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Abstract. We present quantum complexity lower and upper bounds
for independent set problems in graphs. In particular, we give quantum
algorithms for computing a maximal and a maximum independent set
in a graph. We present applications of these algorithms for some graph
problems. Our results improve the best classical complexity bounds for
the corresponding problems.

1 Introduction

Quantum algorithms have the potential to demonstrate that for some problems
quantum computation is more efficiently than classical computation. A goal of
quantum computing is to determine whether quantum computers are faster than
classical computers.

The study of the quantum complexity for graph problems is a new area in
quantum computing. Two main complexity measures for quantum algorithms
have been studied: the quantum query and the quantum time complexity. The
quantum query complexity of a graph algorithm A is the number of queries to
the adjacency matrix or to the adjacency list of the graph made by A. The
quantum time complexity of an algorithm A is the number of basic quantum
operations made by A.

Some new optimal quantum algorithms for graph problems were presented by
Dürr, et al. [DHHM04]. They studied the quantum query complexity for min-
imum spanning tree, graph connectivity, strong graph connectivity and single
source shortest paths in the adjacency matrix and in the adjacency list model.
Some quantum query lower bounds for graph problems are investigated by Berz-
ina, et al. [BDFLS04] for the dominating set, hamiltonian circuit and the trav-
eling salesman problem. Magniez, et al. [MSS05] presented a quantum query
algorithm for finding a triangle, and Childs and Eisenberg [CE03] for finding
a clique of size k in a graph. Some polynomial time quantum algorithms are
given by Ambainis and Špalek [AS06] for computing a maximum matching in a
bipartite graph and for the network flow problem. These algorithms have better
running times than the best classical algorithms.

In this paper we study the potential for speed up of algorithms for indepen-
dent set problems in graphs with quantum computing. An independent set is
a set of vertices of a graph in which no two of these vertices are adjacent. A
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maximal independent set in a graph is an independent set which is contained in
no other independent set. A maximum independent set is a largest independent
set of a graph G.

In our paper we present an O(
√

nm) quantum query algorithm for computing
a maximal independent set in a graph G = (V,E), where n = |V | and m = |E|.
We prove that this quantum algorithm is optimal. The quantum time complex-
ity of our algorithm is O(

√
nm log2 n), which is better than the best classical

algorithm.
The development of algorithms for the maximum independent set problem

is one of the most applicable problem in graph theory. The maximum indepen-
dent set problem is closely related to the maximum clique and the minimum
vertex cover problem. The first exact algorithms for computing a maximum in-
dependent set was given by Tarjan and Trojanowski [TT77] with running time of
O(1.2599n). Jian [Jia86] improved the time complexity to O(1.2346n) and Beigel
[Bei99] to O(1.2227n). Today, the fastest known algorithm was given by Robson
[Rob01] with running time of O(1.1844n). This algorithm is based on a detailed
computer generated subcase analysis. We construct an O(1.1488n) quantum time
algorithm for computing a maximum independent set. This algorithm is faster
than the best classical algorithm by [Rob01].

Futhermore, we using the quantum walk clique finding algorithm of Childs
and Eisenberg [CE03], and show that the quantum query complexity of the
maximum independent set problem is O(n2α(G)/(α(G)+1)), where α(G) is the
size of a maximum independent set in G.

Our results are proved using several techniques: Grover search, quantum am-
plitude amplification and quantum walks. Maximal und maximum independent
set problems have many important applications in graph theory. Our quantum
algorithms can be used as a building blocks for other quantum graph algorithms.
For example, we give two applications of our independent set algorithms for the
following two problems: determination of a minimum odd cycle transversal and
finding of a Greedy vertex coloring of a graph.

The paper is organized as follows: In section 2 we give necessary definitions
and facts about graph theory and quantum computing. In section 3 we prove
quantum query lower and upper bounds for finding a maximal independent set
in a graph. In section 4 we develop a quantum time algorithms for finding a
maximum independent set. This algorithm is faster than the best classical algo-
rithm for this problem. In section 5 we look at the quantum query complexity
for computing an independent set of size k in a graph. At the end of our paper,
we present some graph applications of our quantum independent set algorithms.

2 Preliminaries

2.1 Graph Theory

Let G = (V,E) be a undirected graph, with V = V (G) and E = E(G) we denote
the set of vertices and edges of G. Let n = |V | be the number of vertices and
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m = |E| the number of edges of G. We denote with NG(v) the set of all adjacent
vertices to v ∈ V and dG(v) := |NG(v)|. Let ∆(G) := max{dG(v) | v ∈ V (G)}
be the maximum degree of G. The graph G−S is obtained from G by deleting
the vertices S ⊂ V and the incident edges. We denote with [n] the set {1, . . . , n}.

Definition 1 A set of vertices V ′ ⊆ V is called independent, if for all distinct
vertices u, v ∈ V ′ it holds {u, v} /∈ E(G) . The set V ′ is called maximal, if there
is no independent set V ′′ ⊆ V with V ′ ⊂ V ′′. A maximum independent set is a
largest independent set of G. By α(G) we denote the independence number of
G, i.e. the size of a maximum independent set in G.

We consider the following models for accessing information in undirected graphs:

Adjacency matrix model: Given is the adjacency matrix A ∈ {0, 1}n×n of G
with Ai,j = 1 iff {i, j} ∈ E.

Adjacency list model: Given are the degrees dG(1), . . . , dG(n) of the vertices
and for every i ∈ V an array with its neighbours fi : [dG(i)] → [n]. The
value fi(j) is the j-th neighbour of i.

In the following, we denote by M and L the input model of the graph as adja-
cency matrix (M) and as adjacency list (L).

2.2 Quantum Computing

For the basic notation on quantum computing, we refer the reader to the text-
book by Nielsen and Chuang [NC03]. For the quantum algorithms included in
this paper we use the following two complexity measures:

Quantum Query Complexity: The quantum query complexity of a graph
algorithm A is the number of queries to the adjacency matrix or to the
adjacency list of the input graph made by A.

Quantum Time Complexity: The quantum time complexity of a graph al-
gorithm A is the number of basic quantum operations made by A.

In this paper, we use the following special case of the Ambainis method
[Amb02] to prove lower bounds for the quantum query complexity.

Theorem 1. [Amb02] Let A ⊂ {0, 1}n, B ⊂ {0, 1}n and f : {0, 1}n → {0, 1}
such that f(x) = 1 for all x ∈ A, and f(y) = 0 for all y ∈ B. Let m and m′ be
numbers such that

1. for every (x1, . . . , xn) ∈ A there are at least m values i ∈ {1, . . . , n} such
that (x1, . . . , xi−1, 1− xi, xi+1, . . . , xn) ∈ B,

2. for every (x1, . . . , xn) ∈ B there are at least m′ values i ∈ {1, . . . , n} such
that (x1, . . . , xi−1, 1− xi, xi+1, . . . , xn) ∈ A.

Then every bounded-error quantum algorithm that computes f has quantum
query complexity Ω(

√
m ·m′).

Now we give two tools for the construction of our quantum algorithms.
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Quantum Search. A search problem is a subset P ⊆ [N ] of the search space [N ].
With P we associate its characteristic function fP : [N ] → {0, 1} with

fP (x) =

{
1, if x ∈ P,

0, otherwise.

Any x ∈ P is called a solution to the search problem. Let k = |P | be the number
of solutions of P .

Theorem 2. [Gro96,BBHT98] For k > 0, the expected quantum query complex-
ity for finding one solution of P is O(

√
N/k), and for finding all solutions, it is

O(
√

kN). Futhermore, whether k > 0 can be decided in O(
√

N) quantum queries
to fP .

We denote with All Quantum Search[fP ] an application of Grover search
algorithm that computes the set of all solutions.

Amplitude Amplification. Let A be an algorithm for a problem with one sided
error ε > 0. Classically, we need Θ(1/ε) repetitions of A to increase its success
probability from ε to a constant, for example 2/3. The corresponding technique
in the quantum case is called amplitude amplification.

Theorem 3. [BHMT00] Let A be a quantum algorithm with one-sided error and
success probability at least ε. Then there is a quantum algorithm B that solves A
with success probability 2/3 by O( 1√

ε
) invocations of A.

Remark 1. Our quantum algorithms output an incorrect answer with a constant
probability p. If we want to reduce the error probability to less than ε, we repeat
each quantum subroutine l times, where pl ≤ ε. It follows, that we have to
repeat each quantum subroutine l = O(log n) times, to make the probability of
a correct answer greater than 1 − 1/n. This increases the running time of all
our algorithms by a logarithmic factor. Furthermore, the running time of Grover
search is bigger that its query complexity by another logarithmic factor.

3 Maximal Independent Set

In this section we study the quantum query complexity of the following problem:

Maximal Independent Set: Given a graph G = (V,E), compute a maximal
independent set in G.

We present an O(
√

nm) quantum query algorithm for computing a maximal
independent set in a graph. Then we show that this algorithm is optimal in the
adjacency model, by proving a lower bound of Ω(n1.5). Let G = (V,E) be a
graph and v ∈ V . For the application of quantum search, we define a search
function fG,v : V → {0, 1} with fG,v(x) = 1 if x ∈ NG(v), and zero otherwise.
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Algorithm 1 Maximal Independent Set

Input: Graph G = (V, E).
Output: Maximal independent set V ′.
Complexity: M: O(n1.5), L: O(

√
nm) quantum queries.

1: V ′ := ∅, F := G
2: while V (F ) 6= ∅ do
3: Choose v ∈ V (F )
4: V ′ := V ′ ∪ {v}
5: W :=All Quantum Search[fF,v] ∪ {v}
6: F := F−W

7: end while

Theorem 4. The quantum query complexity of the Maximal Independent
Set algorithm is O(n1.5) in the adjacency matrix model and O(

√
nm) in the

adjacency list model.

Proof. It is clear, that the algorithm computes a maximal independent set, but
not necessarily a maximum independent set. We use Grover’s search to find the
set W of all neighbours of the vertex v. Then we delete all vertices of W from the
graph F . Every vertex is deleted at most once. In the adjacency matrix model,
every vertex is found in O(

√
n) quantum queries to the adjacency matrix and

total we use O(n1.5) quantum queries in the adjacency matrix model.
In the adjacency list model, processing a vertex v costs O(

√
dG(v)av) quan-

tum queries, where av is the number of vertices in F which are adjacent to v.
Since

∑
v av ≤ n, then the quantum query complexity is upper-bounded by the

Cauchy-Schwarz inequality:

∑
v

√
dG(v)av ≤

√∑
v

dG(v)
√∑

v

av = O(
√

mn).

In order to get the success probability of 1−1/n, we need to amplify the success
probability of each subroutine by repeating it O(log n) times, see Remark 1.
Therefore we get:

Corollary 1. The quantum time complexity of the Maximal Independent
Set algorithm is O(n1.5 log2 n) in the adjacency matrix model and O(

√
nm log2 n)

in the adjacency list model.

Now we prove a Ω(n1.5) quantum query lower bound for the maximal inde-
pendent set problem with the method of Ambainis [Amb02] and analog to Berz-
ina et al. [BDFLS04]. Consequently the Maximal Independent Set quantum
algorithm is optimal in adjacency matrix model.

Theorem 5. The maximal independent set problem requires Ω(n1.5) quantum
queries to the adjacency matrix.
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Proof. We construct the sets A and B for the usage of Theorem 1. Let f be the
Boolean function which is one, iff there is a maximal independent set of size 2n.
The set A consists of all graphs G = (V,E) with |V | = 3n + 1 satisfying the
following requirements: 1. There are n mutually not connected red vertices. 2.
There are 2n green vertices not connected with the red ones. Green vertices are
grouped in pairs and each pair is connected by edge. 3. There is a black vertex
which is connected to all red and green vertices. Let V ′ be the set of n red
vertices and one green vertex of each pairs. Then V ′ is a maximal independent
set in G. The value of the function f for all graphs G ∈ A is 1.

The set B consists of all graphs G′ = (V,E) with |V | = 3n + 1 satisfying the
following requirements: 1. There are n + 2 mutually not connected red vertices.
2. There are 2n−2 green vertices not connected with red ones, green vertices are
grouped in pairs and each pair is connected by edge. 3. There is a black vertex
which is connected to all red and green vertices. The value of the function f for
all graphs G′ ∈ B is 0, since there no maximal independent of size 2n in G′.

From each graph G ∈ A, we can obtain G′ ∈ B by deleting one edge between
two green vertices, then l = n = O(n). From each graph G′ ∈ B, we can obtain
G ∈ A by adding an edge between two red vertices, then l′ = (n + 2)(n +
1)/2 = O(n2). By Theorem 1, the quantum query complexity of the maximal
independent set problem is Ω(

√
l · l′) = Ω(n1.5).

4 Maximum Independent Set

Now we are interested in the quantum time complexity for computing a largest
independent set in a graph. This is a well known NP-hard problem, which is
important for many other applications in computer science and graph theory.

Maximum Independent Set: Given a graph G = (V,E), compute an inde-
pendent set V ′ ⊆ V with |V ′| = α(G).

The first exact algorithms for the maximum independent set problem is given
by Tarjan and Trojanowski [TT77] with running time of O(1.2599n). Jian [Jia86]
improved the time complexity to O(1.2346n), Beigel [Bei99] to O(1.2227n), and
Robson [Rob01] to O(1.1844n). The algorithm by Robson is today the fastest
algorithms, it based on a detailed computer generated subcase analysis (number
of subcases is in the tens of thousands). We construct a quantum algorithm which
is faster than the best classical algorithm. Our quantum algorithm has running
time of O(1.1488n). This is no query algorithm, in this algorithm we count the
time steps to compute a maximum independent set. Our algorithm combines
a classical probabilistic algorithm with the quantum amplitude amplification.
First we need two simple facts from maximal independent set theory.

Lemma 1. For a path Pn and a cycle Cn with n vertices, it holds

α(Pn) =
⌈n

2

⌉
and α(Cn) =

⌊n

2

⌋
.
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Lemma 2. Let G be a simple graph with ∆(G) ≤ 2. Then all the components
of G are paths and cycles.

With the application of the above two Lemmas we can construct a quantum
time algorithm for the maximum independent set problem. If the maximum
degree of the graph is at most two, we denote with Paths(G) and Cycles(G) the
set of all paths and cycles in the graph G. The computation of the maximum
independent set of a path or a cycle is then a simple task. We denote with
MIS(G′) the maximum independent set in a graph G′, which is a path or a
cycle.

Algorithm 2 Maximum Independent Set

Input: A graph G = (V, E).
Output: Maximum independent set (MIS) V ′.
Complexity: M, L: O(1.1488n) quantum steps.

1: F := G, V ′ := ∅
2: while V (F ) 6= ∅ do
3: if ∆(F ) ≤ 2 then
4: V ′ :=

S
P∈Paths(F ) MIS(P ) ∪

S
C∈Cycles(F ) MIS(C)

5: return[V ′]
6: end if
7: Find v ∈ V (F ) with ∆(F ) = degF (v)
8: a ∈R {0, 1}
9: if a = 0 then

10: F := F−{v}
11: else
12: V ′ := V ′ ∪ {v}
13: F := F−NF [v]

14: end if
15: end while
16: Apply Amplitude Amplification

Theorem 6. The expected quantum time complexity of the Maximum Inde-
pendent Set algorithm is O(2n/5) = O(1.1488n).

Proof. The Maximum Independent Set algorithm combines a classical prob-
abilistic algorithm with the quantum amplitude amplification [BHMT00]. We
show that the probability for computing a maximum independent set with the
classical algorithm is at least ε = (1/2)2n/5. To obtain a quantum algorithm, we
just use quantum amplitude amplification like [Amb05]. We search for a largest
independent set, which can be model by the maximum finding algorithm by Dürr
and Høyer [DH96]. Then we increase the success probability to a constant, by
repeating the algorithm O( 1√

ε
) = O(2n/5) times. Considering this, we obtain the

indicated quantum time complexity.
Now we prove that the probability for computing a maximum independent

set with the classical algorithm is at least ε = (1/2)2n/5. In the first steps of this
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algorithm, we check if the maximal degree of the graph is smaller or equal than
two. If this is true, we apply Lemma 1 and Lemma 2, and compute the maximal
independent set V ′. Otherwise we choose a vertex v with maximal degree, and
a random variable a ∈ {0, 1}. If a = 0, we assume that v is not in the maximum
independent set V ′, and then we delete the vertex v from F . In the other case,
the vertex v is in the maximum independent set V ′. We delete v and the set of
all neighbours NF (v) from F . Since ∆(G) ≥ 3, we delete at least four vertices.

The task is now to determine how many expected number of steps x must
we do if F is empty. We choose the value of a with uniform distribution from
{0, 1}. If a = 0 we delete one vertex and if a = 1 we delete at least four vertices
of F , such that n ≥ 1

2 (1x + 4x). Then it is x ≤ 2n/5 and

Prob(V ′ is a MIS) ≥ (1/2)2n/5.

Now we apply the amplitude amplification, and repeat the procedure

O(1/
√

Prob(V ′ is a MIS)) = O(2n/5) = O(1.1488n)

times, to compute a maximum independent set V ′ of G.

Theorem 7. The maximum independent set problem requires Ω(n1.5) quantum
queries to the adjacency matrix.

Proof. Every maximum independent set is a maximal independent set, and this
requires Ω(n1.5) quantum queries to the adjacency matrix.

5 Independent Set of size k

In this section, we regard the quantum query complexity of the following prob-
lem:

k-Independent Set: Given a graph G and an integer k, compute an indepen-
dent set of size k (if there is one).

We use clique finding for proving the quantum query complexity of the
k-independent set problem. A clique of size k in G is a complete subgraph
with k vertices. The quantum query complexity for finding such a clique is
Õ(n(5k−2)/(2k+4)) for k ≤ 5 and O(n2k/(k+1)) for k ≥ 6, see Childs and Eisenberg
[CE03]. The corresponding quantum algorithm for this problem uses quantum
walks [AAKV01]. Quantum walks are the quantum counterpart of random walks,
this is a recent technique for the construction of new quantum algorithms (see
[Amb03, Amb04, Sze04, MSS05, MN05, BS06]). Ambainis [Amb04] constructed
a fundamental quantum walk algorithm for the element distinctness problem.
The authors of [CE03] apply the Ambainis quantum walk for searching a clique
of size k in a graph. From the analysis of this k-clique algorithm we get imme-
diately the following theorem:

Theorem 8. The quantum query complexity of the k-independent set problem
is O(n(5k−2)/(2k+4)) for k ≤ 5 and O(n2k/(k+1)) for k ≥ 6.
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Corollary 2. The quantum query complexity of the maximum independent set
problem is O(n2α(G)/(α(G)+1)).

Theorem 9. The k-independent set problem requires Ω(n) quantum queries.

Proof. The proof is a reduction from k-clique. Let G = (V,E) be a graph, then
a clique of size k in G is an independent set of size k in G′ = (V,E′) with
E′ = {{u, v} ∈ V × V | {u, v} /∈ E). Finding a k-clique requires Ω(n) quantum
queries (see [BDHHMSW01]). Therefore we obtain the indicated quantum query
lower bound.

6 Graph Application

6.1 Minimum Odd Cycle Transversal

Definition 1. Let G = (V,E) be a graph, an odd cycle transversal of G is a sub-
set of vertices whose deletion makes the graph bipartite. The size of a minimum
odd cycle transversal is called the vertex bipartization number.

Minimum Odd Cycle Transversal: Given a graph G, compute a minimum
odd cycle transversal of G.

We use our maximum independent set algorithm and a decomposition theo-
rem of Raman and Saurabh [RS05] for finding a minimum odd cycle transversal
with quantum time complexity of O(1.5819n). This improves the best classical
known time complexity bound of O(1.62n) by [RS05]. First we give the decom-
position theorem of [RS05], and then we present the corresponding quantum
algorithm.

Theorem 10. [RS05] Let G = (V,E) be a connected graph and let O a min-
imum odd cycle transversal. Then V \O can be decomposed as V1 and V2 such
that V1 is a maximal independent set of G and V2 is a maximum independent
set of G−V1 .

The correctness of the following Minimum Odd Cycle Transversal algo-
rithm follows immediately from Theorem 10.

Algorithm 3 Minimum Odd Cycle Transversal

Input: Connected graph G = (V, E).
Output: Minimum Odd Cycle Transversal O.
Complexity: M, L: O(1.5819n) quantum steps.

1: O := V
2: I := Set of all maximal independent sets of G
3: for V1 ∈ I do
4: V2 :=Maximum Independent Set[G−V1 ]
5: if |O| > |V \(V1 ∪ V2)| then
6: O := V \(V1 ∪ V2)
7: end if
8: end for
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We use our quantum maximum independent set quantum algorithm for com-
puting a minimum odd cycle transversal of the graph G. Before we prove the
quantum time complexity of the algorithm, we need the number of maximal
independent sets in a graph, which are smaller than a constant.

Theorem 11. [Epp03] Let G be a graph and k be a constant. The number
M(k) of maximal independent sets I for which |I| ≤ k is at most

M(k) =
{

34k−n4n−3k, k ≤
⌊

n
3

⌋
3n/3, k ≥

⌊
n
3

⌋
+ 1.

Furthermore, there is an algorithm for listing all maximal independent sets of
size at most k in time O(34k−n4n−3k) and O(3n/3).

Theorem 12. The quantum time complexity of the Minimum Odd Cycle
Transversal algorithm is O(1.5819n).

Proof. The time complexity of the algorithm is upper bounded by

n∑
k=1

M(k) · 2(n−k)/5 =
bn/3c∑
k=1

34k−n4n−3k · 2(n−k)/5 +
n∑

k=bn/3c+1

3n/3 · 2(n−k)/5

=
(

4 · 21/5

3

)n

·
bn/3c∑
k=1

(
34

43 · 21/5

)k

+
(
31/3

)n
b2n/3c∑

k=0

2k/5

≤ O

((
4 · 21/5

3

)n

·
(

34

43 · 21/5

)n/3
)

+ O
((

31/3
)n

· 22n/3·1/5
)

= O(1.5819n) + O(1.5819n).

6.2 Coloring

Given is a graph G, a coloring of G is an assignment of the vertices, such that
the endpoints of each edge are assigned two different colors. Every color class is
a vertex set without induced edges, such a vertex set is an independent set. We
consider the following problem:

Vertex-Coloring: Given a graph G = (V,E), compute a vertex coloring of G
(let k be the number of different colors).

We can apply our quantum maximal independent set algorithm to compute
a vertex-coloring. We determine a maximal independent set W of the graph G.
We assign all vertices of W with color i (at the beginning i = 1). Then we delete
all the vertices of W from G and increase i. We repeat this procedure as long
as there are vertices in G. The result of this procedure is a coloring of G with k
colors, which is not necessary the smallest number for coloring of G.

Theorem 13. The quantum time complexity of the vertex-coloring problem is
O(kn1.5 log2 n) in the adjacency matrix model and O(k

√
nm log2 n) in the adja-

cency list model.
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Conclusion

We give a summary of the quantum complexity for the regarded independent
set problems:

Problem Quantum Query Quantum Query Quantum Time
Lower Bound Upper Bound Complexity

Maximal M: Ω(n1.5) M: O(n1.5) M: O(n1.5 log2 n)
Independent Set L: O(

√
nm) L: O(

√
nm log2 n)

Maximum M: Ω(n1.5) M: O(n2α(G)/(α(G)+1)) M: O(1.1488n)
Independent Set
Independent Set M: Ω(n) M: O(n(5k−2)/(2k+4)) M: O(1.1488n)
of size k O(n2k/(k+1))

There are some interesting open questions in the area of independent set prob-
lems. It is an open problem in classical computing to construct an exact algo-
rithm for the maximum independent set problem with time complexity O(cn)
for some c < 1.1. Can we solve this problem with a quantum algorithm? Another
interesting task is to improve the Ω(n) quantum query lower bound for the k-
independent set problem. The improvement of this lower bound would implies a
better lower bound of the k-clique problem too.
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