
Fast algorithms for transforming back and

forth between a signed permutation and its

equivalent simple permutation

Simon Gog Martin Bader

Faculty of Engineering and Computer Sciences,
Ulm University, 89069 Ulm, Germany.

Email: simon.gog@uni-ulm.de
martin.bader@uni-ulm.de

Abstract

The problem of Sorting signed permutations by reversals is a well
studied problem in computational biology. The first polynomial time
algorithm was presented by Hannenhalli and Pevzner in 1995. The
algorithm was improved several times, and nowadays the most ef-
ficient algorithm has a subquadratic running time. Simple permuta-

tions played an important role in the development of these algorithms.
Although the latest result of Tannier et al. does not require simple
permutations, the preliminary version of their algorithm as well as
the first polynomial time algorithm of Hannenhalli and Pevzner use
the structure of simple permutations. More precisely, the latter algo-
rithms require a precomputation that transforms a permutation into
an equivalent simple permutation. To the best of our knowledge, all
published algorithms for this transformation have at least a quadratic
running time. For further investigations on genome rearrangement
problems, the existence of a fast algorithm for the transformation
could be crucial. Another important task is the back transformation,
i.e. if we have a sorting on the simple permutation, transform it into
a sorting on the original permutation. Again, the naive approach re-
sults in an algorithm with quadratic running time. In this paper, we
present a linear time algorithm for transforming a permutation into

1



an equivalent simple permutation, and an O(n log n) algorithm for the
back transformation of the sorting sequence.

2



1 Introduction

The problem of Sorting signed permutations by reversals (SBR) is motivated
by a genome rearrangement problem in computational biology. The task of
the problem is to transform the genome of one species into the genome of
another species, containing the same set of genes but in different order. As
transformation step, only reversals (also called inversions) are allowed, where
a section of the genome is excised, reversed in orientation, and reinserted.
This is motivated by the fact that reversals are the most frequent rearrange-
ment operations in nature, especially for bacterial genomes. The problem
can be easily transformed into the mathematical problem of sorting a signed
permutation (i.e. a permutation of the integers 1 to n, where each element
has an additional orientation) into the identity permutation. The elements
represent the genes of the genome (or any other kind of marker), whereas
the signs indicate the strandedness of the genes. As shorter rearrangement
scenarios are biologically more plausible than longer ones, one is interested
in a minimum sequence of reversals that transforms one permutation into
the identity permutation.

SBR is a well studied problem in computational biology, and the first
polynomial time algorithm was presented by Hannenhalli and Pevzner in
1995 [Hannenhalli and Pevzner, 1999]. The algorithm was simplified several
times [Berman and Hannenhalli, 1996], [Kaplan et al., 1999], and the reversal
distance problem (in which one is only interested in the number of required
reversals) can be solved in linear time [Bader et al., 2001], [Bergeron et al.,
2004]. In 2004, Tannier and Sagot presented an algorithm for SBR that
has subquadratic time complexity [Tannier and Sagot, 2004] (the algorithm
was later improved by Han [Han, 2006]). This algorithm first transforms
the given permutation π into an equivalent simple permutation π̂ and then
calculates a sorting for π̂. This sorting is now transformed back to sort π. In
the literature, there are several algorithms for the transformation from π into
π̂ [Hannenhalli and Pevzner, 1999], [Berman and Hannenhalli, 1996], but all
of them have at least quadratic time complexity.For the back transformation
to get the final sorting of π, there is no algorithm that performs better than
the naive approach, which has a quadratic running time. Although Tannier
et al. improved their algorithm such that it does no longer require simple
permutations [Tannier et al., 2007], a fast algorithm for the transformation
could be crucial for further investigations on genome rearrangements. In this
paper, we will provide a linear algorithm for transforming a permutation into

3



an equivalent simple permutation, and a O(n log n) algorithm for the back
transformation. While the first algorithm is specific for sorting by reversals
and cannot be applied to other genome rearrangement algorithms, the back
transformation algorithm is quite general and can be easily adjusted to any
genome rearrangement algorithm that works on simple permutations with
padded elements (like e.g. [Hartman and Shamir, 2006], [Elias and Hartman,
2006], [Hartman and Sharan, 2005], [Bader and Ohlebusch, 2007]).

2 Preliminaries

A signed permutation π = 〈π1, . . . , πn〉 is a permutation of the integers 1 to n,
where each element π is assigned a positive (−→π ) or negative (←−π ) orientation.
A reversal ρ(i, j) reverses the order and flips the orientation of the elements
between the i-th and j-th element of the permutation. For example, ρ(3, 5)

transforms π = 〈
−→
1 ,
−→
2 ,
←−
5 ,
←−
4 ,
←−
3 ,
−→
6 〉 into id =〈

−→
1 ,
−→
2 ,
−→
3 ,
−→
4 ,
−→
5 ,
−→
6 〉. The

latter permutation is called identity permutation of size 6. The problem of
sorting by reversals asks for a minimal sequence of reversals ρ1, . . . , ρk that
transforms a signed permutation π into the identity permutation. The length
k of a minimal sequence is called the reversal distance d(π).

The main tool for the solution of the problem of sorting by reversals is
the reality-desire diagram (also called breakpoint graph [Bafna and Pevzner,
1996, Setubal and Meidanis, 1997]; see Fig. 1 for an example). The reality-
desire diagram RD(π) of a permutation π = 〈π1, . . . , πn〉 can be constructed
as follows. First, the elements of π are placed from left to right on a straight
line. Second, each element x of π with positive orientation is replaced with
the two nodes 2x− 1 and 2x, while each element x with negative orientation
is replaced with 2x and 2x− 1. We call these nodes co-elements of x where
the first is called left node of x and the other the right node of x. Third,
we add a single node labeled with 0 to the left of the left node of the first
element and add a single node labeled with 2n + 1 to the right of the right
node of the last element. Fourth, reality edges are drawn from the right node
of πi to the left node of πi+1 (1 ≤ i < n), from node 0 to the left node of
π1, and from the right node of πn to node 2n + 1. Fifth, desire edges are
drawn from node 2i to node 2i + 1 (0 ≤ i ≤ n). We can interpret reality
edges as the actual neighborhood relations in the permutation, and desire
edges as the desired neighborhood relations. The position of a node v is its
position in the diagram and denoted by pos(v) (i.e. the leftmost node has the

4



0 1 2 3 4 5 6 7 8 9 10 11 12 13

6 3 4 1 2 9 10 12 11 8 7 1350

v1 v2 v3 v4 v6v7 v8 v9

C

v5 v10

Figure 1: A reality-desire diagram RD(π) for π = 〈
−→
3 ,
−→
2 ,
−→
1 ,
−→
5 ,
←−
6 ,
←−
4 〉 .

The first row of numbers are the labels of the nodes, the second are the
positions. The third row contains the labeling of nodes of the long cycle C.

position 0, the node to its right has the position 1, and so on). As each node
is assigned exactly one reality edge and one desire edge, the reality-desire
diagram decomposes into cycles. The number of cycles in RD(π) is denoted
by c(π). The length ℓj of a cycle Cj is the number of desire edges. If ℓj is
smaller than 3 we call Cj a short cycle, otherwise a long cycle.

We label the nodes of a cycle Cj as follows. The leftmost node is called
v[j]1, then we follow the reality edge to node v[j]2, then follow the desire
desire edge to node v[j]3, and so on. We label the reality edge from node
v[j]2i−1 to v[j]2i with b[j]i (1 ≤ i ≤ ℓj) and the desire edge from node v[j]2i

to v[j]2i+1 with g[j]i (1 ≤ i < ℓj). The desire edge from node v[j]2ℓj
to v[j]1

is labeled with g[j]ℓj
. If the cycle index j of Cj is clear from the context we

omit it.
A desire edge g = (v1, v2) is called oriented if the positions of v1 and v2

in the diagram are both even or odd, otherwise we call g unoriented. A cycle
which contains no oriented edges is called unoriented, otherwise oriented.

Two desire edges (v1, v2) and (w1, w2) interleave if the endpoints of the
intervals Iv = [pos(v1), pos(v2)] and Iw = [pos(w1), pos(w2)] are alternating.
Two cycles C1 and C2 are interleaving if there exist interleaving desire edges
f ∈ C1 and g ∈ C2. A maximal set of interleaving cycles in RD(π) is called
a component. A component is unoriented if it contains no oriented cycles,
otherwise it is oriented.

Hannenhalli and Pevzner found some special structures that depend on
unoriented components called hurdles and fortress. The distance formula for
the reversal distance is

d(π) = n + 1− c(π) + h(π) + f(π)

5



where h(π) is the number of hurdles in RD(π) and f(π) the indicator variable
for a fortress (for details see [Hannenhalli and Pevzner, 1999]).

The original Hannenhalli-Pevzner algorithm [Hannenhalli and Pevzner,
1999] as well as the subquadratic algorithm of Tannier and Sagot [Tannier and
Sagot, 2004] require a permutation whose reality-desire diagram contains only
short cycles. Such a permutation is called a simple permutation. Hannenhalli
and Pevzner showed that every permutation π can be transformed into an
equivalent simple permutation π̂, i.e. a simple permutation with d(π̂) = d(π),
by padding additional elements to π. Moreover, a sorting sequence of π̂ can
be used to obtain a sorting sequence of π by ignoring the padded elements.

3 Creating equivalent simple permutations re-

visited

We first focus on the creation of simple permutations before we discuss the
creation of equivalent simple permutations. If a permutation π = π(0) has a
long cycle, Hannenhalli and Pevzner [Hannenhalli and Pevzner, 1999] trans-
form it into a new permutation π(1) by ,,breaking” this cycle into two smaller
ones. This step is repeated until a simple permutation π(k) is achieved.

On the reality-desire diagram the ,,breaking of a cycle” can be described
as follows. Let b = (vb1, vb2) be a reality edge and g = (vg1, vg2) a desire edge
belonging to a cycle C = (. . . , vb1, vb2, . . . , vg2, vg1, . . .) in RD(π(i)). A (b, g)-

split of RD(π(i)) produces a new diagram R̂D(π) = RD(π(i + 1)) which is
obtained from RD(π(i)) by:

1. removing edges b and g,

2. adding two new vertices x and y,

3. adding two new reality edges (vb1, x) and (y, vb2),

4. adding two new desire edges (vg1,x) and (y,vg2).

Two examples of such splits are illustrated in Fig. 2. As a result of the split
the cycles (. . . , vb1, x, vg1, . . .) and (. . . , vb2, y, vg2, . . .) are created.

The effect of a (b, g)-split on the permutation can be described as follows.
x and y are the nodes of a new element which lies between the consecutive
elements previously connected by g. That is, we now consider generalized

6



C
C

v1 v2 v3 v4 v6v7 v8 v9v5 v10 v1 v2 v3 v4 xy v5v6v7 v8 v9v10

(b)

v1 v2 v3 v9v10v5v6v8v7v4x y

CC

v1 v2 v3 v4 v6v7 v8 v9v5 v10

(a)

Figure 2: (a) An unsafe (b, g)-split with b = (v3, v4) and g = (v1, v10) that
produces a new hurdle. (b) A safe (b, g)-split with b = (v5, v6) and g =
(v2, v3), that does not produce any new components.

permutations which consists of arbitrary distinct reals instead of permuta-
tions of integers. Hannenhalli and Pevzner called the effects of a (b, g)-split
on the permutation a (b, g)-padding. We will only use the term (b, g)-split
as the two concepts are equivalent.

A (b, g)-split is safe if b and g are non-incident, and π(i) and π(i+1) have
the same number of hurdles; i.e. h(π(i)) = h(π(i + 1)). The first condition
assures that we do not produce a 1-cycle and a cycle with the same size as
the old cycle. Because a split is acting on a long cycle, the first condition is
easy to achieve. The second condition assures that the reversal distances of
π(i) and π(i + 1) are equal (note that a split increases both n and c by one,
and the fortress indicator cannot be changed without changing the number
of hurdles [Hannenhalli and Pevzner, 1999]). The following lemma shows
that to fulfill the second condition, it is sufficient to ensure that the resulting
cycles belong to the same component.

Lemma 3.1 ([Hannenhalli and Pevzner, 1999]) Let a (b, g)-split break
a cycle C in RD(π(i)) into cycles C1 and C2 in RD(π(i + 1)). Then C is
oriented if and only if C1 or C2 is oriented.

In other words, if we do not split a component into two components, the
orientation of the component is not changed. For the constructive proof of
the existence of safe splits we need the following lemma.

Lemma 3.2 ([Hannenhalli and Pevzner, 1999]) For every desire edge
g that does not belong to a 1-cycle, there exists a desire edge f interleaving
with g in RD(π). If C is a cycle in RD(π) and f 6∈ C then f interleaves
with an even number of desire edges in C.

7



And for the linear time algorithm we need the following corollary.

Corollary 3.3 Let C be a cycle of length ℓ > 1 in RD(π) with desire edges
g1 to gℓ. If these desire edges are pairwise non-interleaving, then there exists
a gj with 1 ≤ j < ℓ and a cycle C ′ 6= C with a desire edge f , such that f

interleaves both gj and gℓ.

Proof As C has no pairwise interleaving desire edges, gℓ does not interleave
with another desire edge of C. So Lemma 3.2 implies that gℓ interleaves with
a desire edge f of another cycle C ′. Because f is not in C, it interleaves with
an even number of desire edges in C. It follows that f interleaves with at
least one more desire edge gj (1 ≤ j < ℓ) of C. �

Theorem 3.4 ([Hannenhalli and Pevzner, 1999]) If C = (. . . , v1, . . . , v2ℓ, . . .)
is a long cycle in RD(π), then there exists a safe (b, g)-split acting on C.

The proof given in [Hannenhalli and Pevzner, 1999] is constructive. How-
ever, the construction cannot transform the whole permutation into a simple
permutation in linear time (which is the goal of our paper). Therefore, in
Section 3.2, we provide an algorithm that achieves this goal in linear time.

3.1 The data structure

We represent the reality-desire diagram as a linked list of 2n + 2 nodes. The
data structure node for each node v consists of the three pointers reality

(pointing to the node connected with v by a reality edge), desire (pointing
to the node connected with v by a desire edge), and co element (pointing
to the co-element of v), and the two variables position (the position w.r.t.
the leftmost node in the diagram), and cycle (the index j of cycle Cj the
node belongs to).

We can initialize this data structure for every permutation in linear time.
First, the initialization of reality, co element, and position can be done
with a scan through the permutation. Second, for the initialization of desire
we need the inverse permutation (mapping the nodes ordered by their label
to their position) which can also be generated in linear time. Finally, we
can initialize cycle by following the reality and desire edges which also takes
linear time.

Given a reality edge b = (vb1, vb2) and a desire edge g = (vg1, vg2), a (b, g)-
split can be performed in constant time (see Algorithm 1) if we disregard the

8



problem that we have to update the position variables of the new nodes and
all the nodes that lie to the right of b. Fortunately, we need position only to
determine if two edges of the same cycle interleave, thus it is sufficient if the
relative positions of the nodes of each cycle are correct. This information can
be maintained if we set the positions of the new nodes x and y to the positions
of the old nodes of b which are now non-incident to x or y. After performing
all splits, the reality-desire diagram can easily be transformed into the simple
permutation by following desire edges and co-element pointers.

Algorithm 1 (b,g)-split

1: function bg-split(b = (vb1, vb2), g = (vg1, vg2))
2: create new nodes x, y

3: vb1.reality = x; vb2.reality = y {adjust reality and desire edges}
4: x.reality = vb1; y.reality = vb2

5: vg1.desire = x; vg2.desire = y

6: x.desire = vg1; y.desire = vg2

7: x.position = vb2.position; y.position = vb1

8: return(x, y)

3.2 The algorithm

We now tackle the problem of transforming a permutation into an equivalent
simple permutation in linear time. The algorithm has two processing phases.

Phase 1:
Our goal in the first phase is to create short cycles or cycles that have no

interleaving desire edges. We achieve this goal with a scanline algorithm.
The algorithm requires two additional arrays: left[j] stores the leftmost
node of each cycle Cj and next[j] stores the right node of the desire edge
we are currently checking for interleavings. In both arrays, all variables are
initialized with UNDEF. In the following, vs denotes the current position of the
scanline. Before we describe the algorithm, we will first provide an invariant
for the scanline.

Invariant: If gi is a desire edge of the long cycle Cj with i < ℓj, and both
nodes of gi lie to the left of vs, then gi does not intersect with any other
desire edge of Cj.

9



It is clear that a cycle Cj has no interleaving edges if the invariant holds
and the scanline passed the rightmost node of Cj: gℓj

does also not interleave
with a desire edge of Cj because the interleaving relation is symmetric. As
vs is initialized with the leftmost node of RD(π), the invariant holds in the
beginning. While the scanline has not reached the right end of the diagram,
we repeat to analyze the following cases:

Case 1.1 vs is part of a short cycle.
We move the scanline to the left node of the next reality edge. As the
invariant only considers long cycles, the invariant is certainly preserved.

Case 1.2 vs is part of a long cycle Cj and next[j]=UNDEF.
That is, vs is the leftmost node of cycle Cj. So we set left[j]=vs.
To check whether g1 = (v2, v3) interleaves with another desire edge,
we store the right node of g1 in next[j] and move vs to the left node
of the next reality edge. Both nodes passed by the scanline (i.e. v1

and v2) are the left nodes of a desire edge, so the set of desire edges
that lie completely to the left of vs is not changed and the invariant is
preserved.

Case 1.3 vs is part of a long cycle Cj and next[j]6= vs.
Let next[j] be the node v2k+1, i.e. we check for a desire edge that
interleaves with gk (going from node v2k to node v2k+1). As pos(v1) <

pos(v2k) < pos(vs) < pos(v2k+1), there must be a desire edge gm be-
longing to Cj that interleaves with gk. We now distinguish three cases:

(a) gk is not g1 (for an example, see Fig. 3).
We perform a (b, g)-split with b = bk+1 and g = gk−1. That is,
we split the 2-cycle (v2k, v2k+1, x, v2k−1) from Cj. This split is safe
since gk now lies in the 2-cycle that still interleaves with gm, which
belongs to Cj. The right node of the new gk−1 in Cj is y, so we
adjust next[j] to y.

(b) gk is g1 and gk interleaves with gℓj
(see Fig. 4).

We perform a (b, g)-split with b = b1 and g = g2. That is, we split
the 2-cycle (v2, v3, v4, y) from Cj. This split is safe since g1 now
lies in the 2-cycle that still interleaves with gℓj

, which belongs to
Cj. Now, g1 = (x, v5), so we set next[j]=v5. Note that v5 cannot
be to the left of vs, as vs is the leftmost node that belongs to Cj

and has an index ≥ 4.

10



v1 v2 v3 v4 viv1 v2 v3 v4 vi

gmgm

v1 v2 v3 v4 v5vi v6x yv1 v2 v3 v4 v5 v6vi

gmgm

g1

g1

g2

g2

b3

b3

v5v6 v5v6 y x

(b, g)− split

(b, g)− split

(i)

(ii)

Figure 3: Case 1.3 (a): (i) gk = g2 is unoriented or (ii) oriented.

(c) gk is g1 and gk does not interleave with gℓj
(see Fig. 5).

It follows that gm 6= gℓj
. We perform a (b, g)-split with b = b2 and

g = gℓj
. That is, we split the 2-cycle (v2, v3, x, v1) from Cj. This

split is safe since g1 now lies in the 2-cycle that still interleaves with
gm. As the old leftmost node and reality edge of Cj lie in the 2-
cycle we set next[j] = UNDEF which forces the re-initialization
of left[j] with vs and next[j].

In all of these cases, we do not create a desire edge that lies completely
to the left of vs, so the invariant is preserved.

Case 1.4 vs is part of a long cycle Cj and next[j]=vs.
That is, we reach the right node of a desire edge gk. It follows that
gk does not interleave which any other desire edge of Cj since we have
not detected a node of Cj between the left and right node of gk. Thus
moving vs to the right preserves the invariant. The next desire edge to
check is gk+1 = (v2(k+1), v2(k+1)+1), so we set next[j] to the right node
of gk+1 and move vs to the left node of the next reality edge.

We will now analyze the running time of the first phase. In each step we
either move the scanline further right (cases 1.1, 1.2, and 1.4) or perform a
safe (b, g)-split (cases 1.3(a), 1.3(b), and 1.3(c)). As we can perform at most
n splits and the resulting diagram can have at most 2n reality edges, we have
to perform at most 3n steps. Each step takes constant time.

11



v1 v2

g1

gℓj

vℓj
vi v3v4

v1 v2

g1

gℓj

v3 v4vℓj
vi v2 v3 v4vℓj

viv1 x y

gℓj

v2 vℓj
viv1 x y

gℓj

v4 v3

(b, g)− split

(b, g)− split

(i)

(ii)

Figure 4: Case 1.3 (b): (i) g1 is unoriented or (ii) oriented.

v1 v2 vi v3 v4

gℓj

g1

b1

gm

(b, g)− split

(b, g)− split

v1 v2 viv1 v2 vi

gℓj

g1

b1

v3v4

gm

v4 v3xy

gm

v1 v2 vi v3

gℓj

g1 gm

v4x y

(i)

(ii)

Figure 5: Case 1.3 (c): (i) g1 is unoriented or (ii) oriented.

Phase 2 After phase 1 we can assure that there remain only short cycles
and long cycles with pairwise non-interleaving desire edges. These long cycles
have a special structure. The positions of the nodes v1, . . . , v2ℓj

of a cycle Cj

are strictly increasing and so the first ℓj − 1 desire edges gi (i < ℓj) lie one
after another. gℓj

connects the leftmost and rightmost node of Cj. As we
know from Corollary 3.3 there exists a desire edge f of a cycle C ′ 6= Cj that
interleaves with gℓj

and another desire edge gk of Cj.
We can detect this gk by first determining a desire edge f which has a

node in the interval Ij = [pos(v1), pos(v2ℓj
)] and interleaves with gℓj

. Second,
we get the gi that interleaves with f by checking for every desire edge 6= gℓj

whether it interleaves with f . As I is decomposed by the intervals of the
desire edges in distinct areas, we get the corresponding gi in at most ℓj steps.

Clearly, the second step takes
∑c(π)

j=1 ℓj = O(n) time. In the first step, we

12



use a stack based algorithm to achieve a linear running time. In each step of
the algorithm, the stack will contain a set of intervals Ij of cycles Cj, such
that each interval on the stack is completely contained in all other intervals
that are below it on the stack (i.e. the topmost interval is contained in all
other intervals on the stack). We scan the reality-desire diagram from left to
right. For each node v, we check whether its desire edge f = (v, w) interleaves
with the topmost interval Ij of the stack. If so, we report the interleaving
edges f and gℓj

, pop Ij from the stack, check whether f interleaves with the
new top interval, and so on, until f does not interleave with the top interval.
As the top interval is contained in all other intervals of the stack and Lemma
3.2 ensures that we find an interleaving edge before we reach the right end of
the interval (i.e. v is contained in the topmost interval), f cannot interleave
with any other interval on the stack. If v is the leftmost node of a cycle Cj,
we push Ij on the stack (note that this interval is equivalent to the desire
edge gℓj

, so it does not interleave with the topmost interval and is therefore
contained in it). In all cases, we continue by moving the scanline one node
to the right. The algorithm stops when we have reached the right end of the
diagram. During the algorithm, we push the interval Ij of each cycle Cj on
the stack, and pop this cycle when we reach a node v in Ij such that the
desire edge (v, w) interleaves with Ij. As this node must exist for each cycle
(see Lemma 3.2), we find for each cycle Cj an edge that interleaves with gℓj

.
After finding all gk’s we distinguish two cases for a safe (b, g)-split:

Case 2.1 gℓj−1 6= gk (see Fig. 6(i)).
We perform the (b, g)-split on C with b = b1 and g = gℓj−1. We get
C1 = (v1, x, v2ℓj−1, v2ℓj

) and C2 = (y, v2, . . . , v2ℓj−2). As f interleaves
with g1 which is now part of C1 and gi which is now part of C2 the
component structure remains the same.

Case 2.2 gℓj−1 = gk (see Fig. 6(ii)).
We perform the (b, g)-split on C with b = bℓj

and g = g1. We get
C1 = (v1, v2, y, v2ℓj

) and C2 = (x, v3, v4, . . . , v2ℓj−1). As f interleaves
with g1 which is now part of C1 and gi which is now part of C2 the
component structure remains the same.

In both cases, gk becomes a desire edge of the cycle C2, and f intersects both
gk and gℓ′ (where ℓ′ is the length of C2). Thus we do not have to recalculate
the edge gk, and can repeat this step on C2 until the remaining cycles are all
2-cycles. The pseudo code of the whole algorithm is presented in Appendix

13



v1 v2 v1

gℓj

g1

f f

bℓj

v1 v2 v1

gℓj

g1

b1

f

gℓj−1

f

v2 y v2ℓj
x

v2 x y v2ℓj

(b, g)− split

(b, g)− split

(i)

(ii)

Figure 6: (i) depicts Case 2.1 and (ii) Case 2.2.

A.

4 The back transformation

In the previous section, we have shown how one can transform a permutation
π = 〈π1, . . . , πn〉 into the equivalent simple permutation π̂ = 〈π̂1, . . . , π̂n〉.
After one have found a rearrangement scenario on π̂ the remaining step is
to transform this into a sorting on π. In the naive approach, if we have a
reversal ρ(i, j) on π̂, we would scan π̂ beginning at π̂i (for i) and π̂j (for j) up
to the next elements that are not padded elements. Then we must determine
the position of these elements in π. As each of these operations requires
O(n) steps in the worst case, the whole algorithm would have quadratic
running time. Thus, we will now describe a data structure that supports the
following two operations in logarithmic time. (1) transform a reversal on π̂

into the corresponding reversal on π in O(log n) time, and (2) update the
data structure after a reversal. This allows us to transform a sorting of π̂

into a sorting of π in O(n log n) time. In this section, we will assume that
a reversal is specified by its boundary elements, not its positions. Although
this is contrary to our previous definition of a reversal, this is the easiest way
to specify a reversal if one implements one of the algorithms that work on
simple permutations. At the end of this section, we will show that calculating
the position of an element and vice versa can be done in logarithmic time
with our data structure, so this will not change the overall time complexity
of the algorithm. In fact, we can simplify our data structure if the reversals

14



on the simple permutation are specified by positions on π̂.

4.1 The data structure

Our data structure is based on balanced binary search trees (BBS trees), like
splay trees, 2-3 trees, AVL trees, and red-black trees. The height of these
trees is logarithmic in the number of their nodes, and they support concate-
nation of two trees and split into two trees in logarithmic time (for details
on these algorithms, see [Knuth, 1973, Crane, 1972]). In our examples, we
will use red-black trees (see e.g. [Cormen et al., 2001]).
Let π̃1, . . . , π̃n be the elements in π̂ that correspond to the elements in π.
We call these elements original elements, all other elements are padded el-
ements. For 1 ≤ i < n, let Ii be the interval of padded elements that
lie between π̃i and π̃i+1 in π̂. Note that the padding algorithm never adds
elements before the first or after the last element, and these elements are
also never touched during the sorting algorithm. Thus we can write π̂ =
〈π̃1, I1, π̃2, I2, . . . , π̃n−1, In−1, π̃n〉. Note that each of these intervals may also
be empty. During the algorithm, the position of original elements and inter-
vals will change, but original elements and intervals will always be alternat-
ing. For each interval Ii, we store the order of its elements in a BBS tree Ti.
Each element in Ii is linked to a node in Ti. Additionally, each node in the
tree has an orientation flag that indicates whether the subtree is inverted (i.e.
we first have to read the right subtree in inverted order, then the element of
the current node as inverted element, then the left subtree in inverted order)
or not. This allows us to make a reversal of a whole subtree by just changing
one flag. The real orientation of a node depends on its own orientation flag
and the orientation flags of all its ancestors, i.e. if both the root node and its
child node have a negative orientation flag, then the child node has a positive
orientation. We store the alternating order of intervals and original elements
in a further tree Tπ, i.e. the nodes of this tree are either an original element
or an interval of padded elements Ii. Each root node of a tree Ti is then
linked to the node Ii in Tπ. See Fig. 7 for an example. For Tπ, we will use
an order-statistics tree (OS tree), i.e. a BBS tree in which each node also
stores the number of elements in its left and right subtree. Thus one can
get the position of an element by a bottom-up traversal in logarithmic time.
As original elements and intervals of padded elements are alternating in this
tree, we can easily calculate the position of an original element in π if we
know its position in Tπ. Also in this tree, each node has the orientation flag,

15



T2

Tπ

7,−

1, + 3, +

I2, +

I4, +

I5, +

0, + 5, + 4,− 6, +

8, +2, +I3, +I1, +

Figure 7: The data structure for π̂ = 〈
−→
0 ,
−→
5 ,
←−
3 ,
←−
7 ,
←−
1 ,
←−
4 ,
−→
6 ,
−→
2 ,
−→
8 〉, where

3, 7, and 1 are padded elements. All interval trees except for T2 are empty.
Note that the negation of all elements in T2 is done by the sign in its root
node. The coloring of a node (red/black) is indicated by the circle type
(solid/non-solid), the orientation by the sign after its labeling.

as described for the trees Ti. The tree Tπ is very similar to the tree proposed
by Kaplan and Verbin for maintaining the permutation [Kaplan and Verbin,
2003], with the difference that in their tree, each node corresponds to one
element in the permutation, whereas the nodes in our tree either correspond
to an original element or to an interval of padded elements. We will now show
how we can efficiently perform the two operations on the data structure.

4.2 Transforming a reversal on π̂ into a reversal on π

If we have a reversal on π̂ that is bounded by the two elements π̂a and π̂b

(lying in Ii and Ij), we traverse the corresponding trees Ti and Tj bottom-up,
beginning at the corresponding nodes. This leads to two nodes in Tπ, and
we can also traverse this tree bottom-up to get the positions of the nodes in
Tπ (of course, if one of π̂a and π̂b is an original element, we start the tree
traversal for this element directly in Tπ). Having these positions, it is easy to

16



transform them into the corresponding positions in π. As the depth of the
trees is logarithmic in their size and therefore in n, this task can be done in
O(log n).

4.3 Update of the data structure

Let us assume we have a reversal bounded by the two padded elements π̂a

and π̂b, where π̂a lies in Ii, and π̂b lies in Ij. W.l.o.g. Ii comes before Ij in
the current permutation. The reversal causes the following changes on the
interval trees. If an interval Ik lies between Ii and Ij, the whole interval is
inverted, i.e. the orientation flag on the root node of Tk must be changed.
We cannot do this directly for each tree Tk as there are O(n) trees in the
worst case, but we can manage this by inverting the appropriate nodes in Tπ

(i.e. the orientation of an interval Ik does not only depend on the orientation
flag at the root node of Tk but also on the orientation flags on the path from
Ik to the root node in Tπ). Then, we must split Ti into two trees Ta and
Tb. Tree Ta contains the elements of Ii that are not involved in the reversal,
whereas Tb contains those that are involved. Analogously, we split Tj into
the trees Tc (containing the involved elements of Ij) and Td (containing the
elements that are not involved). Next, we invert the orientation flag of the
root nodes of Tb and Tc (this means an invertion of all elements in these
trees), and concatenate Ta and Tc (resulting in the updated tree Ti) as well
as Tb and Td (resulting in the updated tree Tj). Note that the split and
concatenation operations require only logarithmic time. Updating Tπ works
analogously, except that we have to split the tree into three trees Ta (left
of inverted region), Tb (inverted region), and Tc (right of inverted region).
Again, we invert the orientation flag at the root node of Tb, and merge the
trees into the updated tree Tπ. Note that this also affects the orientation of
all Tk that lie completely in the inverted region, as mentioned above.
We have described the algorithm for reversals that are bounded by two
padded elements. If one of the bounding elements is an original element,
the algorithm becomes even easier - we do not have to split the correspond-
ing interval tree, everything else remains the same. For an example, see
Fig. 8.
Note that we assume that the reversal on π̂ is specified by its bounding ele-

ments, not by its positions. If one implements e.g. the algorithm of Tannier
and Sagot [Tannier and Sagot, 2004], it is easier to specify the reversals like
this. If we get the reversals in the usual way (i.e. as positions), our algo-

17



5, +

(a)

Ta (left of inverted region) Tb (inverted region) Tc (right of inverted region)

I4, +

I5, +

8, +
0, +

I2, + 2, +

4,− 6, +

I1, + I3, +

Tπ

(b)

0, + 5, +

I4,−

4,−

I3,−

6, +

I2,−

2,−I1, +

8, +

I5, +

Figure 8: The effect of inverting the elements from
←−
7 to

−→
2 in the example

permutation of Fig. 7. (a) Tπ is split into three trees Ta, Tb, and Tc. (b)
The tree Tπ after inverting the orientation of Tb and merging the trees. Note
that the orientation of a node depends on its own sign as well as on the
signs of all its ancestors (e.g. the element 4 is not inverted in the resulting
permutation, as there is a minus sign in this node as well as in its parent
node I4). After the reversal, I2 contains the element 3 (inverted), while I5

contains the elements 1 and 7 (both with positive orientation).

18



rithm still works, as we can get the corresponding elements with a top-down
traversal of Tπ. In fact, in this case we even do not need the interval trees Ti,
it is sufficient to store the size of the intervals, what eases up the algorithm.

References

D.A. Bader, B.M.E. Moret, and M. Yan. A linear-time algorithm for comput-
ing inversion distance between signed permutations with an experimental
study. Journal of Computational Biology, 8:483–491, 2001.

M. Bader and E. Ohlebusch. Sorting by weighted reversals, transpositions,
and inverted transpositions. Journal of Computational Biology, 14(5):615–
636, 2007.

V. Bafna and P.A. Pevzner. Genome rearrangements and sorting by reversals.
SIAM Journal on Computing, 25(2):272–289, 1996.

A. Bergeron, J. Mixtacki, and J. Stoye. Reversal distance without hurdles
and fortresses. In Proc. 15th Annual Symposium on Combinatorial Pattern
Matching, volume 3109 of LNCS, pages 388–399. Springer-Verlag, 2004.

P. Berman and S. Hannenhalli. Fast sorting by reversals. In Proc. 7th Sym-
posium on Combinatorial Pattern Matching, volume 1075 of LNCS, pages
168–185. Springer-Verlag, 1996.

T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to
Algorithms, Second Edition. MIT Press and McGraw-Hill Book Company,
2001.

C.A. Crane. Linear lists and priority queues as balanced binary trees. PhD
thesis, Stanford University, 1972.

I. Elias and T. Hartman. A 1.375-approximation algorithm for sorting by
transpositions. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 3(4):369–379, 2006.

Y. Han. Improving the efficiency of sorting by reversals. In Proc. Inter-
national Conference on Bioinformatics and Computational Biology, pages
406–409. CSREA Press, 2006.

19



S. Hannenhalli and P.A. Pevzner. Transforming cabbage into turnip: poly-
nomial algorithm for sorting signed permutations by reversals. Journal of
the ACM, 46(1):1–27, 1999.

T. Hartman and R. Shamir. A simpler and faster 1.5-approximation algo-
rithm for sorting by transpositions. Information and Computation, 204(2):
275–290, 2006.

T. Hartman and R. Sharan. A 1.5-approximation algorithm for sorting by
transpositions and transreversals. Journal of Computer and System Sci-
ences, 70(3):300–320, 2005.

H. Kaplan and E. Verbin. Efficient data structures and a new randomized
approach for sorting signed permutations by reversals. In Proc. 14th Sym-
posium on Combinatorial Pattern Matching, volume 2676 of Lecture Notes
in Computer Science, pages 170–185. Springer-Verlag, 2003.

H. Kaplan, R. Shamir, and R.E. Tarjan. A faster and simpler algorithm for
sorting signed permutations by reversals. SIAM Journal on Computing,
29(3):880–892, 1999.

D.E. Knuth. The Art of Computer Programming, Volume III: Sorting and
Searching. Addison-Wesley, 1973.

J.C. Setubal and J. Meidanis. Introduction to Computational Molecular Bi-
ology. PWS Publishing Company, 1997.

E. Tannier and M.-F. Sagot. Sorting by reversals in subquadratic time. In
Proc. 15th Annual Symposium on Combinatorial Pattern Matching, vol-
ume 3109 of LNCS, pages 1–13. Springer-Verlag, 2004.

E. Tannier, A. Bergeron, and M.-F. Sagot. Advances on sorting by reversals.
Discrete Applied Mathematics, 155:881–888, 2007.

20



A Code

Algorithm 2 Equivalent transformation into a simple permutation in linear
time
1: read π and construct the reality-desire diagram RD(π)
2: mark and count cycles in RD(π)
3: left[1..c(π)] := {undef, . . . ,undef}; next[1..c(π)] := {undef, . . . ,undef}
4: set scanline vs to the leftmost node of RD(π)
5: while vs 6= nil do

6: j:=vs.cycle

7: if vs is part of a short cycle then

8: vs := vs.reality.co element

9: else if next[j] = undef then {we reach the leftmost point of cycle Cj}
10: left[j] := vs

11: next[j] := vs.reality.desire

12: vs := vs.reality.co element

13: else if vs = next[j] then {i.e. gi does not interleave with edge from Cj}
14: next[j] := vs.reality.desire

15: vs := vs.reality.co element

16: else if gk is not g1 then

17: (x,y):=bg-split(bk+1,gk−1)
18: next[j] := y

19: else if gk interleaves with gℓj
then

20: (x,y):=bg-split(b1,g2)
21: next[j] := v5

22: else {gk does not interleave with gℓj
}

23: bg-split(b2,gℓj
)

24: next[j] := undef
25: calculate the absolute position for each node in RD(π′)
26: create stack ACTIVE CYCLE
27: set scanline vs to the leftmost node of RD(π′)
28: while vs 6= NIL do

29: while ACTIVE CYCLE is not empty do

30: gℓ:=ACTIVE CYCLE.top
31: if (vs, vs.desire) or (vs.reality, vs.reality.desire) interleaves with gℓ

then

32: determine gk

33: ACTIVE CYCLE.pop
34: else

35: break
36: if vs is the leftmost node of a long cycle then

37: ACTIVE CYCLE.push((vs, vs.desire))
38: vs := vs.reality.co element

39: for each node vi do

40: if vi is the leftmost node of a long cycle Cj then

41: if gℓj−1 6= gk then

42: bg-split(b1, gℓj−1)
43: else

44: bg-split(bℓj
,g1)

21


