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Motivation for developing hybrid SAT-solver

Major solving paradigms for the SAT-problem
I DPLL

+ Complete: can solve sat and unsat problems

+ Good at solving industrial and crafted problems

- Not good on random formulas

- Use large amounts of memory

I SLS

+ Fast at solving random sat problems

+ Little memory consumption

- Incomplete

- Scale bad on industrial and crafted problems

Considerable effort has been undertaken to combine these two solving

paradigms for gaining: robustness, completeness or speed
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Preliminary study towards hybridisation

Our approach
I Look for the weaknesses of a solver and try to overcome it with a

solver following the other paradigm

I We have chosen a SLS-solver for our analysis : gNovelty+ (winner of

SAT2007 competition category random sat)

Search Properties of a SLS-solver
1. Diversification: How good is the search space coverage?

2. Intensification: How good is the search around high quality points?
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An Example for Good Diversification

The search space represented two-dimensionally.
Black dots: points visited by the solver during its search
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An Example for Good Intensification

Red dots: Good quality local minima
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Diversification analysis

Our approach
I Try to cluster the points visited by the SLS→ impossible due to large

data (formula with 4000 variables→ up to 108 flips during the

search)

I Confine to search space points where the objective function has low

values (i.e. local minima and their neighborhood)

I Save all this points in a bloom filter

I Check how many points are in the close neighborhood of the saved

points

Results
Not more than 2% of the points lay in the close neighborhood of the

saved ones→ good diversification
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Intensification analysis

Why is intensification around good local minima important?
Zhang(2004) showed: the quality of a local minimum is correlated with the

hamming distance between the local minimum and the nearest solution

The optimal SLS-solver
Would intensify the search around those local minima where the

neighborhood contains a solution

How to check if the intensification is sufficient
Search the complete Hamming neighborhood (within a certain distance)

of local minima for solutions: possible only for very small formulas

Solution
Create a new neighborhood relation that can be searched up "fast"→

Search Space Partition (SSP)
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Some Definitions

Complete Assignment of a Formula F

α ∈ Bn where B = {0,1} is called complete assignment of the variables

{x1, . . . ,xn} of F

Partial Assignment

β ∈ RBn where RB = {0,1,?} is called partial assignment (not all

variables have a value)

The number of ?-symbols in β (size of β ) is described by |β |?

Flip Trajectory
(t1, . . . , tw ) where ti ∈ {x1, . . . ,xn} denote the variables being flipped by

the SLS-algorithm during its search (w denotes the total number of flips)
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Search Space Partition

Definition
Given a complete assignment αj of F visited by the solver in the j-th flip

and the flip trajectory (t1, . . . , tw ) we construct a partial assignment β by

starting with k = 0 and β = αj and then repeat:

β [tj+k ] =? and β [tj−k ] =? where tj±k are the variables of the flip trajectory

until |β |? ≥ c ·n where c is some fixed constant c ∈ (0,1)

This so constructed partial assignment is called a Search Space Partition.

Example
α7 = (0,0,1,1,0,1,0,1,1,1) assignment for F with 10 variables (c = 0.5)
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β = (?,0,1,1,0,1,0,1,1,1)
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Using SSPs to check intensification

Algorithm for checking intensification
1. Run SLS-solver and save a portion of the actual flip trajectory

2. Create SSPs around good quality local minima on the fly

3. Apply the partial assignment of the SSP on the formula to get a

simplified sub formula

4. Solve the sub formula with a complete DPLL-solver to gain certainty

that there is no solution

Details
1. The construction of SSPs is done on the fly in linear time

2. The size can be controlled by the constant c

3. If the DPLL-solver finds a solution within a SSP→ a new faster

hybrid solver
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Implementation details

hybridGM
I SLS-solver: gNovelty+ (SAT 2007 Comp. version slightly modified)

I DPLL-solver : march_ks (bug fixed version with some slight

modification by Marijn Heule)

I Build SSPs around local minima with only 1 unsatisfied clause

I The constant c starts with 1/2 and increases in steps of 1/20 if the

sub formula is too simple for march_ks

Empirical Tests
I Different instances from SAT 2007 Competition

I Each instance is solved 100 times (cutoff 2000 sec.)

I In case of 5-SAT and 7-SAT there was sometimes a memory leak
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Some Empirical Results
Instance gNovelty+ adaptG2-

WSAT0

hybridGM3

(gNov,March)

Gain

SAT 2007 Competition random instances

unif2p-p0.7-v3500-c9345-S1568322528-08 10% 2.91 | 1.63 9.63 | 7.82 (9,91) >1

unif2p-p0.7-v6500-c17355-S1097641288-15 97.64 | 69.35 3.75 | 1.61 4.31 | 2.57 (20,80) 22.65

unif2p-p0.7-v6500-c17355-S152598520-02 226.64 | 168.00 10.23 | 1.90 2.17 | 1.66 (27,73) 104.44

unif2p-p0.8-v1295-c4027-S1762612346-15 136.06 | 94.03 1.13 | 0.79 2.65 | 2.20 (9,91) 51.34

unif2p-p0.8-v1665-c5178-S1363528912-04 20.84 | 16.16 5.11 | 3.33 5.21 | 4.65 (73,27) 4.00

unif2p-p0.8-v2405-c7479-S1163137157-19 8.18 | 6.14 4.00 | 2.27 9.67 | 8.01 (28,72) 0.85

unif-k3-r4.261-v650-c2769-S1159448555-06 0.46 | 0.29 0.24 | 0.19 0.67 | 0.53 (76,24) 0.69

unif-k3-r4.2-v10000-c42000-S1173369833-06 73.87 | 50.01 11% 7.28 | 5.61 (23,77) 10.15

unif-k3-r4.2-v13000-c54600-S1416986890-04 331.30 | 250.70 0% 22.02 | 17.58 (23,77) 15.05

unif-k3-r4.2-v16000-c67200-S1600965758-04 18% 0% 73% (18,55) >1

unif-k3-r4.2-v16000-c67200-S1826381479-08 550.04 | 457.84 0% 38.00 | 33.06 (23,77) 14.47

unif-k3-r4.2-v19000-c79800-S1106616038-10 74% 0% 92.02 | 70.75 (39,61) >1

unif-k3-r4.2-v19000-c79800-S1875179522-13 470.69 | 381.00 0% 25.59 | 20.93 (25,75) 18.39

unif-k3-r4.2-v4000-c16800-S1178874381-13 8.11 | 6.02 184.52 | 110.63 4.99 | 4.00 (46,54) 1.63

unif-k3-r4.2-v4000-c16800-S1580061366-10 2.51 | 1.98 19.21 | 13.11 1.18 | 1.01 (42,58) 2.13

unif-k3-r4.2-v7000-c29400-S102550125-14 42.92 | 31.46 82% 6.85 | 5.70 (28,72) 6.27

unif-k3-r4.2-v7000-c29400-S1312035429-13 288.97 | 184.15 1% 246.31 | 160.57 (40,60) 1.17
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Conclusion

Summary
I We have introduced the term of a Search Space Partition for

SLS-solvers based on their search trajectory

I We propose a simple generic approach to combine a SLS- and a

DPLL-solvers for a speedup with the help of SSPs

I Empirical results show that this approach is promising (SAT

Competition 2009 results . . .?)

Outlook
I Dynamical adaptation scheme for when the SSPs are built

I Improve hybridGM ’s performance at solving 5-SAT and 7-SAT
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Pseudocode of hybridGM

INPUT: formula F , cutoff.

OUTPUT: model for F or UNKNOWN.

hybridGM(F , cutoff) {

α = αs = random assignment;

numFlips = 0;

c = 0.5;

barrier= 1;

collectSSP = FALSE;

while (numFlips < cutoff) {

var = pickVar ();

α[var] = 1−α[var];

numFlips++;

if (α is model for F ) return α;

if (numUnsatClauses == barrier) {

β = α;

collectSSP = TRUE;

j = numFlips;

k = 0;

}

if (collectSSP == TRUE) {

β [ variableIndex( TS(F ,αs)[j +k ] ) ] =?;

β [ variableIndex( TS(F ,αs)[j−k ] ) ] =?;

k++;

}

if (|β |? ≥ cn) {

µ = March_ks(F , β );

if (µ is model for F ) return µ;

else if (unaryConflictOccurred() == TRUE)

c = c +0.05 ·n;

collectSSP = FALSE;

}

updateParameters(); //noise, scores

}

return UNKNOWN;

}


