c, d) ∈ D(σ,R) if and only if c, d ∈ G and there ex-
ist (H1, H2, Bc, Bb,B

′) ∈ R and c′ ∈ H1, d
′ ∈ H2 such that c′ ∧ B

′ → c and
d′ ∧ B

′ → d or in the case of H1 = ∅ there exists d′ ∈ H2 such that d′ ∧ B
′ → d

and (·, d) ∈ D(σ,R), where · is a unique symbol not occurring in the program.
A CHRmp program P is deletion-acyclic if and only if for all σ such that

σ ։R τ the transitive closure D(σ,R)+ is irreflexive.

The following soundness result requires a deletion-acyclic program and to
account for the set-semantics of CHRmp the program for sequential execution
is extended by well-known set-semantics rules of the kind c(x̄)\c(x̄) ⇔ ⊤. This
theorem shows soundness for R ⊆ R, hence, it also holds for a non-exhaustive
number of parallel rule applications, as would be the case with a finite number
of processors.

Theorem 1 (Soundness). Let P be a deletion-acyclic CHRmp program and P ′

be the CHR program P extended with set-semantics rule. Let σ = 〈G;B;V〉։R
P τ

with V = vars(G,B), then there exists a multiset G′ with c ∈ G
′ ⇒ c ∈ G such

that σ′ = 〈G′;B;V〉
|R|
P′ τ ′ ∗ τ , where the first |R| rule applications coincide

with those in R and the latter rule applications only use set-semantics rules.



Example 5. Reconsider the above example computation for computing prime
numbers. The program is deletion-acyclic as every number only removes multi-
ples of itself. For the above state σ we see that

D(σ,R) = {(prime(2), prime(4)), (prime(2), prime(X)), (prime(3), prime(X))}

Hence, the need to duplicate prime(X) for a sequential execution. The following
is the sequential execution according to Theorem 1, for G = prime(4), prime(5).

σ′ = 〈prime(2), prime(3),G, prime(X), prime(X);X = 6; {X}〉

P′ 〈prime(2), prime(3),G, prime(X);X = 6; {X}〉

P′ 〈prime(2), prime(3), prime(4), prime(5);X = 6; {X}〉

P′ 〈prime(2), prime(3), prime(5);X = 6; {X}〉

Note that extending the initial state to also contain prime(7) and prime(8) im-
plies that a correct order has to be chosen for the sequential execution. As both,
prime(2) and prime(4), are able to remove prime(8) there are two copies of
prime(8). However, as prime(2) can also remove prime(4) it has to be ensured
that this is done only after prime(4) has removed one prime(8) constraint. The
induction used in the proof of Theorem 1 guarantees the existence of such an
order for deletion-acyclic programs.

4 Conclusion and Future Work

In this work, we presented CHRmp, a parallel execution strategy for Constraint
Handling Rules. It is based on the notion of multiplicity-independent objects, for
which different multiplicities do not affect results. We have shown how this can
be exploited to allow multiple removal of objects by parallel rule applications.

We have proven that the resulting operational semantics is sound with respect
to sequential execution for deletion-acyclic programs. In formalizing CHRmp we
referred to an unlimited number of processors, yet we have also shown that an
execution strategy based on a finite number is equally sound. Finally, we have
given example programs for filtering and sorting in order to demonstrate the
viability of CHRmp.

In this work, we concentrated on the formal aspects of CHRmp, thus abstract-
ing from more specific details. Multiple removal of constraints by different rule
applications was shown to be possible and worthwhile, however, we have not yet
investigated implementation details for our approach. We assume that for op-
timal efficiency a concurrent-read concurrent-write (CRCW) RAM architecture
will be required.

Similarly, we abstracted from treatment of built-in constraints. Built-in con-
straints from all parallel rule applications must be combined efficiently, again
implying the need for a CRCW RAM architecture and an optimized union-find
implementation.

CHRmp relies on multiplicity-independent objects, yet most programs require
other forms of objects as well. Therefore, we plan to investigate the possibility



of considering CHRmp in a modular fashion, such that it can be combined with
other existing operational semantics. Hence, a program could work with a tra-
ditional CHR implementation, yet refer to CHRmp as a module for sorting a
sequence of objects. A similar approach would be the possibility to explicitly
mark constraints as multiplicity-independent in the source code, thus making
them subject to a CHRmp-based execution strategy.

Finally, the current formulation of CHRmp is non-terminating for propagation
rules. We deliberately left this aspect undefined, as there are different approaches
available to alleviate this problem. One of these is the introduction of persistent
constraints, recently presented in [12], which are multiplicity-independent objects
by their nature. Therefore, the combination of CHRmp and persistent constraints
appears promising.
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A Proofs

Theorem 2 (Soundness). Let P be a deletion-acyclic CHRmp program and P ′

be the CHR program P extended with set-semantics rule. Let σ = 〈G;B;V〉։R
P τ

with V = vars(G,B), then there exists a multiset G′ with c ∈ G
′ ⇒ c ∈ G such

that σ′ = 〈G′;B;V〉
|R|
P′ τ ′ ∗ τ , where the first |R| rule applications coincide

with those in R and the latter rule applications only use set-semantics rules.

Proof. In the following proof let #(c,G) denote the multiplicity of the con-
straint c in the multiset G. For the remainder of the proof we assume w.l.o.g.
that the built-in store of τ is non-failed. (The proof shows that the same fail-
ure would occur sequentially, hence not all rule applications might be required to
reach this failure.)

We first show that all parallel rule applications, denoted by elements in R,
can be performed sequentially. This is done by an induction over |R| using the
following induction hypothesis (IH) for k ∈ {1, . . . , |R|}:

There exists Rk ⊆ R with

1. |Rk| = k
2. there exists a multiset G′

k with c ∈ G
′
k ⇒ c ∈ G, such that

– σk = 〈G′
k;B;V〉

k
P′ τk = 〈Gk;Bk;V〉 by applying the rules from Rk

– (
⋃

( , ,Bc, , )∈Rk

Bc) ⊆ Gk

– Bk = B ∧
∧

( , , ,Bb, )∈Rk

Bb

– ∀c ∈ G
′
k holds

#(c,G′
k)−#(c, {c | ( , H2, , ,B′) ∈ Rk ∧ (H2 ∧ B

′ → c)}) ∈ {0, 1}.
3. ¬∃(c1, c2) ∈ D(σ,Rk) with ∃(c2, ) ∈ D(σ,R \Rk).

The first condition corresponds to the number of parallel rules being applied.
Condition 2 specifies that the initial state is sufficient to fire all the rules, when
extending it with multiples of constraints. It further ensures, that multiples are
only added if they are consumed within these k sequential steps. Finally, condi-
tion 3 ensures a sequential rule ordering that does not lead to removal of con-
straints that are required in later rule applications.

Induction over |R|:
Base case: |R| = 1 ⇒ R′ = R = {(H1, H2, Bc, Bb,B

′)}. Condition 1 of the IH
is trivially satisfied. Condition 2 is clear, as in this case there is only one rule
application, coinciding with the sequential case. Condition 3 is satisfied, because
D(σ,R \R1) = ∅.

Induction step: From IH follows that there exists Rk and τk = 〈Gk;Bk;V〉
as defined above. We need to show: ∃(H1, H2, Bc, Bb,B

′) ∈ R \ Rk such that
Rk+1 = Rk ∪ {(H1, H2, Bc, Bb,B

′)} satisfies conditions 2 and 3 (with 1 being
trivially satisfied)

Condition 2: Each element of R corresponds to a rule application on the
original state σ. Therefore, for each c ∈ H1 ∪ H2 there exists a unique c′ ∈ G

with c ∧ B
′ → c′. From IH, condition 2, follows that either #(c′,Gk) = 1 or



#(c′,Gk) = 0. In the latter case we extend G
′
k+1 by an additional copy of c′.

Due to monotonicity of CHR we then have c′ ∈ Ĝk (where σk+1 
k τ ′k =

〈Ĝk;Bk;V〉). Therefore, G
′
k+1 is constructed such that Ĝk contains all con-

straints required to match H1 ∪H2.
We then have τ ′k P′ τk+1 = 〈Gk+1;Bk+1;V〉 with the required properties for
Gk+1 and Bk+1 holding for Rk+1. The multiplicity property also holds, as ei-
ther d(c) = 1 is unchanged, or we added an additional copy that was removed
by the k + 1-th rule application resulting in d(c) = 0: either ( , c′) ∈ Dk and
therefore, by condition 3 6 ∃(c′, ) ∈ D \ Dk, or this is the first tuple of the form
( , c′) ∈ Dk+1 \ Dk. Therefore, condition 2 can be satisfied for any element of
R \Rk.

Condition 3: proof by contradiction:
Assume that there exists no element of R \ Rk that can be added to form Rk+1

such that condition 3 is satisfied. Then D(σ,R \ Rk)
+ is not irreflexive – con-

tradicting deletion-acyclicity – which we prove as follows:
Assume, that Rk+1 = Rk ∪ {(H1, H2, Bc, Bb,B

′)}. Hence, by assumption there
exists (c1, c2) ∈ D(σ,Rk+1) with ∃(c2, c3) ∈ D(σ,R \ Rk+1) stemming from an-
other rule application. Therefore, D(σ,R \Rk) contains tuples corresponding to
elements from H1×{c2} (or (·, c2) if H1 = ∅) and {c2}×H ′

2. Deletion-acyclicity
ensures c3 does not correspond to a constraint in H1.
By iteratively selecting each available rule application for Rk+1 we find n =
|R \ Rk| constraints (c2, c5, c8, . . . , c3(n−1)+2) that occur in the H2-part of one
rule and the H1-part of another. W.l.o.g. we ignore (·, ) tuples here, as they
only reduce the number n of such shared constraints. The cyclicity argument be-
low is unaffected and the assumption that condition 3 cannot be satisfied ensures,
that not all tuples are of this form. This situation is depicted below, where Hi

1, H
i
2

are the two head parts shown as columns, arrows denote tuples of D(σ,R \ Rk)
and =-edges mark the n constraints from above.
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Hn
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c3(n−1)+1 // c3(n−1)+2

c4 // c5
= . . . // . . . = c3(n−1)

c1/· // c2
= c2 // c3

By the above argumentation c3(n−1)+2 also corresponds to a constraint in
some H1-part. Hence, there needs to be an additional equality edge from c3(n−1)+2

to some previous Hi
1(i < n). However, by Definition 7 we have tuples correspond-



ing to Hi
1 ×Hi

2 ∈ D(σ,R \Rk). Therefore, any such equality edge causes a cycle
to exist in D(σ,R \Rk), hence D(σ,R \Rk)

+ is not irreflexive.
This proves that all elements from R\Rk satisfy conditions 1 and 2, and that

there exists at least one such element that also satisfies condition 3. Therefore,
the required Rk+1 exists and the induction is complete.

Hence, for R there exists the computation σ′


|R|
P′ τ ′ according to condition 2.

We now compare τ ′ to τ : By Definition 6 τ = 〈(G \ D) ∪ A;B ∧ B;V〉. It is
clear from condition 2 that the built-in stores are equivalent. Furthermore, all
constraints in D have also been removed from G

′ (as the same rules have been
applied and condition 2 holds).

Therefore, the only difference between τ and τ ′ is that constraints added by
the rule applications could occur in multiplicities greater than 1 (whereas A is a
set). Hence, we can make use of the set-semantics rules to reduce multiplicities
to 1 resulting in τ ′∗ τ .


