Kryptologie: Algorithmen und Methoden Übungsblatt 3

Prof. Dr. U. Schöning S. Arnold, S. Straub

Sommersemester 2016

Abgabe vor der Übung am 02.05.2015

Aufgabe 3.1 (2 Pkt.)

Sie haben in der Vorlesung 3DES mit zwei Schlüsseln kennen gelernt, wobei eine Nachricht $m \in \{0, 1\}^{64}$ mit der Chiffre c,

$$c \leftarrow \text{DES}\left(\text{DES}^{-1}\left(\text{DES}(m, k_1), k_2\right), k_1\right),$$

verschlüsselt wird. Die Schlüssel in $\{0,1\}^{56}$ werden mit t_i bezeichnet, $i=1,\ldots,2^{56}$. Betrachten Sie folgende Chosen-Plaintext-Attacke:

```
for i \leftarrow 1 to 2^{56} do
\begin{bmatrix} a_i \leftarrow \text{DES}^{-1}(0^{64}, t_i) \\ \text{trage } (a_i, t_i) \text{ in eine Tabelle } T \text{ ein} \end{bmatrix}
for i \leftarrow 1 to 2^{56} do
\begin{bmatrix} c_i \leftarrow \text{DES} \left( \text{DES}^{-1} \left( \text{DES}(a_i, k_1), k_2 \right), k_1 \right) \\ b_i \leftarrow \text{DES}^{-1}(c_i, t_i) \\ \text{if } in \ T \ gibt \ es \ ein \ a_j \ mit \ a_j = b_i \ \text{then} \\ \text{gib } (t_i, t_j) \text{ als mögliches Schlüsselpaar aus} \\ \text{stop} \end{bmatrix}
```

Zeigen Sie, dass zumindest für das Paar (a_i, c_i) das Schlüsselpaar (t_i, t_j) korrekt ist.

Anmerkung: Der Algorithmus führt $\approx 2^{56}$ Operationen aus statt $\approx 2^{112}$. Ob (t_i, t_j) tatsächlich das richtige Schlüsselpaar ist, kann durch das Verschlüsseln weiterer Klartexte festgestellt werden.

Aufgabe 3.2 (2+2 Pkt.)

Betrachten Sie eine Feistel-Chiffre mit Blocklänge 8 und einer Abbildung

$$\{0,1\}^4 \times \{0,1\}^4 \to \{0,1\}^4 \times \{0,1\}^4, \quad (L_{i-1},R_{i-1}) \mapsto (L_i = R_{i-1},R_i = L_{i-1} \oplus f_{k_i}(R_{i-1}))$$

in der *i*-ten Runde. Die Funktion $f_{k_i} \colon \{0,1\}^4 \to \{0,1\}^4$, $R_{i-1} \mapsto P(R_{i-1} \oplus k_i)$ sei gegeben durch den Schlüssel $k_i \in \{0,1\}^4$ der *i*-ten Runde, P vertausche die Bits gemäß der Permutation (134)(2) (d. h. das Bit an Position 1 wird zu Position 3 verschoben usw.). Der Klartext 01011001 werde mit n Runden dieser Chiffre zu 10010000 verschlüsselt.

- a) Bestimmen Sie den Rundenschlüssel k_1 , falls n=1.
- b) Bestimmen Sie die Rundenschlüssel k_1 und k_2 , falls n=2.

Aufgabe 3.3 (3+1 Pkt.)

Gegeben sei ein linear rückgekoppeltes Schieberegister mit unbekannter Rückkopplungsfunktion $f:\{0,1\}^n\mapsto\{0,1\}$. Auch die Initialisierung des Registers sei unbekannt. Wir bezeichnen mit s_0,s_1,s_2,\ldots die Ausgabebits in der Reihenfolge ihrer Generierung und definieren für $i\in\mathbb{N}_0$ die n-Tupel $b_i:=(s_i,\ldots,s_{i+n-1})$. Weiter sei t_0 die kleinste Zahl, sodass die Vektoren b_0,\ldots,b_{t_0} linear abhängig sind.

- a) Zeigen Sie: Man benötigt höchstens $t_0 + n$ aufeinanderfolgende Ausgabebits, um auf den Schlüssel und die gesamte Ausgabesequenz schließen zu können.
- b) Zeigen Sie, dass 2n aufeinanderfolgende Ausgabebits stets genügen, um das in a) beschriebene Problem zu lösen.

Aufgabe 3.4 (3 Pkt.)

Lösen Sie die SPOX-Aufgabe Autokey-Chiffre, die die Autokey-Variante 2 behandelt.

Aufgabe 3.5 (2+1 Pkt.)

In der Vorlesung wurde der Aufbau der Enigma-Verschlüsselungsmaschine beschrieben.

Die Walzen der Enigma bewirken eine Permutation A der 26 Buchstaben des Alphabets, die von der Auswahl und Stellung der Walzen abhängt und sich nach jedem kodierten Zeichen ändert. A besteht aus 13 disjunkten Transpositionen (paarweisen Vertauschungen), in Zyklenschreibweise:

$$A = (a_1 a_2)(a_3 a_4) \cdots (a_{25} a_{26})$$
 mit $\{a_1, \dots, a_{26}\} = \{A, \dots, Z\}$.

a) Wir nehmen an, nach dem Verschlüsseln einer gewissen Anzahl an Buchstaben entsprächen die Walzen einer Permutation B,

$$B = (b_1b_2)(b_3b_4)\cdots(b_{25}b_{26})$$
 mit $\{b_1,\ldots,b_{26}\} = \{\mathtt{A},\ldots,\mathtt{Z}\}.$

Begründen Sie: Die Häufigkeit jeder Zyklenlänge in der Permutation $B \circ A$ ist gerade.

b) Das Steckerfeld der Enigma entspricht einer weiteren Permutation S. Es bewirkt, dass auf die Klartextzeichen nicht die Walzenpermutation A angewandt wird, sondern die Permutation $T := S^{-1} \circ A \circ S$. Beweisen Sie: Die Häufigkeiten der Zyklenlängen in A und der Zyklenlängen in A stimmen überein. (Diese Eigenschaft gilt für beliebige Permutationen A und S.)