
Choosing Probability Distributions for
Stochastic Local Search and the Role of Make

versus Break

Adrian Balint and Uwe Schöning

Ulm University
Institute of Theoretical Computer Science

89069 Ulm, Germany
{adrian.balint,uwe.schoening}@uni-ulm.de

Abstract. Stochastic local search solvers for SAT made a large progress
with the introduction of probability distributions like the ones used by
the SAT Competition 2011 winners Sparrow2010 and EagleUp. These
solvers though used a relatively complex decision heuristic, where prob-
ability distributions played a marginal role.
In this paper we analyze a pure and simple probability distribution based
solver probSAT, which is probably one of the simplest SLS solvers ever
presented. We analyze different functions for the probability distribution
for selecting the next flip variable with respect to the performance of
the solver. Further we also analyze the role of make and break within
the definition of these probability distributions and show that the gen-
eral definition of the score improvement by flipping a variable, as make
minus break is questionable. By empirical evaluations we show that the
performance of our new algorithm exceeds that of the SAT Competition
winners by orders of magnitude.

1 Introduction

The propositional satisfiability problem (SAT) is one of the most studied NP-
complete problems in computer science. One reason is the wide range of SAT’s
practical applications ranging from hardware verification to planning and schedul-
ing. Given a propositional formula in conjunctive normal form (CNF) with vari-
ables {x1, . . . , xN} the SAT-problem consists in finding an assignment for the
variables such that all clauses are satisfied.

Stochastic local search (SLS) solvers operate on complete assignments and
try to find a solution by flipping variables according to a given heuristic. Most
SLS-solvers are based on the following scheme: Initially, a random assignment
is chosen. If the formula is satisfied by the assignment the solution is found. If
not, a variable is chosen according to a (possibly probabilistic) variable selection
heuristic, which we further call pickVar. The heuristics mostly depend on some
score, which counts the number of satisfied/unsatisfied clauses, as well as other
aspects like the “age” of variables, and others. It was believed that a good

flip heuristic should be designed in a very sophisticated way to obtain a really
efficient solver. We show in the following that it is worth to “come back to
the roots” since a very elementary and (as we think) elegant design principle
for the pickVar heuristic just based on probability distributions will do the job
extraordinary well.

It is especially popular (and successful) to pick the flip variable from an
unsatisfied clause. This is called focussed local search in [11, 14]. In each round,
the selected variable is flipped and the process starts over again until a solution is
eventually found. Depending on the heuristic used in pickVar SLS-solvers can be
divided into several categories like GSAT, WalkSAT, and dynamic local search
(DLS).

Most important for the flip heuristic seems to be the score of an assign-
ment, i.e. the number of satisfied clauses. Considering the process of flipping one
variable, we get the relative score change produced by a candidate variable for
flipping as: (score after flipping minus score before flipping) which is equal to
(make minus break). Here make means the number of newly satisfied clauses
which come about by flipping the variable, and break means the number of
clauses which become false by flipping the respective variable. To be more pre-
cise we will denote make(x,a) and break(x,a) as functions of the respective flip
variable x and the actual assignment a (before flipping). Notice that in case of
focussed flipping mentioned above the value of make is always at least 1.

Most of the SLS solvers so far, if not all, follow the strategy that whenever
the score improves by flipping a certain variable from an unsatisfied clause, they
will indeed flip this variable without referring to probabilistic decisions. Only if
no improvement is possible as is the case in local minima, a probabilistic strategy
is performed, which is often specified by some decision procedure. The winner of
the SAT Competition 2011 category random SAT, Sparrow, mainly follows this
strategy but when it comes to a probabilistic strategy it uses a probability distri-
bution function instead of a decision procedure [2]. The probability distribution
in Sparrow is defined as an exponential function of the score. In this paper we
analyze several simple SLS solvers that use only probability distributions within
their search.

2 The New Algorithm Paradigm

We propose a new class of solvers here, called probSAT, which base their prob-
ability distributions for selecting the next flip variable solely on the make and
break values, but not necessarily on the value of (make minus break), as it was
the case in Sparrow. Our experiments indicate that the influence of make should
be kept rather weak – it is even reasonable to ignore make completely, like in
implementations of WalkSAT. The role of make and break in these SLS-type
algorithms should be seen in a new light. The new type of algorithm presented
here can also be applied for general constraint satisfaction problems and works
as follows.

Algorithm 1: ProbSAT

Input : Formula F , maxTries, maxFlips
Output: satisfying assignment a or UNKNOWN

1 for i = 1 to maxTries do
2 a← randomly generated assignment
3 for j = 1 to maxFlips do
4 if (a is model for F) then
5 return a

6 Cu ← randomly selected unsat clause
7 for x in Cu do
8 compute f(x,a)

9 var ← random variable x according to probability f(x,a)∑
z∈Cu

f(z,a)

10 flip(var)

11 return UNKNOWN;

The idea here is that the function f should give a high value to variable
x if flipping x seems to be advantageous, and a low value otherwise. Using f
the probability distribution for the potential flip variables is calculated. The flip
probability for x is proportional to f(x,a). Letting f be a constant function
leads in the k-SAT case to the probabilities (1

k , . . . ,
1
k) morphing the probSAT

algorithm to the random walk algorithm that is theoretically analyzed in [12]. In
all our experiments with various functions f we made f depend on break(x,a)
and possibly on make(x,a), and no other properties of x and a. In the following
we analyze experimentally the effect of several functions to be plugged in for f .

2.1 An exponential function

First we considered an exponential decay, 2-parameter function:

f(x,a) =
(cm)make(x,a)

(cb)break(x,a)

The parameters are cb and cm. Because of the exponential functions used here
(think of cx = e

1
T x) this is reminiscence of the way Metropolis-like algorithms

(see [14]) select a variable. We call this the exp-algorithm. Notice that we separate
into the two base constants cm and cb which allow us to find out whether there
is a different influence of the make and the break value – and there is, indeed.

It seems reasonable to try to maximize make and to minimize break. There-
fore, we expect cm > 1 and cb > 1 to be good choices for these parameters.
Actually, one might expect that cm should be identical to cb such that the above
formula simplifies to cmake−break = cscorechange for an appropriate parameter c.

To get a picture on how the performance of the solver varies for different
values of cm and cb, we have done a uniform sampling of cb ∈ [1.0, 4.0] and
of cm ∈ [0.1, 2.0] for this exponential function and of cm ∈ [−1.0, 1.0] for the

Fig. 1. Parameter space performance plot: The left plots show the performance
of different combinations of cb and cm for the exponential (upper left corner) and the
polynomial (lower left corner) functions. The darker the area the better the runtime of
the solver with that parameter settings. The right plots show the performance variation
if we ignore the make values (correspond to the cut in the left plots) by setting cm = 1
for the exponential function and cm = 0 for the polynomial function.

polynomial function (see below). We have then ran the solver with the different
parameter settings on a set of randomly generated 3-SAT instances with 1000
variables at a clause to variable ratio of 4.26. The cutoff limit was set to 10
seconds. As a performance measure we use par10: penalized average runtime,
where a timeout of the solver is penalized with 10·(cutoff limit). A parameter
setting where the solver is not able to solve anything has a par10 value of 100.

In the case of 3-SAT a very good choice of the parameters is cb > 1 (as
expected) and cm < 1 (totally unexpected), for example, cb = 3.6 and cm = 0.5

(see Figure 1 left upper diagram and the survey in Table 1) with a small variation
depending on the considered set of benchmarks. In the interval cm ∈ [0.3, 1.8]
the optimal choice of parameters can be described by the hyperbola-like function
(cb − 1.3) · cm = 1.1. Almost optimal results were also obtained if cm is set to 1
(and cb to 2.5), see Figure 1, both upper diagrams. In other words, the value of
make is not taken into account in this case.

As mentioned, it turns out that the influence of make is rather weak, there-
fore it is reasonable, and still leads to very good algorithms – also because the
implementation is simpler and has less overhead – if we ignore the make-value
completely and consider the one-parameter function:

f(x,a) = (cb)
−break(x,a)

We call this the break-only-exp-algorithm.

2.2 A polynomial function

Our experiments showed that the exponential decay in probability with growing
break-value might be too strong in the case of 3-SAT. The above formulas have
an exponential decay in probability comparing different (say) break-values. The
relative decay is the same when we compare break = 0 with break = 1, and
when we compare, say, break = 5 with break = 6. A “smoother” function for
high values would be a polynomial decay function. This led us to consider the
following, 2-parameter function (ε = 1 in all experiments):

f(x,a) =
(make(x,a))cm

(ε+ break(x,a))cb

We call this the poly-algorithm. The best parameters in case of 3-SAT turned
out to be cm = −0.8 (notice the minus sign!) and cb = 3.1 (See Figure 1, lower
part). In the interval cm ∈ [−1.0, 1.0] the optimal choice of parameters can be
described by the linear function cb + 0.9cm = 2.3. Without harm one can set
cm = 0, and then take cb = 2.3, and thus ignore the make-value completely.

Ignoring the make-value (i.e. setting cm = 0) brings us to the function

f(x,a) = (ε+ break(x,a))−cb

We call this the break-only-poly-algorithm.

2.3 Some Remarks

As mentioned above, in both cases, the exp- and the poly-algorithm, it was a
good choice to ignore the make-value completely (by setting cm = 1 in the exp-
algorithm, or by setting cm = 0 in the poly-algorithm). This corresponds to the
vertical lines in Figure 1, left diagrams. But nevertheless, the optimal choice in
both cases, was to set cm = 0.5 and cb = 3.6 in the case of the exp-algorithm (and

similarly for the poly-algorithm.) We have 0.5make

3.6break ≈ 3.6−(break+make/2). This

can be interpreted as follows: instead of the usual scorechange = make− break
a better score measure is −(break +make/2).

The value of cb determines the greediness of the algorithm. We concentrate
on cb in this discussion since it seems to be the more important parameter.
The higher the value of cb, the more greedy is the algorithm. A low value of
cb (in the extreme, cb = 1 in the exp-algorithm) morphs the algorithm to a
random walk algorithm with flip probabilities (1

k , . . .
1
k) like the one considered

in [12]. Examining Figure 2, almost a phase-transition can be observed. If cb falls
under some critical value, like 2.0, the expected run time increases tremendously.
Turning towards the other side of the scale, increasing the value of cb, i.e. making
the algorithm more greedy, also degrades the performance but not with such an
abrupt rise of the running time as in the other case.

3 Experimental Analysis of the functions

To determine the performance of our probability distribution based solver we
have designed a wide variety of experiments. In the first part of our experiments
we try to determine good settings for the parameters cb and cm by means of
automatic configuration procedures. In the second part we will compare our
solver to other state-of-the-art solvers.

3.1 The Benchmark Formulae

All random instances used in our settings are uniform random k-SAT problems
generated with different clause to variable ratios, which we denote with α. The
class of random 3-SAT problems is the best studied class of random problems
and because of this reason we have four different sets of 3-SAT instances.

1. 3sat1k[15]: 103 variables at α = 4.26 (500 instances)
2. 3sat10k[15]: 104 variables at α = 4.2 (500 instances)
3. 3satComp[16]: all large 3-SAT instances from the SAT Competition 2011

category random with variables range 2 · 103 . . . 5 · 104 at α = 4.2 (100
instances)

4. 3satExtreme: 105 . . . 5 · 105 variables at α = 4.2 (180 instances)

The 5-SAT and 7-SAT problems used in our experiments come from [15]: 5sat500
(500 variables at α = 20) and 7sat90 (90 variables at α = 85). The 3sat1k,
3sat10k, 5sat500 and 7sat90 instance classes are divided into two equal sized
classes called train and test. The train set is used to determine good parameters
for cb and cm and the second class is used to report the performance. Further
we also include the set of satisfiable random and crafted instances from the SAT
Competition 2011.

3sat1k 3sat10k 5sat500 7sat90

exp(cb, cm) 3.6 0.5 3.97 0.3 3.1 1.3 3.2 1.4
poly(cb, cm) 3.1 -0.8 2.86 -0.81 - -
exp(cb) 2.50 2.33 3.6 4.4
poly(cb) 2.38 2.16 - -

Table 1. Parameter setting for cb and cm: Each cell represents a good setting for
cb and cm dependent on the function used by the solver. Parameters values around
these values have similar good performance.

3.2 Good parameter setting for cb and cm

The problem that every solver designer is confronted with is the determination
of good parameters for its solvers. We have avoided to accomplish this task by
manual tuning but instead have used an automatic procedure.

As our search space is relatively small, we have opted to use a modified version
of the iterated F-race [5] configurator, which we have implemented in Java. The
idea of F-race is relatively simple: good configurations should be evaluated more
often than poor ones which should be dropped as soon as possible. F-race uses
a family Friedman test to check if there is a significant performance difference
between solver configurations. The test is conducted every time the solvers have
been run on an instance. If the test is positive poor configurations are dropped,
and only the good ones are further evaluated. The configurator ends when the
number of solvers left in the race is less than 2 times the number of parameters
or if there are no more instances to evaluate on.

To determine good values for cb and cm we have run our modified version of
F-race on the training sets 3sat1k, 3sat10k, 5sat500 and 7sat90. The cutoff time
for the solvers were set to 10 seconds for 3sat1k and to 100 seconds for the rest.
The best values returned by this procedure are listed in Table 1. Values for the
class of 3sat1k problems were also included, because the preliminary analysis of
the parameter search space was done on this class. The best parameter of the
break-only-exp-algorithm for k-SAT can be roughly described by the formula
cb = k0.8.

For the 3sat10k instance set the parameter space performance plots in Fig-
ure 2 looks similar to that of 3sat1k (Figure 1), though the area with good
configurations is narrower, which can be explained by the short cutoff limit of
100 seconds used for this class (SLS solvers from the SAT Competition 2011 had
an average runtime of 180 seconds on this type of instances).

In case of 5sat500 and 7sat90 we have opted to analyze only the exponential
function because the polynomial function, other than in the 3SAT case, exhibited
poor performance on these sets. Figure 3 shows the parameter space performance
plot for the 5sat500 and 7sat90 sets. When comparing these plots with those
for 3-SAT, the area with good configurations is much larger. For the 7-SAT
instances the promising area seems to take almost half of the parameter space.
The performance curve of the break-exp-only algorithm is also wider than that
of 3-SAT and in the case of 7-SAT no clear curve is recognizable.

Fig. 2. Parameter space performance plot: The runtime of the solver using dif-
ferent function and for varying cb and cm on a the 3sat10k instances set.

4 Evaluations

In the second part of our experiments we compare the performance of our solvers
to that of the SAT Competition 2011 winners and also to WalkSAT SKC. An
additional comparison to a survey propagation algorithm will show how far our
probSAT local search solver can get.

4.1 Soft- and Hardware

The solvers were run on a part of the bwGrid clusters [4] (Intel Harpertown
quad-core CPUs with 2.83 GHz and 8 GByte RAM). The operating system was
Scientific Linux. All experiments were conducted with EDACC, a platform that
distributes solver execution on clusters [1].

Fig. 3. Parameter space performance plot: The runtime of the exp-solvers with
different functions and varying cb and cm on a the 5sat500 instances at the top and on
the 7sat90 instances bottom.

4.2 The competitors

The WalkSAT SKC solver is implemented within our own code basis. We use
our own implementation and not the original code provided by Henry Kautz,
because our implementation is approximately 1.35 times faster. We have used
version 1.4 of the survey propagation solver provided by Zecchina1, which was
changed to be DIMACS conform. For all other solvers we have used the binaries
from the SAT Competition 20112.

1 http://users.ictp.it/~zecchina/SP/
2 http://www.cril.univ-artois.fr/SAT11/solvers/SAT2011-static-binaries.

tar.gz

Parameter settings for competitors Sparrow is highly tuned on our target
set of instances and incorporates optimal settings for each set within its code.
WalkSAT has only one single parameter, the walk probability wp. In case of
3-SAT we took the optimal values for wp = 0.567 computed in [7]. Because
we could not find any settings for 5-SAT and 7-SAT problems we have run our
modified version of F-race to find good settings. For 5sat500 the configurator
reported wp = 0.25 and for 7sat90 wp = 0.1. The survey propagation solver was
evaluated with the default settings reported in [17].

4.3 Results

We have evaluated our solvers and the competitors on the test set of the instance
sets 3sat1k, 3sat10k, 5sat500 and 7sat90 (note that the training set was used only
for finding good parameters for the solvers). The parameter setting for cb and
cm are those from Table 1 (in case of 3-SAT we have always used the parameters
for 3sat10k). The results of the evaluations are listed in Table 2.

3sat10k 3satComp 3satExtreme 5sat500 7sat90

exp(cb, cm) 46.6 (998) 93.84 (500) - 12.49 (103) 201.68 (974)

poly(cb, cm) 46.65 (996) 76.81 (500) - - -

exp(cb) 53.02 (997) 126.59 (500) - 7.84 (103) 134.06 (984)

poly(cb) 22.80 (1000) 54.37 (500) 1121.34 (180) - -

Sparrow2011 199.78 (973) 498.05 (498) 47419 (10) 9.52 (103) 14.94 (103)

WalkSAT 61.74 (995) 172.21 (499) 1751.77 (178) 14.71 (103) 69.34 (994)

sp 1.4 3146.17 (116) 18515.79 (63) 599.01 (180) 5856 (6) 6000 (0)

Table 2. Evaluation results: Each cell represents the par10 runtime and the number
of successful runs for the solvers on the given instance set. Results are highlighted if
the solver succeeded in solving all instances within the cutoff time, or if it has the best
par10 runtime. Cutoff times are 600 seconds for 3sat1k, 5sat500 and 7sat90 and 5000
seconds for the rest.

On the 3-SAT insatances, the polynomial function yields the overall best
performance. On the 3-SAT competition set all of our solver variants exhibited
the most stable performance, being able to solve all problems within cutoff time.
The survey propagation solver has problems with the 3sat10k and the 3satComp
problems (probably because of the relatively small number of variables). The
good performance of the break-only-poly-solver remains surprisingly good even
on the 3satExtreme set where the number of variables reaches 5 · 105 (ten times
larger than that from the SAT Competition 2011). From the class of SLS solvers
it exhibits the best performance on this set and is only approx. 2 times slower
than survey propagation. Note that a value of cb = 2.165 for the break-only-poly
solver further improved the runtime of the solver by approximately 30% on the
3satExtreme set.

On the 5-SAT instances the exponential break-only-exp solver yields the
best performance being able to beat even Sparrow, which was the best solver for

5-SAT within the SAT Competition 2011. On the 7-SAT instances though the
performance of our solvers is relatively poor. We observed a very strong variance
of the run times on this set and it was relatively hard for the configurator to
cope with such high variances.

Overall the performance of our simple probability based solvers reaches state-
of-the-art performance and can even get into problem size regions where only
survey propagation could catch ground.

Scaling behavior with N The survey propagation algorithm scales linearly
with N on formulas generated near the threshold ratio. The same seems to hold
for WalkSAT with optimal noise as the results in [7] shows. The 3satExtreme
instance set contains very large instances with varying N ∈ {105 . . . 5 · 105}. To
analyze the scaling behavior of our probSAT solver in the break-only-poly variant
we have computed for each run the number of flips per variable performed by
the solver until a solution was found. The number of flips per variable remains
constant at about 2·103 independent of N . The same holds for WalkSAT, though
WalkSAT seems to have a slight larger variance of the run times.

Results on the SAT Competition 2011 random set We have compiled an
adaptive version of our probSAT solver and of WalkSAT, that first checks the
size of the clauses (i.e. k) and then sets the parameters accordingly (like Spar-
row2011 does). We have ran this solvers on the complete satisfiable instances set
from the SAT Competition 2011 random category along with all other competi-
tion winning solvers from this category: Sparrow2011, sattime2011 and EagleUp.
Cutoff time was set to 5000 seconds. We report only the results on the large set,
as the medium set was completely solved by all solvers and the solvers had a
median runtime under one second. As can be seen from the results of the cactus
plot in Figure 4, the adaptive version of probSAT would have been able to win
the competition. Interestingly is to see that the adaptive version of WalkSAT
would have ranked third.

Results on the SAT Competition 2011 satisfiable crafted set We have
also ran the different solvers on the satisfiable instances from the crafted set
of SAT Competition 2011 (with a cutoff time of 5000 seconds). The results are
listed in Table 3. We have also inculded the results of the best three complete
solvers from the crafted category. The probSAT solver and the WalkSAT solver
performed best in their 7-SAT break-only configuration solving 81 respectively
101 instances. The performance of WalkSAT could not be improved by changing
the walk probability. The probSAT solver though exhibited better performance
with cb = 7 and a switch to the polynomial break-only scheme, being then able
to solve 93 instances. With such a high cb value (very greedy) the probability of
getting stuck in local minima is very high. By adding a static restart strategy
after 2 · 104 flips per variable the probSAT solver was then able to solve 99
instances (as listed in the table).

0 50 100 150

1000

2000

3000

4000

5000

●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●

●●●
●●

●●●●
●
●●

●

●
●
●

●●

●

●

●

●

number of solved instances

C
P

U
 T

im
e

(s
)

●

Sparrow2011
EagleUP
WalkSAT adapt
sattime2011
probSAT adapt

Fig. 4. Results on the “large” set of the SAT Competition 2011 random instances.

The high greediness level needed for WalkSAT and probSAT to solve the
crafted instances indicates that this instances might be more similar to the 7-
SAT instances (generally to higher k-SAT). A confirmation of this conjecture is
that Sparrow with fixed parameters for 7-SAT instances could solve 103 instances
vs. 104 in the default setting. We suppose that improving SLS solvers for random
instances with large clause length would also yield improvements for non random
instances.

To check weather the performance of SLS solvers can be improved by prepro-
cessing the instances first, we have run the preprocessor of lingeling [3], which
incorporates all main preprocessing techniques, to simplify the instances. The
results unluckily show the contrary of what would have been expected (see Table
3). None of the SLS solvers could benefit from the preprocessing step, solving
equal or less instances.

sattime Sparrow WalkSAT probSAT MPhaseSAT clasp SArTagnan
(complete) (complete) (complete)

Crafted 107 104 101 99 93 81 46
Crafted pre. 86 97 101 95 98 80 48

Table 3. Results on the crafted satisfiable instances: Each cell reports the
number of solved instances within the cutoff time (5000 seconds). The first line shows
the results on the original instances and the second on the preprocessed instances.

5 Comparison with WalkSAT

In principle, WalkSAT [10] also uses a certain pattern of probabilities for flipping
one of the variables within a non-satisfied clause. But the probability distribution

does not depend on a single continuous function f as in our algorithms described
above, but uses some non-continuous if-then-else decisions as described in [10].

In Table 3 we compare the flipping probabilities in WalkSAT (using the noise
value 0.57) with the break-only-poly-algorithm (with cb = 2.3) and the break-
only-exp-algorithm (with cb = 2.5) using a few examples of break-values that
might occur within a 3-CNF clause. Even though the probabilities look very
similar, we think that the small differences renders our approach to be more
robust in case of 3-SAT and 5-SAT.

breaks WalkSAT break-only-poly break-only-exp

0 0 0 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33
0 0 1 0.5 0.5 0 0.46 0.46 0.08 0.42 0.42 0.16
0 1 1 1.0 0 0 0.72 0.14 0.14 0.56 0.22 0.22
0 1 2 1.0 0 0 0.79 0.15 0.06 0.64 0.26 0.1
0 2 2 1.0 0 0 0.88 0.06 0.06 0.76 0.12 0.12
1 1 1 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33
1 1 2 0.4 0.4 0.19 0.42 0.42 0.16 0.42 0.42 0.16
1 2 2 0.62 0.19 0.19 0.56 0.22 0.22 0.56 0.22 0.22
1 2 3 0.62 0.19 0.19 0.63 0.24 0.13 0.64 0.26 0.1

Table 4. Probability comparison of WalkSAT and probSAT: The first columns
show some typical break-value combinations that occur within a clause in a 3-SAT
formula during the search. For the different solvers considered here the probabilities
for the each of the 3 variables to be flipped are listed.

6 Summary and Future Work

We introduced a simple algorithmic design principle for a SLS solver which does
its job without heuristics and “tricks”. It just relies on the concept of probability
distribution and focused search. It is though flexible enough to allow plugging
in various functions f which guide the search.

Using this concept we were able to discover a non-symmetry regarding the
importance of the break and make-values: the break-value is the more important
one; one can even do without the make-value completely.

We have systematically used an automatic configurator to find the best pa-
rameters and to visualize the mutual dependency and impact of the parameters.

Furthermore, we observe a large variation regarding the running times even
on the same input formula. Therefore the issue of introducing an optimally cho-
sen restart point arises. Some initial experiments show that performing restarts,
even after a relatively short period of flips (e.g. 20N) does give favorable results
on hard instances. It seems that the probability distribution of the number of
flips until a solution is found, shows some strong heavy tail behavior (cf. [9],[13]).

Plugging in the age property into the distribution function and analyze how
strong its influence should be is also of interest.

Finally, a theoretical analysis of the Markov chain convergence and speed of
convergence underlying this algorithm would be most desirable, extending the
results in [12].

Acknowledgments We would like to thank the BWGrid [4] project for
providing the computational resources. This project was funded by the Deutsche
Forschungsgemeinschaft (DFG) under the number SCHO 302/9-1. We thank
Daniel Diepold and Simon Gerber for implementing the F-race configurator and
providing different analysis tools within the EDACC framework. We would also
like to thank Andreas Fröhlich for fruitful discussions on this topic.

References

1. Balint, A. et al: EDACC - An advanced Platform for the Experiment Design, Ad-
ministration and Analysis of Empirical Algorithms In: Proceedings of LION5, pages
586–599.

2. Balint, A., Fröhlich, A.: Improving stochastic local search for SAT with a new prob-
ability distribution. Proceedings of SAT 2010, pages 10–15, 2010.

3. Biere, Armin: Lingeling and Friends at the SAT Competition 2011. Tehnical report
11/1, FMV Reports Series, http://fmv.jku.at/papers/Biere-FMV-TR-11-1.pdf

4. bwGRiD (http://www.bw-grid.de), member of the German D-Grid initiative,
funded by the Ministry for Education and Research (Bundesministerium für
Bildung und Forschung) and the Ministry for Science, Research and Arts
Baden-Württemberg (Ministerium für Wissenschaft, Forschung und Kunst Baden-
Württemberg)

5. M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle (2010). F-race and iterated F-
race: An overview. Empirical Methods for the Analysis of Optimization Algorithms,
pp. 311-336, Springer, Berlin, Germany.

6. Hoos, H.H.: An adaptive noise mechanism for WalkSAT. In: Proceedings of AAAI
2002, 635–660 (2002)

7. Kroc, L., Sabharwal, A., Selman, B.: An empirical study of optimal noise and run-
time distribution in local search. In: Proceedings of SAT 2010, pages 346-351, 2010.

8. Li, C.M., Huang, W.Q.: Diversification and determinism in local search for satisfi-
ability. SAT 2005. LNCS, vol. 3569, 158–172. Springer, Heidelberg (2005)

9. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms.
Information Proc. Letters 47 (1993) 173–180.

10. McAllester, D., Selman, B., Kautz, H.: Evidence for invariant in local search. In:
Proceedings of AAAI-97, pages 321-326, 1997

11. Papadimitriou, C.H.: On selecting a satisfying truth assignment. Proceedings FOCS
1991, IEEE, 163–169.

12. Schöning, U.: A probabilistic algorithm for k-SAT and constraint satisfaction prob-
lems. In: Proceedings FOCS 1999, IEEE, 410–414.

13. Schöning, U.: Principles of stochastic local search. Unconventional Computation
2007. LNCS, Vol. 4618, 178–187.

14. Seitz, S., Alava, M., Orponen, P.: Focused local search for random 3-satisfiability.
arXiv:cond-mat/051707v1 (2005)

15. Tompkins, D.A.D, Balint, A., Hoos, H.H: Captain Jack: New variable selection
heuristics in local search for SAT. Proceedings of SAT 2011, pages 302–316, 2011.

16. The SAT Competition Homepage: http://www.satcompetition.org
17. Survey propagation: an algorithm for satisfiability. A. Braunstein, M. Mezard, R.

Zecchina, Random Structures and Algorithms 27, 201-226 (2005)

