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Abstract

We present quantum query and time complexity bounds for group test-
ing problems. For a set S and a binary operation on S, we consider the
decision problem whether a groupoid, semigroup or quasigroup is a group.
Our quantum algorithms for these problems improve the best known clas-
sical complexity bounds. We also present upper and lower bounds for
testing associativity, distributivity and commutativity.

1 Introduction

Quantum algorithms have the potential to demonstrate that for some prob-
lems quantum computation is more efficient than classical computation. A
goal of quantum computing is to determine for which problems quantum com-
puters are faster than classical computers. The most important known ba-
sic quantum algorithms are Shor’s and Grover’s algorithm. The first one is
Shor’s [Sho94] polynomial time quantum algorithm for the factorization of in-
tegers. The second one is Grover’s search algorithm [Gro96]. Since then, we
have seen some generalisations and applications of these two basic quantum
techniques. The Shor algorithm has been generalized to a quantum algorithms
for the hidden subgroup problem (see e.g. [CEMM98]). Grover’s search algo-
rithm can be used for quantum amplitude amplification [BHMT02] and quan-
tum random walk search [Amb04, Sze04, MNRS07]. The application of these
quantum search tools is a fast growing area in quantum computing. For ex-
ample, quantum algorithms have been presented for several problems from
computer science (see e.g. [BHT98, BDHHMSW01, Amb04]), graph theory
(see e.g. [DHHM04, MSS05, AS06, Doe07a, Doe07b]) and (linear) algebra (see
e.g. [MN05, BS06, DT07]).

In this paper we study the quantum complexity of group testing problems.
For a set S and a binary operation on S, we consider the decision problem
whether a groupoid, semigroup or quasigroup is a group. We also present upper
and lower bounds for testing associativity, distributivity and commutativity. In
particular, we improve the quantum query complexity for testing if a operation
table is associative or a quasigroup from [DT07].
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The motivation for studying the query complexity of algebraic problems is
twofold. On the one hand side, these are fundamental and basic problems which
have many applications in computer science. For example, testing if a black box
is a group is very useful in cryptography. On the other hand, we can analyze
how powerful are our tools for the construction of lower and upper bounds for
the quantum query complexity of these problem. For many problems we can
find optimal quantum algorithms by a combination of Grover search, amplitude
amplification and quantum walk search. But for some problems this doesn’t
seem to work. Maybe this can be a motivation for the development of new
quantum techniques.

In this paper our input is a operation table for a set S of size n × n. In
Section 3 we consider several group problems. Given a groupoid, semigroup or
quasigroup S by its operation table, we have to decide whether S is a group.
We present lower and upper bounds for the quantum query complexity of these
group problems. In particular, we give nearly optimal quantum query algo-
rithms for testing whether a groupoid or quasigroup is a group.

In Section 4 we present several bounds for testing associativity, distributivity
and commutativity. For associativity testing we consider the binary operation
◦ : S × S → S′, where S′ ⊆ S. Dörn and Thierauf [DT07] constructed a
quantum query algorithm which is faster than the trivial Grover search over all
triples of S for |S′| < n3/8. Here we improve the quantum query complexity
of their algorithm, such that the algorithm is faster than the Grover search for
|S′| < n3/4. Moreover we determine the precise quantum query complexity for
deciding whether a groupoid, semigroup and monoid is commutative.

2 Preliminaries

2.1 Quantum Query Model

In the query model, the input x1, . . . , xN is contained in a black box or oracle
and can be accessed by queries to the black box. As a query we give i as input to
the black box and the black box outputs xi. The goal is to compute a Boolean
function f : {0, 1}N → {0, 1} on the input bits x = (x1, . . . , xN ) minimizing
the number of queries. The classical version of this model is known as decision
tree.

The quantum query model was explicitly introduced by Beals et
al. [BBCMW01]. In this model we pay for accessing the oracle, but unlike
the classical case, we use the power of quantum parallelism to make queries in
superposition. The state of the computation is represented by |i, b, z〉, where i
is the query register, b is the answer register, and z is the working register. A
quantum computation with T queries is a sequence of unitary transformations

U0 → Ox → U1 → Ox → . . . → UT−1 → Ox → UT ,

where each Uj is a unitary transformation that does not depend on the input x,
and Ox are query (oracle) transformations. The oracle transformation Ox can
be defined as Ox : |i, b, z〉 → |i, b⊕ xi, z〉. The computations consists of the
following three steps:
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1. Go into the initial state |0〉.

2. Apply the transformation UT Ox · · ·OxU0.

3. Measure the final state.

The result of the computation is the rightmost bit of the state obtained by the
measurement.

The quantum computation determines f with bounded error, if for every
x, the probability that the result of the computation equals f(x1, . . . , xN ) is at
least 1−ε, for some fixed ε < 1/2. In the query model of computation each query
adds one to the query complexity of an algorithm, but all other computations
are free. The time complexity of the algorithm is usually measured in terms of
the total circuit size for the unitary operations Ui.

The quantum query complexity of black box computation has become a
great interest in quantum computing. The black box model provides a simple
and abstract framework for the construction of quantum algorithms. All quan-
tum algorithms can be formulated in the black box model, we can determine
the speed up against classical algorithm, and we can prove lower bounds for the
quantum query complexity.

2.2 Tools for Quantum Algorithms

Here, we give three tools for the construction of our quantum algorithms.

Quantum Search. A search problem is a subset S ⊆ [N ] of the search
space [N ]. With S we associate its characteristic function fS : [N ] → {0, 1}
with fS(x) = 1 if x ∈ S, and 0 otherwise. Any x ∈ S is called a solution to
the search problem. Let k = |S| be the number of solutions of S. It is a well
known fact in quantum computing (see [Gro96, BBHT98]), that for k > 0, the
expected quantum query complexity for finding one solution of S is O(

√
N/k),

and for finding all solutions, it is O(
√

kN). Furthermore, whether k > 0 can
be decided in O(

√
N) quantum queries to fS . The running time complexity of

Grover search is larger than its query complexity by a logarithmic factor.

Amplitude Amplification. The quantum amplitude amplification is a gen-
eralization of Grover’s search algorithm. Let A be an algorithm for a problem
with small success probability at least ε. Classically, we need Θ(1/ε) repetitions
of A to increase its success probability from ε to a constant, for example 2/3.
There is a corresponding technique in the quantum case (see [BHMT02]). Let
A be a quantum algorithm with one-sided error and success probability at least
ε. Then there is a quantum algorithm B that solves A with success probability
2/3 by O( 1√

ε
) invocations of A.

Quantum Walk. Quantum walks are the quantum counterpart of Markov
chains and random walks. Let P = (pxy) be the transition matrix of an ergodic
symmetric Markov chain on the state space X. Let M ⊆ X be a set of marked
states. Assume that the search algorithms use a data structure D that associates

3



some data D(x) with every state x ∈ X. From D(x), we would like to determine
if x ∈ M . When operating on D, we consider the following three types of costs:

• Setup cost s: The worst case cost to compute D(x), for x ∈ X.

• Update cost u: The worst case cost for transition from x to y, and update
D(x) to D(y).

• Checking cost c: The worst case cost for checking if x ∈ M by using D(x).

Theorem 2.1 [MNRS07] Let δ > 0 be the eigenvalue gap of an ergodic Markov
chain P and let |M |

|X| ≥ ε. Then there is a quantum algorithm that determines if
M is empty or finds an element of M with cost

s +
1√
ε

(
1√
δ
u + c

)
.

In the most practical applications (see [Amb04, MSS05]) the quantum walk
takes place on the Johnson graph J(n, r), which is defined as follows: the
vertices are subsets of {1, . . . , n} of size r and two vertices are connected iff
they differ in exactly one number. It is well known, that the spectral gap δ of
J(n, r) is Θ(1/r) for 1 ≤ r ≤ n

2 .
We apply the quantum walk on the graph categorical product of two John-

son graphs. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs, the graph
categorical product G = (V,E) = G1 × G2 of G1, G2 is defined as follows:
V = V1 × V2, and ((g1, g2), (g′1, g

′
2)) ∈ E iff (g1, g

′
1) ∈ E1 and (g2, g

′
2) ∈ E2.

2.3 Tool for Quantum Query Lower Bounds

In this paper, we use the following special case of a method by Ambai-
nis [Amb02] to prove lower bounds for the quantum query complexity.

Theorem 2.2 [Amb02] Let F = {f : [n]× [n] → [n]} be the set of all possible
input function, and Φ : F → {0, 1}. Let A,B ⊂ F such that Φ(f) = 1 and
Φ(g) = 0 for all f ∈ A and g ∈ B. Let R ⊂ A× B, and m,m′, l, l′ be numbers
such that

1. for every f ∈ A, there are at least m different g ∈ B such that (f, g) ∈ R.

2. for every g ∈ B, there are at least m′ different f ∈ A such that (f, g) ∈ R.

3. for every f ∈ A and x, y ∈ [n], there are at most l different g ∈ B such
that (f, g) ∈ R and f(x, y) 6= g(x, y).

4. for every g ∈ B and x, y ∈ [n], there are at most l′ different f ∈ A such
that (f, g) ∈ R and f(x, y) 6= g(x, y).

Then every bounded-error quantum algorithm that computes Φ has quantum

query complexity Ω
(√

m·m′

l·l′

)
.
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Let f, g : [n]× [n] → [n] be two functions, we define

d(f, g) = |{x, y ∈ [n] | f(x, y) 6= g(x, y) }|.

In some cases, we consider the special case A,B ⊂ {0, 1}n×n and (f, g) ∈ R if
and only if f and g differ in exactly one position. Then it is l = l′ = 1, and
every bounded-error quantum algorithm that computes f has quantum query
complexity of Ω

(√
m ·m′

)
.

3 Group Problems

In this section we consider the decision problems whether a groupoid, semigroup
or quasigroup S of size n with a binary operation ◦ is in fact a group. A groupoid
is a finite set S with a binary operation ◦ represented as operation table. The
groupoid is called a semigroup, if it is associative. A monoid is a semigroup with
an identity element. A quasigroup is a groupoid, where all equations a ◦ x = b
and x◦a = b have unique solutions, and a loop is a quasigroup with an identity
element.

3.1 Group testing for Groupoids

We consider the problem whether a groupoid (S, ◦) is in fact a group. There is
a O(n2 log n) deterministic algorithm for this problem by [RS00]. We develop
a quantum algorithm that has time complexity O(n

13
12 log2 n). Furthermore, we

present an O(n log n) query algorithm for this problem, that has time complex-
ity O(n3/2 log n) however. The latter algorithm is nearly optimal with respect
to the query complexity, as we prove a linear lower bound for this problem.

We need a generalization of a lemma from [RS00].

Definition 3.1 Let (S, ◦) be a groupoid represented by its operation table T . A
row of T is called cancellative, if it is a permutation of S.

Lemma 3.2 [RS00] Let ◦ be cancellative in r rows. If ◦ is nonassociative then
it has at least r/4 nonassociative triples.

Theorem 3.3 Whether a groupoid is a group can be decided by a quantum
algorithm within O(n

13
12 logc n) expected steps, for some constant c.

Proof . Let (S, ◦) be a groupoid represented by its operation table T . Note
that if S is a group, then every row of A is cancellative. Our first step is to
determine whether the operation is associative. To do so, we choose an arbitrary
subset A of S of size r. We determine r later. Then we check whether T is
cancellative in the rows indexed by A. This is not the case, if we find a row
with two equal elements. Hence we can solve this with a Grover search and the
element distinctness quantum algorithm by Ambainis [Amb04]. The quantum
query complexity of this procedure is O(

√
rn

2
3 ).

If any of the considered rows in not cancellative then we are done. Otherwise
we randomly choose three elements a, b, c ∈ S and check whether (a ◦ b) ◦ c 6=
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a ◦ (b ◦ c). If the operation is not associative, then the probability of finding
a nonassociative triple is at least r

4n3 by Lemma 3.2. By using the quantum
amplitude amplification we have an O(n

3
2 /
√

r) quantum query algorithm for
finding a nonassociative triple.

If there are no nonassociative triple, then (S, ◦) is a semigroup. Whether
this semigroup is a group can be decided with O(n

11
14 log n) quantum queries by

Theorem 3.6. The expected quantum query complexity of the whole algorithm
we get

O

(
√

rn
2
3 +

n
3
2

√
r

+ n
11
14 log n

)
,

which is minimized for r = n
5
6 . Hence the expected time complexity of this algo-

rithm is O(n
13
12 logc n) for a constant c, since the element distinctness procedure

has running time of O(n2/3 logc n). �

We can further improve the query complexity of the problem if we allow a
larger running time.

Theorem 3.4 Whether a groupoid is a group can be decided with O(n log n)
expected quantum queries.

Proof . Let (S, ◦) be a groupoid represented by its operation table T . A well
known fact from algebra is, that if (S, ◦) is a quasigroup, then a random subset
R ⊂ S with c log n elements is a set of generators with probability at least
1 − exp(c) (see [RS00]). We choose a random subset R of O(log n) elements
of S. Then we check whether R is a generating set of (S, ◦). To do so, let
S0 = R. We compute inductively Si = Si−1 ∪ (R ◦ Si−1). This adds at least
one element in a step, until we reach some k ≤ n such that Sk = S. In this
case, R is a set of generators. For each element a added to some set Si, we
query the log n elements R ◦ a to look for further elements. In total we query
at most the O(n log n) elements of the R × S submatrix of T . The quantum
time is bounded by O(n3/2 log n).

If R is a set of generators, we have to verify whether the multiplication table
is associative. Light observed (see [CP61]) that if R is a set of generators of S,
then it suffices to test all triples a, b, c in which b is an element of R. By using
Grover search, the quantum query for finding a nonassociative triple (if there
is one) is O(n

√
log n). By Theorem 3.6 we can decide whether this semigroup

is a group. The total quantum query complexity of is O(n log n). �

The upper bound of Theorem 3.4 almost matches the lower bound we have.

Theorem 3.5 Whether a groupoid is a group requires Ω(n) quantum queries.

Proof . We apply the Theorem 2.2. Let A be the operation table T of Zn and
let ◦ be the addition modular n. Then T is a group. The set B consists of all
n×n matrices T ′, where one entry of T ′ is modified. Therefore the tables of B
forming no groups. The relation R is defined by

R = { (T, T ′) ∈ (A,B) | d(T, T ′) = 1 }.
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Then R satisfies that m = n2(n− 1), m′ = 1, l = n− 1 and l′ = 1. Therefore
the quantum query complexity is Ω(n). �

3.2 Group testing for Semigroups and Quasigroups

Dörn and Thierauf [DT07] considered the problem whether a finite monoid
(S, ◦) is in fact a group. They showed that the problem can be solved with
O(n

3
2 ) queries by a (classical) randomized algorithm, and with O(n

11
14 log n)

expected queries by a quantum algorithm.
Now suppose that the input is only known to be a semigroup and we want

to decide whether it is in fact a group. To do so, we first search for an identity
element and then use the algorithm from [DT07]. To find the identity element,
we start by choosing an element a of S and search for an element e ∈ S such
that a ◦ e = a. Then e is our candidate for the identity element. Recall that we
finally want to decide whether S is a group. In this case, the identity element
is unique. Hence if our candidate e doesn’t work we can safely reject the input,
even in the case that S actually has an identity element. To test our candidate e,
it suffices to check whether b ◦ e = b for all b ∈ S. Obviously the two steps can
be done in O(n) queries classically and O(

√
n) quantum queries with Grover

search. We summarize the observation:

Theorem 3.6 Whether a given semigroup is a group can be decided with

1. O(n
3
2 ) queries by a randomized algorithm.

2. O(n
11
14 log n) by a quantum query algorithm.

The result should be contrasted with the following: if we want to decide
whether a given semigroup is in fact a monoid, then the best known algorithms
make O(n2) queries classically and O(n) queries in the quantum setting.

Next we assume that the input (S, ◦) is a quasigroup. That is, every row
in the operation table is cancellative. To check associativity, we can apply
Lemma 3.2 with r = n and the test from the proof of Theorem 3.3. This yields
an O(n) quantum query algorithm to test whether the operation is associative,
and hence a group. We show that this bound is tight up to constant factor.

Theorem 3.7 Whether a given quasigroup or a loop is a group can be decided
with quantum query complexity Θ(n).

Proof . For the lower bound, we apply Theorem 2.2 in connection with an
idea of [RS00] for proving an Ω(n2) lower bound for this problem in classical
computing. The set A consists of the operation table T of the group (Zm

2 ,+),
where + is the vector addition modulo 2. Let a, b, c ∈ Zm

2 with a 6= 0. The
set B consists of all operation tables of (Zm

2 , ◦), where ◦ is equal to + except in
the following four positions:
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1. b ◦ c = b + (a + c),

2. b ◦ (a + c) = b + c,

3. (a + b) ◦ c = b + c,

4. (a + b) ◦ (a + c) = a + b + c.

All tables of B are quasigroups because the above modifications simply
exchange two elements in two rows of the table T , but they are not associative,
since

a + b = (c ◦ (a + b)) ◦ c 6= c ◦ ((a + b) ◦ c) = b.

The relation R is defined by

R = { (T, T ′) ∈ (A,B) | T ′ originates of the above four modifications of T }.

Then R satisfies m = Ω(n3), m′ = 1, l = Ω(n) and l′ = 1. �

4 Testing Associativity, Distributivity and
Commutativity

4.1 The Semigroup Problem

We consider the following semigroup problem. We have given two sets S and
S′ ⊆ S and a binary operation ◦ : S×S → S′ represented by a table. We denote
with n the size of the set S. One has to decide whether S is a semigroup, that
is, whether the operation on S is associative.

The complexity of this problem was first considered by Rajagopalan and
Schulman [RS00], who gave a randomized algorithm with time complexity of
O(n2 log 1

δ ), where δ is the error probability. They also showed a lower bound
of Ω(n2). The previously best known algorithm was the naive Ω(n3)-algorithm
that checks all triples.

In the quantum setting, one can do a Grover search over all triples
(a, b, c) ∈ S3 and check whether the triple is associative. The quantum query
complexity of the search is O(n3/2). Dörn and Thierauf [DT07] constructed a
quantum query algorithm which is faster than the Grover search for |S′| < n3/8.
They also proved a quantum query lower bound of Ω(n). Here we improve the
quantum query complexity of their algorithm by a more detailed analysis. Fur-
thermore our algorithm is faster than the Grover search for |S′| < n3/4.

Theorem 4.1 Let k = nα be the size of S′ with 0 < α ≤ 1. The quantum
query complexity of the semigroup problem is

O(n
5+α

4 ), for 0 < α ≤ 1
3 ,

O(n
6+2α

5 ), for 1
3 < α ≤ 3

4 ,

O(n
3
2 ), for 3

4 < α ≤ 1.

Proof . We use the quantum walk search scheme of Theorem 2.1. The quantum
walk is done on the categorical graph product GJ of two Johnson graphs J(n, r).
Let A and B two subsets of S of size r. We will determine r later. We search
for a pair (a, b) ∈ S2, such that a, b are two elements of a nonassociative triple.
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Then the marked vertices of GJ correspond to pairs (A,B) with (A ◦B) ◦ S 6=
A ◦ (B ◦ S). In every step of the walk, we exchange one row and one column
of A and B. The database of our quantum walk is the set

D(A,B) = { (a, b, a ◦ b) | a ∈ A ∪ S′ and b ∈ B ∪ S′ }.

Now we compute the quantum query costs for the setup, update and checking.
The setup cost for the database D(A,B) is O((r + k)2) and the update cost
is O(r + k). To check whether a pair (A,B) is marked, we have to test if
(A ◦B) ◦ S 6= A ◦ (B ◦ S).

Now we claim, that the quantum query cost to check this inequality is
O(
√

nrk). Therefore we search for a pair (b, c) ∈ B×S with (A◦b)◦c 6= A◦(b◦c).
The computation of A ◦ (b ◦ c) requires only one query, by using our database,
since (b◦c) ∈ S′. The result is a vector of size r, which we denote by (y1, . . . , yr).
The evaluation of (A◦b) needs no queries by using our database, let (c1, . . . , cr)
be the result. This vector consists of at most k different entries (x1, . . . , xk).
Now we use Grover’s algorithm for searching an i ∈ [k], such that xi ◦ c 6= yj

for an j ∈ [r] with xi = cj . This search can be done in O(
√

k) quantum
queries. Therefore, by applying two Grover search subroutines, the checking
cost is O(

√
nrk).

The spectral gap of the walk on GJ is δ = O(1/r) for 1 ≤ r ≤ n
2 , see [BS06].

If there is a triple (a, b, c) with (a ◦ b) ◦ c 6= a ◦ (b ◦ c), then there are at least(
n−1
r−1

)2
marked sets (A,B). Therefore we have

ε ≥ |M |
|X|

≥

((
n−1
r−1

)(
n
r

) )2

≥ r2/n2.

Let r = nβ for 0 < β < 1. Assuming r > k, then the quantum query
complexity of the semigroup problem is

O
(
r2 +

n

r

(√
r · r +

√
nrk

))
= O

(
n2β + n1+β

2 + n
3+α−β

2

)
.

Now we choose β depending on α such that this expression is minimal. Suppose
that 2β ≤ 1+ β

2 , i.e. β ≤ 2
3 . From the equation 1+ β

2 = 3+α−β
2 , we get β = 1+α

2 .
Then the quantum query complexity of the semigroup problem is O(n

5+α
4 ) for

r = n
1+α

2 and α ≤ 1
3 . Otherwise if 2β > 1+ β

2 , i.e. β > 2
3 , we get β = 3+α

5 from
the equation 2β = 3+α−β

2 . Then the quantum query complexity is O(n
6+2α

5 )
for r = n

3+α
5 and α > 1

3 . If α > 3
4 , the query complexity is bigger than O(n

3
2 ),

therefore we use Grover search instead of quantum walk search. �

Note that the time complexity of our algorithm is O(n1.5 log n).

4.2 The Distributivity Problem

In the distributivity problem we are given a set S and two binary operations
⊕ : S × S → S and ⊗ : S × S → S represented by tables. One has to decide
whether (S,⊕,⊗) is distributive, i.e. we have to test whether the two equation
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a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) and (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c) are satisfied. A
triple (a, b, c) ∈ S3 that fulfills both equations is called a distributive triple. In
classical computing, it is not known whether this problem can be solved in less
than cubic time. In the quantum setting, one can do a Grover search over all
triples (a, b, c) ∈ S3 and check whether each triple is distributive. The quantum
query complexity of the search is O(n3/2). We show a linear lower bound on
the query complexity.

Theorem 4.2 The distributivity problem requires Ω(n) quantum queries.

Proof . Let S = {0, 1, . . . , n − 1}. We apply the Theorem 2.2. The set A
consists of all pairs of n× n matrices T⊕ and T⊗, where T⊗ is the zero-matrix,
and the entry at position (1, 0) in T⊕ is 1, and 0 otherwise. It is easy to see,
that the tables of A are distributive, since x⊗ (y ⊕ z) = (x⊗ y)⊕ (x⊗ z) = 0
for all x, y, z ∈ S. The set B consists of all pairs of n× n matrices T ′

⊕ and T ′
⊗,

where the entry of position (1, 0) in T ′
⊕, and (a, b) in T ′

⊗ is 1, for a, b ∈ S−{0, 1},
and 0 otherwise. Then a ⊗ (b ⊕ c) = 0 and (a ⊗ b) ⊕ (a ⊗ c) = 1 with b 6= c.
Therefore the tables of B are not distributive.

From each (T⊕, T⊗) ∈ A, we can obtain (T ′
⊕, T ′

⊗) ∈ B by replacing the
entry 0 of T⊗ at (a, b) by 1, for any a, b /∈ {0, 1}. Hence we have m = Ω(n2).
From each (T ′

⊕, T ′
⊗) ∈ B, we can obtain (T⊕, T⊗) ∈ A, by replacing the entry 1

of T⊗ at position (a, b) by 0, for a, b /∈ {0, 1}. Thus we have m′ = 1. By
Theorem 2.2, the quantum query complexity is Ω(

√
m ·m′) = Ω(n). �

If (S,⊕) is a commutative quasigroup, then we can get a faster algorithm
to check distributivity. The key is that one nondistributive triple implies the
existence of more such triples. Similar to Lemma 3.2, we have the following
lemma.

Lemma 4.3 Let S be a set and ⊕,⊗ be two binary operations on S, such that
(S,⊕) is a commutative quasigroup. If (S,⊕,⊗) is nondistributive, then it has
at least Ω(n) nondistributive triples.

Proof . Let (a, b, c) be a nondistributive triple. Let a = a′ ⊕ a′′ and consider
the following cycle.

(a′ ⊕ a′′)⊗ (b⊕ c) = ((a′ ⊕ a′′)⊗ b)⊕ ((a′ ⊕ a′′)⊗ c)
= ((a′ ⊗ b)⊕ (a′′ ⊗ b))⊕ ((a′ ⊕ a′′)⊗ c)
= (a′ ⊗ b)⊕ (a′′ ⊗ b)⊕ (a′ ⊗ c)⊕ (a′′ ⊗ c)
= (a′ ⊗ b)⊕ (a′ ⊗ c)⊕ (a′′ ⊗ (b⊕ c))
= (a′ ⊗ (b⊕ c))⊕ (a′′ ⊗ (b⊕ c))
= (a′ ⊕ a′′)⊗ (b⊕ c).

Suppose that a ⊗ (b ⊕ c) 6= (a ⊗ b) ⊕ (a ⊗ c). Then at least one of the above
equations does not hold. Therefore at least one of the following triples must be
nondistributive:

(a′, a′′, b), (a′, a′′, c), (a′′, b, c), (a′, b, c), (a′, a′′, b⊕ c).
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Since (S,⊕) is a quasigroup, a can be written as a′ ⊕ a′′ in n different ways.
For each of these, distributivity fails in at least one of the five categories from
above. Therefore there exists a category for which there are ≥ n/5 failures.

The case that (a⊕ b)⊗ c 6= (a⊗ c)⊕ (b⊗ c) can be handled similarly �

By using Lemma 4.3 in combination with the amplitude amplification (sim-
ilar to Theorem 3.3) we have

Theorem 4.4 Let (S,⊕) be a commutative quasigroup and (S,⊗) a groupoid.
Whether (S,⊕,⊗) is distributive can be decided with quantum query complexity
of O(n).

4.3 The Commutativity Problem

In the commutativity problem we have given a finite set S of size n with a binary
operation ◦ : S × S → S represented by a table. One has to decide whether S
is a commutative. In the quantum setting, one can solve the problem in linear
time by a Grover search over all tuple (a, b) ∈ S2 that checks whether the
tuple is commutative. We show that the commutativity problem requires Ω(n)
quantum queries, even when S is a monoid.

Theorem 4.5 The quantum query complexity of the commutativity problem for
groupoids, semigroups, and monoids is Θ(n).

Proof . We start by showing the lower bound for semigroups via Theorem 2.2.
Let S = {0, 1, . . . , n−1}. The set A consists of the zero matrix of order n. The
set B consists of all n × n matrices, where the entry of position (a, b) is 1, for
a 6= b ∈ S−{0, 1}, and 0 otherwise. All operation tables of the sets A and B are
semigroups. Then we have m = Ω(n2), m′ = 1, and the quantum query lower
bound for testing if a given semigroup is commutative is Ω(n).

We reduce the commutativity problem for semigroups to the commutativity
problem for monoids. Let S be a semigroup represented as a operation table.
We define a monoid M = S ∪{e} with the identity element e 6∈ S, that is, with
a ◦ e = e ◦ a = a, for all a ∈ S. Then the semigroup S is commutative iff the
monoid M is commutative. �

Magniez and Nayak [MN05] quantize a classical Markov chain for testing the
commutativity of a black box group given by the generators. The constructed
an O(k2/3 log k) quantum query algorithm, where k is the number of generators
of the group. In the case when (S, ◦) is a quasigroup, a random set of c log n
elements will be a set of generators with probability at least 1− exp(c) [RS00].
Therefore we obtain the following result:

Theorem 4.6 Whether a quasigroup, loop or group is commutative can be de-
cided with quantum query complexity O((log n)

2
3 log log n).
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Conclusions

The table below summarizes the quantum query complexity (QQC) and the
quantum time complexity (QTC) of the algebraic problems considered in the
paper. Some of these results are proved in [DT07]. It remains open to close the
gaps between the upper and the lower bounds where they don’t match.

Problem Description QQC QTC
Semigroup Decide if S × S → S′ is a semi-

group for constant size of S′.
Ω(n)
O(n

5
4 )

O(n
3
2 log n)

Identity Decide if a groupoid has an
identity element.

Θ(n) O(n log n)

Quasigroup Decide if a groupoid is a quasi-
group.

Ω(n)
O(n

7
6 )

O(n
7
6 log n)

Group I Decide if a groupoid is a group. Ω(n)
O(n log n)

O(n
13
12 logc n)

Group II Decide if a semigroup is a group. O(n
11
14 log n) O(n

11
14 logc n)

Group III Decide if a quasigroup is a
group.

Θ(n) O(n log n)

Group
Commut. I

Decide if a groupoid/ semi-
group/monoid is commutative.

Θ(n) O(n log n)

Group
Commut. II

Decide if a quasigroup/group is
commutative.

Õ((log n)
2
3 ) Õ((log n)

2
3 )

Some questions remain open:

1. Is there a quantum algorithm for the semigroup problem which is better
than O(n1.5) for |S′| = n?

2. Is there are a classical or a quantum algorithm for the distributivity prob-
lem which is faster than the trivial bounds of O(n3) resp. O(n1.5)?

3. Are we able to prove a nontrivial lower bound for the decision problem
whether a semigroup or monoid is a group?
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[BHMT02] G. Brassard, P. Hóyer, M. Mosca, A. Tapp, Quantum amplitude
amplification and estimation, AMS Contemporary Mathematics, Vol.
305: pages 53-74, 2002.
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