
Sorting by weighted transpositions and reversals

Diploma thesis at the University of Ulm
Faculty of Computer Science

U
N

IV
ERS ITÄT U

L
M

·

S
C

I
E

N
D

O
 · DOCENDO ·

C
U

R
A

N
D

O

·

presented by:

Martin Bader

1. evaluator: Prof. Dr. Enno Ohlebusch
2. evaluator: Dr. Mohamed Ibrahim Abouelhoda

2005

Contents

1 Introduction 1

1.1 Biological background . 1
1.1.1 Cells, DNA, and Proteins . 1
1.1.2 Genome dynamics . 3
1.1.3 Prokaryotic DNA . 5
1.1.4 Phylogenetic reconstruction . 6

1.2 Previous works . 7
1.3 Structure of this work . 8

2 Preliminaries 11

2.1 Elementary definitions . 11
2.2 Linear vs. circular permutations . 13
2.3 The reality-desire diagram . 15
2.4 The effects of operations on the reality-desire diagram 18
2.5 A lower bound . 19
2.6 Transforming into simple permutations . 22
2.7 Some observations about cycles . 24

3 A 1.5-approximation 35

3.1 Algorithm overview . 35
3.2 Sequences for the different cases . 43

4 The algorithms 65

4.1 The approximation algorithm . 65
4.1.1 The basic algorithm . 65
4.1.2 The Greedy algorithm . 66

4.2 A branch and bound algorithm . 68

5 Practical results 73

5.1 The test sets . 73
5.1.1 How to generate low distance permutations 73

5.2 The programs . 76
5.3 The test results . 76

i

ii CONTENTS

5.4 Interpretation of the test results . 86

6 Conclusion and open problems 89

Chapter 1

Introduction

1.1 Biological background

For understanding genome rearrangements, a certain knowledge of biology and molecular
genetics is necessary. Therefore, we will now provide a brief introduction to molecular
genetics. This introduction only covers the subjects that are necessary for understand-
ing genome rearrangements, additional information can be found in any textbook about
molecular biology. The main information of this chapter has been taken from [SM97] and
[Bro02].

1.1.1 Cells, DNA, and Proteins

All biological life consists of cells, where we distinguish between eukaryotes and prokaryotes.
Eukaryotes are organisms that consist of cells having a nucleus. For example, all vertebrates
are eukaryotes. In prokaryotes, the cells do not have a nucleus. Prokaryotes consists of
bacteria and archaea. Cells can have very different tasks in the organism, but each cell
contains the whole genetic information of the organism. Cells spawn by cleavage, where
the whole genetic information is passed.
The genetic information is stored in large molecules, called deoxyribonucleic acid (short
DNA). The cells contain the DNA as a double helix, consisting of two strands. Each
strand consists of a sequence of simple molecules. These molecules are called nucleotides,
which consist of of the sugar-molecule 2’deoxyribose, a phosphate group, and a base. The
sugar-molecule contains five carbon atoms, which are labeled 1’ to 5’, as illustrated in
Figure 1.1. The phosphate group is attached to the 5’-carbon of the sugar, and the base
is attached to the 1’carbon. Two nucleotides are linked together by phosphodiester bonds
between their 5’- and 3’-carbons [Bro02]. We can say that the chain consists of a backbone
of the sugar molecules and the phosphate residues, and the bases are attached to this
backbone (see Figure 1.2). With these bonds, we can assign a natural orientation to the
chain. By convention it goes from the 5’-end to the 3’-end. There are four different bases
which can be attached to the sugar molecule: adenine (A), guanine (G), cytosine (C),
and thymine (T). The sequence of the bases of the strand codes the genetic information,

1

2 CHAPTER 1. INTRODUCTION

H

H

4’

H

3’

HO

2’

H

O

H

1’

base

H

phosphate
group 5’

Figure 1.1: A single nucleotide. The carbon atoms are labelled 1’ to 5’.

P

G A

P P

C T

P3’
5’

3’
5’

3’
5’

3’
5’

Figure 1.2: A schematic view on a single DNA strand.

so we write a strand by simply writing this sequence. As mentioned above, the DNA
consists of two strands, building the famous double-helix. The reason for this is that the
bases build hydrogen bonds to their complementary bases: Adenine binds to thymine, and
cytosine binds to guanine. We also speak of the Watson-Crick base pairs A-T and C-G.
The second strand (also called lagging strand) consists of a sequence of complementary
bases to the first strand (the leading strand). The leading and the lagging strand have
a different orientation, e.g. the 5’-end of the leading strand binds with the 3’-end of the
lagging strand. Therefore, the lagging strand is the reverse complement of the leading
strand: the bases are exchanged by their complement, and the order of the sequence of
bases is inverted. For an illustrating example, see Figure 1.3.
A measure for the size of a DNA molecule is the number of these base pairs, abbreviated

with bp. The abbreviations kbp (for kilo base pairs = 103 bp) and Mbp (for Mega base
pairs = 106 bp) are also common. A single DNA-molecule is called chromosome 1, and
an organism can contain one or more chromosomes. All chromosomes together are called
the genome. For example, the human genome consists of 23 pairs of chromosomes. For
eukaryotes, the genome is in the cell nucleus.

1also plasmids, mitochondrials, and chloroplasts are DNA molecules, but the main genetic data is stored

in the chromosomes

1.1. BIOLOGICAL BACKGROUND 3

leading strand: 5’ . . . ACCGTATGGAC . . . 3’
lagging strand: 3’ . . . TGGCATACCTG . . . 5’

read lagging strand from 5’ to 3’: ⇒ . . . GTCCATACGGT . . .

Figure 1.3: When read from 5’ to 3’, the lagging strand is the reverse complement of the
leading strand. Bases are replaced by their complement, and the order of the bases is
inverted.

An important role of the genome is the coding of proteins. Proteins are chains of amino
acids, and perform many different tasks in an organism (for example, proteins known as
enzymes act as catalysts of chemical reactions). Each amino acid is coded by a triplet of
bases, called codon. The whole protein is coded as a substring of the DNA, beginning
with a start codon and terminated by a stop codon. But not the whole DNA is coding
proteins. There are some contiguous stretches that do code proteins while others do not.
The stretches that code proteins are called genes. As the sequence of base pairs on the
leading strand is different from the sequence on the lagging strand, the coding information
of one gene is on one of the strands. We therefore can say that a gene is on the leading
strand or on the lagging strand.

1.1.2 Genome dynamics

As a result of various mutation or recombination events, genomes can change over time.
Some of these changes destroy the functionality of the cell and let the cell die. Others
change the behaviour of the cell, leading to malfunctions which can harm the organism
(such as cancer cells). But many changes have no effect on the cell at all, and some can
even increase the fitness of the organism. These changes are inherited by child cells, leading
to organisms with a slightly changed genome.
Although mutations and recombinations both result in a change of the genome, we distin-
guish between these two events:

• A mutation is a change in the nucleotide sequence of a short region of the genome
[Bro02]. Many mutations are point mutations, changing just a single base pair.
We distinguish between three types of point mutations:

Replacement: a single base pair has been replaced by another base pair.

Insertion: an additional base pair has been inserted into the DNA molecule.

Deletion: a base pair has been removed from the DNA molecule.

Mutations can have different causes: physical and chemical influences (such as ra-
diation) can interact with the DNA and change the structure of an individual nu-
cleotide. Also the replication mechanism of the DNA can cause mutations. Although
it is combined with an error-fixing mechanism, a few of the replication errors remain.

4 CHAPTER 1. INTRODUCTION

A2B1

B2A1

B2B1

A2A1

Translocation

Fusion / Fission

Transposition

Inversion

Duplication

Deletion / Insertion

BA BA

A

AAA

A

BA B

-AA

Figure 1.4: The possible genome rearrangements.

For E.coli, the overall error rate for replication is 1 in 1010 to 1 in 1011 base pairs
[Bro02].

• A recombination is an event that changes the genome in a larger scale. Examples
for recombination are the exchange of homologous chromosomes during meiosis, or a
rearrangement of the genes in the DNA. We will focus on these genome rearrange-

mentsand distinguish between several possible types (see also Figure 1.4):

Deletion: A segment of a chromosome is deleted, the genes on this segment are lost.

Insertion: A new segment (with new genes) is inserted into a chromosome.

Duplication: A segment of the chromosome is duplicated. Its genes appear now
twice in the chromosome.

Inversion: A segment of a chromosome is cut off from the chromosome and is
inserted at the same position, but in the different direction. As the 5’→3’-
orientation of both strands must be maintained, the leading strand of the cut
out segment is inserted into the lagging strand of the chromosome and vice
versa. The result of an inversion is that the order of the genes on the segment

1.1. BIOLOGICAL BACKGROUND 5

is inverted, and genes from the leading strand are now on the lagging strand
and vice versa. Although in biology this event is called inversion, in computer
science is rather known as reversal.

Transposition: A segment of the chromosome is cut off and is inserted at another
position in the chromosome. If the segment has also been inverted, we speak of
an inverted transposition (in computer science, it is called transreversal).

Translocation: Two segments at the end of two different chromosomes are ex-
changed.

Fission: A chromosome is split up into two new chromosomes.

Fusion: Two chromosomes are linked together, building one new chromosome.

Genome rearrangements occur very rarely in nature. Among vertebrates there are
about 0.2 to 2 rearrangements per million years [BBD+99]. Therefore measuring the
number of genome rearrangements that are necessary for transforming the genome
of one species into the genome of another species is a good approach to measure the
evolutionary distance between these two species.

1.1.3 Prokaryotic DNA

As our algorithm is primarily designed to be applied to prokaryotic DNA, we will discuss
some aspects about their DNA here. As mentioned above, prokaryote cells have no nu-
cleus, and the DNA is moving freely in the cell. The size of these genomes is, compared to
eukaryotes (the human genome has about 3000 Mbp), relatively small: most prokaryotes
have a genome smaller than 5 Mbp. Mostly, the genome is a single circular DNA molecule
(i.e. the double helix builds a ring). In a circular DNA molecule, one can not distinguish
between the leading and the lagging strand: one can choose any strand as leading strand,
and the other one is the lagging strand. Therefore, the molecule is equivalent to its re-
flection, which is the same molecule, but the definition of leading and lagging strand is
exchanged.
Prokaryotes can have additional small DNA molecules, called plasmids. The genes carried
by the plasmids appear to be not necessary for the function of the organism, but can be
quite useful: For example, they can provide antibiotic resistance. The number of genes
in the genome is also smaller than in eukaryotes, but not as much as expected by the
difference in genome size: prokaryotic genomes have only small non-coding regions, and
the number of repeats (i.e. DNA sequences that appear at different positions in the DNA)
is low. In summary, the genetic information in prokaryotic genomes is much more packed
than in eukaryotic genomes. If we look at genome rearrangements, the most frequent oper-
ation are inversions, but also transpositions can be observed. Especially inversions around
the replication origin (the position in the DNA where the replication begins) are often
observed.

6 CHAPTER 1. INTRODUCTION

gibbonsiamang chimpanzeehumangorillaorangutan

Figure 1.5: A phylogenetic tree for some primates [SM97].

1.1.4 Phylogenetic reconstruction

An important task in biology is to reconstruct the process of evolution and to predict
the phylogeny of a given set of species. These relationships are normally represented in
a tree, where each node of the tree represents a species. The leaves of the tree represent
present-day species, inner nodes represent ancestors, and the edges represent the ancestor-
descendant relation. These trees are called phylogenetic trees. An example can be seen
in Figure 1.5.
Creating phylogenetic trees is a difficult task, for various reasons:

• Ancestors in the tree are often extinct species, and there is only uncertain data
available. In many cases, even these are not available and we have to construct
hypothetic ancestors from the data of the present-day species.

• For creating the tree, it is necessary to determine the evolutionary distance of the
species. This can be a very hard task if the species in the set are very similar, and
the distances can only be gained by a hypothesis.

• The tree structure is sometimes a too simplified view of the evolution. In reality,
there can exist cross-links between similar species, building a graph rather than a
tree. Prokaryotes also sometimes transfer genes from one species to another. In this
case, we speak of lateral gene transfer. Lateral gene transfer has even been observed
between bacteria and archaea. It can be difficult to distinguish if an identical gene
in two species comes from a common ancestor, or from lateral gene transfer.

Although it is an interesting task to construct the tree if distances are known, this will
not be discussed here. Instead, we will have a look at distance functions that use genomic
data. The classical approach is to count the point mutations in homologous regions of
two genomes. However, this method can only handle local mutations and ignores global

1.2. PREVIOUS WORKS 7

rearrangements (i.e. inversions, transpositions and so on) completely. In several cases, this
approach is not satisfying, and counting the genome rearrangements that are necessary to
transform one genome into another can result in a more realistic distance function. This
approach can use homologous blocks instead of base pairs as data, and therefore reduce
the amount of data drastically. Another advantage is that genome rearrangements occur
rarely compared to point mutations, which can also increase the quality of the distance
function.
One of the first phylogenetic trees based on a genome rearrangement distance was presented
by Dobzhansky and Sturtevant in 1938, who studied chromosomes of the fruit fly Drosophila
pseudoobscura in different regions of the western USA and Mexico [DS38]. Without se-
quenced genomes, they had to find inversions out of the threedimensional structure of the
chromosomes: if an inversion has occured in a chromosome, but not in its homologous
chromosome, the structure of these chromosomes builds a loop which can be seen with
a microscope. However, this technique is limited to a small number of inversions. With
the sequencing of genomes, the gene order can be determined more easily. Nowadays, it
is of interest to determine non-trivial genome rearrangement distances as an evolutionary
distance for phylogenetic reconstruction.

1.2 Previous works

The genome rearrangement problem - finding the most plausible sequence of genome re-
arrangements that transforms one genome into another - has become a challenging topic
in the 1990’s. So far all approaches use simplifications. Most algorithms work on single
chromosomes, and the set of genome rearrangement operations is restricted. Except for
a few exceptions all algorithms weight all operations equally and search for the shortest
sequence that transforms one permutation into another (the source genome can be repre-
sented as a permutation of the genes of the target permutation, therefore we can reduce
the problem to sorting of permutations). Even with these simplifications, the problem is
still very hard: A. Caprara showed that Sorting by reversals is NP-hard [Cap97]. However,
he did not consider the orientation of the genes (i.e. wether they are on the leading or on
the lagging strand). If this orientation is considered, we have the problem Sorting signed
permutations by reversals, and S. Hannenhalli and P.A. Pevzner showed that this problem
can be solved in polynomial time [HP99]. The Hannenhalli-Pevzner theory was simplified
[Ber05] and the running time of the algorithm has been improved several times. To date,
a subquadratic time algorithm is available [TS04]. If we only ask for the reversal distance
(where we are solely interested in the minimum number of required reversals but not in
the sequence of reversals) it is solvable in linear time [BMS04]. If one restricts the set of
operations to transpositions (T), to transpositions and reversals (T + R), or to transposi-
tions, reversals, and transreversals (T + R + TR), the complexity of the problem is still
unknown. There exist polynomial-time approximation algorithms, and the best of them
are listed in the table below.

8 CHAPTER 1. INTRODUCTION

operations T T + R T + R + TR
performance ratio 1.375 2 1.5
references [EH05] [WDM98, LX01] [HS04]

Using different operations, it is also of interest to assign weights to the operations, and
search for the sequence of operations with the lowest weight: in nature, for example,
reversals are much more frequently observed than transpositions and should therefore have
a smaller weight. Algorithms with equal weights for reversals and transpositions tend to
favor transpositions (we will see the reason for this later). Consequently, the sequence of
rearrangement operations returned by these algorithms will often significantly deviate from
the “true” evolutionary history.
However, sorting signed permutations with weighted reversals and transpositions is poorly
studied. To our knowledge, there are only two algorithms that tackle it. The first is a
(1+ε)-approximation algorithm devised by Eriksen [Eri02]. It uses a weight proportion 2:1
(transposition:reversal) and has the tendency to use as much reversals as possible. The
second algorithm is implemented in the software tool DERANGE II [BKS96]. It is a greedy
algorithm that works on the breakpoint distance and can only guarantee an approximation
ratio of 3.
In this work we will present a 1.5-approximation algorithm for any weight proportion
between 1:1 and 2:1. Hence, our result closes the gap between the result of Hartman and
Sharan [HS04] for the 1:1 proportion and that of Eriksen [Eri02] for the 2:1 proportion.

1.3 Structure of this work

In this work, we will develop a 1.5-approximation algorithm for sorting circular permuta-
tions by reversals, transpositions, and transreversals.
In Chapter 2, we will introduce some elementary definitions and give a mathematical def-
inition of the problem. We will also prove some reductions that simplify the problem and
provide all lemmata necessary to develop the algorithm. Furthermore, we show a non-
trivial lower bound for the weighted distance of two permutations.
In Chapter 3, we begin with a short explanation of the idea of the algorithm and give an
overview over the case analysis used in the algorithm. Then, we have a closer look at all
cases of the analysis, and show how we can solve them. This provides us everything we
need to implement the algorithm.
In Chapter 4, we show how to embed the case analysis into an algorithm, and discuss
the running time of the algorithm. We show how the performance can be improved by
combining the algorithm with a greedy strategy. For the comparison of the results of the
algorithms, we also provide a branch and bound algorithm that can solve the sorting prob-
lem correctly. However, it can only handle small permutations.
In Chapter 5, we use random permutations to compare the algorithms. The algorithms
tested are the approximation algorithm with and without the greedy strategy, the branch
and bound algorithm, and the program DERANGE II developed by Blanchette et al
[BKS96]. The running times as well as the approximation ratios will be compared for

1.3. STRUCTURE OF THIS WORK 9

test sets of different size.
Finally, in Chapter 6, we will outline the most significant results, and discuss the problems
that are still open.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

2.1 Elementary definitions

Before we begin to develop the algorithm, we need some elementary definitions:

Definition 1. A signed permutation π = (π1 . . . πn) is a permutation of (1 . . . n), in
which each element is labeled by plus or minus. If the indices are cyclic (that is, π1 follows
πn), we speak of a circular signed permutation.

As we will not discuss the problem of sorting unsigned permutations, every time we
speak of a permutation, we mean a signed permutation.

Definition 2. The identity permutation is the permutation

id = (+1 + 2 . . . + n)

where n is the number of elements in the permutation.

Definition 3. The reflection of a permutation π is a permutation that can be obtained
from π by inverting the order of elements and flipping the sign of each element:

refl(π) = (−πn − πn−1 · · · − π1)

For circular permutations, a permutation and its reflection are considered to be biologically
equivalent.

Definition 4. A segment πi . . . πj (with j ≥ i) of a permutation π is a consecutive
sequence of elements in π, with πi as first element and πj as last element.

There are three possible rearrangement operations on our permutation π:

Definition 5. A transposition t(i, j, k) (with i < j and k < i or k > j) is an operation
that cuts the segment πi . . . πj−1 out of π, and inserts it before the element πk.

11

12 CHAPTER 2. PRELIMINARIES

t(3, 6, 7) (+6 + 1 − 5 − 3 + 4 − 2 + 7) = (+6 + 1 − 2 − 5 − 3 + 4 + 7)

r(3, 6) (+6 + 1 − 5 − 3 + 4 − 2 + 7) = (+6 + 1 − 4 + 3 + 5 − 2 + 7)

tr(3, 6, 7) (+6 + 1 − 5 − 3 + 4 − 2 + 7) = (+6 + 1 − 2 − 4 + 3 + 5 + 7)

Figure 2.1: Some example operations on a permutation

tr(5, 6, 4) (+6 + 1 − 5 − 3 + 4 − 2 + 7) = (+6 + 1 − 5 − 4 − 3 − 2 + 7)

t(1, 2, 7) (+6 + 1 − 5 − 4 − 3 − 2 + 7) = (+1 − 5 − 4 − 3 − 2 + 6 + 7)

r(2, 6) (+1 − 5 − 4 − 3 − 2 + 6 + 7) = (+1 + 2 + 3 + 4 + 5 + 6 + 7)

Figure 2.2: A sequence that transforms the permutation into the identity permutation

Definition 6. A reversal r(i, j) (with i < j) is an operation that inverts the order of the
elements of the segment πi . . . πj−1. Additionally the sign of each element in the segment
will be flipped.

Definition 7. A transreversal tr(i, j, k) (with i < j and k < i or k > j) is the con-
catenation t(i, j, k) ◦ r(i, j) of a reversal and a transposition. In other words, the segment
πi . . . πj−1 will be cut out of π, inverted, and inserted before πk

Remark. If our operation is a transposition t(i, j, k), we can regard the operation as the
exchange of the segments πi, . . . , πj−1 and πj, . . . , πk−1. Hence t(i, j, k) is equivalent to
t(j, k, i), and we can write every transposition as a transposition t(i, j, k) with i < j < k.

Definition 8. A sequence of operations op1, op2, . . . , opn consists of some consecutive
operations on a permutation π, yielding the permutation opn ◦ opn−1 ◦ · · · ◦ op1(π). If the
sequence transforms π into the identity permutation, it is called a sorting sequence.

Figure 2.2 shows an example sequence that transforms a permutation into the identity
permutation.

Definition 9. The weight w is a function that returns for each operation a value ≥ 0, i.e.
w : {op(i, j, k)} → R

+. The function can depend on the operation type and its parameters.

This definition is biologically motivated: Some types of operations occur more often
than others. Also the likelihood of operations acting on short segments is observed to be
higher than that of operations acting on long segments. The weights should represent the
likelihood of operations: The higher the likelihood, the smaller the weight. However, it
is very difficult to devise an algorithm that can work with arbitrary weights, so we use a
simplification: The weights depend only on the operation type, not on the parameters. We
will use only two different constant weights:

2.2. LINEAR VS. CIRCULAR PERMUTATIONS 13

• wr is the weight of a reversal

• wt is the weight for a transposition or a transreversal

This is motivated by the fact that a reversal splits the genome at two positions, while all
other operations have to split the genome at three positions. For most applications, the
wr should be smaller than wt, but not too small. The most realistic weight proportion
depends on the species we want to compare. Our algorithm is designed for a weight ratio
of wr : wt = 1 : 1.5 and works correctly for any ratio between 1 : 1 and 1 : 2.

Definition 10. The weight w of a sequence of operations is the sum of the weights of the
operations.

We will focus our sight on circular permutations. In the next section we will show how
we can adapt an algorithm that works on circular permutations, so that it also works on
linear permutations.

Definition 11. The problem sorting circular permutations by weighted reversals

and transpositions is defined as follows: Given a permutation π, find a sequence of
operations with minimum weight that transforms π into the identity permutation. All four
types of operations are allowed.
The weight of this sequence is called the weighted distance dw(π).

The sequence shown in Figure 2.2 has the weight w = wr + 2wt and transforms the
permutation into the identity permutation. In fact, if wr

wt
= 2

3
, this sequence is optimal.

2.2 Linear vs. circular permutations

Our algorithm is designed to solve the problem on circular permutations. If we allow a
new operation, called revrev, we can adapt it to linear permutations. We will follow the
proof given in [HS04].

Definition 12. A revrev rr(i, j, k) (with i < j < k) is the concatenation r(j, k) ◦ r(i, j)
of two reversals. In other words, the consecutive segments πi . . . πj−1 and πj . . . πk−1 will
be inverted.

As further restriction, the weight of a revrev must be the same as the weight of a
transreversal.
For solving the sorting problem on a linear permutation πlin = π1π2 . . . πn, we begin by
transforming it into a circular permutation πcirc. This is done by simply inserting a dummy
element π0 = 0 that is adjacent to π1 and πn, i.e.

πcirc = π0π1π2 . . . πn

Suppose that we have a sorting sequence for πcirc, and no operation of the sequence op-
erates on π0, i.e. π0 is never on a segment that is inverted by a reversal or moved by a
transposition. Then any operation of the sequence is also a valid operation on the linear
permutation, and the sequence can be used to sort πlin.

14 CHAPTER 2. PRELIMINARIES

Lemma 13. [HS04] Let πx be an element of a circular permutation πcirc, and let op be an
operation that operates on πx. Then there exists an equivalent operation op′ (i.e. op and
op′ have the same weight, op(π) is equivalent to op′(π)) that does not operate on πx.

Proof. For proving this, we must recall that a circular permutation is equivalent to its
reflection. We will now distinguish between the possible cases:

• Let op be the reversal r(i, j) with i ≤ x < j (so the reversal operates on πx). Then
the reversal r(j, i) does not act on πx, and r(j, i)πcirc is the reflection of r(i, j)πcirc.
For an illustrating example, see Figure 2.3.

• Let op be the transposition t(i, j, k) with i ≤ x < j. Let A be the segment πi . . . πj−1,
let B be the segment πj . . . πk−1, and let C be the segment πk . . . πi−1. Looking at
the circular permutation, the transposition exchanges the segments A and B, so the
order of the segments is changed from ABC to BAC. As the permutation is cyclic,
the order BAC is equivalent to ACB and CBA. These orders can be obtained from
πcirc by the transpositions t(j, k, i) and t(k, i, j). Thus, t(i, j, k)πcirc, t(j, k, i)πcirc,
and t(k, i, j)πcirc are all equivalent, and the last two of these transpositions do not
operate on πx (see also Figure 2.3).

• Let op be the transreversal tr(i, j, k) with i ≤ x < j. Let A be the segment πi . . . πj−1,
let B be the segment πj . . . πk−1, and let C be the segment πk . . . πi−1. The transre-
versal exchanges the segments A and B, and changes the orientation of A. Thus, the
resulting order of segments is +B − A + C. Now, let us have a look at the revrev
rr(j, k, i). Applied on πcirc, it changes the orientation of the segments B and C, so
the resulting order of the segments is +A − B − C. This is the (cyclic shifted)
reflection of +B −A +C. Therefore, tr(i, j, k)πcirc and rr(j, k, i)πcirc are equivalent,
and rr(j, k, i) does not operate on πx (see also Figure 2.3).

We can now transform a sequence for sorting πcirc into a sequence for πlin by exchanging
any operation that operates on the dummy element 0 by an equivalent operation. Exchang-
ing an operation can shift the arguments of the following operations or even change their
order, but it is easy to track these effects. As no operation operates on the dummy ele-
ment, we can also assure that it is not inverted in the resulting permutation. Therefore,
the resulting permutation is the identity permutation and not its reflection (note that these
are not equivalent for linear permutations).
So far, we have shown that we can use a sorting sequence seqcirc of a circular permutation
of size n + 1 to obtain a sorting sequence seqlin of a linear permutation, such that both
sequences have the same weight. We now have to show that seqlin is optimal for πlin if
seqcirc is optimal for πcirc. For showing this, let us assume that seqlin is optimal. Now, we
generate a sequence seqcirc for sorting πcirc out of this sequence. Any operation of seqlin

is a valid operation for sorting the circular permutation, except revrevs (in the circular
problem, revrevs are not allowed), which can be replaced by equivalent transreversals. It

2.3. THE REALITY-DESIRE DIAGRAM 15

r(8, 3)π = (−9 − 8 + 3 + 4 + 5 + 6 + 7 − 2 − 1 − 10) −A + B − A
r(3, 8)π = (+1 + 2 − 7 − 6 − 5 − 4 − 3 + 8 + 9 + 10) +A − B + A

t(9, 3, 6)π = (+3 + 4 + 5 + 9 + 10 + 1 + 2 + 6 + 7 + 8) +B + A + C
t(3, 6, 9)π = (+1 + 2 + 6 + 7 + 8 + 3 + 4 + 5 + 9 + 10) +A + C + B + A

tr(9, 3, 6)π = (+3 + 4 + 5 − 2 − 1 − 10 − 9 + 6 + 7 + 8) +B + A + C
rr(3, 6, 9)π = (+1 + 2 − 5 − 4 − 3 − 8 − 7 − 6 + 9 + 10) +A − B − C + A

Figure 2.3: Any operation that operates on a given element πx can be replaced by an
equivalent operation that does not act on πx. On the left side, there are examples for
replacing operations that act on π1. In each block, both operations are equivalent. For all
examples, the source permutation π is the identity permutation of size 10. On the right
side, the view is simplified to segments. The order of the segments can be seen, and the
sign indicates if a segment is inverted (-) or not (+). We work with circular permutations
but as we can write them only linearly, elements at the beginning and the end of the
permutation may belong to the same segment. This we indicate by writing the segment at
the beginning and at the end (e.g +A + C + B + A).

is also easy to see that seqlin sorts the circular permutation correctly, the dummy element
0 stays untouched until the permutation is sorted around it. Therefore, we can transform
seqlin into a sequence for circular permutations with the same weight. This shows that the
weighted distance is the same for both πlin and πcirc, and our transformation from seqcirc

to seqlin gives again an optimal sequence.
With this equivalence shown, we will now focus our sight on circular permutations. In the
following, if we speak of a permutation, we mean a signed circular permutation.

2.3 The reality-desire diagram

The reality-desire diagram is a graph that helps us to analyse the permutation. It is a
circular variation of the breakpoint graph first described in [BP96], and the representation
we use is the same as in [SM97].
The main idea of the reality-desire diagram is to draw a graph whose edges represent
the current neighbourhood relations of the elements in the permutation, and the desired
neighbourhood relations (these are the neighbourhood relations of the sorted permutation).
These neighbourhood relations must also take into account the sign of an element. In order
to achieve this, we can view each element as a block with a start node and an end node.
If an element is labelled with plus, the block is positively oriented, i.e. that the start node
comes before the end node. Otherwise, the block is negatively oriented, i.e. the end node

16 CHAPTER 2. PRELIMINARIES

- + + -+x -y

Figure 2.4: Transforming each element into a block with a start node and an end node.
In this example, x is labelled by plus, so the start node (marked with -) comes before the
end node (marked with +). y is labelled by minus, so the end node comes before the start
node.

comes before the start node. We will mark the start node of the block with a minus, and
the end node with a plus (see also Figure 2.4). In the following, we will call the first of
these nodes (this is the start node if πi is labelled by plus, otherwise it is the end node) the
left node of πi, and the second the right node. For the current neighbourhood relations, it
is easy to see that the right node of πi is adjacent to the left node of πi+1. In the sorted
permutation, the end node of each element x must be adjacent to the start node of the
element x + 1. Now, we are ready to define the reality-desire diagram:

Definition 14. The reality-desire diagram of a permutation π is the graph which we
get by the following construction:

• First, we write the permutation counterclockwise on a circle.

• Each element πi is replaced by the two nodes −|πi| (the start node) and +|πi| (the
end node). If πi was labelled by plus, the start node comes counterclockwise before the
end node, otherwise the end node comes before the start node. Let us call the first of
these nodes the left node of πi, and the second the right node.

• For each element πi, a reality-edge is added from the right node of πi to the left
node of πi+1 (indices are cyclic). Reality-edges are always drawn on the boundary of
the circle.

• A desire-edge is added from the node +x to the node −(x+1) for each x from 1 to n
(indices are cyclic). In the following, desire-edges will also be called chords. Chords
are always drawn through the inside of the circle.

Writing the permutation on a circle is the most convenient way to represent the neigh-
bourhood relations of a circular permutation. By rawing the reality-edges on the edge
of the circle and desire-edge through its inside, one can well distinguish between them.
Additionally, in this representation, it is well-defined wether two chords do intersect, a fact
that we will use later. An example of a reality-desire diagram can be found in Figure 2.5.
We sometimes speak of elements in the reality-desire diagram. Although we do not draw
them in the diagram, the position of an element x in the diagram is the position of the
two nodes +x and −x. If we say an element or a reality-edge precedes another element or
reality-edge in the reality-desire diagram, we mean it precedes the other element counter-
clockwise.

2.3. THE REALITY-DESIRE DIAGRAM 17

+9

-10

+10

+7

-7

-5
+5

-8
+8

-4

+4

+6

-6

-3

+3

-2
+2

d

f

e

c

-9

-1+1

Figure 2.5: The reality-desire diagram of π = (+1 + 9 + 10 + 7 − 5 + 8 + 4 + 6 + 3 + 2).
The diagram decomposes into four cycles c, d, e, and f . The first three of these cycles are
3-cycles, and cycle f is an adjacency. Note that also in the permutation π, π2 = +9 and
π3 = +10 form an adjacency.

As each node in the diagram has a degree of 2, it is easy to see that the diagram decomposes
into cycles. Reality-edges represent the current neighbourhood relations, and desire-edges
the neighbourhood relations of the sorted permutation. Therefore a reality-edge and a
desire-edge connect the same two nodes in the reality-desire diagram if and only if the
elements that induced these nodes form an adjacency.

Definition 15. Let c be a cycle in a reality-desire diagram. Then the length l of a cycle
is the number of reality-edges in the cycle, and c is called an l-cycle. If l is even, c is
called an even cycle, otherwise it is called an odd cycle. If l = 1, we also say c is an
adjacency.

Definition 16. Let π be a permutation and let RDD(π) be its reality-desire diagram. Then
c(π) is the number of cycles, codd(π) is the number of odd cycles and ceven(π) is the number
of even cycles in RDD(π). If it is clear to which permutation we refer, we just write c, codd

and ceven.

Lemma 17. Let π be a permutation with n elements. Then c(π) = n if π is the identity
permutation or its reflection. Otherwise, c(π) ≤ n − 1.

Proof. If π is the identity permutation or its reflection, π contains no breakpoints, and
therefore all cycles in its reality-desire diagram have a length of 1. The sum of the lengths
of the cycles must be n (as the diagram has n reality-edges), so c(π) = n. If π is neither the
identity permutation nor its reflection, it contains at least one breakpoint, and therefore
contains at least one cycle with length ≥ 2. As the sum of the cycle lengths is n, and each
other cycle has a length of at least 1, the number of cycles cannot exceed n − 1.

18 CHAPTER 2. PRELIMINARIES

2.4 The effects of operations on the reality-desire di-

agram

The reality-desire diagram is a very useful tool to analyze the effects of operations on
the permutation. Each operation changes the permutation, and therefore the reality-desire
diagram. As the number of cycles c is maximized for the identity permutation or its reverse,
it is an obvious strategy to try to increase c as fast as possible. However, the change of c
per operation is bounded:

Lemma 18. [GPS99] Let c be the number of cycles in the reality-desire diagram of a
permutation before an operation, and let c′ be the number of cycles after the operation.
Then for any operation,

∆c = c′ − c ∈ [−2; +2]

Proof. Any operation splits the permutation at most at three positions. In the reality-
desire diagram, at most three reality-edges will be split (we say the operation acts on these
reality-edges), desire-edges always remain unchanged. So any operation can affect at most
three cycles, altering them to some new cycles. As any operation is reversible, we also can
get at most three new cycles, so the difference is in [−2; +2].

As a reversal splits a permutation at only two positions, a reversal cannot change the
number of cycles by two:

Corollary 19. Let c be the number of cycles in the reality-desire diagram of a permutation
before a reversal, and let c′ be the number of cycles after the reversal. Then for any reversal,

∆c = c′ − c ∈ [−1; +1]

Later it will be important to distinguish between even and odd cycles. Therefore, we
will also proof a lemma about ∆codd:

Lemma 20. [GPS99] Let codd be the number of odd cycles in the reality-desire diagram
of a permutation before an operation, and let c′odd be the number of odd cycles after the
operation. Then for any operation,

∆codd = c′odd − codd ∈ {−2; 0; +2}

Proof. Analogous to the proof of Lemma 18, our operation alters one to three cycles to
some new cycles. Note that there is also the possibility that we have no odd cycle in the
beginning or in the end, so ∆codd ∈ [−3; +3]. Now let l be the sum of the cycle lengths:

l =
∑

c

length(c)

If ∆codd is an odd number, l will change from an even to an odd number or vice versa.
This means that the permutation would change its size, what is obviously not possible.
Therefore, ∆codd ∈ {−2; 0; +2}.

2.5. A LOWER BOUND 19

Note that a reversal can change the total number of cycles by at most one, but it can
change the number of odd cycles by two: a reversal can split an even cycle into two odd
cycles.
Another important observation is that a transposition or transreversal that acts on the
reality-edges of exactly two cycles does not change the total number of cycles: A segment
of one cycle is cut off, and inserted into the other cycle.
A complete list of possible changes in the reality-desire diagram, depending on the involved
cycles, can be seen in Table 2.1. Additionally the change of a score σ is listed there. This
score will be introduced in the next section.

2.5 A lower bound

Now we are ready to prove a lower bound for the weighted transposition and reversal
distance. As we have seen in section 2.4, an operation can increase the number of odd cycles
in the reality-desire diagram at most by two (see Lemma 20). The identity permutation
has n odd cycles, so we need at least n−codd

2
operations to sort a permutation. Therefore

our first estimation for the distance is

dw ≥
n − codd

2
min{wt, wr}

Now let us assume that wr ≤ wt ≤ 2wr. Taking a look at table 2.1, we see that there are
five possible moves that increase codd by two:

1. A reversal can split one even cycle into two odd cycles.

2. A transposition or a transreversal can split one odd cycle into three odd cycles.

3. A transposition or a transreversal can split one even cycle into two odd cycles and
one even cycle.

4. A transposition or a transreversal can split one even cycle into two odd cycles.

5. A transposition or a transreversal can transform two even cycles into two odd cycles.

The cheapest of these operations is the reversal, but it requires an even cycle. Thus we
should not only consider the number of odd cycles but also the number of even cycles in
the reality-desire diagram. The score we will introduce is a linear combination of codd and
ceven, with both coefficients positive. Therefore, we only have to focus on the first three
of the operations mentioned above; the last two have a cost of wt and decrement ceven,
so they are certainly not as good as the second operation. We will now assume that a
sequence where any move is one of the first three of the moves mentioned above is optimal
(after defining the score and looking at the effects of the operations on the score, we will
see that this assumption is correct). Therefore, these moves should have an equal effect on
the score per weight of the move. This leads to the following definition of the score:

20
C

H
A

P
T

E
R

2
.

P
R

E
L
IM

IN
A

R
IE

S
e o ee eo oo eee eeo eoo ooo

r e o e o e
0 0 2wr

wt
− 2 2wr

wt
− 2 −2wr

wt

ee eo
2 − 2wr

wt
2 − 2wr

wt

oo
2wr

wt

t/tr e o ee eo ee e o e o
0 0 0 0 2 − 4wr

wt
4wr

wt
− 4 4wr

wt
− 4 −2 −2

ee eo oo oo
2 − 2wr

wt
2 − 2wr

wt
4wr

wt
− 2 0

oo eeo
2wr

wt
4 − 4wr

wt

eee ooo
4 − 4wr

wt
2

eoo
2

Table 2.1: This table lists all possibilities how an operation can change the cycles of a reality-desire diagram. The first row
contains the cycles involved (where e is an even cycle and o is an odd cycle). The other rows give the possible resulting
cycles, and the differences of the score σ induced by the operation. The first column determines whether the operation is
a reversal (r) or a transposition or transreversal (t/tr).

2.5. A LOWER BOUND 21

Definition 21. The score σ of a permutation is defined by

σ = codd + (2 −
2wr

wt

)ceven

where codd is the number of odd cycles and ceven is the number of even cycles in the reality-
desire diagram of the permutation. The change of the score due to an operation or a
sequence of operations is called ∆σ.

The following lemma shows that the score is maximized for the identity permutation.
This will be very useful for developing our approximation algorithm.

Lemma 22. For any permutation π and weights wr, wt with wr ≤ wt ≤ 2wr,

• σ = n if π is the identity permutation or its reflection

• σ ≤ n − 1 if π is neither the identity permutation nor its reflection

Proof. If π is the identity permutation or its reflection, the reality-desire diagram consists
of n adjacencies, so σ = n. Otherwise, the reality-desire diagram has at least one cycle
with length ≥ 2. Therefore it has at most n − 1 cycles. An odd cycle adds 1 to the score,
an even cycle adds 2 − 2wr

wt
. With wt ≤ 2wr, 2 − 2wr

wt
≤ 1. Therefore, σ ≤ n − 1.

Now, we will use this score to show a better lower bound:

Theorem 23. For each permutation and weights wt, wr with wr ≤ wt ≤ 2wr, a lower
bound for the weighted distance is

dw ≥ cevenwr + (
n − codd

2
− ceven)wt

Proof. In the beginning, the reality-desire diagram of our permutation has codd odd cycles
and ceven even cycles. In the identity permutation, we have n odd cycles and no even cycle.
If we have a look at the tuple (codd, ceven), the task is to change this tuple to (n, 0) by
changing the permutation, using reversals, transpositions and transreversals. It is hard to
see a minimum distance between these two tuples, so we introduce a score σ as a linear
combination of codd and ceven. If we use Definition 21, we can assure that for each operation,
the change of the score per weight is at most 2

wt
(this can easily be verified by having a

look at Table 2.1 and inserting the bounds for wr and wt). Our permutation has a score of
codd + (2 − 2wr

wt
)ceven in the beginning, and the identity permutation has a score of n. The

difference in the score is

n − (codd + (2 −
2wr

wt

)ceven)

Now we can estimate the weighted distance:

dw ≥ (n − (codd + (2 −
2wr

wt

)ceven))
wt

2

= (n − codd)
wt

2
− (2 −

2wr

wt

)ceven

wt

2

= cevenwr + (
n − codd

2
− ceven)wt

22 CHAPTER 2. PRELIMINARIES

2.6 Transforming into simple permutations

The algorithm which we develop in the next chapter will work with a case analysis on the
cycles of the reality-desire diagram. However, this case analysis is rather complicated if
we have to work with arbitrary cycle lengths. Therefore we will restrict cycle lengths to a
maximum of 3. In this section we will show how to transform any permutation π into a
permutation π̃ with restricted cycle lengths, and how we can use a sorting sequence of π̃
to obtain a sorting of π. Finally, we will prove that the sorting of π is a 1.5-approximation
if the sorting of π̃ is a 1.5-approximation.

Definition 24. A cycle in a reality-desire diagram is called a short cycle if its length is
at most 3. Otherwise, it is called a long cycle.

Definition 25. A permutation is called a simple permutation if all cycles in its reality-
desire diagram are short cycles.

We will now provide an algorithm that transforms any long cycle into a short cycle
by adding elements to the permutation. The algorithm has been described in [LX01].
However, we will give here a more constructive presentation of the algorithm.
Let c be a k-cycle with k > 3. Let r1, r2, . . . , rk be the reality-edges of c in the order we
pass them if we walk along the cycle in the reality-desire diagram. The starting edge is
arbitrary. However, we will assume that we pass r1 counterclockwise. Let v be the new
element we want to insert into the permutation, and let x be the element that precedes
r1 in the reality-desire diagram. If x is labelled by plus (so r1 starts at the node +x), the
value of v is between x and x + 1 (for the moment, we do not care that this value is not
integer). Otherwise (so r1 starts at node −x), the value of v is between x − 1 and x. The
effect of choosing this value is that the desire-edge from r1 no longer goes to rk, but to a
reality-edge where the new element v will be inserted. Let y and z be the two elements
beside r3. We insert v between y and z. As a result of this, r3 will be split into two reality-
edges r3a (that lies between y and v) and r3b (that lies between v and z). Depending on
the sign we choose for v, the desire-edge from r1 will be connected either with r3a or with
r3b. If r3a is connected by a desire-edge with r2, we choose the sign so that the desire-edge
goes from r1 to r3a, obtaining a 3-cycle with the reality-edges r1, r2, and r3a. Otherwise,
we choose the sign so that the desire-edge goes from r1 to r3b, obtaining a 3-cycle with the
reality-edges r1, r2, and r3b. In both cases, the other of the reality-edges r3a and r3b will be
connected by a desire-edge to rk, obtaining a k−2-cycle with reality-edges r3a (respectively
r3b), r4, . . . , rk. Now, we can increase any element greater than v by one, and make v an
integer value. We can repeat this until the whole permutation only contains short cycles.
A single transformation step is illustrated in Figure 2.6. As the transformation from π into
the simple permutation π̃ was done by just padding elements to the permutation, it is easy
to see how we can use a sorting sequence ˜op1, ˜op1, . . . , ˜opn of π̃ to get a sorting sequence
op1, op2, . . . , opn of π: we use the same sequence as we used for π̃, and ignore the padded
elements. In some cases, the operations can change due to the padded elements:

2.6. TRANSFORMING INTO SIMPLE PERMUTATIONS 23

-2

+5

-5

+4

+1

-3

+3

+2 +3

r3
+2 -5

+5

+4

-4

+6

-6

-2

+1
-1 -3

r1

r5

r4

r2-4

-1

r1

r5

r4
+2

+5

-5

-v

+1
-1 -2

-3

r2
-4

+4
r3a

r3b
+v

+3

Figure 2.6: Transformation of a 5-cycle into two 3-cycles. The first picture is the reality-
desire diagram of the original permutation. The reality-edges are labelled, and the element
x is the element +1 in the permutation. The dashed desire-edge will be replaced by two
new desire-edges. As x is labelled by plus, the value of v is between 1 and 2. In the
second picture, the new element is inserted, and the reality-edge r3 is split into two edges
r3a and r3b. Note that the dashed desire-edge of the first picture is replaced by two other
desire-edges, and the cycle is already split into two 3-cycles. The right picture is after the
padding, when the elements have been shifted. The permutation π = (+1 −3 −4 +5 −2)
has been transformed into π̃ = (+1 − 4 − 2 − 5 + 6 − 3).

• If õpi = t(i, j, k) and i = j or i = k or j = k, the transposition just exchanges two
segments. As we work with circular permutations, this has no effect on the result, so
we can omit this operation.

• If õpi = tr(i, j, k) and j = k or k = i, the transposition of the transreversal is no
longer necessary. The operation is reduced to the reversal opi = r(i, j).

• If õpi = tr(i, j, k) and i = j, the transreversal just exchanges two segments, and we
can omit this operation.

• If õpi = r(i, j) and i = j, this reversal does nothing, so it can be omitted.

Note that all of these changes reduce the weight of the operation, so that the weight of the
sorting sequence of π is equal to or less than the sorting sequence of π̃.

Theorem 26. Let π be a permutation and let π̃ be the simple permutation obtained by the
algorithm above applied on π. Let

b = ceven(π)wr + (
n − codd(π)

2
− ceven(π))wt

be the lower bound for the weighted distance of π, and let

b̃ = ceven(π̃)wr + (
n − codd(π̃)

2
− ceven(π̃))wt

24 CHAPTER 2. PRELIMINARIES

be the lower bound for the weighted distance of π̃ (as proven in Theorem 23). Then a
sorting sequence of π̃ with weight w̃ ≤ 1.5b̃ can be transformed into a sorting sequence for
π with weight w ≤ 1.5b by simply ignoring the padded elements in π̃.

Proof. Every transformation step adds one element to the permutation and splits a k-
cycle (with k > 3) into a 3-cycle and a (k-2)-cycle. If k is even, the result of the split
is an even and an odd cycle. If k is odd, the result of the split are two odd cycles. In
both cases, codd is increased by 1, whereas ceven remains unchanged. Therefore, the bound
cevenwr + (n−codd

2
− ceven)wt is not changed by the transformation, and b = b̃. As ignoring

the padded elements cannot increase the weight of an operation, we get

dw ≤ d̃w ≤ 1.5b̃ = 1.5b

We have now seen that sorting any permutation can be reduced easily to sorting a
simple permutation. Therefore we will only consider simple permutations in the rest of
this work.

2.7 Some observations about cycles

As we have seen in the previous sections, a sorting sequence is optimal if it increases the
number of odd cycles by two in every operation. Unfortunately, this is not possible in
most cases. We will now examine the cycles and develop some lemmata to get a better
characterisation of the cycles. First, we start with some definitions.

Definition 27. A configuration is a subset of the cycles of the reality-desire diagram of
a permutation.

An example for a configuration can be seen in Figure 2.7. Note that each reality-desire
diagram can be regarded as a configuration. This is not valid vice versa: there exist

Figure 2.7: The cycles of a reality-desire diagram, and a subset of its cycles as configuration.
The reality-desire diagram on the left belongs to the permutation π = (+1 − 4 − 10 −
5 + 2 − 6 − 7 − 11 + 9 + 8 − 3); there exists no permutation with the configuration
on the right picture being its reality-desire diagram.

2.7. SOME OBSERVATIONS ABOUT CYCLES 25

r1

r2

a1

a2

Figure 2.8: The reality edges r1 and r2 induce two arcs a1 and a2.

configurations which are not the reality-desire diagram of any permutation. The concept
of the configuration is very useful as it helps us to examine the effect of different operations
on only a few cycles.

Definition 28. A position in a configuration is a position between two consecutive reality-
edges in the configuration.

If the configuration contains all cycles of the reality-desire diagram, a position in the
configuration is equivalent to an element of the reality-desire diagram. If the configuration
does not contain all cycles, then there are also some reality-edges that do not appear in the
configuration, and several elements of the reality-desire diagram collapse to one position.
For example, in Figure 2.7, the elements +1, −4, −10 collapse to one position in the
configuration.

Definition 29. An arc is a series of consecutive positions of a configuration, bounded by
two reality-edges r1 and r2.

Note that there are always two arcs between two reality-edges r1 and r2: One goes from
r1 counterclockwise to r2, the other goes from r1 clockwise to r2. To make the definition
well-defined, we always take the arc that goes counterclockwise from r1 to r2. An example
can be seen in Figure 2.8.

Definition 30. Two chords d1 and d2 are intersecting if they intersect in the reality-
desire diagram. More precisely, the endpoints of the chords must alternate along the cycle
in the configuration. Two cycles c1 and c2 are intersecting if a chord of c1 intersects with
a chord of c2.

Definition 31. Two cycles c1 and c2 are interleaving if in the reality-desire diagram, the
reality-edges of c1 and c2 are alternating. More precisely, between each pair of reality-edges
of c1 lies a reality-edge of c2, and vice versa.

Note that interleaving cycles must have the same size. Examples for intersections and
interleaving cycles can be found in Figure 2.9.

26 CHAPTER 2. PRELIMINARIES

d1

d2

d3

c1
c2

c3

Figure 2.9: Examples for intersections. In the first picture, the chords d1 and d2 are
intersecting. d3 does not intersect any chord. In the second picture, the cycle c1 is
intersecting the cycles c2 and c3. c2 and c3 do not intersect each other. The last picture
is an example for two interleaving cycles.

Definition 32. An operation is called xy-move if it increases the number of cycles by x,
and the operation type is y (where y = r is a reversal, y = t a transposition, and y = tr a
transreversal).

For example, a transposition that splits one cycle into three is a 2t-move. A reversal
that merges two cycles is a −1r-move.

Definition 33. A m1m2 . . . mn-sequence is a sequence of n consecutive operations, where
the first is an m1-move, the second an m2-move and so on.

For example, a 0r2t2t-sequence is a reversal which does not change the number of cycles,
followed by two transpositions each of them increasing the number of cycles by two.

Definition 34. A cycle c is called r-oriented if there exists a 1r-move that acts on two of
the reality-edges of c. Otherwise the cycle is called r-unoriented.
A cycle c is called t-oriented if there exists a 2t-move or a 2tr-move that acts on three of
the reality-edges of c. Otherwise the cycle is called t-unoriented.

This is the general definition of the orientation of cycles. As we will work only on simple
permutations, we will have a closer look at 2-cycles and 3-cycles. With our definition of
the score σ (see Definition 21), optimal moves are 1r-moves on 2-cycles and 2t-moves or
2tr-moves on 3-cycles. These moves split the cycles into adjacencies. The gain of the score
is ∆σ = 2

wt
. Any other move on 2- and 3-cycles yields a smaller increment of the score.

For a better characterisation of the cycles, we need the definition of twists:

Definition 35. A reality-edge is called twisted if its adjacent chords are intersecting. A
cycle is called k-twisted if k of its reality-edges are twisted. For k = 0, we also say that
the cycle is nontwisted.

Definition 36. A chord is called twisted if it intersects with another chord that belongs
to the same cycle. Otherwise, it is called nontwisted.

For example, a 1-twisted 3-cycle has two twisted chords, and one nontwisted chord (see
also Figure 2.10).

2.7. SOME OBSERVATIONS ABOUT CYCLES 27

nontwisted
edge

nontwisted
edge

twisted edge

twisted chord twisted chord

nontwisted chord

Figure 2.10: An example for twisted reality-edges and twisted chords.

Figure 2.11: A 1-twisted pair.

Definition 37. Two interleaving 1-twisted 3-cycles form a 1-twisted pair if their twisted
reality-edges are consecutive in the configuration (see Figure 2.11).

Lemma 38. A 2-cycle is r-oriented iff it is 2-twisted.

Proof. There are only two possible configurations of a 2-cycle, as illustrated in Figure 2.12.
If the 2-cycle is 2-twisted, a reversal that acts on its reality-edges splits the cycle into two
adjacencies. If the cycle is 0-twisted, a reversal that acts on its reality-edges does not
change the shape of the cycle in the configuration.

a) b)

Figure 2.12: The two possible configurations of a 2-cycle. a) is nontwisted and r-unoriented,
b) is 2-twisted and r-oriented.

28 CHAPTER 2. PRELIMINARIES

a) b) c) d)

Figure 2.13: The possible configurations of a 3-cycle. a) and b) are t-unoriented, c) and
d) are t-oriented.

Lemma 39. [HS04] A 3-cycle is t-oriented iff it is 2-twisted or 3-twisted.

Proof. There are four possible configurations of a 3-cycle, as illustrated in Figure 2.13. If
the cycle is 3-twisted, a transposition that acts on its reality-edges is a 2t-move. If the
cycle is 2-twisted, a transreversal that acts on its reality-edges and reverses the segment
between the twisted edges is a 2tr-move. For 0-twisted and 1-twisted 3-cycles, there exists
no move that splits the cycle into adjacencies.

Removing oriented cycles results in a maximal gain of the score by a minimal weight.
However, such a move can change the orientation of other cycles, making them non-
oriented. We will now provide two lemmata about moves that keep some other cycles
oriented. Both lemmata have been proven in [HS04].

Lemma 40. Let π be a permutation and let c and d be two intersecting, non-interleaving
cycles in its reality-desire-diagram with the following properties:

• c is a 2-twisted 3-cycle, d is a 1-twisted 3-cycle

• none of the arcs induced by the two twisted edges of c contains both nontwisted edges
of d

Then there exists a 2tr2tr-sequence.

Proof. The transreversal that eliminates c either inverts one untwisted edge of d, or one
untwisted edge and the twisted edge of d. In both cases, d becomes 2-twisted, and a second
transreversal will eliminate it. Two examples can be seen in Figure 2.14.

Lemma 41. Let c and d be two 2-twisted, interleaving 3-cycles. These cycles admit a
2tr2tr-sequence iff four of their twisted edges are consecutive in the configuration.

Proof. There are two possible configurations for two interleaving 2-twisted 3-cycles, as
illustrated in Figure 2.15. The first configuration fulfils the precondition, and admits a
2tr2tr-sequence. The second configuration does not fulfil the precondition. Eliminating one
3-cycle makes the other nontwisted, so it cannot be eliminated with the next move.

2.7. SOME OBSERVATIONS ABOUT CYCLES 29

*

x

x

*

x

x

*

x

x

x

x
*

Figure 2.14: A 2-twisted 3-cycle and a 1-twisted 3-cycle are intersecting, as described in
Lemma 40. Each transposition acts on the edges marked with * or x. The part between
two x will be inverted.

As we cannot eliminate unoriented cycles directly, we first need a move that orientates
the cycle. In most cases, this is a move that acts on the reality edges of another cycle
that intersects with the unoriented cycle. We will now show that unoriented cycles must
intersect with other cycles. For this proof, we first need the definition of the complement
graph ([HS04]):

Definition 42. The complement graph of a reality-desire diagram is defined as follows:

• The nodes and desire-edges are the same as in the reality-desire diagram.

• Adjacent reality-edges will be connected by new edges.

• The original reality-edges will be removed.

An example for a complement graph can be seen in Figure 2.16. By construction, there
is a new edge for each element i of a permutation, and the desire-edges connect these edges
with the edges belonging to i+1 and i−1. Thus the complement graph consists of exactly
one cycle.

Lemma 43. If a cycle c has a nontwisted chord, then there exists another cycle d that
intersects with the nontwisted chord of c.

Proof. Let e be the nontwisted chord of c, and let a be the arc that lies between the
reality-edges adjacent to e. Suppose that there is no other chord that intersects with e.
The complement graph has at least two cycles: One with the chord e and all edges in the
arc a, and the other with the edges outside of a. This is a contradiction.

Definition 44. Two arcs a1, a2 are called adjacent if the endpoints of a1 are connected
with the endpoints of a2 by two chords.

30 CHAPTER 2. PRELIMINARIES

*

x

x

x

x

*

*

x

x

Figure 2.15: The two possible configurations for two interleaving 2-twisted 3-cycles. The
first configuration admits a 2tr2tr-sequence. For the second configuration, such a sequence
is not possible.

Figure 2.16: The reality-desire diagram of the permutation π = (+1 +4 −3 −5 +2 +6),
and its complement graph.

Examples for adjacent arcs can be seen in Figure 2.17.

Lemma 45. Let a1 and a2 be two disjoint (i.e. they have no common positions) adjacent
arcs in a configuration, so that there is at least one position in the configuration that is
not covered by a1 or a2. Then there exists a cycle in the reality-desire diagram with one
reality-edge in a1 or a2, and another reality-edge that is neither in a1 nor in a2.

Proof. This lemma has been proven in [HS04]. Suppose that no such cycle exists. Then in
the complement graph, there is a cycle that only contains edges inside the arcs a1 and a2.
As there is another position in the configuration not covered by a1 or a2, this cycle does
not contain all edges, so there must be a second cycle. This is a contradiction.

It is sometimes of interest to see the effect of a single transposition on a t-unoriented
cycle. The following lemma describes how a transposition can orient such a cycle.

2.7. SOME OBSERVATIONS ABOUT CYCLES 31

a1

a2 a1

a2

a1

a2

Figure 2.17: Examples for adjacent arcs. In each picture, the arcs a1 and a2 are adjacent.
Note that adjacent arcs can overlap (right picture).

*

*

*

*

*

*

Figure 2.18: A transposition that acts on three reality-edges in different arcs induced by a
t-unoriented cycle c orientates c.

Lemma 46. Let c be a t-unoriented 3-cycle and let a1, a2 and a3 be the three arcs induced
by the reality-edges of c. If a transposition acts on three reality-edges, so that one of them
is in a1, one in a2, and one in a3, then c becomes t-oriented. More precisely, if c was
nontwisted, it becomes 3-twisted, and if c was 1-twisted, it becomes 2-twisted.

Proof. The transposition just moves a segment containing one of the reality-edges between
the other reality-edges. The results of this move can be seen in Figure 2.18.

Although our algorithm works on simple permutations, there are some cases where we
have to build a 5-cycle. This 5-cycle will be split into a 3-cycle and two adjacencies in
the following moves. We will now provide some lemmata that show when such a move is
possible and how to construct such a 5-cycle.

Lemma 47. Let c be a 5-cycle and let r1 and r2 be two reality-edges in c connected by
a desire-edge. If we remove r1 and r2 and the adjacent desire-edges, close the remaining
cycle with a new desire-edge, then we obtain a new cycle called c′ (see Figure 2.19 for an
example).

• There exists a 2t-move that splits c into a 3-cycle and two adjacencies iff there exists
a pair of reality-edges r1, r2, so that c′ is a 3-twisted 3-cycle.

• There exists a 2tr-move that splits c into a 3-cycle and two adjacencies iff there exists
a pair of reality-edges r1, r2, so that c′ is a 2-twisted 3-cycle.

32 CHAPTER 2. PRELIMINARIES

r1

r2

r1

r2

r2

r1

r2

r1

Figure 2.19: This 5-cycle allows a 2t-move that splits the cycle into a 3-cycle and two
adjacencies. First, we mark two reality-edges connected by a desire-edge with r1 and r2,
remove them, and close the cycle by a new desire-edge (dashed line). Then, we perform
the transposition (third picture). The last step is to reinsert the reality-edges r1 and r2.

Proof. An operation can only generate an adjacency if it acts on two reality-edges that
are connected by a desire-edge. Therefore, to get two adjacencies, the operation must
act on three reality-edges that are connected by desire-edges. We can now simulate every
operation as follows: First, we remove the other two reality-edges (called r1 and r2) and
their adjacent desire-edges, and close the cycle with a new desire-edge. This corresponds
to c′. Now, we perform our operation on c′. As final step, we insert r1 and r2 into the cycle
with the newly created desire-edge. An example can be seen in Figure 2.19.
If there exists a pair of reality-edges r1 and r2, so that c′ is 3-twisted, a transposition will
split c′ into three adjacencies. If we insert r1 and r2 into the resulting cycles, we get a
3-cycle and two adjacencies. If there conversely does not exist such pair of reality-edges,
there is also no transposition that creates three adjacencies. Therefore, any transposition
that acts on three reality-edges that are connected by desire-edges can split c into at most
two cycles.
For the 2tr-move, the argumentation is the same, except that a 2tr-move on a 3-cycle
requires a 2-twisted 3-cycle.

Lemma 48. Let c be a t-unoriented 5-cycle and let d be a 3-cycle, so that between each
pair of reality-edges of d, there is a reality-edge of c. Then a transposition that acts on the
reality-edges of d makes c t-oriented, and there is a second move that splits c into a 3-cycle
and two adjacencies.

Proof. Let a1, a2, and a3 be the three arcs induced by the reality-edges of d. In one of these
arcs (without loss of generality, in a1) is only one reality-edge of c. We call this edge c1. Let
c0 and c2 be the reality-edges that are directly connected to c1 by a desire-edge. If c0 is in
arc a2 and c2 is in arc a3 or vice versa, c0, c1, and c2 form a triplet of reality-edges that are
connected by desire-edges and all of them are in a different arc induced by the reality-edges
of d. If c0 and c2 are in the same arc (without loss of generality, in a2), then one of them
must be connected to a reality-edge in a3 (otherwise, there would be no reality-edge in
a3, a contradiction to our precondition). Again, there is a triplet of reality-edges that are
connected by desire-edges and all are in a different arc induced by the reality-edges of d.
If we remove the remaining two reality-edges and the adjacent desire-edges, and close the

2.7. SOME OBSERVATIONS ABOUT CYCLES 33

s
r1

r2
r3

*

*

*

r1

r2

s

r3

*

*

*

r1

s

r2
r3

*

*

*

Figure 2.20: Depending on the position of s, there are three possibilities for choosing r1, r2,
and r3 so that the preconditions of Lemma 49 are fulfilled. In each case, a transposition
that acts on r1, r2 and s transforms the cycles into a 5-cycle and an adjacency. The second
transposition that transforms the 5-cycle into a 3-cycle and two adjacencies acts on the
reality-edges marked with *.

cycle with a new desire-edge, we obtain a 3-cycle that must be t-unoriented according to
Lemma 47. A transposition that acts on the reality-edges of d makes this 3-cycle t-oriented
(see Lemma 46). Therefore, after the transposition, d fulfills the preconditions of Lemma
47 and can be split into a 3-cycle and two adjacencies in the next move.

The next lemma shows how we can get an adjacency and a t-oriented 5-cycle out of two
intersecting nontwisted 3-cycles, and therefore describes a 0t2t-move. It has been proven
in [Har03].

Lemma 49. Let c and d be two intersecting, non-interleaving nontwisted 3-cycles. Let
r1, r2 and r3 be the reality-edges of c and let s be any reality-edge of d. Let a1 be the arc
between r1 and r2, and a2 the arc between r3 and s. If a1 and a2 are overlapping, then a
transposition that acts on the reality-edges r1, r2 and s transforms the cycles into a 5-cycle
and an adjacency. A second transposition that transforms the 5-cycle into a 3-cycle and
two adjacencies is possible.

Proof. There are only three possible configurations of two nontwisted 3-cycles that fulfil the
preconditions. For each configuration, the 0t2t-sequence is illustrated in Figure 2.20.

34 CHAPTER 2. PRELIMINARIES

Chapter 3

A 1.5-approximation

In this chapter, we provide a 1.5-approximation algorithm for sorting circular permutations
by weighted transpositions and reversals. We first develop an algorithm that works on
simple permutations. Then we use the results of section 2.6 to generalize it to arbitrary
permutations. The algorithm is a 1.5-approximation for any constant weights wt, wr with
wr ≤ wt ≤ 2wr.

3.1 Algorithm overview

Given a simple permutation π of size n, the overall goal is to find a sorting sequence with
weight w such that w ≤ 1.5dw. According to Theorem Theorem 23, we know that

dw ≥ cevenwr + (
n − codd

2
− ceven)wt

=
wt

2
(n − codd − 2ceven + 2ceven

wr

wt

)

=
wt

2
(n − σ)

For any sorting sequence, ∆σ = n− σ. Therefore, if the sorting sequence fulfills ∆σ
w

≥ 4
3wt

,
then

w ≤
3wt

4
∆σ

= 1.5
wt

2
(n − σ)

≤ 1.5dw

We will compose the sorting sequence out of many short sequences, each fulfilling the
condition ∆σ

w
≥ 4

3wt
. It is easy to see that also the sorting sequence will fulfill the condition,

and therefore provides a 1.5-approximation. The algorithm is working by searching such a
short sequence, applying it to the permutation, and searching for the next short sequence,
until the permutation is sorted. We will now discuss how we can find these short sequences.

35

36
C

H
A

P
T

E
R

3
.

A
1
.5

-A
P

P
R

O
X

IM
A

T
IO

N

chord intersected by cycle f
discard c, Case 8

d, e interleaving

f is nontwisted 3-cycle,
not interleaving with d or e

discard c, continue at γ

f is 1-twisted 3-cycle,
not interleaving with d or e

discard c, continue at δ

f is 3-cycle,
interleaving with d or e

intersected by c or d

e is 1-twisted 3-cycle

intersection of e?

e is nontwisted 3-cycleβ
intersect c and e?

e is 2-cycle

all chords of e
intersected by c or d

Case 6

e has a chord not

discard other cycles, Case 8

three of the cycles

fulfill precondition

of Case 5 or Case 6

Case 5 or Case 6

f is 2-cyclef is 2-cycle
c, f not intersecting
c, e not intersecting
d, f not intersecting

Case 7

f is 2-cycle
c, f intersecting

discard d, e, Case 2

ε

no

discard d, Case 2

yes

c

d

discard c, take d as c
continue at

Case 5

d

c

Case 2

c is 2-cycle

intersecting cycle d?

ε

x

d

c

Case 4
intersecting cycle e at x?

α

discard c,d, take e as c
continue at

c

d

Case 3

Table 3.1: The algorithm decision tree if we begin with an r-unoriented 2-cycle c. All cycles are considered to be
r-unoriented 2-cycles or t-unoriented 3-cycles; otherwise the algorithm jumps directly to the trivial case (Case 1). Cross-
references α and β can be found on this table, γ and δ on Table 3.2, ε, ζ and η on Table 3.3.

3
.1

.
A

L
G

O
R

IT
H

M
O

V
E

R
V

IE
W

37

no

Case 9 Case 10

yes no

Case 11

cycles mutually intersecting?

δe is nontwisted 3-cycle,
not interleaving with c or d

cycles mutually intersecting?

γ

yes

Case 12

c is nontwisted 3-cycle

intersecting cycle d?

c d

continue at η

not interleaving with c or d

c d

x

intersecting cycle e at x?

d is 3-cycle,
c and d are interleaving

Case 8Case 4, continue with α

d is 2-cycle

e is 2-cycle

continue at β
interleaving with c or d

Case 8

e is 3-cycle, e is 1-twisted 3-cycle,

c d

discard c, take d as c
continue at ε

Table 3.2: The algorithm decision tree if we begin with a nontwisted 3-cycle c. All cycles are considered to be r-unoriented
2-cycles or t-unoriented 3-cycles; otherwise the algorithm jumps directly to the trivial case (Case 1). Cross-references α
and β can be found on Table 3.1, γ and δ on this table, ε, ζ and η on Table 3.3.

38
C

H
A

P
T

E
R

3
.

A
1
.5

-A
P

P
R

O
X

IM
A

T
IO

N

no

Case 17

c intersects nontwisted
chord of e or vice versa

discard d, continue at ζ

any other form

Case 18

Case 8
chord of e?
intersects d nontwisted

no

how do c and
e intersect?

yes

yes

Case 16

c is 1-twisted 3-cycleε
cycle d intersects nontwisted chord

d is nontwisted 3-cycle,
c and d are not interleaving

cycle e intersects remaining
nontwisted chord of d

η

no

Case 19

yesno

Case 8 Case 13

yes

Case 14

no

d is 2-cycle

Case 3

d is 3-cycle,
c and d are interleaving

are c and d a 1-twisted pair?

d is 1-twisted 3-cycle,
c and d are not interleaving

intersects c the nontwisted
chord of d?

ζ

continue at δ

discard d, Case 3

yes no

Case 15

yes

Case 19

not interleaving with c or d
intersect e nontwisted
chord of c?

e is 2-cycle e is 3-cycle,
interleaving with c or d

is this a 1-twisted pair?

e is 1-twisted 3-cycle,
not interleaving with c or d

are c and e intersecting?

e is untwisted 3-cycle,

Table 3.3: The algorithm decision tree if we begin with a 1-twisted 3-cycle c. All cycles are considered to be r-unoriented
2-cycles or t-unoriented 3-cycles; otherwise the algorithm jumps directly to the trivial case (Case 1). Cross-references α
and β can be found on Table 3.1, γ and δ on Table 3.2, ε, ζ and η on this table.

3.1. ALGORITHM OVERVIEW 39

a) b) c) d)

Figure 3.1: The four possible configurations of 2 intersecting cycles, where one of them is
a 2-cycle.

The starting point is an arbitrary cycle c of length ≥ 2 in the reality-desire diagram. If c
is an r-oriented 2-cycle or a t-oriented 3-cycle, the sequence consists of only one operation
that eliminates this cycle (i.e. the operation cuts the cycle into adjacencies). For this
operation, ∆σ

w
= 2

wt
> 4

3wt
, so we are within our bounds. If c is an r-unoriented 2-cycle or

a t-unoriented 3-cycle, it contains a nontwisted edge (see Lemmata 38 and 39). According
to Lemma 43, there is a cycle d that intersects c. Now we have a look at the configuration
consisting only of the cycles c and d. Again, there are some cases where we can provide
a sequence with ∆σ

w
≥ 4

3wt
. In all other cases there must be a chord in the configuration

that is not intersected by another chord of the configuration. We search for the cycle that
intersects this chord, and extend the configuration by this cycle. We continue doing so
until we get a configuration where we can provide a sequence. The whole decision tree
can be seen in the Tables 3.1 to 3.3. In some cases we have to discard some old cycles of
the configuration, but the depth of the decision tree is bounded. The maximal number of
cycles in a configuration is four; if we have reached this configuration size, we can provide a
sequence for any possible case. It is also clear that the algorithm always finds a sequence,
until the permutation contains only adjacencies. At this point, the permutation is the
identity permutation or its reflection, and the sorting is finished.
Now we will list all cases which we have to consider and ensure that we will find any of
these cases.

The first case is the trivial case, where we need only one operation:

Case 1. c is an r-oriented 2-cycle or a t-oriented 3-cycle.

In any other case, we need a cycle d that intersects with c. Note that any cycle to
which Case 1 does not apply must have a nontwisted chord. According to Lemma 43, this
chord must intersect with another cycle d. Additionally we can assume that d is neither
an r-oriented 2-cycle nor a t-oriented 3-cycle. Otherwise we could use d as our first cycle
and apply Case 1.
If one of the cycles is a 2-cycle, there are four possible configurations, as illustrated in

Figure 3.1.

Case 2. c and d are two intersecting 2-cycles (Figure 3.1 a)

Case 3. A 2-cycle intersects the nontwisted chord of a 1-twisted 3-cycle (Figure 3.1 b).

40 CHAPTER 3. A 1.5-APPROXIMATION

c
d

e

a)

ed

c

b)

ec

d

c)

cd

e

d)

Figure 3.2: A 2-cycle c intersects with a nontwisted 3-cycle d, and another cycle e intersects
with the nontwisted chord of d not intersected by c. If e is not 1-twisted, there are four
general cases: a) e is a 2-cycle; b) e is a 3-cycle, and c intersects the nontwisted chord
not intersected by d; c) e is a 3-cycle, d and e are interleaving; d) e is a 3-cycle and has a
nontwisted chord intersected neither by c nor by d.

Case 4. A 2-cycle intersects with a nontwisted 3-cycle (Figure 3.1 c).

The remaining case, where the 2-cycle intersects with the twisted chords of the 3-cycle,
can be ignored. In this case, we will use the 3-cycle as cycle c and discard the 2-cycle. So,
we have a 1-twisted 3-cycle, and we start the searching algorithm again: There must exist
a cycle d that intersects with the nontwisted chord of c.
Case 2 and Case 3 can be handled directly. In Case 4, there must be another cycle e that
intersects the last chord of the 3-cycle. Several cases can occur: e is either a 2-cycle, a
nontwisted 3-cycle or a 1-twisted 3-cycle. Again, if e is a 1-twisted 3-cycle, we will ignore
the other cycles, and use e as cycle c. If e is a 2-cycle or a nontwisted 3-cycle, there are
four general cases, as illustrated in Figure 3.2.
In the first of these cases, we can assume that the 2-cycles are not intersecting. Otherwise

we can apply Case 2.

Case 5. c and e are 2-cycles, d is a nontwisted 3-cycle. c and e are not intersecting, and
each nontwisted chord of d is intersected by c or e (Figure 3.2 a).

Case 6. c is a 2-cycle, d and e are intersecting nontwisted 3-cycles. c intersects the other
nontwisted chords of d and e (Figure 3.2 b).

These two cases can be handled directly. The case where we have two interleaving
3-cycles will be discussed later (Figure 3.2 c). For the case illustrated in Figure 3.2 d), we
need a fourth cycle f , that intersects with the last nontwisted chord of e. If f is a 2-cycle,
this case can be handled directly:

Case 7. d and e are two intersecting nontwisted 3-cycles, and c and f are 2-cycles. c
intersects with the nontwisted chord of d that is not intersected by e, and f intersects with
the nontwisted chord of e that is not intersected by d. c is not intersecting with e or f ,
and f is not intersecting with c or d.

Note that we have to consider only the case where c and f are not intersecting. The
other case already has been handled in Case 2. Also the case where one of the 2-cycles
intersects both 3-cycles is not to be considered here. Any possible configuration can be

3.1. ALGORITHM OVERVIEW 41

a) b) c) d)

Figure 3.3: The four main cases for three intersecting, non-interleaving 3-cycles, where at
least two of them are nontwisted, and one of the nontwisted cycles intersects both other
cycles.

reduced to Case 5 or to Case 6. If f is a 3-cycle, we discard the 2-cycle and apply any
of the cases with three 3-cycles that are connected by intersections. These cases will be
discussed later (Cases 9 to 12).
Now, we will have a look at the case that our first two cycles c and d are both 3-cycles.
The first possible case is that we have two interleaving 3-cycles:

Case 8. c and d are interleaving 3-cycles, and do not form a 1-twisted pair.

As long as interleaving cycles do not form a 1-twisted pair, they can be handled easily.
If they do, it is rather complicated, and we first must handle a lot of other cases, before we
are able to solve this case. In the following cases, we assume that we have no interleaving
3-cycles, except if they form a 1-twisted pair.
If both c and d are nontwisted, d has a nontwisted chord that must intersect with a third
cycle e. There are different possible configurations: e can either be a 2-cycle, a nontwisted
3-cycle, or a 1-twisted 3-cycle. If e is a 2-cycle, the possible cases already have been
discussed above. If e is a 3-cycle, there are four possible cases:

Case 9. c, d and e are all nontwisted 3-cycles, and c does not intersect with e (Figure 3.3
a).

Case 10. c, d and e are mutually intersecting nontwisted 3-cycles (Figure 3.3 b).

Case 11. c and d are nontwisted 3-cycles, e is a 1-twisted 3-cycle. c and e are not inter-
secting (Figure 3.3 c).

Case 12. Two nontwisted 3-cycles and a 1-twisted 3-cycle are mutually intersecting (Figure
3.3 d).

Each of these cases can be handled directly. Some example configurations are illustrated
in Figure 3.3.
Now, we begin with two 1-twisted cycles c and d. As we always search for cycles intersecting
with the nontwisted chord of a given cycle, we can assume that d intersects the nontwisted
chord of c. There are two possible cases:

Case 13. Two 1-twisted 3-cycles are intersecting, such that the nontwisted chord of each
cycle is intersected by the other cycle (Figure 3.4 a).

42 CHAPTER 3. A 1.5-APPROXIMATION

a) b)

Figure 3.4: Two intersecting 1-twisted 3-cycles

Case 14. c and d are two intersecting 1-twisted 3-cycles. d intersects the nontwisted chord
of c, but c does not intersect the nontwisted chord of d (Figure 3.4 b).

Both cases can be handled directly.
Now, let c be a 1-twisted 3-cycle, and d a nontwisted 3-cycle that intersects the nontwisted
chord of c. There must be a third cycle e that intersects with the nontwisted chord of d
not intersected by c. If e is a 2-cycle, there are two possibilities: Either the 2-cycle also
intersects the nontwisted chord of c (then we can apply Case 3), or we have a case that we
can handle directly, and an example configuration is illustrated in Figure 3.5:

Case 15. c is a 1-twisted 3-cycle, and d is a nontwisted 3-cycle that intersects the nontwisted
chord of c. The nontwisted chord of d is intersected by a 2-cycle that does not intersect
the nontwisted chord of c (Figure 3.5).

If e is a nontwisted 3-cycle, we have either Case 12 or Case 11. If e is a 1-twisted 3-cycle,
and one of the 1-twisted 3-cycles intersects with the nontwisted chord of the other, we have
either Case 13 or Case 14. There are three remaining cases, and example configurations
are illustrated in Figure 3.6.

Case 16. c is a nontwisted 3-cycle, d and e are 1-twisted 3-cycles. c intersects with the
nontwisted chords of d and e, d and e do not intersect each other (Figure 3.6 a).

Case 17. c is a nontwisted 3-cycle, d and e are 1-twisted 3-cycles. c intersects with the
nontwisted chord of d and the twisted chord of e. d and e do not intersect each other
(Figure 3.6 b).

ce
d

Figure 3.5: A 1-twisted 3-cycle c intersects a nontwisted 3-cycle d. The nontwisted chord
of d not intersected by c is intersected by a 2-cycle e. e does not intersect the nontwisted
chord of c.

3.2. SEQUENCES FOR THE DIFFERENT CASES 43

a) b) c)

Figure 3.6: A nontwisted 3-cycle intersects two 1-twisted 3-cycles. These are some possible
example configurations. Figure a) refers to Case 16, Figure b) to Case 17, Figure c) to
Case 18

Case 18. c is a nontwisted 3-cycle, d and e are 1-twisted 3-cycles. c intersects with the
nontwisted chord of d and any chord of e. d and e intersect with their twisted chords, but
are not interleaving (Figure 3.6 c).

All these cases can be handled directly. Note that we have the precondition that
c intersects with the nontwisted chord of d. The last case we have to consider is two
interleaving 3-cycles that form a 1-twisted pair:

Case 19. Two 1-twisted 3-cycles form a 1-twisted pair.

Now, we have covered all possible cases. In the next section we will provide the se-
quences for them.

3.2 Sequences for the different cases

We will now provide sequences for the different cases. Each sequence has a weight w, and
the gain of the score per weight ∆σ

w
is at least 4

3wt
(with our bounds wr ≤ wt ≤ 2wr). The

sequences that only involve 3-cycles have been shown in [Har03] and [HS04], except the
sequences for the Cases 11, 12 and 19, which we could simplify. Although the sequences by
[Har03] and [HS04] have been developed for sorting by reversals and transpositions without
weights, the gain of the score is high enough, so we can use them also for our purposes.
We will solve many of the cases by showing the sequences directly in all possible config-
urations for the case, where symmetric configurations are ommitted. In the figures, the
reality-edges where the operations act on are marked. If three edges are marked with ∗,
the move is a transposition. If two edges are marked with x and one with ∗, the move is a
transreversal that inverts the segment between the x. A reversal is indicated by two edges
marked with x.

The following two lemmata describe Case 1:

Lemma 50. If π contains an r-oriented 2-cycle, there exists a reversal that increases codd

by 2 and decreases ceven by 1.

Remark. For this move, ∆σ
w

= 2
wt

.

44 CHAPTER 3. A 1.5-APPROXIMATION

x

x

x

x

x

x

Figure 3.7: A 0r1r1r-sequence for two intersecting 2-cycles.

Proof. Just use the reversal that splits c into two cycles. The resulting cycles must be
adjacencies.

Lemma 51. If π contains a t-oriented 3-cycle, then there exists a transposition or a
transreversal that increases codd by 2 and does not change ceven.

Remark. For this move, ∆σ
w

= 2
wt

.

Proof. Just use the move that splits c into three cycles. The resulting cycles must be
adjacencies.

For all other cases, we assume that we only have r-unoriented 2-cycles and t-unoriented
3-cycles.
The next lemma describes Case 2:

Lemma 52. If π contains two intersecting 2-cycles, then there exists a 0r1r1r-sequence
with ∆codd = 4 and ∆ceven = −2.

Remark. For this sequence, ∆σ
w

= 4
3wt

.

Proof. The sequence is described in Figure 3.7.

The next lemma describes Case 3:

Lemma 53. If π contains a 2-cycle that intersects the nontwisted chord of a 1-twisted
3-cycle, then there exists a 1r1r1r-sequence with ∆codd = 4 and ∆ceven = −1.

Remark. For this sequence, ∆σ
w

= 2wr+2wt

3wrwt
.

Proof. The sequence is described in Figure 3.8.

As we split Case 4 into several subcases, we do not need a lemma for the main case.
We will rather provide some lemmata for the subcases. The next lemma describes Case 5:

Lemma 54. Let π be a permutation and let c, d, and e be three cycles in its reality-desire
diagram with the following properties:

3.2. SEQUENCES FOR THE DIFFERENT CASES 45

x

x
x

x

x

x

Figure 3.8: A 1r1r1r-sequence for a 2-cycle intersecting the nontwisted chord of a 1-twisted
3-cycle.

• d is a nontwisted 3-cycle, c and e are nontwisted 2-cycles,

• each chord of d is intersected by c or e,

• c and e are not intersecting.

Then there exists a 0t2t2t-sequence with ∆codd = 6 and ∆ceven = −2.

Remark. For this sequence, ∆σ
w

= 2
3wt

+ 4wr

3w2

t

.

Proof. The sequence is described in Figure 3.9.

The next lemma describes Case 6:

Lemma 55. Let π be a permutation and let c, d, and e be three cycles in its reality-desire
diagram with the following properties:

• c is a nontwisted 2-cycle, d and e are intersecting, non-interleaving nontwisted 3-
cycles,

• the chords of d and e not being intersected by the other 3-cycle are intersected by c.

Then there exists a 0r1r2tr-sequence with ∆codd = 4 and ∆ceven = −1.

Remark. For this sequence, ∆σ
w

= 2wr+2wt

wt(2wr+wt)
.

*

*

*

*

*

*

*

*

*

Figure 3.9: A 0t2t2t-sequence for two 2-cycles intersecting a nontwisted 3-cycle.

46 CHAPTER 3. A 1.5-APPROXIMATION

Proof. The sequence is described in Figure 3.10.

The next lemma describes Case 7:

Lemma 56. Let π be a permutation and let c, d, e, and f be cycles in its reality-desire
diagram with the following properties:

• c and f are nontwisted 2-cycles, d and e are intersecting, non-interleaving nontwisted
3-cycles,

• c intersects the chord of d not intersected by e,

• f intersects the chord of e not intersected by d,

• c does not intersect with e or f ,

• f does not intersect with c or d.

Then there exists a 0t2t2t2t-sequence with ∆codd = 8 and ∆ceven = −2, or a 0t2t2t-sequence
with ∆codd = 4 and ∆ceven = 0.

Remark. For the 0t2t2t2t-sequence, ∆σ
w

= 1
wt

+ wr

w2

t

. For the 0t2t2t-sequence, ∆σ
w

= 4
3wt

.

Proof. There are four possible configurations. For each of them, a sequence is described in
Figure 3.11.

The next lemma describes Case 8. Two of the sequences for this case have been de-
scribed in [Har03] and [HS04].

Lemma 57. If π contains two interleaving t-unoriented 3-cycles that do not form a
1-twisted pair, then there exists a sequence with weight w ≤ 3wt, ∆codd = 4 and ∆ceven = 0.

Remark. For this sequence, ∆σ
w

≥ 4
3wt

.

Proof. There are three cases that can occur. For all of them, the sequence is described in
Figure 3.12.

The next lemma describes Case 9. The sequences have been described in [Har03].

Lemma 58. Let π be a permutation and let c, d, and e be nontwisted 3-cycles in its reality-
desire diagram with the following properties:

• c intersects d and e, but does not interleave with them,

• d and e are not intersecting.

Then there exists a 0t2t2t-sequence with ∆codd = 4 and ∆ceven = 0.

Remark. For this sequence, ∆σ
w

= 4
3wt

.

3.2. SEQUENCES FOR THE DIFFERENT CASES 47

x

x
x

x

*

x
x

Figure 3.10: A 0r1r2tr-sequence for two intersecting nontwisted 3-cycles and a 2-cycle that
intersects the remaining chords of the 3-cycles.

*

*

*
*

*
*

*

*

*
*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

Figure 3.11: Sequences for two 2-cycles that intersect the remaining nontwisted chords of
two intersecting nontwisted 3-cycles.

48 CHAPTER 3. A 1.5-APPROXIMATION

*

*

*

*

*

*

*

*

*

*

*

*

*

x

x

x

*

x

x

x

x

*

x
x

x

Figure 3.12: Sequences for two interleaving 3-cycles that do not form an 1-twisted pair.

*

*

*
*

*

*
*

*
*

*

*

*
*

*
*

*

*

*

*

*
*

*

*

*
*

*
*

Figure 3.13: Sequences for three intersecting nontwisted 3-cycles.

3.2. SEQUENCES FOR THE DIFFERENT CASES 49

*

*

*

*

*
*

Figure 3.14: Sequence for three mutual intersecting nontwisted 3-cycles. Dashed lines
either represent a single desire-edge, or two desire-edges separated by a reality-edge. As
the starting configuration contains three 3-cycles, the cycle with the three dashed lines
must be a 5-cycle. Lemma 49 ensures that we can perform a third transposition that splits
this cycle into a 3-cycle and two adjacencies.

Proof. There are three possible configurations. For all of them, a sequence is described in
Figure 3.13.

The next lemma describes Case 10. The sequences have been described in [Har03].

Lemma 59. If a permutation π contains three nontwisted non-interleaving 3-cycles that are
mutually intersecting, then there exists a 0t2t2t-sequence with ∆codd = 4 and ∆ceven = 0.

Remark. For this sequence, ∆σ
w

= 4
3wt

.

Proof. The general case is illustrated in Figure 3.14. As all cycles are unoriented, the
preconditions of Lemma 49 are fulfilled. We begin with a transposition as illustrated in
the figure. The result is an adjacency, a 3-twisted 3-cycle, and a 5-cycle. According to
Lemma 49, the 5-cycle allows a 2t-move t that splits it into two adjacencies and a 3-cycle.
The second move is a transposition that eliminates the 3-cycle. This move does not change
the structure of the 5-cycle, so we can perform the transposition t as third move. The
resulting configuration contains one 3-cycle and six adjacencies.

The next lemma describes Case 11. We cannot use the proof shown in [HS04] here,
as they start their sequences with the first move of the corresponding sequence of Case 9,
such that the first transposition does not act on a twisted edge. However, there is a case
where the first move must act on the twisted edge, and this case cannot be solved by using
a symmetric configuration.

Lemma 60. Let π be a permutation and let c, d, and e be three cycles in its reality-desire
diagram with the following properties:

• c and d are nontwisted 3-cycles, e is a 1-twisted 3-cycle,

• d intersects c and e, but does not interleave with them,

• c and e are non-intersecting.

50 CHAPTER 3. A 1.5-APPROXIMATION

d0
c1

d1

c0
e1

d2

e0

C2

C2

E2

E2

c2

e1
e2

D1

D0

D2
D2

D1 c2

e1

e2

D1

D1

D0
D2

D2

Figure 3.15: Left: The general case of Case 11. Dashed lines represent two desire-edges
separated by a reality-edge. One of the edges e0 and e1 also can be twisted. c2 must be at
one of the positions marked with C2, and e2 must be at one of the positions marked with
E2. Middle: This is the resulting 5-cycle after the first transposition if e0 was twisted.
Right: This is the resulting 5-cycle after the first transposition if e0 was not twisted. In
both pictures, the possible positions for the reality-edges of d are marked with D0, D1,
and D2.

Then there exists a 0t2t2t-sequence or a 0t2t2tr-sequence with ∆codd = 4 and ∆ceven = 0.

Remark. For these sequences, ∆σ
w

= 4
3wt

.

Proof. The general case is illustrated in the left picture of Figure 3.15. Dashed lines
represent two desire-edges separated by a reality-edge. e0 or e1 also can be twisted. Note
that c2 (the third reality-edge of cycle c) must be at one of the positions marked with C2,
and e2 (the third reality-edge of cycle e) at one of the positions marked with E2. The first
move is a transposition that acts on c0, e0, and c1, cutting a part of the cycle c and inserting
it into e. This move makes d 3-twisted (see Lemma 46) and transforms c and e into a 5-cycle
and an adjacency. If e0 was twisted, the configuration of the 5-cycle is the one described
in the middle picture of Figure 3.15, otherwise it is the one described in the right picture
(where also e2 can be twisted instead of e1). D0, D1, and D2 mark the possible positions
for the reality-edges of cycle d. In any case, the 5-cycle is t-unoriented, and each pair of
reality-edges of d is separated by a reality-edge of the 5-cycle. Therefore, the preconditions
of Lemma 48 are fulfilled, and a transposition that acts on the edges of d (this is a 2t-move)
makes the 5-cycle t-oriented, allowing a second 2t-move or a 2tr-move.

The next lemma describes Case 12.

Lemma 61. Let π be a permutation and let c, d, and e be three cycles in its reality-desire
diagram with the following properties:

• c and d are nontwisted 3-cycles, e is a 1-twisted 3-cycle,

• c, d and e are mutually intersecting,

• c, d and e are not interleaving.

Then there exists a 0t2t2t-sequence or a 0t2t2tr-sequence with ∆codd = 4 and ∆ceven = 0.

3.2. SEQUENCES FOR THE DIFFERENT CASES 51

c0

c2

e0

x

a1

a2

Figure 3.16: The general situation in Case 12. The dotted line represents two chords
separated by the reality-edge c1. c1 must be in the arc a1. At least one of the reality-edges
e1 and e2 must be at the position marked with x. Cycle e has no reality-edge in arc a2.
For clarity, the chords of cycle e are not indicated in the diagram.

c1

c1

Figure 3.17: If both chords e1 and e2 were at the position marked with x in Figure 3.16,
the resulting 5-cycle has one of these configurations after the second move. Left: This is
the configuration if e0 was twisted. The dotted line represents two chords separated by the
reality-edge c1, and c1 must be at one of the positions marked with x. Right: This is the
configuration if e1 was twisted. If e2 was twisted, the resulting configuration is symmetric.

52 CHAPTER 3. A 1.5-APPROXIMATION

*

*

*

*

*
*

*

x

x

*

*

*

*

*
* x

*

x

*

*

*

*

*
* *

x

x

*

*

*

*

*

*

x

x

*

*

*

*

*

*

*

x

*

x

*

*

*

*

*

*

*

x

x

Figure 3.18: The sequences for the six possible configurations of Case 12 if cycle e has
only one reality-edge in the arc between c0 and c2. The dotted line represents two chords
separated by the reality-edge c1.

3.2. SEQUENCES FOR THE DIFFERENT CASES 53

Remark. For these sequences, ∆σ
w

= 4
3wt

.

Proof. The general situation is illustrated in Figure 3.16. The dotted line represents two
chords separated by the reality-edge c1. Because there exist many possibilities for the twist
of cycle e, the chords of e are not in the diagram. As c is nontwisted, c1 must be in arc
a1. At least one of the reality-edges of e is at the position marked with x. Without loss
of generality, we can assume that no reality-edge of cycle e is in the arc a2. The first
move is always a transposition that acts on c0, c2, and e0. This makes d 3-twisted, and the
second move is the transposition that eliminates d. For the third move, we must distinguish
between two cases for the positions of e1 and e2 in the starting configuration, which result
in different configurations for the 5-cycle after the first transposition:

• Both e1 and e2 are at the position marked with x in Figure 3.16. If e0 was twisted, the
resulting configuration for the 5-cycle can be seen in the left picture of Figure 3.17.
Otherwise, the configuration is that of the right picture (shown is the configuration
where e1 was twisted; if e2 was twisted, the result is symmetric). Before the first
move, the reality-edge c1 must be at one of the positions marked with x in Figure
3.16. Note that it cannot be between e1 and e2 because c and e are non-interleaving.
For both positions, the preconditions of Lemma 47 are fulfilled, allowing a 2tr-move.

• If only one of e1 and e2 is at the position marked with x in Figure 3.16, then there
are six possible configurations. For each of them, a sequence is described in Figure
3.18.

The next lemma describes Case 13.

Lemma 62. If a permutation contains two intersecting, non-interleaving 1-twisted 3-
cycles, and each of these cycles intersects with the nontwisted chord of the other cycle,
then there exists a 1r2tr1r-sequence with ∆codd = 4 and ∆ceven = 0.

Remark. For this sequence, ∆σ
w

= 4
wt+2wr

.

Proof. There are three possible configurations, and the sequences for these configurations
are shown in Figure 3.19.

The next lemma describes Case 14:

Lemma 63. Let π be a permutation and let c and d be two cycles in its reality-desire-
diagram with the following properties:

• c and d are 1-twisted 3-cycles,

• d intersects the nontwisted chord of c,

• c does not intersect the nontwisted chord of d.

54 CHAPTER 3. A 1.5-APPROXIMATION

x

x

x
*

x

x

x

x

x

x
*

x

x

x

x

x

x

*

x

x

x

Figure 3.19: Sequences for two intersecting, non-interleaving 1-twisted 3-cycles, where each
of them intersects with the nontwisted chord of the other cycle.

x

c
d

x

c
d

Figure 3.20: Two intersecting 1-twisted 3-cycles, and one of the nontwisted chords is not
intersected by the other cycle. At position x, there must be a reality-edge of another cycle
that intersects with the nontwisted chord.

3.2. SEQUENCES FOR THE DIFFERENT CASES 55

Then we can either apply Case 3 or there exists a 0r2tr2tr-sequence with ∆codd = 4 and
∆ceven = 0 or a 1r2tr2tr-sequence with ∆codd = 4 and ∆ceven = 1.

Remark. For this sequence, either ∆σ
w

= 4
2wt+wr

or ∆σ
w

= 6wt−2wr

wr(2wt+wr)
.

Proof. There are two possible configurations, as described in Figure 3.20. According to
Lemma 43, there must be a reality-edge of another cycle e at the position marked with an
x, and this cycle must intersect with the nontwisted chord of d. If this cycle is a 2-cycle,
we can apply Case 3. If e is a 3-cycle, we can use the proof given in [HS04]: We begin
with a reversal on e that twists one of the nontwisted reality-edges of d. This is possible
because e intersects the nontwisted chord of d. For the resulting configuration of c and d,
there are four possibilities:

• c is 1-twisted and d is 2-twisted. In any case, the precondition of Lemma 40 is
fulfilled, so we can apply a 2tr2tr-sequence.

• c and d interleave and both cycles are 2-twisted. In any case, they have at least three
consecutive twists. According to Lemma 41, a 2tr2tr-sequence is possible.

• c and d are interleaving, c is nontwisted and d is 2-twisted. Eliminating d by a
2tr-move makes c 2-twisted, so another 2tr-move is possible.

• c and d are intersecting, and both are 2-twisted. In any case, c has no reality-edge
between the two twisted reality-edges of d, so we can apply a 2tr-move on c without
reversing any part of d. Therefore, d remains 2-twisted, that allows another 2tr-move.

In any case, our sequence will eliminate c and d. The first reversal is either a 0r-move, or
it splits e into a 2-cycle and an adjacency. In both cases codd remains unchanged. In the
first case, also ceven remains unchanged. In the latter case, ceven increases by 1. The two
transreversals increase codd by 4 and let ceven unchanged.

The next lemma describes Case 15:

Lemma 64. Let π be a permutation and let c, d, and e be three cycles in its reality-desire-
diagram with the following properties:

• c is a 1-twisted 3-cycle, d is a nontwisted 3-cycle, and e is a nontwisted 2-cycle,

• d intersects the nontwisted chord of c, c and d are not interleaving,

• e intersects the chord of d not intersected by c,

• e does not intersect the nontwisted chord of c.

Then there is a 0t2t2t1r-sequence, a 0t2t2tr1r-sequence, or a 1r1r2tr1r-sequence with ∆codd =
6 and ∆ceven = −1.

56 CHAPTER 3. A 1.5-APPROXIMATION

*

*

*

*

*

*

x

*
x

x

x

x

x

x

x

*

x

x

x

x

*

*

*

*

*

*
x

*

x

x

x

*

*

*

*

*

*

x

*

x

x

x

*

*

*

*

*
*

*
x

x
x

x

Figure 3.21: Sequences for a nontwisted 3-cycle intersecting the nontwisted chord of a 1-
twisted cycle, and a 2-cycle intersecting the remaining nontwisted chord of the nontwisted
cycle.

3.2. SEQUENCES FOR THE DIFFERENT CASES 57

*

x
x

x

x *

x

*

x

Figure 3.22: An example configuration for Lemma 65. Imagine the first transreversal as
mirroring the part between the two x and inserting at * will help to see that the twisted
cycles remain non-intersecting.

Remark. For the 0t2t2t1r-sequence and the 0t2t2tr1r-sequence, ∆σ
w

= 4wt+2wr

wt(3wt+wr)
. For the

1r1r2tr1r-sequence, ∆σ
w

= 4wt+2wr

wt(wt+3wr)
.

Proof. There are five possible configurations. For each of them, a sequence is described in
Figure 3.21.

The next lemma describes Case 16. The sequences for this case have been described in
[HS04].

Lemma 65. Let π be a permutation and let c, d, and e be three cycles in its reality-desire
diagram with the following properties:

• c is a nontwisted 3-cycle, d and e are 1-twisted 3-cycles,

• each chord of c is intersected by a nontwisted chord of d or e,

• c does not interleave with d or e,

• d and e are not intersecting.

Then there exists a 0tr2tr2tr-sequence with ∆codd = 4 and ∆ceven = 0.

Remark. For this sequence, ∆σ
w

= 4
3wt

.

Proof. We begin with a transreversal that acts on the three reality-edges of c. There exists
one chord in c that intersects with both d and e. If we choose the transreversal that inverts
the arc below this chord, d and e remain non-intersecting, and become both 2-twisted.
Both cycles can now be eliminated by another transreversal. An example sequence can be
seen in Figure 3.22.

The next lemma describes Case 17. The sequences for this case have been described in
[HS04].

Lemma 66. Let π be a permutation and c, d, and e be three cycles in its reality-desire
diagram with the following properties:

58 CHAPTER 3. A 1.5-APPROXIMATION

x

*

x

x

*

x

x

*

x
x

*

x

x

*

x

x

*

x

x

*

x
x

*

x

Figure 3.23: The possible configuration for the three 3-cycles of Lemma 66. The first move
is marked in each diagram, the result is a 5-cycle, a t-oriented 3-cycle and an adjacency.
After eliminating the 3-cycle, the 5-cycle is t-oriented and has one of the forms described
in Figure 3.24.

• c is a nontwisted 3-cycle, d and e are 1-twisted 3-cycles,

• c, d and e are not interleaving,

• c intersects the nontwisted chord of d,

• the chord of c that is not intersected by d intersects with the twisted chords of e; the
nontwisted chord of e is not intersected by c,

• d and e are not intersecting.

Then there exists a sequence with w = 3wt, ∆codd = 4 and ∆ceven = 0.

Remark. For this sequence, ∆σ
w

= 4
3wt

.

Proof. There are eight possible configurations for this case. All these configurations are
illustrated in Figure 3.23, and the first move of each sequence is marked there. The resulting
configurations consist of a t-oriented 3-cycle, a 5-cycle, and an adjacency. The second move
eliminates the 3-cycle and makes the 5-cycle t-oriented. All possible configurations for the
5-cycle are illustrated in Figure 3.24. The moves marked in this figure transform the 5-cycle
into a 3-cycle and two adjacencies.

The next lemma describes Case 18. The sequences for this case have been shown in
[HS04].

3.2. SEQUENCES FOR THE DIFFERENT CASES 59

x

x

*

x

*
x

x

x

*

x
x

*

*
*

*

*

x

x

Figure 3.24: After eliminating the 3-cycle, the 5-cycle is t-oriented. All possible configura-
tions are illustrated here. The marked moves transforms the cycles into a 3-cycle and two
adjacencies.

Lemma 67. Let π be a permutation and let c, d, and e be three cycles in its reality-desire
diagram with the following properties:

• c is a nontwisted 3-cycle, d and e are 1-twisted 3-cycles,

• c is neither interleaving with d nor with e,

• c intersects the nontwisted chord of d,

• the chord of c that is not intersected by d intersects with any chord of e,

• d and e are not interleaving.

Then there exists a 0tr2t2tr-sequence with ∆codd = 4 and ∆ceven = 0.

Remark. For this sequence, ∆σ
w

= 4
3wt

.

Proof. There are three possible configurations for this case. For each of them, a sequence
is described in Figure 3.25.

The next lemma describes Case 19. It is an improvement of a lemma proven in [HS04],
and some of the sequences have been taken from there.

Lemma 68. If a permutation contains a 1-twisted pair, we can either apply Lemma 63, or
we can apply a sequence with w = 2wt +wr and ∆σ ≥ 4, or we can apply a 0tr2t2t-sequence
or a 0tr2t2tr-sequence with ∆codd = 4 and ∆ceven = 0, or we can apply a 0r2tr1r sequence
with ∆codd = 4 and ∆ceven = −1

60 CHAPTER 3. A 1.5-APPROXIMATION

x

*

x

x

x

*
x

*

x

x

*
x

x

x

*

x
*

x

x

*

x
*

x

x

*

x
x

Figure 3.25: Sequences for the three possible configurations of Case 18.

Remark. For the sequences with w = 2wt + wr and ∆σ ≥ 4, ∆σ
w

≥ 4
2wt+wr

. For the 0tr2t2t-

sequence and 0tr2t2tr-sequence, ∆σ
w

= 4
3wt

. For the 0r2tr1r-sequence, ∆σ
w

= 2wr+2wt

wt(2wt+wr)
.

Proof. The starting configuration is illustrated in Figure 3.26. The arcs a1 and a2 in the
figure are adjacent. According to Lemma 45, there must be a cycle e that has at least one
reality-edge (let this be e1) in one of the arcs, and at least one reality-edge (let this be e2)
that is in none of these arcs. Without loss of generality, we can assume that e1 is in the
arc a1. Now, we must distinguish between the possible positions of e2:

• If e2 is in the arc a3, we begin with a reversal that acts on e1 and e2. For all of the
three possible positions of e2, a sequence is described in Figure 3.27. Each sequence
has the weight w = 2wt + wr. If the first reversal does not split the cycle e, the
sequence increases codd by 4 and leaves ceven unchanged, therefore the gain in the
score is 4. If the first reversal splits the cycle e, we either get one additional even
cycle, or an even cycle will be split into two odd cycles. Both cases increase the score.

• If e2 is not in the arc a3, we can assume without loss of generality that e has no
reality-edge in a3. If e is 1-twisted and c or d intersects the nontwisted chord of e,
then we can apply Lemma 63. Otherwise, there are six configurations we have to
consider. For each of them, a sequence is described in Figure 3.28.

3.2. SEQUENCES FOR THE DIFFERENT CASES 61

a1

a2

a3

Figure 3.26: Two 1-twisted 3-cycles form a 1-twisted pair. The arcs a1 and a2 are adjacent,
so there is a third cycle that has at least one reality-edge in a1 or a2, and at least one reality-
edge that is neither in a1 nor in a2 (see Lemma 45). Depending on the position of this edge
(in a3 or between the two twisted reality-edges), we can choose a sequence for this case.

x

x

x

x

*

*

*

*

x

x

x

x

*

x

x

*

x

x

x

x

*

x

x

*

Figure 3.27: Sequences for eliminating a 1-twisted pair if there is a third cycle e that
intersects at least one of the nontwisted chords of the 1-twisted pair. The first move is a
reversal that acts on two reality-edges of e, the other two moves act on the reality-edges
of the 1-twisted pair.

62 CHAPTER 3. A 1.5-APPROXIMATION

x
x

x

x

*

x

x

x

*
x

*

*

*
*

*

*

x

*
x

*

*

*

*

*

*

x

*
x

*

*

*
x

x

*

x

*
x

*

*

*

x

x

*

x

*
x

*

*

*

x
*

x

Figure 3.28: Sequences for two interleaving 3-cycles forming a 1-twisted pair. These are
the sequences where we could not find a cycle that intersects one of the nontwisted chords
of the 1-twisted pair.

3.2. SEQUENCES FOR THE DIFFERENT CASES 63

Now, we have shown a sequence with ∆σ
w

≥ 3
4wt

for each case of the case analysis. These
sequences are implemented in the algorithm, leading to a 1.5-approximation.

64 CHAPTER 3. A 1.5-APPROXIMATION

Chapter 4

The algorithms

4.1 The approximation algorithm

With the results of the previous chapters, we are now ready to develop the approxima-
tion algorithm, plus a further improvement that increases the approximation ratio in the
practical tests.

4.1.1 The basic algorithm

The basic algorithm is designed to find a sequence s of operations that transforms a circular
permutation π into another circular permutation π̂. In the following, we will also call π
the source permutation and π̂ the target permutation. The weight of the sequence s shall
be at most 1.5 times the weight of the optimal sequence that transforms π into π̂. Due to
the biological equivalence, it is also acceptable if the sequence sorts π into the reflection
of π̂. In cases where this is not acceptable, one can add a final reversal to the sequence
in order to obtain the original target sequence. However, in this case, the approximation
ratio of 1.5 cannot be guaranteed any longer. Practical tests show that most cases have a
far better approximation ratio, and the last reversal does not push the ratio above 1.5 (see
also Chapter 5).
The first step of the algorithm is to rename the elements of the permutations, so that the
target permutation becomes the identity permutation. This may also change the orienta-
tion of some elements. An example can be seen in Figure 4.1. This step can easily be done
in linear time and space: a linear walk over the target permutation creates a substitution
table. Another linear walk over the source permutation renames the elements, using the
substitution table.
The second step is the transformation of the source permutation into a simple permuta-

tion π̃. The algorithm is described in Section 2.6. It is important to store the mapping
from the source permutation to the simple permutation, because we need this information
to transform the sorting sequence of π̃ into a sorting sequence of π. Each insertion of a
new element can be done in linear time. In the worst case, π contains only one cycle of
length n. In this case, each step of the algorithm splits a 3-cycle from this cycle, and the

65

66 CHAPTER 4. THE ALGORITHMS

source +1 + 7 − 3 + 2 − 5 + 6 + 4 → +5 − 2 − 1 + 7 + 4 − 3 − 6
target +3 − 7 − 6 − 5 + 1 − 4 + 2 → +1 + 2 + 3 + 4 + 5 + 6 + 7

Substitution table:
+1 +2 +3 +4 +5 +6 +7
+5 +7 +1 -6 -4 -3 -2

Figure 4.1: First step: Rename the elements, so that the target permutation is the identity
permutation.

length of the remaining cycle is decreased by 2. The algorithm stops when the remaining
cycle has a length of 2 or 3. Therefore, the maximum number of splitting steps is n−2

2
, and

the whole splitting algorithm runs in O(n2). Note that the length of π̃ is O(n).
The third step is searching for a sorting sequence for π̃. We begin the case analysis with
the first cycle in π̃ that is not an adjacency, and then follow the decision tree illustrated in
Tables 3.1 to 3.3. Note that although the tree contains some jumps to other positions, it
does not contain any cycles, and therefore its depth can be bounded by a constant. Search-
ing a cycle in the reality-desire diagram can always be done in linear time, so traversing
the tree one time can be done in linear time. As the maximum number of operations is
also linear in n, finding the sorting sequence can be done in O(n2).
The final step is to transform the sorting sequence of π̃ into a sorting sequence of π. As
we have stored the mapping from π to π̃, the transformation of a single operation can be
done in linear time (we just walk over π, and check wether the operation splits between
the elements πi and πi+1). After each operation, the mapping must be updated. This can
also be done in linear time, so the whole transformation can be done in O(n2).
We have shown that the whole algorithm has a running time of O(n2). The pseudo-code
of the algorithm can be seen in Figure 4.2.

4.1.2 The Greedy algorithm

Although the basic algorithm fulfills the approximation ratio of 1.5 for any weight ratio
from wr : wt = 1 : 1 to wr : wt = 1 : 2, it does not use the weights. In other words,
changing the weight ratio will not change the resulting sequence. We will now combine
the basic algorithm with a greedy strategy that takes the weight ratio into account. The
algorithm is the same as the basic algorithm, except for the step where we choose the
starting cycle for the case analyisis. Instead of using the first cycle in π̃ that is not an
adjacency, we start the case analysis with each cycle in π̃. For each start cycle ci, we get a
sequence seqi with weight wi and a gain of the score ∆σi. From these sequences, we apply
the one where the ratio ∆σi

wi

is maximal. Note that we do not find the configuration with

the best ratio ∆σi

wi

in any case; we are just varying the starting cycle of the case analysis,
and take the first cycle we find when extending the configuration, and therefore can miss
some configurations. Searching for any possible configuration would increase the running
time of the algorithm too much.

4.1. THE APPROXIMATION ALGORITHM 67

void approx

{

/* origin is the origin permutation

* target is the target permutation

* result is the resulting sequence; initially, it contains no operation

// rename the elements

substitutionTable = createSubstitutionTable(target);

origin = subsititute(origin, substitutionTable);

// create simple permutation

simplePerm = createSimplePermutation(origin);

// sort simplePerm

while (simplePerm.numCycles != simplePerm.size)

{

cycle = getCycle(simplePerm); // any cycle that is not an adjacency

case = traverseDecisionTree(cycle); // the case at the end of the tree

seq = solveCase(case); // short sequence to solve this case

simplePerm.performSequence(seq);

result.push_back(seq);

}

// transform sequence for simplePerm into a sequence for origin

transformSequence(result);

}

Figure 4.2: The basic approximation algorithm

68 CHAPTER 4. THE ALGORITHMS

As also the greedy algorithm uses only sequences that fulfill the approximation ratio of 1.5,
it is easy to see that the whole algorithm is a 1.5-approximation. It is highly expected that
with the greedy strategy that the results are better than the results of the basic algorithm.
However, there are some cases where the result of the greedy algorithm is worse than that
of the basic algorithm. These cases are very rare in practice, and the tests have shown that
the greedy algorithm can improve the approximation ratio (see Chapter 5). The drawback
of the greedy strategy is the longer running time. As the time complexity of traversing the
decision tree is O(n) and we start at each possible cycle, finding the best sequence seqi has
a time complexity of O(n2), and the whole algorithm has a time complexity of O(n3). The
pseudo-code of the algorithm can be seen in Figure 4.3.

4.2 A branch and bound algorithm

For testing the approximation algorithm, it is not only of interest to test its approximation
ratio against the lower bound. It would give much more insight to test its approximation
ratio against the real weighted distance. Unfortunately, it is a hard task to determine this
distance, and the complexity of the problem is unknown. In this section, we will provide
a branch and bound algorithm that is able to calculate the weighted distance of small
permutations. Although its running time is exponential in the worst case, the algorithm
is far better than just testing all possible sequences up to a certain weight.
We begin by introducing the tree Tπ, which contains all possible sortings of a permutation
π:

Definition 69. The tree Tπ of a permutation π is defined as follows:

• Nodes in the tree are permutations π̄, and the root node is the permutation π.

• If any node π̄ is the identity permutation, it has no children. Otherwise, the children
of π̄ are the permutations op(π̄) for each possible operation op.

• Each child op(π̄) is connected by an edge with its parent node π̄. The weight of the
edge is wr if op is a reversal, otherwise the weight is wt.

• The weight w(π̄) of a node π̄ is the sum of the weights of the edges along the path
from π̄ to to the root node π.

Each path in the tree corresponds to a sequence of operations. If the path starts at the
root node π and ends at a leaf, the sequence is a sorting sequence for π. The weight of the
leaf node is the weight of the sorting sequence. The branch and bound algorithm creates
a part of the tree (the whole tree is infinitely large). If the algorithm reaches a leaf node,
and it can be proven that any other possible leaf node has a higher weight, we have found
the optimal sequence.
The main idea of the algorithm is to expand the node where we expect the leaf with the
lowest weight. Therefore, we assign a bound to each node:

4.2. A BRANCH AND BOUND ALGORITHM 69

void approx

{

/* origin is the origin permutation

* target is the target permutation

* result is the resulting sequence; initially, it contains no operation

// rename the elements

substitutionTable = createSubstitutionTable(target);

origin = subsititute(origin, substitutionTable);

// create simple permutation

simplePerm = createSimplePermutation(origin);

// sort simplePerm

while (simplePerm.numCycles != simplePerm.size)

{

bestratio = 0;

for (i = 0; i < n; i++)

{

cycle = getCycle(simplePerm, i); // cycle with reality-edge i

case = traverseDecisionTree(cycle); // the case at the end of the tree

seq = solveCase(case); // short sequence to solve this case

// check if new best case

if (seq.sigma / seq.weight > bestratio)

{

bestratio = seq.sigma / seq.weight

bestseq = seq;

}

}

simplePerm.performSequence(bestseq);

result.push_back(bestseq);

}

// transform sequence for simplePerm into a sequence for origin

transformSequence(result);

}

Figure 4.3: The greedy algorithm

70 CHAPTER 4. THE ALGORITHMS

Definition 70. The bound b(π) of a node π is defined as follows:

b(π) = w(π) + ceven(π)wr + (
n − codd(π)

2
− ceven(π))wt

Lemma 71. Let π be a permutation and let π̄ its child in the tree. Then

b(π) ≤ b(π̄)

Proof. We begin with writing the bound in a slightly different way:

b(π) = w(π) + ceven(π)wr + (
n − codd(π)

2
− ceven(π))wt

= w(π) +
wt

2
(n − codd(π) − 2ceven(π) + 2ceven(π)

wr

wt

)

= w(π) +
wt

2
(n − σ(π))

As we have seen in the proof of Theorem 23, ∆σ
w

≤ 2
wt

. If the operation that transformed
π into π̄ has been a transposition or a transreversal, this would lead to

b(π) = w(π) +
wt

2
(n − σ(π))

≤ w(π) +
wt

2
(n − σ(π̄) + 2)

= w(π) + wt +
wt

2
(n − σ(π̄))

= w(π̄) +
wt

2
(n − σ(π̄))

= b(π̄)

If the operation was a reversal, we have

b(π) = w(π) +
wt

2
(n − σ(π))

≤ w(π) +
wt

2
(n − σ(π̄) + 2

wr

wt

)

= w(π) + wr +
wt

2
(n − σ(π̄))

= w(π̄) +
wt

2
(n − σ(π̄))

= b(π̄)

Note that the bound of a node is the weight we already used to come to this node, plus
the minimum weight we use from here to the identity permutation (see Theorem 23).
For choosing the next node to expand, we always use the one with the lowest bound. If this

4.2. A BRANCH AND BOUND ALGORITHM 71

node is the identity permutation, the path from the root node to this node is an optimal
sorting sequence, and we can stop the algorithm. To see this fact more clearly, let b(π) be
the bound of the identity permutation we just found. Any possible path to another leaf
node π̂ must pass by a node that is not yet expanded, and therefore has a bound ≥ b(π).
Therefore, also b(π̂) ≥ b(π). As for the leaf nodes, the bound is equal to the weight of the
sorting sequence, there cannot exist any sorting sequence with a weight < b(π). The whole
algorithm is described in Figure 4.4.
The running time mainly depends on the size s of the tree. Using a heap, it is possible

to insert new elements and getting the element with the best bound in O(log s) time.
However, in the worst case, s = O(n!), and therefore the time complexity of inserting an
element or removing the top element is O(n log n). As we need this step for each element
we want to insert, we get an overall time complexity of O(n! · n · log n), which is a very
fast growing exponential function. Moreover, the space complexity is O(n! ·n) (as we have
to store the whole tree). However, the algorithm performs well for permutations of small
sizes (see also Chapter 5).

72 CHAPTER 4. THE ALGORITHMS

void branchandbound

{

/* heap is a heap of permutations, and initial contains no elements

* perm is a permutation, and contains the weight of its tree node and its

* bound as additional data

* child is another permutation

* origin is the permutation to sort

* w_r and w_t are the weights for reversals and transpositions /

* transreversals */

heap.push(origin);

while (true)

{

perm = heap.top();

heap.pop();

if (perm is identity)

{

outputSequence();

return;

}

for (all reversals r(i, j))

{

child = r(i, j) perm;

child.weight = perm.weight + w_r;

child.calculateBound();

heap.push(child);

}

for (all transpositions t(i, j, k))

{

child = t(i, j, k) perm;

child.weight = perm.weight + w_t;

child.calculateBound();

heap.push(child);

}

for (all transreversals tr(i, j, k))

{

child = tr(i, j, k) perm;

child.weight = perm.weight + w_t;

child.calculateBound();

heap.push(child);

}

}

}

Figure 4.4: The branch and bound algorithm in pseudocode. Printing the result can be
done very efficient if we store for each node π̄ the predecessor and the operation that led
to the node π̄.

Chapter 5

Practical results

Both the approximation algorithm and the branch and bound algorithm have been tested
with different testing sets and different parameters for wr and wt. For each test run,
we calculated the performance of the approximation, and also the running time of the
different algorithms has been compared. The results were also compared with the output
of DERANGE II, a program to solve sorting by weighted transpositions and reversals
developed by Blanchette, Kunisawa, and Sankoff [BKS96].

5.1 The test sets

We tested the programs with two different kinds of permutations:

random permutations: These are test sets with uniformly distributed random signed
permutations of fix size.

low distance permutations: These are test sets with a low distance to the identity per-
mutation. They were generated by applying a small sequence of operations to the
identity permutation. In practice, low distance permutations are much more inter-
esting than random permutations, because we mostly want to compare the genomes
of similar species, and it is highly expected that their genomes have a low distance.

For each kind of permutation, we have created test sets with different permutation sizes.
The used permutation sizes are 8, 16, 50, 100, 500, 1000, and 4000. Each test set contains
100 test cases. Each of these sets has been tested with different ratios for wr : wt. We used
the ratios 1 : 1, 1 : 1.5, and 1 : 2.

5.1.1 How to generate low distance permutations

When generating low distance permutations, the first question is: What is the maximum
distance where we speak of a low distance? Up to which distance can we say that two
genomes are similar, and beyond which distance can we say that each similarity is purely

73

74 CHAPTER 5. PRACTICAL RESULTS

random? To solve this, we should examine the expected distance for a random permuta-
tion. We will do this by using some elementary results of Kolmogorov complexity:
First, let us count the number of different permutations of size n: There are n! unsigned
permutations, and for each element, we can use an arbitrary sign, so we have to multiply
this value by 2n. As we work with cyclic permutations, and we assume that a permutation
is equivalent to its reflection, the permutations decompose into sets of equivalent permu-
tations, and each set has a size of 2n. Therefore, we have k = 2nn!

2n
different permutations.

How many bits do we need to uniquely describe an element of a set with size k?

Lemma 72. Let S be a set of size k = 2l, and let f : S → {0, 1}∗ a function that assigns
for each element s ∈ S a unique bitstring. Then, the expected length of f(s) for a random
element s ∈R S is

E(|f(s)|) ≥ log k − 2

Proof. [Sch95] In the worst case, we have one element s with |f(s)| = 0, two with |f(s)| = 1,
four with |f(s)| = 2, and so on (note that there do not exist more different bitstrings of
these lengths). Finally, we have k

2
bitstrings of length log k − 1, and one of length log k.

Building the sum over this, and dividing it by the size of S, we can estimate the length of
f(s):

E(|f(s)|) ≥
1

k
(log k +

log k−1∑

i=0

i2i) (5.1)

=
log k

k
+

log k−1∑

i=0

i2i (5.2)

=
log k

k
+

log k∑

j=1

(log k − j)2j (5.3)

≥
log k

k
+

log k∑

j=1

log k2−j −
∞∑

h=0

h2−h (5.4)

= log k −

∞∑

h=0

h2−h (5.5)

= log k − 2 (5.6)

Using this formula, we see that the description of a random permutation of our set has
an expected length of at least log k − 2 ≈ n log n. Note that this holds for any possible
unique description for the elements. Now, we describe a permutation π by the sorting
sequence that our algorithm returns for π. For each operation in the sequence, we have to
describe the operation type and the positions of at most three reality-edges on which the
operation acts. To describe the type, two bits are sufficient. For each reality-edge, we need

5.1. THE TEST SETS 75

log n bits. Therefore, for an operation, we need at most 3 log n + 2 bits. Now, let π be a
random permutation, so that the description of π has a length of n log n. Let seq(π) be a
sorting sequence of π, and let |seq(π)| the number of operations in seq(π). Then,

|seq(π)| ≥
n log n

3 log n + 2
≈

n

3

However, this estimation is not very close. The set of all sorting sequences with a length of
n
3

leads to many duplicate permutations (imagine the second operation undoes the effect of
the first operation). Therefore, we define that each permutation with a weighted distance
of n

3
wt to another permutation π̂ has a low distance to π̂.

When creating random sequences of operations, we should also pay attention to the weights
wr and wt. If wr < wt, a random sequence should contain more reversals than transpo-
sitions and transreversals. Let sr be a sequence that consists only of reversals, and st a
sequence that consists only of transpositions and transreversals. When creating the ran-
dom sequences, our goal is that if sr and st have the same weight, the probability of getting
sr is the same as the probability getting st.

Lemma 73. Let P (r) be the probability that we choose a reversal, and let P (t) the proba-
bility that we choose a transposition or a transreversal as operation in a random sequence.
Then, the probability of getting a sequence with weight w that consists only of reversals
is equal to the probability to get a sequence with the same weight w that consists only of
transpositions and transreversals if the following equation holds:

P (r)
wt

wr + P (r) − 1 = 0

Proof. Without loss of generality, we will assume that wr and wt are integer. A sequence sr

of wt reversals has the same weight as a sequence st of wr transpositions and transreversals
(for both, w = wrwt). The probability of sequence sr is P (sr) = P (r)wt , and the probability
of sequence st is P (st) = P (t)wr . With P (sr) = P (s − t), we get

P (r)
wt

wr = P (t)

As the sum of the probabilities must be 1, we have

P (t) = 1 − P (r)

Combining these equations leads to

P (r)
wt

wr + P (r) − 1 = 0

The algorithm for creating the low distance permutation works as follows: We begin
with an empty sequence, and add one operation in each step. For each operation, we first
decide if it is a reversal or not, using the probabilities P (r) and P (t). Note that we use

76 CHAPTER 5. PRACTICAL RESULTS

only three different ratios of wr : wt, so we can precalculate these values. If we decide to
not take a reversal, the choice between transposition and transreversal is done with equal
probabilities. The last step is to choose the reality-edges on which the operation acts.
For this, we take a random function to pick one operation of the specfied type uniformly
distributed out of all possible operations of this type. We keep adding random operations
to the sequence until the weight of the sequence exceeds n

3
wt. The pseudo-code for this

algorithm can be seen in Figure 5.1. Note that the resulting permutations have a maximum
distance to the identity permutation of about n

3
wt, but they can also have a much smaller

distance, because the inverse of the generated sequence is in general not the shortest sorting
sequence.

5.2 The programs

approx: The 1.5-approximation algorithm, without using the greedy strategy.

greedy: The 1.5-approximation algorithm with the greedy strategy.

derange: A program to solve Sorting by weighted transpositions and reversals, developed
by Blanchette, Kunisawa, and Sankoff [BKS96]. It works on the breakpoint dis-
tance and uses a greedy strategy with lookahead. It is also capable to use different
weights for transpositions and transreversals, and can handle unsigned and linear
permutations as well. In our tests, we used the recommended lookahead of 3.

branch: The branch and bound algorithm.

5.3 The test results

Each algorithm has been tested with each kind of test set, using the different weight ratios
wr : wt = 1 : 1, wr : wt = 1 : 1.5, and wr : wt = 1 : 2. All tests were performed on a Sun
Fire 280 with two processors (Ultra Sparc 3 CU, 1.015 GHz) and 6 GB RAM.
Due to its exponential running time, the branch and bound algorithm was just tested with
permutations of size 8 and 16. DERANGE II was tested with permutations up to a size
of 500. Above this size, the program crashed.
The test results are represented in the tables 5.1 to 5.24. The interpretation of the test
results will be given in Section 5.4. In the following the column headings of the tables are
explained.

size: Size of the permutations

dist: The averaged calculated weighted distance.

w/b avg: Average ratio w
b
, where w is the calculated weight of a sequence, and b =

cevenwr + (n−codd

2
− ceven)wt is the lower bound for the weighted distance.

5.3. THE TEST RESULTS 77

sequence createLowdist

{

/* w_r and w_t are the weights for reversals and transpositions /

* transreversals

* pr is the probability of choosing a reversal

* seq is a sequence of operations (initial empty sequence)

* op is an operation in the sequence

* random() returns a float value uniformly distributed in [0; 1)

* randreversal, randtransposition, randtransreversal return a random

* operation of the specified type, uniformly distributed */

if (w_r / w_t == 1)

pr = 0.5; // precalculated value

else if (w_r / w_t == 1.0 / 1.5)

pr = 0.5698; // precalculated value

else if (w_r / w_t == 1.0 / 2.0)

pr = 0.6180; // precalculated value

while (w < n * w_t / 3)

{

if (random() < pr)

{

op = randreversal();

w += w_r;

}

else

{

if (random() < 0.5)

op = randtransposition();

else

op = randtransreversal();

w += w_t;

}

seq.add(op);

}

return seq id; // apply seq on the identity permutation

}

Figure 5.1: The algorithm to create low distance permutations.

78 CHAPTER 5. PRACTICAL RESULTS

w/b worst: The worst ratio w
b

over all 100 permutations of the test set, with w and b as
described above.

w/dw avg: Average ratio w
dw

, where w is the calculated weight of a sequence, and dw is the
weight of an optimal sorting sequence. As we need the branch and bound algorithm
to calculate dw, this values could only be calculated for permutations of size 8 and
16.

w/dw worst: The worst ratio w
dw

over all 100 permutations of the test set, with w and dw

as described above. As we need the branch and bound algorithm to calculate dw,
this values could only be calculated for permutations of size 8 and 16.

best: The number of test cases where the corresponding algorithm returned the shortest
sorting sequence. If two algorithms return a sorting sequence with the same weight,
both of them are considered to be the best for this test case. Therefore, the sum of
this value for all algorithms can be greater than 100 for one test set. As the branch
and bound algorithm always returns the best possible result, it is not considered in
this statistic.

time: The average time for sorting one permutation. The format is minutes:seconds, with
an accuracy of 1/10 second.

5.3. THE TEST RESULTS 79

size dist w/b avg w/b worst w/dw avg w/dw worst best time

8 3.81 1.0992 1.333 1.0758 1.333 74 0:00.0
16 8.48 1.140 1.429 1.138 1.429 49 0:00.0
50 27.51 1.139 1.280 3 0:00.0

100 56.46 1.149 1.256 0 0:00.0
500 285.99 1.149 1.193 0 0:00.1

1000 573.27 1.150 1.204 0 0:00.5
4000 2297.57 1.150 1.164 0 0:07.7

Table 5.1: Random permutations, approx, wr : wt = 1 : 1

size dist w/b avg w/b worst w/dw avg w/dw worst best time

8 4.95 1.0476 1.333 1.0328 1.333 75 0:00.0
16 11.43 1.0753 1.238 1.0747 1.238 42 0:00.0
50 37.94 1.0694 1.176 3 0:00.0

100 78.66 1.0786 1.158 0 0:00.0
500 401.84 1.0786 1.107 0 0:00.1

1000 805.66 1.0788 1.106 0 0:00.5
4000 3234.17 1.0792 1.0893 0 0:08.6

Table 5.2: Random permutations, approx, wr : wt = 1 : 1.5

size dist w/b avg w/b worst w/dw avg w/dw worst best time

8 6.08 1.0175 1.333 1.00952 1.333 98 0:00.0
16 14.38 1.0405 1.167 1.0405 1.167 72 0:00.0
50 48.36 1.0335 1.133 48 0:00.0

100 100.86 1.0427 1.124 11 0:00.0
500 517.69 1.0435 1.0730 0 0:00.1

1000 1038.04 1.0432 1.0612 0 0:00.5
4000 4170.76 1.0440 1.0541 0 0:08.9

Table 5.3: Random permutations, approx, wr : wt = 1 : 2

80 CHAPTER 5. PRACTICAL RESULTS

size dist w/b avg w/b worst w/dw avg w/dw worst best time

8 1.99 1.030 1.500 1.0200 1.500 96 0:00.0
16 4.24 1.0763 1.500 1.0730 1.500 77 0:00.0
50 12.64 1.143 1.364 17 0:00.0

100 25.81 1.152 1.318 0 0:00.0
500 127.26 1.153 1.234 0 0:00.0

1000 256.58 1.154 1.195 0 0:00.2
4000 1025.55 1.155 1.177 0 0:02.3

Table 5.4: Low distance permutations, approx, wr : wt = 1 : 1

size dist w/b avg w/b worst w/dw avg w/dw worst best time

8 3.105 1.0427 1.5 1.0258 1.286 91 0:00.0
16 6.705 1.0505 1.286 1.0486 1.286 61 0:00.0
50 20.595 1.0699 1.220 13 0:00.0

100 42.92 1.0799 1.210 0 0:00.0
500 214.28 1.0817 1.143 0 0:00.1

1000 429.50 1.0805 1.133 0 0:00.2
4000 1721.99 1.0822 1.0975 0 0:03.3

Table 5.5: Low distance permutations, approx, wr : wt = 1 : 1.5

size dist w/b avg w/b worst w/dw avg w/dw worst best time

8 4.77 1.0175 1.333 1.0150 1.333 95 0:00.0
16 9.59 1.0197 1.286 1.0197 1.286 89 0:00.0
50 31.74 1.0340 1.200 54 0:00.0

100 64.19 1.0379 1.127 23 0:00.0
500 326.78 1.0408 1.1762 0 0:00.1

1000 651.17 1.0382 1.0666 0 0:00.3
4000 2617.29 1.0402 1.0542 0 0:04.2

Table 5.6: Low distance permutations, approx, wr : wt = 1 : 2

5.3. THE TEST RESULTS 81

size dist w/b avg w/b worst w/dw avg w/dw worst best time

8 3.77 1.0875 1.333 1.0642 1.333 78 0:00.0
16 8.05 1.0830 1.333 1.0811 1.286 73 0:00.0
50 24.65 1.0207 1.0833 71 0:00.0

100 49.76 1.0130 1.0426 71 0:00.0
500 249.69 1.00285 1.0121 65 0:00.3

1000 499.30 1.00138 1.00402 100 0:01.1
4000 1999.17 1.000230 1.00100 100 0:19.2

Table 5.7: Random permutations, greedy, wr : wt = 1 : 1

size dist w/b avg w/b worst w/dw avg w/dw worst best time

8 4.93 1.0432 1.333 1.0283 1.273 79 0:00.0
16 11.11 1.0452 1.222 1.0446 1.190 67 0:00.0
50 35.825 1.00994 1.0541 70 0:00.0

100 73.395 1.00645 1.0280 65 0:00.0
500 373.08 1.00144 1.00672 60 0:00.3

1000 747.36 1.000710 1.00269 100 0:01.1
4000 2997.23 1.000110 1.000670 100 0:18.8

Table 5.8: Random permutations, greedy, wr : wt = 1 : 1.5

size dist w/b avg w/b worst w/dw avg w/dw worst best time

8 6.06 1.0142 1.333 1.00619 1.333 99 0:00.0
16 14.08 1.0186 1.154 1.0186 1.154 87 0:00.0
50 46.91 1.00249 1.0612 94 0:00.0

100 96.93 1.00207 1.0213 89 0:00.0
500 496.33 1.000440 1.00602 87 0:00.3

1000 995.28 1.000230 1.00401 100 0:01.0
4000 3995.31 1.000060 1.00100 100 0:14.8

Table 5.9: Random permutations, greedy, wr : wt = 1 : 2

82 CHAPTER 5. PRACTICAL RESULTS

size dist w/b avg w/b worst w/dw avg w/dw worst best time

8 1.99 1.0300 1.500 1.0200 1.500 96 0:00.0
16 4.11 1.0473 1.333 1.0440 1.333 90 0:00.0
50 11.53 1.0433 1.200 69 0:00.0

100 22.84 1.0205 1.150 74 0:00.0
500 110.78 1.00388 1.0273 73 0:00.1

1000 222.76 1.00192 1.0177 100 0:00.3
4000 887.95 1.000440 1.00228 100 0:05.2

Table 5.10: Low distance permutations, greedy, wr : wt = 1 : 1

size dist w/b avg w/b worst w/dw avg w/dw worst best time

8 3.11 1.0427 1.500 1.0258 1.286 91 0:00.0
16 6.57 1.0291 1.273 1.0273 1.273 82 0:00.0
50 19.62 1.0196 1.142 70 0:00.0

100 40.05 1.00769 1.050 75 0:00.0
500 198.50 1.00204 1.0101 67 0:00.1

1000 397.90 1.00103 1.00753 100 0:00.5
4000 1591.71 1.000280 1.00220 100 0:07.4

Table 5.11: Low distance permutations, greedy, wr : wt = 1 : 1.5

size dist w/b avg w/b worst w/dw avg w/dw worst best time

8 4.74 1.0108 1.333 1.00833 1.333 97 0:00.0
16 9.50 1.0105 1.286 1.0105 1.286 94 0:00.0
50 30.88 1.00596 1.138 90 0:00.0

100 62.01 1.00260 1.0333 89 0:00.0
500 314.14 1.000600 1.00637 86 0:00.1

1000 627.46 1.000430 1.00480 100 0:00.6
4000 2516.33 1.000060 1.000800 100 0:08.2

Table 5.12: Low distance permutations, greedy, wr : wt = 1 : 2

5.3. THE TEST RESULTS 83

size dist w/b avg w/b worst w/dw avg w/dw worst best time

8 3.70 1.0783 1.333 1.0550 1.333 85 0:00.0
16 7.89 1.0638 1.333 1.0619 1.167 85 0:00.0
50 24.59 1.0184 1.0909 74 0:00.2

100 49.64 1.0107 1.0426 80 0:02.4
500 249.43 1.00181 1.00806 82 23:14.0

Table 5.13: Random permutations, derange, wr : wt = 1 : 1

size dist w/b avg w/b worst w/dw avg w/dw worst best time

8 4.91 1.0424 1.375 1.0277 1.222 82 0:00.0
16 10.90 1.0257 1.167 1.0251 1.105 82 0:00.0
50 35.72 1.00695 1.0417 76 0:00.2

100 73.18 1.00345 1.0144 81 0:03.2
500 372.82 1.000720 1.00268 77 33:04.0

Table 5.14: Random permutations, derange, wr : wt = 1 : 1.5

size dist w/b avg w/b worst w/dw avg w/dw worst best time

8 6.07 1.0173 1.500 1.00886 1.400 98 0:00.0
16 13.83 1.000830 1.0833 1.000830 1.0833 99 0:00.0
50 46.79 1.000 1.000 100 0:00.2

100 96.75 1.000210 1.0206 99 0:03.0
500 496.13 1.000040 1.00403 99 35:29.7

Table 5.15: Random permutations, derange, wr : wt = 1 : 2

84 CHAPTER 5. PRACTICAL RESULTS

size dist w/b avg w/b worst w/dw avg w/dw worst best time

8 2.20 1.135 1.500 1.125 1.500 75 0:00.0
16 4.27 1.0993 1.500 1.0960 1.500 74 0:00.0
50 11.46 1.0383 1.200 74 0:00.0

100 22.68 1.0132 1.0526 83 0:00.0
500 110.63 1.00257 1.0188 83 0:01.6

Table 5.16: Low distance permutations, derange, wr : wt = 1 : 1

size dist w/b avg w/b worst w/dw avg w/dw worst best time

8 3.24 1.0891 1.500 1.0722 1.333 66 0:00.0
16 6.65 1.0415 1.286 1.0396 1.286 69 0:00.0
50 19.62 1.0195 1.118 62 0:00.0

100 40.08 1.00848 1.0380 66 0:00.1
500 198.395 1.00151 1.00759 71 0:14.0

Table 5.17: Low distance permutations, derange, wr : wt = 1 : 1.5

size dist w/b avg w/b worst w/dw avg w/dw worst best time

8 4.69 1.00250 1.250 1.000 1.000 100 0:00.0
16 9.41 1.000 1.000 1.000 1.000 100 0:00.0
50 30.7 1.000 1.000 100 0:00.0

100 61.85 1.000 1.000 100 0:00.3
500 313.95 1.000 1.000 100 0:45.8

Table 5.18: Low distance permutations, derange, wr : wt = 1 : 2

size dist w/b avg w/b worst time

8 3.53 1.0233 1.333 0:00.0
16 7.45 1.0067 1.167 0:07.8

Table 5.19: Random permutations, branch, wr : wt = 1 : 1

size dist w/b avg w/b worst time

8 4.78 1.0139 1.222 0:00.0
16 10.635 1.000560 1.0556 0:04.5

Table 5.20: Random permutations, branch, wr : wt = 1 : 1.5

5.3. THE TEST RESULTS 85

size dist w/b avg w/b worst time

8 6.02 1.00750 1.250 0:00.0
16 13.82 1.000 1.000 0:10.3

Table 5.21: Random permutations, branch, wr : wt = 1 : 2

size dist w/b avg w/b worst time

8 1.95 1.0100 1.500 0:00.0
16 6.395 1.00183 1.100 0:00.3

Table 5.22: Low distance permutations, branch, wr : wt = 1 : 1

size dist w/b avg w/b worst time

8 3.02 1.0164 1.500 0:00.0
16 6.40 1.00183 1.100 0:00.3

Table 5.23: Low distance permutations, branch, wr : wt = 1 : 1.5

size dist w/b avg w/b worst time

8 4.69 1.00250 1.250 0:00.0
16 9.41 1.000 1.000 0:01.6

Table 5.24: Low distance permutations, branch, wr : wt = 1 : 2

86 CHAPTER 5. PRACTICAL RESULTS

Figure 5.2: The improvement of the average distance due to the use of the greedy strategy.
The left picture shows the improvement for random permutations and the different weight
ratio. The right picture shows the improvement for a low distance permutation and a
random permutation a t a weight ratio of wr : wt = 1 : 1. Note that the improvement
depends mainly on the distance, what explains the lower improvement for the low distance
permutations with small permutation sizes.

5.4 Interpretation of the test results

We will now have a closer look at the test results. First, we look at the average ratio
w
b
. For approx, this value is independent of the permutation size (except for very small

permutations). It also shows no big differences between random permutations and low
distance permutations, and depends only on the weight ratio wr : wt. We get the worst
values for wr : wt = 1 : 1 (about 1.15), and they get better for a higher weight of wt (up
to about 1.04 for wr : wt = 1 : 2).
If we use greedy, the ratio w

b
becomes better for bigger permutations, and comes very close

to 1. Also here, a high value for wt decreases the ratio. If we compare the distances
calculated by approx with the distances calculated by greedy, one can see that using the
greedy strategy gives a significant improvement to the basic approximation algorithm.
From the discussion above it is clear that this improvement becomes more significant
for permutations of large size and low weights for wt (the improvement is 13.42% for a
permutation size of 4000, a weight ratio of 1:1, and low distance permutations). However,
it is interesting to see that the improvement grows faster with increasing permutation
size if we use low distance permutations instead of random permutations (see Figure 5.2).
This means that the improvement through the greedy strategy is bigger if we examine low
distance permutations. If we compare derange with greedy, we can see that the results

5.4. INTERPRETATION OF THE TEST RESULTS 87

are very similar, with a slight advantage to derange. However, in no test set, the average
distance derange gave was more than 2% better than the one given by greedy, and for big
permutations, the difference becomes very small. Derange seems also to provide very bad
results if the distances between the permutations are small (especially permutations of size 8
and low distance permutations). This has the following reason: while the greedy algorithm
sorts a permutation to the identity or its reflection, DERANGE II always sorts to the
identity permutation. Due to this, it is possible that the optimal sequence for DERANGE
II needs one reversal more than the optimal sequence for the greedy algorithm. For small
distances, this can adulterate the results significantly. For big distances, this disadvantage
is not significant. It is also interesting to see that for low distance permutations and a
weight ratio of wr : wt = 1 : 2, DERANGE II has found an optimal solution for all test
cases (w

dw
= 1 or w

b
= 1). However, DERANGE II is slow. The approximation algorithm

(also with the slower greedy strategy) can solve much bigger permutations in the same
time.

88 CHAPTER 5. PRACTICAL RESULTS

Chapter 6

Conclusion and open problems

We have developed an algorithm for sorting by weighted transpositions and reversals with
a provable approximation performance of 1.5. In practice, it performs much better in
the most cases. It has a low time complexity (O(n2)) and therefore can handle bigger
permutations than DERANGE II. However, there are still possible improvements and
open questions:

• Although our algorithm is much faster than DERANGE II, the resulting sequences of
DERANGE II are slightly better than ours. This is achieved by the lookahead used
in DERANGE II. Therefore it would be of interest to implement a lookahead in the
greedy version of our program. As a lookahead would increase the time complexity,
the main task will be to find a good balance between the running time and the quality
of the resulting sequences.

• Examining configurations with more cycles could improve the approximation ratio.
Using this strategy, Elias and Hartman [EH05] recently succeeded in improving the
performance ratio for sorting by transpositions from 1.5 to 1.375. It is highly expected
that this strategy can also improve the performance ratio of sorting by weighted
reversals, transpositions, and transreversals.

• Using a special data structure described in [KV03], it is possible to find the different
cases in sublinear time (O(n log n)). Although this will not improve the time com-
plexity of the whole algorithm, it could at least speed up some parts of the algorithm.

• When adapting the algorithm to linear permutations, the operation revrev is needed.
This operation is biologically only poorly motivated. Finding a way to avoid any
revrev in the sorting sequence would result in an algorithm that corresponds better
to the biological problem.

89

90 CHAPTER 6. CONCLUSION AND OPEN PROBLEMS

Bibliography

[BBD+99] D.W. Burt, C. Bruley, I.C. Dunn, C.T. Jones, A. Ramage, A.S. Law, D.R.
Morrice, I.R. Paton, J. Smith, D. Windsor, A. Sazanov, R. Fries, and
D. Waddington. The dynamics of chromosome evolution in birds and
mammals. Nature, 402:411–413, 1999. 5

[Ber05] A. Bergeron. A Very Elementary Presentation of the Hannenhalli-Pevzner
Theory. Discrete Applied Mathematics, 146(2):134–145, 2005. 7

[BKS96] M. Blanchette, T. Kunisawa, and D. Sankoff. Parametric genome
rearrangement. Gene, 172:GC11–17, 1996. 8, 73, 76

[BMS04] A. Bergeron, J. Mixtacki, and J. Stoye. Reversal Distance without Hurdles
and Fortresses. In Combinatorial Pattern Matching 15th Annual Symposium,
CPM 2004), volume Volume 3109 / 2004 of Lecture Notes in Computer
Science, pages 388–399, 2004. 7

[BP96] V. Bafna and P.A. Pevzner. Genome Rearrangements and Sorting by
Reversals. SIAM Journal on Computing, 25(2):272–289, 1996. 15

[Bro02] T.A. Brown. Genomes Second Edition. BIOS Scientific Publishers Ltd, 2002.
1, 3, 4

[Cap97] A. Caprara. Sorting by reversals is difficult. In S. Istrail, P.A. Pevzner, and
M. Waterman, editors, Proc. 1st Annual Int. Conf. on Computational Molec.
Biol. (RECOMB’97), pages 75–83. ACM, 1997. 7

[DS38] T.H. Dobzhansky and A.H. Sturtevant. Inversions in the chromosomes of
Drosophila Pseudoobscura. Genetics, 23(1):28–64, January 1938. 7

[EH05] I. Elias and T. Hartman. A 1.375-Approximation Algorithm for Sorting by
Transpositions. In Proc. of 5th International Workshop on Algorithms in
Bioinformatics, volume 3692 of Lecture Notes in Bioinformatics, pages
204–215. Springer-Verlag, 2005. 8, 89

[Eri02] N. Eriksen. (1 + ε)-approximation of Sorting by Reversals and Transpositions.
Theoretical Computer Science, 289(1):517–529, 2002. 8

91

92 BIBLIOGRAPHY

[GPS99] Q.-P. Gu, S. Peng, and H. Sudborough. A 2-Approximation Algorithms for
Genome Rearrangements by Reversals and Transpositions. Theoretical
Computer Science, 210(2):327–339, Jan 1999. 18

[Har03] T. Hartman. A Simpler 1.5-Approximation Algorithm for Sorting by
Transpositions. In CPM: 14th Symposium on Combinatorial Pattern
Matching, 2003. 33, 43, 46, 49

[HP99] S. Hannenhalli and P.A. Pevzner. Transforming cabbage into turnip:
polynomial algorithm for sorting signed permutations by reversals. Jrnl.
A.C.M., 46(1):1–27, Jan 1999. 36th Annual IEEE Symp. on Foundations of
Comp. Sci., pp581-592, 1995. 7

[HS04] T. Hartman and R. Sharan. A 1.5-Approximation Algorithm for Sorting by
Transpositions and Transreversals. In WABI: International Workshop on
Algorithms in Bioinformatics, WABI, LNCS, 2004. 8, 13, 14, 28, 29, 30, 43,
46, 49, 55, 57, 58, 59

[KV03] H. Kaplan and E. Verbin. Efficient Data Structures and a New Randomized
Approach for Sorting Signed Permutations by Reversals. In Proc. of 14th
Symposium on Combinatorial Pattern Matching, volume 2676 of Lecture Notes
in Computer Science, pages 170–185. Springer-Verlag, 2003. 89

[LX01] G.-H. Lin and G. Xue. Signed genome rearrangement by reversals and
transpositions: models and approximations. TCS: Theoretical Computer
Science, 259:513–531, 2001. 8, 22

[Sch95] U. Schöning. Perlen der Theoretischen Informatik. BI Wissenschaftsverlag,
Mannheim, 1995. 74

[SM97] J.C. Setubal and J. Meidanis. Introduction to Computational Molecular
Biology. PWS Publishing Company, Boston, 1997. 1, 6, 15

[TS04] E. Tannier and M.-F. Sagot. Sorting by Reversals in Subquadratic Time. In
Proc. of the 15th Annual Symposium on Combinatorial Pattern Matching,
volume 3109 of Lecture Notes in Computer Science, pages 1–13.
Springer-Verlag, 2004. 7

[WDM98] M.E.M.T Walter, Z. Dias, and J. Meidanis. Reversal and Transposition
Distance of Linear Chromosomes. In Proc. of the Symposium on String
Processing and Information Retrieval, pages 96–102. IEEE Computer Society,
1998. 8

Erklärung

Martin Bader Matr.Nr.: 443062

Hiermit erkläre ich, dass ich die Diplomarbeit selbständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel verwendet habe.

Ulm, den

93

	Introduction
	Biological background
	Cells, DNA, and Proteins
	Genome dynamics
	Prokaryotic DNA
	Phylogenetic reconstruction

	Previous works
	Structure of this work

	Preliminaries
	Elementary definitions
	Linear vs. circular permutations
	The reality-desire diagram
	The effects of operations on the reality-desire diagram
	A lower bound
	Transforming into simple permutations
	Some observations about cycles

	A 1.5-approximation
	Algorithm overview
	Sequences for the different cases

	The algorithms
	The approximation algorithm
	The basic algorithm
	The Greedy algorithm

	A branch and bound algorithm

	Practical results
	The test sets
	How to generate low distance permutations

	The programs
	The test results
	Interpretation of the test results

	Conclusion and open problems

