Fast algorithms for transforming back and forth between a signed permutation and its equivalent simple permutation

Simon Gog Martin Bader

Faculty of Engineering and Computer Sciences, Ulm University, 89069 Ulm, Germany. Email: simon.gog@uni-ulm.de martin.bader@uni-ulm.de

Abstract

The problem of Sorting signed permutations by reversals is a well studied problem in computational biology. The first polynomial time algorithm was presented by Hannenhalli and Pevzner in 1995. The algorithm was improved several times, and nowadays the most efficient algorithm has a subquadratic running time. Simple permutations played an important role in the development of these algorithms. Although the latest result of Tannier et al. does not require simple permutations, the preliminary version of their algorithm as well as the first polynomial time algorithm of Hannenhalli and Pevzner use the structure of simple permutations. More precisely, the latter algorithms require a precomputation that transforms a permutation into an equivalent simple permutation. To the best of our knowledge, all published algorithms for this transformation have at least a quadratic running time. For further investigations on genome rearrangement problems, the existence of a fast algorithm for the transformation could be crucial. Another important task is the back transformation, i.e. if we have a sorting on the simple permutation, transform it into a sorting on the original permutation. Again, the naive approach results in an algorithm with quadratic running time. In this paper, we present a linear time algorithm for transforming a permutation into

an equivalent simple permutation, and an $O(n\log n)$ algorithm for the back transformation of the sorting sequence.

1 Introduction

The problem of Sorting signed permutations by reversals (SBR) is motivated by a genome rearrangement problem in computational biology. The task of the problem is to transform the genome of one species into the genome of another species, containing the same set of genes but in different order. As transformation step, only *reversals* (also called *inversions*) are allowed, where a section of the genome is excised, reversed in orientation, and reinserted. This is motivated by the fact that reversals are the most frequent rearrangement operations in nature, especially for bacterial genomes. The problem can be easily transformed into the mathematical problem of sorting a signed permutation (i.e. a permutation of the integers 1 to n, where each element has an additional orientation) into the identity permutation. The elements represent the genes of the genome (or any other kind of marker), whereas the signs indicate the strandedness of the genes. As shorter rearrangement scenarios are biologically more plausible than longer ones, one is interested in a minimum sequence of reversals that transforms one permutation into the identity permutation.

SBR is a well studied problem in computational biology, and the first polynomial time algorithm was presented by Hannenhalli and Pevzner in 1995 [Hannenhalli and Pevzner, 1999]. The algorithm was simplified several times [Berman and Hannenhalli, 1996], [Kaplan et al., 1999], and the reversal distance problem (in which one is only interested in the number of required reversals) can be solved in linear time [Bader et al., 2001], [Bergeron et al., 2004]. In 2004, Tannier and Sagot presented an algorithm for SBR that has subquadratic time complexity [Tannier and Sagot, 2004] (the algorithm was later improved by Han [Han, 2006]). This algorithm first transforms the given permutation π into an equivalent simple permutation $\hat{\pi}$ and then calculates a sorting for $\hat{\pi}$. This sorting is now transformed back to sort π . In the literature, there are several algorithms for the transformation from π into $\hat{\pi}$ [Hannenhalli and Pevzner, 1999], [Berman and Hannenhalli, 1996], but all of them have at least quadratic time complexity. For the back transformation to get the final sorting of π , there is no algorithm that performs better than the naive approach, which has a quadratic running time. Although Tannier et al. improved their algorithm such that it does no longer require simple permutations [Tannier et al., 2007], a fast algorithm for the transformation could be crucial for further investigations on genome rearrangements. In this paper, we will provide a linear algorithm for transforming a permutation into an equivalent simple permutation, and a $O(n \log n)$ algorithm for the back transformation. While the first algorithm is specific for sorting by reversals and cannot be applied to other genome rearrangement algorithms, the back transformation algorithm is quite general and can be easily adjusted to any genome rearrangement algorithm that works on simple permutations with padded elements (like e.g. [Hartman and Shamir, 2006], [Elias and Hartman, 2006], [Hartman and Sharan, 2005], [Bader and Ohlebusch, 2007]).

2 Preliminaries

A signed permutation $\pi = \langle \pi_1, \ldots, \pi_n \rangle$ is a permutation of the integers 1 to n, where each element π is assigned a positive $(\overrightarrow{\pi})$ or negative $(\overleftarrow{\pi})$ orientation. A reversal $\rho(i, j)$ reverses the order and flips the orientation of the elements between the *i*-th and *j*-th element of the permutation. For example, $\rho(3, 5)$ transforms $\pi = \langle \overrightarrow{1}, \overrightarrow{2}, | \overleftarrow{5}, \overleftarrow{4}, \overleftarrow{3} |, \overrightarrow{6} \rangle$ into $id = \langle \overrightarrow{1}, \overrightarrow{2}, \overrightarrow{3}, \overrightarrow{4}, \overrightarrow{5}, \overrightarrow{6} \rangle$. The latter permutation is called identity permutation of size 6. The problem of sorting by reversals asks for a minimal sequence of reversals ρ_1, \ldots, ρ_k that transforms a signed permutation π into the identity permutation. The length k of a minimal sequence is called the reversal distance $d(\pi)$.

The main tool for the solution of the problem of sorting by reversals is the reality-desire diagram (also called breakpoint graph [Bafna and Pevzner, 1996, Setubal and Meidanis, 1997]; see Fig. 1 for an example). The realitydesire diagram $RD(\pi)$ of a permutation $\pi = \langle \pi_1, \ldots, \pi_n \rangle$ can be constructed as follows. First, the elements of π are placed from left to right on a straight line. Second, each element x of π with positive orientation is replaced with the two nodes 2x - 1 and 2x, while each element x with negative orientation is replaced with 2x and 2x - 1. We call these nodes *co-elements* of x where the first is called *left node* of x and the other the *right node* of x. Third, we add a single node labeled with 0 to the left of the left node of the first element and add a single node labeled with 2n + 1 to the right of the right node of the last element. Fourth, *reality edges* are drawn from the right node of π_i to the left node of π_{i+1} $(1 \leq i < n)$, from node 0 to the left node of π_1 , and from the right node of π_n to node 2n + 1. Fifth, desire edges are drawn from node 2i to node 2i + 1 $(0 \le i \le n)$. We can interpret reality edges as the actual neighborhood relations in the permutation, and desire edges as the desired neighborhood relations. The *position* of a node v is its position in the diagram and denoted by pos(v) (i.e. the leftmost node has the

Figure 1: A reality-desire diagram $RD(\pi)$ for $\pi = \langle \vec{3}, \vec{2}, \vec{1}, \vec{5}, \vec{6}, \vec{4} \rangle$. The first row of numbers are the labels of the nodes, the second are the positions. The third row contains the labeling of nodes of the long cycle C.

position 0, the node to its right has the position 1, and so on). As each node is assigned exactly one reality edge and one desire edge, the reality-desire diagram decomposes into cycles. The number of cycles in $RD(\pi)$ is denoted by $c(\pi)$. The length ℓ_j of a cycle C_j is the number of desire edges. If ℓ_j is smaller than 3 we call C_j a short cycle, otherwise a long cycle.

We label the nodes of a cycle C_j as follows. The leftmost node is called $v[j]_1$, then we follow the reality edge to node $v[j]_2$, then follow the desire desire edge to node $v[j]_3$, and so on. We label the reality edge from node $v[j]_{2i-1}$ to $v[j]_{2i}$ with $b[j]_i$ $(1 \le i \le \ell_j)$ and the desire edge from node $v[j]_{2i}$ to $v[j]_{2i+1}$ with $g[j]_i$ $(1 \le i < \ell_j)$. The desire edge from node $v[j]_{2\ell_j}$ to $v[j]_{1}$ is labeled with $g[j]_{\ell_j}$. If the cycle index j of C_j is clear from the context we omit it.

A desire edge $g = (v_1, v_2)$ is called *oriented* if the positions of v_1 and v_2 in the diagram are both even or odd, otherwise we call g unoriented. A cycle which contains no oriented edges is called *unoriented*, otherwise *oriented*.

Two desire edges (v_1, v_2) and (w_1, w_2) interleave if the endpoints of the intervals $I_v = [pos(v_1), pos(v_2)]$ and $I_w = [pos(w_1), pos(w_2)]$ are alternating. Two cycles C_1 and C_2 are interleaving if there exist interleaving desire edges $f \in C_1$ and $g \in C_2$. A maximal set of interleaving cycles in $RD(\pi)$ is called a component. A component is unoriented if it contains no oriented cycles, otherwise it is oriented.

Hannenhalli and Pevzner found some special structures that depend on unoriented components called *hurdles* and *fortress*. The distance formula for the reversal distance is

$$d(\pi) = n + 1 - c(\pi) + h(\pi) + f(\pi)$$

where $h(\pi)$ is the number of hurdles in $RD(\pi)$ and $f(\pi)$ the indicator variable for a fortress (for details see [Hannenhalli and Pevzner, 1999]).

The original Hannenhalli-Pevzner algorithm [Hannenhalli and Pevzner, 1999] as well as the subquadratic algorithm of Tannier and Sagot [Tannier and Sagot, 2004] require a permutation whose reality-desire diagram contains only short cycles. Such a permutation is called a *simple permutation*. Hannenhalli and Pevzner showed that every permutation π can be transformed into an *equivalent simple permutation* $\hat{\pi}$, i.e. a simple permutation with $d(\hat{\pi}) = d(\pi)$, by padding additional elements to π . Moreover, a sorting sequence of $\hat{\pi}$ can be used to obtain a sorting sequence of π by ignoring the padded elements.

3 Creating equivalent simple permutations revisited

We first focus on the creation of simple permutations before we discuss the creation of equivalent simple permutations. If a permutation $\pi = \pi(0)$ has a long cycle, Hannenhalli and Pevzner [Hannenhalli and Pevzner, 1999] transform it into a new permutation $\pi(1)$ by ,,breaking" this cycle into two smaller ones. This step is repeated until a simple permutation $\pi(k)$ is achieved.

On the reality-desire diagram the ,,breaking of a cycle" can be described as follows. Let $b = (v_{b1}, v_{b2})$ be a reality edge and $g = (v_{g1}, v_{g2})$ a desire edge belonging to a cycle $C = (\ldots, v_{b1}, v_{b2}, \ldots, v_{g2}, v_{g1}, \ldots)$ in $RD(\pi(i))$. A (b, g)split of $RD(\pi(i))$ produces a new diagram $\hat{RD}(\pi) = RD(\pi(i+1))$ which is obtained from $RD(\pi(i))$ by:

- 1. removing edges b and g,
- 2. adding two new vertices x and y,
- 3. adding two new reality edges (v_{b1}, x) and (y, v_{b2}) ,
- 4. adding two new desire edges (v_{q1}, x) and (y, v_{q2}) .

Two examples of such splits are illustrated in Fig. 2. As a result of the split the cycles $(\ldots, v_{b1}, x, v_{g1}, \ldots)$ and $(\ldots, v_{b2}, y, v_{g2}, \ldots)$ are created.

The effect of a (b, g)-split on the permutation can be described as follows. x and y are the nodes of a new element which lies between the consecutive elements previously connected by g. That is, we now consider generalized

Figure 2: (a) An unsafe (b, g)-split with $b = (v_3, v_4)$ and $g = (v_1, v_{10})$ that produces a new hurdle. (b) A safe (b, g)-split with $b = (v_5, v_6)$ and $g = (v_2, v_3)$, that does not produce any new components.

permutations which consists of arbitrary distinct reals instead of permutations of integers. Hannenhalli and Pevzner called the effects of a (b, g)-split on the permutation a (b, g)-padding. We will only use the term (b, g)-split as the two concepts are equivalent.

A (b, g)-split is safe if b and g are non-incident, and $\pi(i)$ and $\pi(i+1)$ have the same number of hurdles; i.e. $h(\pi(i)) = h(\pi(i+1))$. The first condition assures that we do not produce a 1-cycle and a cycle with the same size as the old cycle. Because a split is acting on a long cycle, the first condition is easy to achieve. The second condition assures that the reversal distances of $\pi(i)$ and $\pi(i+1)$ are equal (note that a split increases both n and c by one, and the fortress indicator cannot be changed without changing the number of hurdles [Hannenhalli and Pevzner, 1999]). The following lemma shows that to fulfill the second condition, it is sufficient to ensure that the resulting cycles belong to the same component.

Lemma 3.1 ([Hannenhalli and Pevzner, 1999]) Let a (b,g)-split break a cycle C in $RD(\pi(i))$ into cycles C_1 and C_2 in $RD(\pi(i+1))$. Then C is oriented if and only if C_1 or C_2 is oriented.

In other words, if we do not split a component into two components, the orientation of the component is not changed. For the constructive proof of the existence of safe splits we need the following lemma.

Lemma 3.2 ([Hannenhalli and Pevzner, 1999]) For every desire edge g that does not belong to a 1-cycle, there exists a desire edge f interleaving with g in $RD(\pi)$. If C is a cycle in $RD(\pi)$ and $f \notin C$ then f interleaves with an even number of desire edges in C.

And for the linear time algorithm we need the following corollary.

Corollary 3.3 Let C be a cycle of length $\ell > 1$ in $RD(\pi)$ with desire edges g_1 to g_ℓ . If these desire edges are pairwise non-interleaving, then there exists a g_j with $1 \leq j < \ell$ and a cycle $C' \neq C$ with a desire edge f, such that f interleaves both g_j and g_ℓ .

Proof As C has no pairwise interleaving desire edges, g_{ℓ} does not interleave with another desire edge of C. So Lemma 3.2 implies that g_{ℓ} interleaves with a desire edge f of another cycle C'. Because f is not in C, it interleaves with an even number of desire edges in C. It follows that f interleaves with at least one more desire edge g_j $(1 \le j < \ell)$ of C.

Theorem 3.4 ([Hannenhalli and Pevzner, 1999]) If $C = (..., v_1, ..., v_{2\ell}, ...)$ is a long cycle in $RD(\pi)$, then there exists a safe (b, g)-split acting on C.

The proof given in [Hannenhalli and Pevzner, 1999] is constructive. However, the construction cannot transform the whole permutation into a simple permutation in linear time (which is the goal of our paper). Therefore, in Section 3.2, we provide an algorithm that achieves this goal in linear time.

3.1 The data structure

We represent the reality-desire diagram as a linked list of 2n + 2 nodes. The data structure node for each node v consists of the three pointers reality (pointing to the node connected with v by a reality edge), desire (pointing to the node connected with v by a desire edge), and co_element (pointing to the co-element of v), and the two variables position (the position w.r.t. the leftmost node in the diagram), and cycle (the index j of cycle C_j the node belongs to).

We can initialize this data structure for every permutation in linear time. First, the initialization of reality, co_element, and position can be done with a scan through the permutation. Second, for the initialization of desire we need the inverse permutation (mapping the nodes ordered by their label to their position) which can also be generated in linear time. Finally, we can initialize cycle by following the reality and desire edges which also takes linear time.

Given a reality edge $b = (v_{b1}, v_{b2})$ and a desire edge $g = (v_{g1}, v_{g2})$, a (b, g)-split can be performed in constant time (see Algorithm 1) if we disregard the

problem that we have to update the position variables of the new nodes and all the nodes that lie to the right of b. Fortunately, we need **position** only to determine if two edges of the same cycle interleave, thus it is sufficient if the relative positions of the nodes of each cycle are correct. This information can be maintained if we set the positions of the new nodes x and y to the positions of the old nodes of b which are now non-incident to x or y. After performing all splits, the reality-desire diagram can easily be transformed into the simple permutation by following desire edges and co-element pointers.

Algorithm 1 (b,g)-split

```
1: function bg-split(b = (v_{b1}, v_{b2}), g = (v_{g1}, v_{g2}))
```

2: create new nodes x, y

```
3: v_{b1}.reality = x; v_{b2}.reality = y {adjust reality and desire edges}
```

```
4: x.reality = v_{b1}; y.reality = v_{b2}
```

```
5: v_{g1}.desire = x; v_{g2}.desire = y
```

```
6: x.desire = v_{g1}; y.desire = v_{g2}
```

```
7: x.position = v_{b2}.position; y.position = v_{b1}
```

```
8: return(x, y)
```

3.2 The algorithm

We now tackle the problem of transforming a permutation into an equivalent simple permutation in linear time. The algorithm has two processing phases.

Phase 1:

Our goal in the first phase is to create short cycles or cycles that have no interleaving desire edges. We achieve this goal with a scanline algorithm. The algorithm requires two additional arrays: left[j] stores the leftmost node of each cycle C_j and next[j] stores the right node of the desire edge we are currently checking for interleavings. In both arrays, all variables are initialized with UNDEF. In the following, v_s denotes the current position of the scanline. Before we describe the algorithm, we will first provide an invariant for the scanline.

Invariant: If g_i is a desire edge of the long cycle C_j with $i < \ell_j$, and both nodes of g_i lie to the left of v_s , then g_i does not intersect with any other desire edge of C_j .

It is clear that a cycle C_j has no interleaving edges if the invariant holds and the scanline passed the rightmost node of C_j : g_{ℓ_j} does also not interleave with a desire edge of C_j because the interleaving relation is symmetric. As v_s is initialized with the leftmost node of $RD(\pi)$, the invariant holds in the beginning. While the scanline has not reached the right end of the diagram, we repeat to analyze the following cases:

Case 1.1 v_s is part of a short cycle.

We move the scanline to the left node of the next reality edge. As the invariant only considers long cycles, the invariant is certainly preserved.

Case 1.2 v_s is part of a long cycle C_j and next[j]=UNDEF.

That is, v_s is the leftmost node of cycle C_j . So we set $left[j]=v_s$. To check whether $g_1 = (v_2, v_3)$ interleaves with another desire edge, we store the right node of g_1 in next[j] and move v_s to the left node of the next reality edge. Both nodes passed by the scanline (i.e. v_1 and v_2) are the left nodes of a desire edge, so the set of desire edges that lie completely to the left of v_s is not changed and the invariant is preserved.

Case 1.3 v_s is part of a long cycle C_j and next[j] $\neq v_s$.

Let next[j] be the node v_{2k+1} , i.e. we check for a desire edge that interleaves with g_k (going from node v_{2k} to node v_{2k+1}). As $pos(v_1) < pos(v_{2k}) < pos(v_s) < pos(v_{2k+1})$, there must be a desire edge g_m belonging to C_j that interleaves with g_k . We now distinguish three cases:

(a) g_k is not g_1 (for an example, see Fig. 3).

We perform a (b, g)-split with $b = b_{k+1}$ and $g = g_{k-1}$. That is, we split the 2-cycle $(v_{2k}, v_{2k+1}, x, v_{2k-1})$ from C_j . This split is safe since g_k now lies in the 2-cycle that still interleaves with g_m , which belongs to C_j . The right node of the new g_{k-1} in C_j is y, so we adjust next[j] to y.

(b) g_k is g_1 and g_k interleaves with g_{ℓ_i} (see Fig. 4).

We perform a (b, g)-split with $b = b_1$ and $g = g_2$. That is, we split the 2-cycle (v_2, v_3, v_4, y) from C_j . This split is safe since g_1 now lies in the 2-cycle that still interleaves with g_{ℓ_j} , which belongs to C_j . Now, $g_1 = (x, v_5)$, so we set $next[j]=v_5$. Note that v_5 cannot be to the left of v_s , as v_s is the leftmost node that belongs to C_j and has an index ≥ 4 .

Figure 3: Case 1.3 (a): (i) $g_k = g_2$ is unoriented or (ii) oriented.

(c) g_k is g_1 and g_k does not interleave with g_{ℓ_j} (see Fig. 5). It follows that $g_m \neq g_{\ell_j}$. We perform a (b, g)-split with $b = b_2$ and $g = g_{\ell_j}$. That is, we split the 2-cycle (v_2, v_3, x, v_1) from C_j . This split is safe since g_1 now lies in the 2-cycle that still interleaves with g_m . As the old leftmost node and reality edge of C_j lie in the 2-cycle we set next[j] = UNDEF which forces the re-initialization of left[j] with v_s and next[j].

In all of these cases, we do not create a desire edge that lies completely to the left of v_s , so the invariant is preserved.

Case 1.4 v_s is part of a long cycle C_j and next[j]= v_s .

That is, we reach the right node of a desire edge g_k . It follows that g_k does not interleave which any other desire edge of C_j since we have not detected a node of C_j between the left and right node of g_k . Thus moving v_s to the right preserves the invariant. The next desire edge to check is $g_{k+1} = (v_{2(k+1)}, v_{2(k+1)+1})$, so we set next[j] to the right node of g_{k+1} and move v_s to the left node of the next reality edge.

We will now analyze the running time of the first phase. In each step we either move the scanline further right (cases 1.1, 1.2, and 1.4) or perform a safe (b, g)-split (cases 1.3(a), 1.3(b), and 1.3(c)). As we can perform at most n splits and the resulting diagram can have at most 2n reality edges, we have to perform at most 3n steps. Each step takes constant time.

Figure 4: Case 1.3 (b): (i) g_1 is unoriented or (ii) oriented.

Figure 5: Case 1.3 (c): (i) g_1 is unoriented or (ii) oriented.

Phase 2 After phase 1 we can assure that there remain only short cycles and long cycles with pairwise non-interleaving desire edges. These long cycles have a special structure. The positions of the nodes $v_1, \ldots, v_{2\ell_j}$ of a cycle C_j are strictly increasing and so the first $\ell_j - 1$ desire edges g_i $(i < \ell_j)$ lie one after another. g_{ℓ_j} connects the leftmost and rightmost node of C_j . As we know from Corollary 3.3 there exists a desire edge f of a cycle $C' \neq C_j$ that interleaves with g_{ℓ_j} and another desire edge g_k of C_j .

We can detect this g_k by first determining a desire edge f which has a node in the interval $I_j = [pos(v_1), pos(v_{2\ell_j})]$ and interleaves with g_{ℓ_j} . Second, we get the g_i that interleaves with f by checking for every desire edge $\neq g_{\ell_j}$ whether it interleaves with f. As I is decomposed by the intervals of the desire edges in distinct areas, we get the corresponding g_i in at most ℓ_j steps.

Clearly, the second step takes $\sum_{j=1}^{c(\pi)} \ell_j = O(n)$ time. In the first step, we

use a stack based algorithm to achieve a linear running time. In each step of the algorithm, the stack will contain a set of intervals I_i of cycles C_i , such that each interval on the stack is completely contained in all other intervals that are below it on the stack (i.e. the topmost interval is contained in all other intervals on the stack). We scan the reality-desire diagram from left to right. For each node v, we check whether its desire edge f = (v, w) interleaves with the topmost interval I_i of the stack. If so, we report the interleaving edges f and g_{ℓ_i} , pop I_i from the stack, check whether f interleaves with the new top interval, and so on, until f does not interleave with the top interval. As the top interval is contained in all other intervals of the stack and Lemma 3.2 ensures that we find an interleaving edge before we reach the right end of the interval (i.e. v is contained in the topmost interval), f cannot interleave with any other interval on the stack. If v is the leftmost node of a cycle C_i , we push I_j on the stack (note that this interval is equivalent to the desire edge g_{ℓ_i} , so it does not interleave with the topmost interval and is therefore contained in it). In all cases, we continue by moving the scanline one node to the right. The algorithm stops when we have reached the right end of the diagram. During the algorithm, we push the interval I_i of each cycle C_i on the stack, and pop this cycle when we reach a node v in I_i such that the desire edge (v, w) interleaves with I_j . As this node must exist for each cycle (see Lemma 3.2), we find for each cycle C_j an edge that interleaves with g_{ℓ_j} .

After finding all g_k 's we distinguish two cases for a safe (b, g)-split:

Case 2.1 $g_{\ell_i-1} \neq g_k$ (see Fig. 6(i)).

We perform the (b, g)-split on C with $b = b_1$ and $g = g_{\ell_j-1}$. We get $C_1 = (v_1, x, v_{2\ell_j-1}, v_{2\ell_j})$ and $C_2 = (y, v_2, \ldots, v_{2\ell_j-2})$. As f interleaves with g_1 which is now part of C_1 and g_i which is now part of C_2 the component structure remains the same.

Case 2.2 $g_{\ell_i-1} = g_k$ (see Fig. 6(ii)).

We perform the (b, g)-split on C with $b = b_{\ell_j}$ and $g = g_1$. We get $C_1 = (v_1, v_2, y, v_{2\ell_j})$ and $C_2 = (x, v_3, v_4, \dots, v_{2\ell_j-1})$. As f interleaves with g_1 which is now part of C_1 and g_i which is now part of C_2 the component structure remains the same.

In both cases, g_k becomes a desire edge of the cycle C_2 , and f intersects both g_k and $g_{\ell'}$ (where ℓ' is the length of C_2). Thus we do not have to recalculate the edge g_k , and can repeat this step on C_2 until the remaining cycles are all 2-cycles. The pseudo code of the whole algorithm is presented in Appendix

Figure 6: (i) depicts Case 2.1 and (ii) Case 2.2.

А.

4 The back transformation

In the previous section, we have shown how one can transform a permutation $\pi = \langle \pi_1, \ldots, \pi_n \rangle$ into the equivalent simple permutation $\hat{\pi} = \langle \hat{\pi}_1, \ldots, \hat{\pi}_n \rangle$. After one have found a rearrangement scenario on $\hat{\pi}$ the remaining step is to transform this into a sorting on π . In the naive approach, if we have a reversal $\rho(i, j)$ on $\hat{\pi}$, we would scan $\hat{\pi}$ beginning at $\hat{\pi}_i$ (for i) and $\hat{\pi}_i$ (for j) up to the next elements that are not padded elements. Then we must determine the position of these elements in π . As each of these operations requires O(n) steps in the worst case, the whole algorithm would have quadratic running time. Thus, we will now describe a data structure that supports the following two operations in logarithmic time. (1) transform a reversal on $\hat{\pi}$ into the corresponding reversal on π in $O(\log n)$ time, and (2) update the data structure after a reversal. This allows us to transform a sorting of $\hat{\pi}$ into a sorting of π in $O(n \log n)$ time. In this section, we will assume that a reversal is specified by its boundary elements, not its positions. Although this is contrary to our previous definition of a reversal, this is the easiest way to specify a reversal if one implements one of the algorithms that work on simple permutations. At the end of this section, we will show that calculating the position of an element and vice versa can be done in logarithmic time with our data structure, so this will not change the overall time complexity of the algorithm. In fact, we can simplify our data structure if the reversals on the simple permutation are specified by positions on $\hat{\pi}$.

4.1 The data structure

Our data structure is based on balanced binary search trees (BBS trees), like splay trees, 2-3 trees, AVL trees, and red-black trees. The height of these trees is logarithmic in the number of their nodes, and they support concatenation of two trees and split into two trees in logarithmic time (for details on these algorithms, see [Knuth, 1973, Crane, 1972]). In our examples, we will use red-black trees (see e.g. [Cormen et al., 2001]).

Let $\tilde{\pi}_1, \ldots, \tilde{\pi}_n$ be the elements in $\hat{\pi}$ that correspond to the elements in π . We call these elements original elements, all other elements are padded elements. For $1 \leq i < n$, let I_i be the interval of padded elements that lie between $\tilde{\pi}_i$ and $\tilde{\pi}_{i+1}$ in $\hat{\pi}$. Note that the padding algorithm never adds elements before the first or after the last element, and these elements are also never touched during the sorting algorithm. Thus we can write $\hat{\pi}$ = $\langle \tilde{\pi}_1, I_1, \tilde{\pi}_2, I_2, \ldots, \tilde{\pi}_{n-1}, I_{n-1}, \tilde{\pi}_n \rangle$. Note that each of these intervals may also be empty. During the algorithm, the position of original elements and intervals will change, but original elements and intervals will always be alternating. For each interval I_i , we store the order of its elements in a BBS tree T_i . Each element in I_i is linked to a node in T_i . Additionally, each node in the tree has an orientation flag that indicates whether the subtree is inverted (i.e. we first have to read the right subtree in inverted order, then the element of the current node as inverted element, then the left subtree in inverted order) or not. This allows us to make a reversal of a whole subtree by just changing one flag. The real orientation of a node depends on its own orientation flag and the orientation flags of all its ancestors, i.e. if both the root node and its child node have a negative orientation flag, then the child node has a positive orientation. We store the alternating order of intervals and original elements in a further tree T_{π} , i.e. the nodes of this tree are either an original element or an interval of padded elements I_i . Each root node of a tree T_i is then linked to the node I_i in T_{π} . See Fig. 7 for an example. For T_{π} , we will use an order-statistics tree (OS tree), i.e. a BBS tree in which each node also stores the number of elements in its left and right subtree. Thus one can get the position of an element by a bottom-up traversal in logarithmic time. As original elements and intervals of padded elements are alternating in this tree, we can easily calculate the position of an original element in π if we know its position in T_{π} . Also in this tree, each node has the orientation flag,

Figure 7: The data structure for $\hat{\pi} = \langle \vec{0}, \vec{5}, \vec{3}, \vec{7}, \vec{1}, \vec{4}, \vec{6}, \vec{2}, \vec{8} \rangle$, where 3, 7, and 1 are padded elements. All interval trees except for T_2 are empty. Note that the negation of all elements in T_2 is done by the sign in its root node. The coloring of a node (red/black) is indicated by the circle type (solid/non-solid), the orientation by the sign after its labeling.

as described for the trees T_i . The tree T_{π} is very similar to the tree proposed by Kaplan and Verbin for maintaining the permutation [Kaplan and Verbin, 2003], with the difference that in their tree, each node corresponds to one element in the permutation, whereas the nodes in our tree either correspond to an original element or to an interval of padded elements. We will now show how we can efficiently perform the two operations on the data structure.

4.2 Transforming a reversal on $\hat{\pi}$ into a reversal on π

If we have a reversal on $\hat{\pi}$ that is bounded by the two elements $\hat{\pi}_a$ and $\hat{\pi}_b$ (lying in I_i and I_j), we traverse the corresponding trees T_i and T_j bottom-up, beginning at the corresponding nodes. This leads to two nodes in T_{π} , and we can also traverse this tree bottom-up to get the positions of the nodes in T_{π} (of course, if one of $\hat{\pi}_a$ and $\hat{\pi}_b$ is an original element, we start the tree traversal for this element directly in T_{π}). Having these positions, it is easy to transform them into the corresponding positions in π . As the depth of the trees is logarithmic in their size and therefore in n, this task can be done in $O(\log n)$.

4.3 Update of the data structure

Let us assume we have a reversal bounded by the two padded elements $\hat{\pi}_a$ and $\hat{\pi}_b$, where $\hat{\pi}_a$ lies in I_i , and $\hat{\pi}_b$ lies in I_j . W.l.o.g. I_i comes before I_j in the current permutation. The reversal causes the following changes on the interval trees. If an interval I_k lies between I_i and I_j , the whole interval is inverted, i.e. the orientation flag on the root node of T_k must be changed. We cannot do this directly for each tree T_k as there are O(n) trees in the worst case, but we can manage this by inverting the appropriate nodes in T_{π} (i.e. the orientation of an interval I_k does not only depend on the orientation flag at the root node of T_k but also on the orientation flags on the path from I_k to the root node in T_{π}). Then, we must split T_i into two trees T_a and T_b . Tree T_a contains the elements of I_i that are not involved in the reversal, whereas T_b contains those that are involved. Analogously, we split T_j into the trees T_c (containing the involved elements of I_i) and T_d (containing the elements that are not involved). Next, we invert the orientation flag of the root nodes of T_b and T_c (this means an invertion of all elements in these trees), and concatenate T_a and T_c (resulting in the updated tree T_i) as well as T_b and T_d (resulting in the updated tree T_j). Note that the split and concatenation operations require only logarithmic time. Updating T_{π} works analogously, except that we have to split the tree into three trees T_a (left of inverted region), T_b (inverted region), and T_c (right of inverted region). Again, we invert the orientation flag at the root node of T_b , and merge the trees into the updated tree T_{π} . Note that this also affects the orientation of all T_k that lie completely in the inverted region, as mentioned above.

We have described the algorithm for reversals that are bounded by two padded elements. If one of the bounding elements is an original element, the algorithm becomes even easier - we do not have to split the corresponding interval tree, everything else remains the same. For an example, see Fig. 8.

Note that we assume that the reversal on $\hat{\pi}$ is specified by its bounding elements, not by its positions. If one implements e.g. the algorithm of Tannier and Sagot [Tannier and Sagot, 2004], it is easier to specify the reversals like this. If we get the reversals in the usual way (i.e. as positions), our algo-

Figure 8: The effect of inverting the elements from $\overleftarrow{7}$ to $\overrightarrow{2}$ in the example permutation of Fig. 7. (a) T_{π} is split into three trees T_a , T_b , and T_c . (b) The tree T_{π} after inverting the orientation of T_b and merging the trees. Note that the orientation of a node depends on its own sign as well as on the signs of all its ancestors (e.g. the element 4 is not inverted in the resulting permutation, as there is a minus sign in this node as well as in its parent node I_4). After the reversal, I_2 contains the element 3 (inverted), while I_5 contains the elements 1 and 7 (both with positive orientation).

rithm still works, as we can get the corresponding elements with a top-down traversal of T_{π} . In fact, in this case we even do not need the interval trees T_i , it is sufficient to store the size of the intervals, what eases up the algorithm.

References

- D.A. Bader, B.M.E. Moret, and M. Yan. A linear-time algorithm for computing inversion distance between signed permutations with an experimental study. *Journal of Computational Biology*, 8:483–491, 2001.
- M. Bader and E. Ohlebusch. Sorting by weighted reversals, transpositions, and inverted transpositions. *Journal of Computational Biology*, 14(5):615–636, 2007.
- V. Bafna and P.A. Pevzner. Genome rearrangements and sorting by reversals. SIAM Journal on Computing, 25(2):272–289, 1996.
- A. Bergeron, J. Mixtacki, and J. Stoye. Reversal distance without hurdles and fortresses. In Proc. 15th Annual Symposium on Combinatorial Pattern Matching, volume 3109 of LNCS, pages 388–399. Springer-Verlag, 2004.
- P. Berman and S. Hannenhalli. Fast sorting by reversals. In Proc. 7th Symposium on Combinatorial Pattern Matching, volume 1075 of LNCS, pages 168–185. Springer-Verlag, 1996.
- T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms, Second Edition. MIT Press and McGraw-Hill Book Company, 2001.
- C.A. Crane. *Linear lists and priority queues as balanced binary trees.* PhD thesis, Stanford University, 1972.
- I. Elias and T. Hartman. A 1.375-approximation algorithm for sorting by transpositions. *IEEE/ACM Transactions on Computational Biology and Bioinformatics*, 3(4):369–379, 2006.
- Y. Han. Improving the efficiency of sorting by reversals. In Proc. International Conference on Bioinformatics and Computational Biology, pages 406–409. CSREA Press, 2006.

- S. Hannenhalli and P.A. Pevzner. Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals. *Journal of* the ACM, 46(1):1–27, 1999.
- T. Hartman and R. Shamir. A simpler and faster 1.5-approximation algorithm for sorting by transpositions. *Information and Computation*, 204(2): 275–290, 2006.
- T. Hartman and R. Sharan. A 1.5-approximation algorithm for sorting by transpositions and transreversals. *Journal of Computer and System Sci*ences, 70(3):300–320, 2005.
- H. Kaplan and E. Verbin. Efficient data structures and a new randomized approach for sorting signed permutations by reversals. In Proc. 14th Symposium on Combinatorial Pattern Matching, volume 2676 of Lecture Notes in Computer Science, pages 170–185. Springer-Verlag, 2003.
- H. Kaplan, R. Shamir, and R.E. Tarjan. A faster and simpler algorithm for sorting signed permutations by reversals. *SIAM Journal on Computing*, 29(3):880–892, 1999.
- D.E. Knuth. The Art of Computer Programming, Volume III: Sorting and Searching. Addison-Wesley, 1973.
- J.C. Setubal and J. Meidanis. Introduction to Computational Molecular Biology. PWS Publishing Company, 1997.
- E. Tannier and M.-F. Sagot. Sorting by reversals in subquadratic time. In Proc. 15th Annual Symposium on Combinatorial Pattern Matching, volume 3109 of LNCS, pages 1–13. Springer-Verlag, 2004.
- E. Tannier, A. Bergeron, and M.-F. Sagot. Advances on sorting by reversals. Discrete Applied Mathematics, 155:881–888, 2007.

A Code

Algorithm 2 Equivalent transformation into a simple permutation in linear time

```
1: read \pi and construct the reality-desire diagram RD(\pi)
2: mark and count cycles in RD(\pi)
3: left[1..c(\pi)] := \{undef, \dots, undef\}; next[1..c(\pi)] := \{undef, \dots, undef\}
 4: set scanline v_s to the leftmost node of RD(\pi)
 5: while v_s \neq nil do
      j:=v_s.cycle
 6:
 7:
       if v_s is part of a short cycle then
          v_s := v_s.reality.co_element
8:
9:
       else if next[j] = undef then {we reach the leftmost point of cycle C_i}
         left[j] := v_s
10:
         next[j] := v_s.reality.desire
11:
         v_s := v_s.reality.co_element
12:
       else if v_s = next[j] then {i.e. g_i does not interleave with edge from C_j}
13:
         next[j] := v_s.reality.desire
14:
15:
         v_s := v_s.reality.co\_element
       else if g_k is not g_1 then
16:
17:
          (\mathbf{x},\mathbf{y}):=bg-split(b_{k+1},g_{k-1})
18:
          next[j] := y
       else if g_k interleaves with g_{\ell_i} then
19:
          (x,y):=bg-split(b_1,g_2)
20:
         next[j] := v_5
21:
22:
       else {g_k does not interleave with g_{\ell_i}}
         bg-split(b_2, g_{\ell_i})
23:
         next[j] := undef
24:
25: calculate the absolute position for each node in RD(\pi')
26: create stack ACTIVE_CYCLE
27: set scanline v_s to the leftmost node of RD(\pi')
28:
    while v_s \neq NIL do
       while ACTIVE_CYCLE is not empty do
29:
30:
          q_{\ell}:=ACTIVE_CYCLE.top
             (v_s, v_s. desire) or (v_s. reality, v_s. reality. desire) interleaves with g_\ell
31:
         if
         then
32:
            determine g_k
            ACTIVE_CYCLE.pop
33:
          else
34:
35:
            break
       if v_s is the leftmost node of a long cycle then
36:
         ACTIVE_CYCLE.push((v_s, v_s.\underline{d}esire))
37:
       v_s := v_s.reality.co_element
38:
39: for each node v_i do
       if v_i is the leftmost node of a long cycle C_j then
40:
         if g_{\ell_i-1} \neq g_k then
41:
42:
            bg-split(b_1, g_{\ell_i-1})
         else
43:
44:
            bg-split(b_{\ell_i}, g_1)
```