
How to achieve an equivalent simple

permutation in linear time

Simon Gog and Martin Bader

University of Ulm, Institute of Theoretical Computer Science, 89069 Ulm, Germany
Email: simon.gog@uni-ulm.de, martin.bader@uni-ulm.de

Abstract. The problem of Sorting signed permutations by reversals is a
well studied problem in computational biology. The first polynomial time
algorithm was presented by Hannenhalli and Pevzner in 1995 [5]. The
algorithm was improved several times, and nowadays the most efficient
algorithm has a subquadratic running time [9, 8]. Simple permutations

played an important role in the development of these algorithms. Al-
though the latest result of Tannier et al. [8] does not require simple
permutations the preliminary version of their algorithm [9] as well as the
first polynomial time algorithm of Hannenhalli and Pevzner [5] use the
structure of simple permutations. However, the latter algorithms require
a precomputation that transforms a permutation into an equivalent sim-

ple permutation. To the best of our knowledge, all published algorithms
for this transformation have at least a quadratic running time. For fur-
ther investigations on genome rearrangement problems, the existence of
a fast algorithm for the transformation could be crucial. In this paper,
we present a linear time algorithm for the transformation.

1 Introduction

The problem of Sorting signed permutations by reversals (SBR) is moti-
vated by a genome rearrangement problem in computational biology. The
task of the problem is to transform the genome of one species into the
genome of another species, containing the same set of genes but in differ-
ent order. As transformation step, only reversals (also called inversions)
are allowed, where a section of the genome is excised, reversed in orienta-
tion, and reinserted. This is motivated by the fact that reversals are the
most frequent rearrangement operations in nature, especially for bacterial
genomes. The problem can be easily transformed into the mathematical
problem of sorting a signed permutation (i.e. a permutation of the inte-
gers 1 to n, where each element has an additional orientation) into the
identity permutation. The elements represent the genes of the genome (or
any other kind of marker), whereas the signs indicate the strandedness
of the genes. As shorter rearrangement scenarios are biologically more



plausible than longer ones, one is interested in a minimum sequence of
reversals that transforms one permutation into the identity permutation.

SBR is a well studied problem in computational biology, and the first
polynomial time algorithm was presented by Hannenhalli and Pevzner
in 1995 [5]. The algorithm was simplified several times [4, 6], and the
reversal distance problem (in which one is only interested in the number
of required reversals) can be solved in linear time [1, 3]. In 2004, Tannier
and Sagot presented an algorithm for SBR that has subquadratic time
complexity [9]. This algorithm first transforms the given permutation π

into an equivalent simple permutation π̂ and then calculates a sorting
for π̂. This sorting is subsequently used to sort π. In literature, there
are several algorithms for this transformation [5, 4], but all of them have
at least quadratic time complexity (there is an unpublished linear time
algorithm by Tannier and Sagot which uses another technique than our
algorithm, personal communication). Although Tannier et al. improved
their algorithm such that it does no longer require simple permutations
[8], a fast algorithm for the transformation could be crucial for further
investigations on genome rearrangements. In this paper, we will provide a
linear algorithm for transforming a permutation into an equivalent simple
permutation.

2 Preliminaries

A signed permutation π = 〈π1, . . . , πn〉 is a permutation of the integers
1 to n, where each element π is assigned a positive (−→π ) or negative (←−π )
orientation. A reversal ρ(i, j) reverses the order and flips the orienta-
tion of the elements between the i-th and j-th element of the permu-
tation. For example, ρ(3, 5) transforms π = 〈

−→
1 ,
−→
2 ,
←−
5 ,
←−
4 ,
←−
3 ,
−→
6 〉 into

id =〈
−→
1 ,
−→
2 ,
−→
3 ,
−→
4 ,
−→
5 ,
−→
6 〉. The latter permutation is called identity per-

mutation of size 6. The problem of sorting by reversals asks for a minimal
sequence of reversals ρ1, . . . , ρk that transforms a signed permutation π

into the identity permutation. The length k of a minimal sequence is
called the reversal distance d(π).

The main tool for the solution of the problem of sorting by reversals
is the reality-desire diagram (also called breakpoint graph [2, 7]; see Fig. 1
for an example). The reality-desire diagram RD(π) of a permutation π =
〈π1, . . . , πn〉 can be constructed as follows. First, the elements of π are
placed from left to right on a straight line. Second, each element x of π

with positive orientation is replaced with the two nodes 2x − 1 and 2x,
while each element x with negative orientation is replaced with 2x and



0 1 2 3 4 5 6 7 8 9 10 11 12 13

6 3 4 1 2 9 10 12 11 8 7 1350

v1 v2 v3 v4 v6v7 v8 v9

C

v5 v10

Fig. 1. A reality-desire diagram RD(π) for π = 〈
−→
3 ,
−→
2 ,
−→
1 ,
−→
5 ,
←−
6 ,
←−
4 〉 . The first row

of numbers are the labels of the nodes, the second are the positions. The third row
contains the labeling of nodes of the long cycle C.

2x− 1. We call these nodes co-elements of x where the first is called left

node of x and the other the right node of x. Third, we add a single node
labeled with 0 to the left of the left node of the first element and add
a single node labeled with 2n + 1 to the right of the right node of the
last element. Fourth, reality edges are drawn from the right node of πi

to the left node of πi+1 (1 ≤ i < n), from node 0 to the left node of
π1, and from the right node of πn to node 2n + 1. Fifth, desire edges are
drawn from node 2i to node 2i + 1 (0 ≤ i ≤ n). We can interpret reality
edges as the actual neighborhood relations in the permutation, and desire
edges as the desired neighborhood relations. The position of a node v is
its position in the diagram and denoted by pos(v) (i.e. the leftmost node
has the position 0, the node to its right has the position 1, and so on).
As each node is assigned exactly one reality edge and one desire edge,
the reality-desire diagram decomposes into cycles. The number of cycles
in RD(π) is denoted by c(π). The length ℓj of a cycle Cj is the number
of desire edges. If ℓj is smaller than 3 we call Cj a short cycle, otherwise
a long cycle.

We label the nodes of a cycle Cj as follows. The leftmost node is called
v[j]1, then we follow the reality edge to node v[j]2, then follow the desire
desire edge to node v[j]3, and so on. We label the reality edge from node
n[j]2i−1 to n[j]2i with b[j]i (1 ≤ i ≤ ℓj) and the desire edge from node
n[j]2i to n[j](2i+1) with g[j]i (1 ≤ i < ℓj). The desire edge from node
n[j]2ℓ to n[j]1 is labeled with g[j]ℓj

. If the cycle index j of Cj is clear
from the context we omit it.

A desire edge g = (v1, v2) is called oriented if the positions of v1 and
v2 in the diagram are both even or odd, otherwise we call g unoriented.
A cycle which contains no oriented edges is called unoriented, otherwise
oriented.



Two desire edges (v1, v2) and (w1, w2) interleave if the endpoints of
the intervals Iv = [pos(v1), pos(v2)] and Iw = [pos(w1), pos(w2)] are alter-
nating. Two cycles C1 and C2 are interleaving if there exist interleaving
desire edges f ∈ C1 and g ∈ C2. A maximal set of interleaving cycles in
RD(π) is called a component. A component is unoriented if it contains
no oriented cycles, otherwise it is oriented.

Hannenhalli and Pevzner found some special structures that depend
on unoriented components called hurdles and fortress. The distance for-
mula for the reversal distance is

d(π) = n + 1− c(π) + h(π) + f(π)

where h(π) is the number of hurdles in RD(π) and f(π) the indicator
variable for a fortress (for details see [5]).

The original Hannenhalli-Pevzner algorithm [5] as well as the sub-
quadratic algorithm of Tannier and Sagot [9] require a permutation whose
reality-desire diagram contains only short cycles. Such a permutation is
called a simple permutation. Hannenhalli and Pevzner showed that every
permutation π can be transformed into an equivalent simple permutation

π̂, i.e. a simple permutation with d(π̂) = d(π), by padding additional el-
ements to π. Moreover, a sorting sequence of π̂ can be used to obtain a
sorting sequence of π by ignoring the padded elements.

3 Creating equivalent simple permutations revisited

We first focus on the creation of simple permutations before we discuss
the creation of equivalent simple permutations. If a permutation π = π(0)
has a long cycle, Hannenhalli and Pevzner [5] transform it into a new
permutation π(1) by ,,breaking” this cycle into two smaller ones. This
step is repeated until a simple permutation π(k) is achieved.

On the reality-desire diagram the ,,breaking of a cycle” can be de-
scribed as follows. Let b = (vb1, vb2) be a reality edge and g = (vg1, vg2)
a desire edge belonging to a cycle C = (. . . , vb1, vb2, . . . , vg1, vg2, . . .) in
RD(π(i)). A (b, g)-split of RD(π(i)) produces a new diagram R̂D(π) =
RD(π(i + 1)) which is obtained from RD(π(i)) by:

1. removing edges b and g,

2. adding two new vertices x and y,

3. adding two new reality edges (vb1, x) and (y, vb2),

4. adding two new desire edges (vg1,x) and (y,vg2).



C
C

v1 v2 v3 v4 v6v7 v8 v9v5 v10 v1 v2 v3 v4 xy v5v6v7 v8 v9v10

(b)

v1 v2 v3 v9v10v5v6v8v7v4x y

CC

v1 v2 v3 v4 v6v7 v8 v9v5 v10

(a)

Fig. 2. (a) An unsafe (b, g)-split with b = (v3, v4) and g = (v1, v10) that produces a
new hurdle. (b) A safe (b, g)-split with b = (v5, v6) and g = (v2, v3), that does not
produce any new components.

Two examples of such splits are illustrated in Fig. 2. As a result of the
split the cycles (. . . , vb1, x, vg1, . . .) and (. . . , vb2, y, vg2, . . .) are created.

The effect of a (b, g)-split on the permutation can be described as
follows. x and y are the nodes of a new element which lies between the
consecutive elements previously connected by g. That is, we now consider
generalized permutations which consists of arbitrary distinct reals instead
of permutations of integers. Hannenhalli and Pevzner called the effects
of a (b, g)-split on the permutation a (b, g)-padding. We will only use the
term (b, g)-split as the two concepts are equivalent.

A (b, g)-split is safe if b and g are non-incident, and π(i) and π(i + 1)
have the same number of hurdles; i.e. h(π(i)) = h(π(i + 1)). The first
condition assures that we do not produce a 1-cycle and a cycle with the
same size as the old cycle. Because a split is acting on a long cycle, the
first condition is easy to achieve. The second condition assures that the
reversal distances of π(i) and π(i+1) are equal (note that a split increases
both n and c by one, and the fortress indicator cannot be changed without
changing the number of hurdles). The following lemma shows that to
fulfill the second condition, it is sufficient to ensure that the resulting
cycles belong to the same component.

Lemma 1 ([5]). Let a (b, g)-split break a cycle C in RD(π(i)) into cycles

C1 and C2 in RD(π(i + 1)). Then C is oriented if and only if C1 or C2

is oriented.

In other words, if we do not split a component into two components, the
orientation of the component is not changed. For the constructive proof
of the existence of safe splits we need the following lemma.

Lemma 2 ([5]). For every desire edge g that does not belong to a 1-

cycle, there exists a desire edge f interleaving with g in RD(π). If C is



a cycle in RD(π) and f 6∈ C then f interleaves with an even number of

desire edges in C.

And for the linear time algorithm we need the following corollary.

Corollary 1. Let C be a cycle of length ℓ > 1 in RD(π) with desire

edges g1 to gℓ. If these desire edges are pairwise non-interleaving, then

there exists a gj with 1 ≤ j < ℓ and a cycle C ′ 6= C with a desire edge f ,

such that f interleaves both gj and gℓ.

Proof. As C has no pairwise interleaving desire edges, gℓ does not inter-
leave with another desire edge of C. So Lemma 2 implies that gℓ inter-
leaves with a desire edge f of another cycle C ′. Because f is not in C, it
interleaves with an even number of desire edges in C. It follows that f

interleaves with at least one more desire edge gj (1 ≤ j < ℓ) of C.

Theorem 1 ([5]). If C = (. . . , v1, . . . , v2ℓ, . . .) is a long cycle in RD(π),
then there exists a safe (b, g)-split acting on C.

The proof given in [5] is constructive. However, the construction cannot
transform the whole permutation into a simple permutation in linear time
(which is the goal of our paper). Therefore, in Section 5, we provide an
algorithm that achieves this goal in linear time.

4 The data structure

We represent the reality-desire diagram as a linked list of 2n + 2 nodes.
The data structure node for each node v consists of the three pointers
reality (pointing to the node connected with v by a reality edge), desire
(pointing to the node connected with v by a desire edge), and co element

(pointing to the co-element of v), and the two variables position (the
position w.r.t. the leftmost node in the diagram), and cycle (the index
j of cycle Cj the node belongs to).

We can initialize this data structure for every permutation in linear
time. First, the initialization of reality, co element, and position can
be done with a scan through the permutation. Second, for the initial-
ization of desire we need the inverse permutation (mapping the nodes
ordered by their label to their position) which can also be generated in
linear time. Finally, we can initialize cycle by following the reality and
desire edges which also takes linear time.

Given a reality edge b = (vb1, vb2) and a desire edge g = (vg1, vg2),
a (b, g)-split can be performed in constant time (see Algorithm 1) if we



disregard the problem that we have to update the position variables of
the new nodes and all the nodes that lie to the right of b. Fortunately, we
need position only to determine if two edges of the same cycle interleave,
thus it is sufficient if the relative positions of the nodes of each cycle are
correct. This information can be maintained if we set the positions of the
new nodes x and y to the positions of the old nodes of b which are now non-
incident to x or y. After performing all splits, the reality-desire diagram
can easily be transformed into the simple permutation by following desire
edges and co-element pointers.

Algorithm 1 (b,g)-split

1: function bg-split(b = (vb1, vb2), g = (vg1, vg2))
2: create new nodes x, y

3: vb1.reality = x; vb2.reality = y {adjust reality and desire edges}
4: x.reality = vb1; y.reality = vb2

5: vg1.desire = x; vg2.desire = y

6: x.desire = vg1; y.desire = vg2

7: x.position = vb2.position; y.position = vb1

8: return(x, y)

5 The Algorithm

We now tackle the problem of transforming a permutation into an equiva-
lent simple permutation in linear time. The algorithm has two processing
phases.

Phase 1:

Our goal in the first phase is to create short cycles or cycles that have no
interleaving desire edges. We achieve this goal with a scanline algorithm.
The algorithm requires two additional arrays: left[j] stores the leftmost
node of each cycle Cj and next[j] stores the right node of the desire edge
we are currently checking for interleavings. In both arrays, all variables
are initialized with UNDEF. In the following, vs denotes the current position
of the scanline. Before we describe the algorithm, we will first provide an
invariant for the scanline.

Invariant: If gi is a desire edge of the long cycle Cj with i < ℓj , and both
nodes of gi lie to the left of vs, then gi does not intersect with any other
desire edge of Cj .



It is clear that a cycle Cj has no interleaving edges if the invariant
holds and the scanline passed the rightmost node of Cj : gℓj

does also
not interleave with a desire edge of Cj because the interleaving relation
is symmetric. As vs is initialized with the leftmost node of RD(π), the
invariant holds in the beginning. While the scanline has not reached the
right end of the diagram, we repeat to analyze the following cases:

Case 1.1 vs is part of a short cycle.
We move the scanline to the left node of the next reality edge. As
the invariant only considers long cycles, the invariant is certainly pre-
served.

Case 1.2 vs is part of a long cycle Cj and next[j]=UNDEF.
That is, vs is the leftmost node of cycle Cj . So we set left[j]=vs. To
check whether g1 = (v2, v3) interleaves with another desire edge, we
store the right node of g1 in next[j] and move vs to the left node
of the next reality edge. Both nodes passed by the scanline (i.e. v1

and v2) are the left nodes of a desire edge, so the set of desire edges
that lie completely to the left of vs is not changed and the invariant
is preserved.

Case 1.3 vs is part of a long cycle Cj and next[j]6= vs.
Let next[j] be the node v2k+1, i.e. we check for a desire edge that
interleaves with gk (going from node v2k to node v2k+1). As pos(v1) <

pos(v2k) < pos(vs) < pos(v2k+1), there must be a desire edge gm

belonging to Cj that interleaves with gk. We now distinguish three
cases:
(a) gk is not g1 (for an example, see Fig. 3).

We perform a (b, g)-split with b = bk+1 and g = gk−1. That is, we
split the 2-cycle (v2k, v2k+1, x, v2k−1) from Cj . This split is save
since gk now lies in the 2-cycle that still interleaves with gm, which
belongs to Cj . The right node of the new gk−1 in Cj is y, so we
adjust next[j] to y.

(b) gk is g1 and gk interleaves with gℓj
(see Fig. 4).

We perform a (b, g)-split with b = b1 and g = g2. That is, we split
the 2-cycle (v2, v3, v4, y) from Cj . This split is save since g1 now
lies in the 2-cycle that still interleaves with gℓj

, which belongs to
Cj . Now, g1 = (x, v5), so we set next[j]=v5. Note that v5 cannot
be to the left of vs, as vs is the leftmost node that belongs to Cj

and has an index ≥ 4.
(c) gk is g1 and gk does not interleave with gℓj

(see Fig. 5).
It follows that gm 6= gℓj

. We perform a (b, g)-split with b = b2 and
g = gℓj

. That is, we split the 2-cycle (v2, v3, x, v1) from Cj . This



v1 v2 v3 v4 viv1 v2 v3 v4 vi

gmgm

v1 v2 v3 v4 v5vi v6x yv1 v2 v3 v4 v5 v6vi

gmgm

g1

g1

g2

g2

b3

b3

v5v6 v5v6 y x

(b, g)− split

(b, g)− split

(i)

(ii)

Fig. 3. Case 1.3 (a): (i) gk = g2 is unoriented or (ii) oriented.

v1 v2

g1

gℓj

vℓj
vi v3v4

v1 v2

g1

gℓj

v3 v4vℓj
vi v2 v3 v4vℓj

viv1 x y

gℓj

v2 vℓj
viv1 x y

gℓj

v4 v3

(b, g)− split

(b, g)− split

(i)

(ii)

Fig. 4. Case 1.3 (b): (i) g1 is unoriented or (ii) oriented.

split is save since g1 now lies in the 2-cycle that still interleaves
with gm. As the old leftmost node and reality edge of Cj lie in the 2-
cycle we set next[j] = UNDEF which forces the re-initialization
of left[j] with vs and next[j].

In all of these cases, we do not create a desire edge that lies completely
to the left of vs, so the invariant is preserved.

Case 1.4 vs is part of a long cycle Cj and next[j]=vs.
That is, we reach the right node of a desire edge gk. It follows that gk

does not interleave which any other desire edge of Cj since we have
not detected a node of Cj between the left and right node of gk. Thus
moving vs to the right preserves the invariant. The next desire edge
to check is gk+1 = (v2(k+1), v2(k+1)+1), so we set next[j] to the right
node of gk+1 and move vs to the left node of the next reality edge.



v1 v2 vi v3 v4

gℓj

g1

b1

gm

(b, g)− split

(b, g)− split

v1 v2 viv1 v2 vi

gℓj

g1

b1

v3v4

gm

v4 v3xy

gm

v1 v2 vi v3

gℓj

g1 gm

v4x y

(i)

(ii)

Fig. 5. Case 1.3 (c): (i) g1 is unoriented or (ii) oriented.

We will now analyze the running time of the first phase. In each
step we either move the scanline further right (cases 1.1, 1.2, and 1.4)
or perform a save (b, g)-split (cases 1.3(a), 1.3(b), and 1.3(c)). As we can
perform at most n splits and the resulting diagram can have at most
2n reality edges, we have to perform at most 3n steps. Each step takes
constant time.

Phase 2 After phase 1 we can assure that there remain only short cycles
and long cycles with pairwise non-interleaving desire edges. These long
cycles have a special structure. The positions of the nodes v1, . . . , v2ℓj

of
a cycle Cj are strictly increasing and so the first ℓj − 1 desire edges gi

(i < ℓj) lie one after another. gℓj
connects the leftmost and rightmost

node of Cj . As we know from Corollary 1 there exists a desire edge f of a
cycle C ′ 6= Cj that interleaves with gℓj

and another desire edge gk of Cj .

We can detect this gk by first determining a desire edge f which has
a node in the interval Ij = [pos(v1), pos(v2ℓj

)] and interleaves with gℓj
.

Second, we get the gi that interleaves with f by checking for every desire
edge 6= gℓj

whether it interleaves with f . As I is decomposed by the
intervals of the desire edges in distinct areas, we get the corresponding gi

in at most ℓj steps.

Clearly, the second step takes
∑c(π)

j=1 ℓj = O(n) time. In the first step,
we use a stack based algorithm to achieve a linear running time. In each
step of the algorithm, the stack will contain a set of intervals Ij of cycles
Cj , such that each interval on the stack is completely contained in all
other intervals that are below it on the stack (i.e. the topmost interval is
contained in all other intervals on the stack). We scan the reality-desire
diagram from left to right. For each node v, we check whether its desire



edge f = (v, w) interleaves with the topmost interval Ij of the stack. If
so, we report the interleaving edges f and gℓj

, pop Ij from the stack,
check whether f interleaves with the new top interval, and so on, until f

does not interleave with the top interval. As the top interval is contained
in all other intervals of the stack and Lemma 2 ensures that we find an
interleaving edge before we reach the right end of the interval (i.e. v is
contained in the topmost interval), f cannot interleave with any other
interval on the stack. If v is the leftmost node of a cycle Cj , we push Ij

on the stack (note that this interval is equivalent to the desire edge gℓj
, so

it does not interleave with the topmost interval and is therefore contained
in it). In all cases, we continue by moving the scanline one node to the
right. The algorithm stops when we have reached the right end of the
diagram. During the algorithm, we push the interval Ij of each cycle Cj

on the stack, and pop this cycle when we reach a node v in Ij such that
the desire edge (v, w) interleaves with Ij . As this node must exist for each
cycle (see Lemma 2), we find for each cycle Cj an edge that interleaves
with gℓj

.
After finding all gk’s we distinguish two cases for a save (b, g)-split:

Case 2.1 gℓj−1 6= gk (see Fig. 6(i)).
We perform the (b, g)-split on C with b = (v1, vℓ) and g = (v3, v4). We
get C1 = (v1, v2, v3, a) and C2 = (vℓ, vℓ−1, . . . , v4, b). As f interleaves
with g1 which is now part of C1 and gi which is now part of C2 the
component structure remains the same.

Case 2.2 gℓj−1 = gk (see Fig. 6(ii)).
We perform the (b, g)-split on C with b = (v3, v2) and g = (vℓ, vℓ−1).
We get C1 = (v1, v2, b, vℓ) and C2 = (a, v3, v4, . . . , vℓ−1). As f inter-
leaves with g1 which is now part of C1 and gi which is now part of C2

the component structure remains the same.

In both cases, gk becomes a desire edge of the cycle C2, and f intersects
both gk and gℓ′ (where ℓ′ is the length of C2). Thus we do not have to
recalculate the edge gk, and can repeat this step on C2 until the remaining
cycles are all 2-cycles. The pseudo code of the whole algorithm is presented
in Appendix A. An implementation in C ++ can be obtained from the
authors.

References

1. D. Bader, B. Moret, and M. Yan. A linear-time algorithm for computing inver-
sion distance between signed permutations with an experimental study. Journal of

Computational Biology, 8:483–491, 2001.



v1 v2 v1

gℓj

g1

f f

bℓj

v1 v2 v1

gℓj

g1

b1

f

gℓj−1

f

v2 y v2ℓj
x

v2 x y v2ℓj

(b, g)− split

(b, g)− split

(i)

(ii)

Fig. 6. (i) depicts Case 2.1 and (ii) Case 2.2.

2. V. Bafna and P. Pevzner. Genome rearrangements and sorting by reversals. SIAM

Journal on Computing, 25(2):272–289, 1996.
3. A. Bergeron, J. Mixtacki, and J. Stoye. Reversal distance without hurdles and

fortresses. In Proc. 15th Annual Symposium on Combinatorial Pattern Matching,
volume 3109 of LNCS, pages 388–399. Springer-Verlag, 2004.

4. P. Berman and S. Hannenhalli. Fast sorting by reversals. In Proc. 7th Symposium on

Combinatorial Pattern Matching, volume 1075 of LNCS, pages 168–185. Springer-
Verlag, 1996.

5. S. Hannenhalli and P. Pevzner. Transforming cabbage into turnip: polynomial algo-
rithm for sorting signed permutations by reversals. Journal of the ACM, 46(1):1–27,
1999.

6. H. Kaplan, R. Shamir, and R. Tarjan. A faster and simpler algorithm for sorting
signed permutations by reversals. SIAM Journal on Computing, 29(3):880–892,
1999.

7. J. Setubal and J. Meidanis. Introduction to Computational Molecular Biology. PWS
Publishing Company, 1997.

8. E. Tannier, A. Bergeron, and M.-F. Sagot. Advances on sorting by reversals. Dis-

crete Applied Mathematics, 155:881–888, 2007.
9. E. Tannier and M.-F. Sagot. Sorting by reversals in subquadratic time. In Proc.

15th Annual Symposium on Combinatorial Pattern Matching, volume 3109 of LNCS,
pages 1–13. Springer-Verlag, 2004.



A Code

Algorithm 2 Equivalent transformation in a simple permutation into
linear time
1: read π and construct the reality-desire diagram RD(π)
2: mark and count cycles in RD(π)
3: left[1..c(π)] := {undef, . . . , undef}; next[1..c(π)] := {undef, . . . , undef}
4: set scanline vs to the leftmost node of RD(π)
5: while vs 6= nil do

6: j:=vs.cycle

7: if vs is part of a short cycle then

8: vs := vs.reality.co element

9: else if next[j] = undef then {we reach the leftmost point of cycle Cj}
10: left[j] := vs

11: next[j] := vs.reality.desire

12: vs := vs.reality.co element

13: else if vs = next[j] then {i.e. gi does not interleave with edge from Cj}
14: next[j] := vs.reality.desire

15: vs := vs.reality.co element

16: else if gk is not g1 then

17: (x,y):=bg-split(bk+1,gk−1)
18: next[j] := y

19: else if gk interleaves with gℓj
then

20: (x,y):=bg-split(b1,g2)
21: next[j] := v5

22: else {gk does not interleave with gℓj
}

23: bg-split(b2,gℓj
)

24: next[j] := undef

25: calculate the absolute position for each node in RD(π′)
26: create stack ACTIVE CYCLE
27: set scanline vs to the leftmost node of RD(π′)
28: while vs 6= NIL do

29: while ACTIVE CYCLE is not empty do

30: gℓ:=ACTIVE CYCLE.top
31: if (vs, vs.desire) or (vs.reality, vs.reality.desire) interleaves with gℓ then

32: determine gk

33: ACTIVE CYCLE.pop
34: else

35: break
36: if vs is the leftmost node of a long cycle then

37: ACTIVE CYCLE.push((vs, vs.desire))
38: vs := vs.reality.co element

39: for each node vi do

40: if vi is the leftmost node of a long cycle Cj then

41: if gℓj−1 6= gk then

42: bg-split(b1, gℓj−1)
43: else

44: bg-split(bℓj
,g1)


