
Quantum Algorithms for Matching Problems

Sebastian Dörn

Institut für Theoretische Informatik, Universität Ulm, 89069 Ulm, Germany
sebastian.doern@uni-ulm.de

Abstract. We present quantum algorithms for the following matching
problems in unweighted and weighted graphs with n vertices and m
edges:

– Finding a maximal matching in general graphs in time O(
√

nm log2 n).

– Finding a maximum matching in general graphs in time O(n
√

m log2 n).

– Finding a maximum weight matching in bipartite graphs in time
O(n

√
mN log2 n), where N is the largest edge weight.

– Finding a minimum weight perfect matching in bipartite graphs in
time O(n

√
nm log3 n).

These results improve the best classical complexity bounds for the corre-
sponding problems. In particular, the second result solves an open ques-
tion stated in a paper by Ambainis and Špalek [AS06].

1 Introduction

A matching in a graph is a set of edges such that for every vertex at most one
edge of the matching is incident on the vertex. The task is to find a matching of
maximum cardinality. The matching problem has many important applications
in graph theory and computer science.

In this paper we study the complexity of algorithms for the matching prob-
lems on quantum computers and compare these to the best known classical algo-
rithms. We will consider different versions of the matching problems, depending
on whether the graph is bipartite or not and whether the graph is unweighted
or weighted.

For unweighted graphs, the best classical algorithm for finding a match-
ing of maximum cardinality is based on augmenting paths and has running
time O(

√
nm) (see Micali and Vazirani [MV80]). Mucha and Sankowski [MS04]

present an algorithm based on matrix multiplication that finds a maximum
matching in general graphs in time O(nω), where 2 ≤ ω ≤ 2.38 is the expo-
nent of the best matrix multiplication algorithm.

Ambainis and Špalek [AS06] published an O(n2(
√

m/n+log n) log2 n) quan-
tum time algorithm for computing a maximum matching. But this quantum
algorithm is in no case better than the best classical algorithm from [MV80]
and [MS04]. The authors of [AS06] state as an open question, to improve with
a quantum algorithm the fastest known classical algorithm by Micali and Vazi-
rani [MV80]. We solve this question by presenting an O(n

√
m log2 n) quantum

2 Sebastian Dörn

time algorithm for finding a maximum matching in general graphs. This algo-
rithm is faster than the best classical algorithms for graphs with m > n log4 n.

For bipartite graphs the best classical matching algorithm has running time
O(
√

nm) (see Hopcroft and Karp [HK73]). Ambainis and Špalek [AS06] im-
proved this bound with an O(n

√
m log2 n) quantum algorithm for computing a

maximum matching in these graphs. The algorithm is polynomially faster than
the best classical algorithm, but not necessarily optimal. The time complexity of
our quantum algorithm for the maximum matching problem in general graphs
matches the complexity given in the algorithm from [AS06] for the restricted
case of bipartite graphs.

If we consider weighted graphs, the best classical algorithms for computing
a maximum weight matching in bipartite graphs were developed by Gabow and
Tarjan [GT89] with running time O(

√
nm log(nN)) and Kao, et al. [KLST01]

with time complexity O(
√

nW/k(n, W/N)), where k(x, y) = log x/ log(x2/y), N
is the largest edge weight and W is the total edge weight of G.

We construct a quantum algorithm using the decomposition theorem of
[KLST01], and get a running time of O(n

√
mN log2 n) for computing a max-

imum weight matching in bipartite graphs. If the largest edge weight N is con-
stant, then we get an O(n

√
m log2 n) time algorithm. This is faster than the best

classical algorithms for this problem.
Berzina et al. [BDFLS04] and Zhang [Zha04] showed, that Ω(n3/2) quantum

queries to the adjacency matrix are required for computing a maximum matching
in a bipartite graph. This implies a quantum lower bound of Ω(n3/2) for the
quantum time complexity. Since the bipartite maximum matching problem is
a special case of the other maximum matching problems, it follows that the
Ω(n3/2) lower bound holds for all the maximum matching problems considered
here. We show that the same lower bound holds also for the maximal matching
problem. Then we obtain a matching upper bound for this problem, thus showing
that the quantum query complexity of the problem is Θ(n3/2). For the running
time we prove an upper bound of O(

√
nm log2 n).

Our results are proved using several techniques: Grover search [Gro96], quan-
tum depth first search, topological numbering and quantum running time anal-
ysis of classical algorithms. For the case of weighted matching algorithms we
use the quantum graph algorithms of Dürr [DHHM04] and as well as our new
maximum matching algorithm.

The paper is organized as follows: In section 2 we give necessary defini-
tions and facts about graph theory and quantum computing. In section 3 we
present quantum algorithms for unweighted matching problems. We give a quan-
tum algorithm for computing a maximal matching in general graphs in time
O(
√

nm log2 n). Then we present a maximum matching quantum algorithm for
general graphs in time O(n

√
m log2 n). In section 4 we give quantum algorithms

for the weighted matching problems. We show, that finding a maximum weight
matching in bipartite graphs can be done in time O(n

√
mN log2 n) and finding

a minimum weight perfect matching in bipartite graphs can be done in time
O(n

√
nm log3 n). We end with a section with conclusion and open problems.

Quantum Algorithms for Matching Problems 3

2 Preliminaries

2.1 Graph Theory

Let G = (V,E) be an undirected graph, with V = V (G) and E = E(G) we
denote the set of vertices and edges of G. Let n = |V | be the number of vertices
and m = |E| the number of edges of G. We denote by NG(v) the set of all
vertices adjacent to v ∈ V and dG(v) := |NG(v)|. The graph G−S is obtained
from G by deleting the vertices S ⊂ V and the incident edges. We denote by [n]
the set {1, . . . , n}.

Definition 1 Let G = (V,E) be an undirected graph, a matching is a subset
M ⊆ E such that for all vertices v ∈ V , at most one edge of M is incident on v.
We say that a vertex v ∈ V is matched by M if some edge in M is incident on v,
otherwise v is called unmatched or free. A matching is called perfect, if all vertices
of G are matched. The set M is called maximal, if there is no matching M ′ ⊆ E
with M ⊂ M ′. A maximum matching is a matching of maximum cardinality.

A path between two vertices s and t in G is a sequence (v1, . . . , vk) where
k ≥ 1 and v1, . . . , vk are distinct vertices of G such that s = v1, t = vk and
{vi, vi+1} ∈ E for i = 1, . . . , k − 1. For a matching M , a path P in G is called
alternating in M if edges in P are alternately in M and not in M . An alternating
path P is called augmenting path for the matching M if the two end vertices of
P are unmatched by M .

We consider the following models for accessing information in undirected graphs:

Adjacency matrix model: Given is the adjacency matrix A ∈ {0, 1}n×n of
G with Ai,j = 1 iff {i, j} ∈ E. Weighted graphs are encoded by a weight
matrix A, where Ai,j is the weight of edge {i, j}, and for convenience we set
Ai,j = ∞ if {i, j} 6∈ E.

Adjacency list model: Given are the degrees dG(1), . . . , dG(n) of the vertices
and for every i ∈ V an array with its neighbours fi : [dG(i)] → [n]. The value
fi(j) is the j-th neighbour of i. Weighted graphs are encoded by a sequence
of functions fi : [dG(i)] → [n] × N, such that if fi(j) = (i′, w) then there is
an edge {i, i′} with weight w and i′ is the j-th neighbour of i.

In the following, we denote by M and L the input model of the graph as adja-
cency matrix (M) and as adjacency list (L).

2.2 Quantum Computing

For the basic notation on quantum computing, we refer the reader to the text-
book by Nielsen and Chuang [NC03].

4 Sebastian Dörn

Quantum Complexity. For the quantum algorithms included in this paper
we use the following two complexity measures:

– The quantum query complexity of a graph algorithm A is the number of
queries to the adjacency matrix or to the adjacency list of the input graph
made by A.

– The quantum time complexity of a graph algorithm A is the number of basic
quantum operations made by A.

Remark 1.

1. The quantum time complexity is always at least as large as the quantum
query complexity, since each query takes one unit step.

2. For the most polynomial time quantum algorithms, the time complexity is
equal the query complexity with a log factor.

3. In many graph problems where the graph has a large number of edges
(m = Θ(n2)), the number of queries to the adjacency matrix is the same
as the number of queries to the adjacency list. An exception for example is
the test whether a graph is connected (see [DHHM04]).

Quantum Query Lower Bounds. In this paper, we use the following special
case of a method by Ambainis [Amb02] to prove lower bounds for the quantum
query complexity.

Theorem 1. [Amb02] Let A ⊂ {0, 1}n, B ⊂ {0, 1}n and f : {0, 1}n → {0, 1}
such that f(x) = 1 for all x ∈ A, and f(y) = 0 for all y ∈ B. Let m and m′ be
numbers such that

1. for every (x1, . . . , xn) ∈ A there are at least m values i ∈ {1, . . . , n} such
that (x1, . . . , xi−1, 1− xi, xi+1, . . . , xn) ∈ B,

2. for every (x1, . . . , xn) ∈ B there are at least m′ values i ∈ {1, . . . , n} such
that (x1, . . . , xi−1, 1− xi, xi+1, . . . , xn) ∈ A.

Then every bounded-error quantum algorithm that computes f has quantum
query complexity Ω(

√
m ·m′).

Remark 2.

1. A lower bound for the quantum query complexity implies also the same lower
bound for the quantum time complexity.

2. The trivial upper bound for the quantum query complexity in graph theory
is O(n2).

Quantum Search. A search problem is a subset P ⊆ [N] of the search
space [N]. With P we associate its characteristic function fP : [N] → {0, 1}
with

fP (x) =

{
1, if x ∈ P,

0, otherwise.

Any x ∈ P is called a solution to the search problem. Let k = |P | be the number
of solutions of P .

Quantum Algorithms for Matching Problems 5

Theorem 2. [Gro96,BBHT98] For k > 0, the expected quantum query complex-
ity for finding one solution of P is O(

√
N/k), and for finding all solutions, it is

O(
√

kN). Futhermore, whether k > 0 can be decided in O(
√

N) quantum queries
to fP .

We denote by Quantum Search[fP] an application of Grover’s search algo-
rithm which computes a solution x∗, i.e an element x∗ of the search space of P
with fP (x∗) = 1.

Remark 3. Our quantum algorithms output an incorrect answer with a constant
probability p. If we want to reduce the error probability to less than ε, we repeat
each quantum subroutine l times, where pl ≤ ε. It follows, that we have to
repeat each quantum subroutine l = O(log n) times, to make the probability of
a correct answer greater than 1 − 1/n. This increases the running time of all
our algorithms by a logarithmic factor. Furthermore, the running time of Grover
search is bigger that its query complexity by another logarithmic factor.

3 Unweighted Matchings

We regard the following matching problems in unweighted graphs:

Maximal Matching: Given a graph G, compute a maximal matching in G.

Maximum Matching: Given a graph G, compute a maximum matching in G.

3.1 Maximal Matching

In this section we construct a quantum query algorithm for the maximal match-
ing problem. Then we prove that this algorithm is optimal in the adjacency
matrix model.

Let H be a graph and v a vertex of H. For application of quantum search,
we construct a search function fH,v : V (H) → {0, 1} with

fH,v(u) =

{
1, if {v, u} ∈ E(H)
0, otherwise.

Algorithm 1 Maximal Matching

Input: Graph G = (V, E) with V = {v1, . . . , vn}.
Output: Maximal matching M .
Complexity: M: O(n1.5), L: O(

√
nm) quantum queries.

1: M := ∅, H := G, k := 1
2: while E(H) 6= ∅ do
3: v = Quantum Search[fH,vk]
4: M := M ∪ {{vk, v}}
5: H := H−{vk,v}
6: k := k + 1
7: end while

6 Sebastian Dörn

Theorem 3. The quantum query complexity of the Maximal Matching algo-
rithm is O(n1.5) in the adjacency matrix model and O(

√
nm) in the adjacency

list model.

Proof. In every step of the algorithm, we search with the Grover algorithm an
adjacent edge of a vertex vk in H. This can be done in O(

√
n) quantum queries

to the adjacency matrix. If there is no such an edge, we delete the vertex vk

from H. Otherwise we use the edge {vk, v} for the matching M , and we delete
the two vertices vk and v from H.

In total we use O(n1.5) quantum queries to the adjacency matrix for com-
puting a maximal matching. In the list model

√
dG(vk) queries are required for

every vertex vk, and in total we use
∑n

k=1

√
dG(vk) = O(

√
nm) quantum queries

to the adjacency list.

Corollary 1. The quantum time complexity of the Maximal Matching algo-
rithm is O(n1.5 log2 n) in the adjacency model and O(

√
nm log2 n) in the adja-

cency list model.

Now we show that the Maximal Matching quantum algorithm is optimal
in the adjacency matrix model, by proving a quantum query lower bounds with
the method of Ambainis [Amb02] and analog to [BDFLS04].

Theorem 4. The maximal matching problem requires Ω(n1.5) quantum queries
to the adjacency matrix.

Proof. We construct the sets A and B for the usage of Theorem 1. Let f be the
Boolean function which is one, iff there is a maximal matching set of size n. The
set A consists of all graphs G = (V,E) with |V | = 3n+1 satisfying the following
requirements: 1. There are n mutually not connected red vertices. 2. There are
2n green vertices not connected with the red ones. Green vertices are grouped
in pairs and each pair is connected by edge. 3. There is a black vertex which is
connected to all red and green vertices. Let M be the set of all edges between
two green vertices of G. Then M is a maximal matching in G of size n. The
value of the function f for all graphs G ∈ A is 1.

The set B consists of all graphs G′ = (V,E) with |V | = 3n + 1 satisfying the
following requirements: 1. There are n− 2 mutually not connected red vertices.
2. There are 2n+2 green vertices not connected with red ones, green vertices are
grouped in pairs and each pair is connected by edge. 3. There is a black vertex
which is connected to all red and green vertices. The value of the function f for
all graphs G′ ∈ B is 0, since there no maximal matching of size n in G′.

From each graph G ∈ A, we can obtain G′ ∈ B by adding one edge between
two red vertices, then l = O(n2). From each graph G′ ∈ B, we can obtain G ∈ A
by deleting an edge between two green vertices, then l′ = O(n). By Theorem 1,
the quantum query complexity is Ω(

√
l · l′) = Ω(n1.5).

Quantum Algorithms for Matching Problems 7

3.2 Maximum Matching

The best classical algorithm for finding a matching of maximum cardinality in
general graphs is based on augmenting paths and has running time O(

√
nm),

see Micali and Vazirani [MV80]. Mucha and Sankowski [MS04] present an algo-
rithm based on matrix multiplication that finds a maximal matching in general
graphs in time O(nω), where 2 ≤ ω ≤ 2.38 is the exponent of the best matrix
multiplication algorithm.

Ambainis and Špalek [AS06] construct a O(n2(
√

m/n + log n) log2 n) quan-
tum algorithm for computing a maximum matching. But this quantum algorithm
is in no case better than the best classical algorithm from [MV80] and [MS04].

In this subsection we present an O(n
√

m log2 n) quantum time algorithm
for finding a maximum matching in a general graphs. This algorithm is faster
than the best classical one for computing a maximum matching in a graph with
m > n log4 n.

We speed up the O(
√

nm) algorithm by Micali and Vizirani [MV80]. This
algorithm works in phases. In each phase a maximal set of disjoint minimum
length augmenting paths is found, and the existing matching is increased along
this paths. We implement such a phase in time O(

√
mn log2 n) with quantum

search. Only O(
√

n) such phases are needed for finding a maximum matching,
see [HK73], [MV80].

First we determine the quantum query complexity of two basic graph prob-
lems, depth first search and topological numbering. We use this procedures in
the quantum maximum matching algorithm.

Depth First Search (DFS): Given a graph G = (V,E) and a vertex s ∈ V .
Compute a depth-first tree T from s. The tree T is rooted at s and contains all
the vertices of G that are reachable from s.

Lemma 1. The quantum query complexity of DFS is O(n1.5) in the adjacency
matrix model and O(

√
nm) in the adjacency list model.

Proof. In DFS, we construct a tree T that contains all the vertices of G that are
reachable from the root s. We can construct this tree by the following simple
procedure: For each edge (s, w) ∈ E in which w has not been discovered by T ,
make w the next child of s in T , and recall the procedure with s = w.

We use Grover search to construct the tree T . Every vertex is discovered by
T at most once. In the adjacency matrix model, every vertex is found in O(

√
n)

quantum queries, and in total we uses O(n1.5) quantum queries in the adjacency
matrix model. In the list model, finding an adjacent vertex of s which has not
been discovered uses O(

√
dG(s) quantum queries. In total it holds

∑
s

√
dG(s) =

O(
√

mn) quantum queries in the adjacency list model.

Topological Numbering (TN): Given a directed acyclic graph G = (V,E).
Compute a numbering I : V → {1, . . . , n} for each vertex in G, such that each
edge is directed from lower number to higher number, i.e. if (u, v) ∈ E then
I(u) < I(v).

8 Sebastian Dörn

Lemma 2. The quantum query complexity of topological numbering is O(n1.5)
in the adjacency matrix model and O(

√
nm) in the adjacency list model.

Proof. We grow a DFS path P until a sink t (vertex with outdegree 0) is reached.
Then we set I(t) = n, decrease n by 1 and delete t from the path P and the
graph G. We continue with the DFS procedure until G has no vertices.

In each iteration we grow the DFS path P by starting with the previous P
and extenting it, if possible. Since we use DFS, we apply Lemma 1 to obtain the
quantum query complexity of topological numbering.

Before we explain the maximum matching algorithm, we give some important
definitions.

Definition 2 Let G = (V,E) be a graph and M be a matching in G.

– The evenlevel (oddlevel) of a vertex v is the length of a minimum even (odd)
length alternating path from v to a free vertex, if there is one, and infinite
otherwise.

– The level is the length of a minimum alternating path from v to a free vertex.
– A vertex is outer (inner) iff its level is even (odd). If v is outer (inner) then

its oddlevel (evenlevel) will be refered to as the other level of v.
– An edge (u, v) in a graph G with matching M is called a bridge if either both

evenlevel(u) and evenlevel(v) are finite, or both oddlevel(u) and oddlevel(v)
are finite.

– A blossom B in a matched graph G is a cycle of odd length k, in which
the edges are maximaly matched. In every blossom there is one free vertex,
called basis of B. The two vertices at distance bk/2c from the basis are called
peaks of B.

– Let u be a vertex of G which is not matched. If u is inner and oddlevel(u) =
2i+1 then v is called a predecessor of u iff evenlevel(v) = 2i and (u, v) ∈ E.
If u is outer then v is a predecessor of u iff (u, v) is a matched edge.

– The ancestor is the transitive closure of the relation predecessor.

The classical algorithm by [MV80] for computing a maximal matching in
a general graph consists of a main routine SEARCH, and three subroutines:
BLOSS-AUG, FINDPATH and TOPOLOGICAL ERASE. We describe shortly
the four parts of the algorithm, for details see [MV80]:

SEARCH:
Given a graph G = (V,E) and a matching M , SEARCH constructs simulta-
neously for every free vertex v of G a Breadth First Search (BFS) tree which
is rooted at v, to find the odd and evenlevel of each vertex in G. At the start
of the subroutine the two levels of each vertex of G are set to infinity. Then
SEARCH grows the BFS trees by incrementing the search level by one each
time.
When SEARCH detects that a certain edge (u, v) is a bridge, it calls the
subroutine BLOSS-AUG with the parameter u and v.

Quantum Algorithms for Matching Problems 9

BLOSS-AUG:
This subroutine is called with vertices u and v such that the edge (u, v) is
a bridge. The result is either the formation of a new blossom, or a mini-
mum augmenting path. A new blossom is formed if and only if the following
condition holds:
1. There exist a vertex z such that z is an ancestor of vertex u and v.
2. The vertices u and v do not have any ancestors, other than z, whose

level is equal to the level of z.
If the condition holds for bridge (u, v) and b is the vertex whose level is
maximum, then the new blossom is the set of vertices w such that:
1. Vertex w does not belong to any other blossom when B is formed.
2. Either w = u or w = v or w is an ancestor of u or w is an ancestor of v.
3. The vertex b is an ancestor of w.

From this follows, that b is the base of B and u and v are the peaks of B.
BLOSS-AUG performs a Double Depth First Search (DDFS), consisting in
growing two DFS trees T1 and Tr simultaneously, i.e. if at a certain stage,
the centers of activities of T1 and Tr are at v1 and vr, then the DDFS grows
T1 if level(v1) ≥ level(vr), and its grows Tr otherwise. T1 and Tr are rooted
at u and v.
For the special details of the DDFS see [MV80, page 21]. During the DDFS,
the two trees can find two different free vertices, then an augmentation of
the matching is possible.

FINDPATH:
When BLOSS-AUG finds the presence of a minimum augmenting path, we
use FINDPATH to search one such a path P . FINDPATH is called with two
vertices vh and vl and a blossom B as parameters. It holds level(vh) ≥level(vl)
and they both belong to a common minimum augmenting path.
The procedure returns a path between vl and vr with a DFS starting at vh

to find vl. The present matching is increased along the minimum augmenting
path P .

TOPOLOGICAL ERASE:
After FINDPATH has found the minimum augmenting path P and the
matching has been increased along this path, this subroutine deletes from
the graph the path P and all those edges which cannot be part of a minimum
augmenting path disjoint from P .
This subroutine uses a topological sort. Each vertex has a counter which at
any stage indicates the number of its unerased predecessor edges. A vertex
is deleted with all incident edges, either when its counter is zero or when its
enters a minimum augmenting path detected by FINDPATH. The counter
of the free vertices is one at the start and during the phase, since they have
no predecessor.

Theorem 5. The running time for computing a maximum matching is O(n2 log2 n)
in the quantum adjacency matrix model and O(n

√
m log2 n) in the quantum ad-

jacency list model.

10 Sebastian Dörn

Proof. We show that a phase consisting of the four subroutines SEARCH, BLOSS-
AUG, FINDPATH and TOPOLOGICAL ERASE can be implement with quan-
tum search in time O(n1.5 log2 n) in the adjacency matrix model and in time
O(
√

nm log2 n) in the adjacency list model. Only O(
√

n) such phases are needed
for finding a maximum matching, see [HK73], [MV80]. We regard the above four
subroutines:

SEARCH:
We perform a Breadth First Search to find the evenlevel and oddlevel of
each vertex in G as follows: All free vertices of G get the evenlevel 0 and the
other levels are infinite. SEARCH constructs simultaneously for every free
vertex v of G a BFS tree to find the two level numbers of each vertex in G.
In the adjacency model a vertex is found in O(

√
n) quantum queries. Every

vertex is processed at most twice, since we have two level numbers for each
vertex. In the list model, processing a vertex v costs O(

√
dG(v) · nv) quan-

tum queries, where nv is the number of vertices adjacent to v with a infinite
level number. Since

∑
v nv ≤ 2n, then the total quantum query complexity

is upper-bounded by the Cauchy-Schwarz inequality:∑
v

√
dG(v)nv ≤

√∑
v

dG(v)
√∑

v

nv = O(
√

mn).

BLOSS-AUG:
The procedure BLOSS-AUG performs a Double Depth First Search, con-
sisting in growing two DFS trees. With quantum search we perform these
two DFS in O(n1.5) quantum queries to the adjacency matrix model and in
O(
√

nm) quantum queries to the adjacency list model, see Lemma 1.
FINDPATH:

The subroutine returns a path with a DFS starting at vh to find vl. Clearly
with Lemma 1, the quantum query complexity is O(n1.5) in the adjacency
matrix model and O(

√
nm) in the adjacency list model.

TOPOLOGICAL ERASE:
We use Lemma 2, and the quantum query complexity of this procedure is
the same as the above three subroutines.

In order to get the success probability of 1 − 1/n, we need to amplify the
success probability of each subroutine by repeating it O(log n) times, see Remark
3. Considering this, we obtain the indicated quantum time complexity.

4 Weighted Matching

In this section, we look at weighted matchings in bipartite graphs. Let G = (V,E)
be a graph, w(u, v) is the weight of an edge {u, v} ∈ E, if u is not adjacent to v,
let w(u, v) = 0. We denote by N the largest edge weight and with W the total
edge weight of G.

We regard the following two matching problems in weighted graphs:

Quantum Algorithms for Matching Problems 11

Maximum Weight Bipartite Matching: Given a bipartite graph G with
positive integer weights on the edges and without isolated vertices, compute a
matching M in G such that the sum of the weights of the edges in M is maximum
over all possible matchings.

Minimum Weight Perfect Bipartite Matching: Given a weighted bipartite
graph G, compute a perfect matching M in G such that the sum of the weights
of the edges in M is minimum over all possible perfect matchings.

4.1 Maximum Weight Bipartite Matching

The best classical algorithms for computing a maximum weight matching in bi-
partite graphs with positive integer weights are developed by Gabow and Tarjan
[GT89] with running time O(

√
nm log(nN)) and Kao, et al. [KLST01] with time

complexity O(
√

nW/k(n, W/N)), where k(x, y) = log x/ log(x2/y).
We give a quantum algorithm with running time O(n

√
mN log2 n) for com-

puting a maximum weight matching in bipartite graphs. If the largest edge
weight N is constant, then we get an O(n

√
m log2 n) time algorithm. For the

construction of our quantum algorithm we use the decomposition theorem of
[KLST01]. First we need some definitions and facts about a minimum weight
cover in a bipartite graph.

Definition 3 Let G = (X∪Y, E) be a bipartite graph. A cover of G is a function
C : X ∪ Y → N such that C(x) + C(y) ≥ w(x, y) for all x ∈ X and y ∈ Y . Let
w(C) :=

∑
z∈X∪Y C(z) be the weight of C. The cover C is of minimum weight,

if w(C) is the smallest possible value.

The algorithms for computing a maximum weight matching in bipartite
graphs use the following problem:

Minimum Weight Cover: Given a bipartite graph G with positive integer
weights, compute a minimum weight cover of G.

Remark 4. A minimum weight cover is dual to the maximum weight matching in
a bipartite graph G, i.e. from a maximum matching in G we can find a minimum
weight cover of G in time O(m), see [BM76].

Definition 4 Let G = (X ∪ Y,E) be a bipartite graph and h ∈ {1, . . . , N} be
an integer. Define Gh as the graph which is formed by the edges {u, v} of G with
w(u, v) ∈ [N − h + 1, N] and the edge weight {u, v} of Gh is w(u, v)− (N − h).

Let Ch be a minimum weight cover of Gh and G∗
h is formed by the edges

{u, v} of G with w(u, v)− Ch(u)− Ch(v) > 0 and the edge weight {u, v} of G∗
h

is w(u, v)− Ch(u)− Ch(v).

Now we present the Decomposition theorem of [KLST01].

12 Sebastian Dörn

Theorem 6. [KLST01] Let h, G,Gh, Ch, G∗
h as in Definition 4 and let C∗

h be
any minimum weight cover of G∗

h. If D : X ∪ Y → N is a function such that for
every u ∈ V (G),

D(u) = Ch(u) + C∗
h(u),

then D is a minimum weight cover of G.

Using this theorem, a minimum weight cover of G can be computed with the
following recursive procedure, see [KLST01].

Algorithm 2 Minimum Weight Cover

Input: Bipartite graph G = (X ∪ Y, E) with positive integer weights.
Output: Minimum weight cover D : X ∪ Y → N.
Complexity: M: O(n2N log2 n), L: O(n

√
mN log2 n) quantum steps.

1: Construct G1 from G.
2: Find a minimum weight cover C1 of G1.
3: Construct G∗

1 from G and C1.
4: if G∗

1 = ∅ then
5: return[C1]
6: else
7: C∗

1 := Minimum Weight Cover[G∗
1]

8: D(u) := C1(u) + C∗
1 (u) for all u in G

9: return[D]
10: end if

The correctness of the algorithm follows from Theorem 6. We use our max-
imum matching quantum algorithm for computing a minimum weight cover of
the graph G.

Theorem 7. The quantum time complexity of the Minimum Weight Cover
algorithm is O(n

√
mN log2 n) in the adjacency list model and O(n2N log2 n) in

the adjacency matrix model.

Proof. We analyse the running time in the adjacency list model. We initialize a
maximum heap in O(m) time to store the edges of G according to their weights.

Let T (n, W, N) be the running time of the Minimum Weight Cover quan-
tum algorithm. Let L be the set of all edges in G1, i.e. the heaviest edges in G.
Then Step 1 takes O(|L| log m) time. In Step 2, we can compute a maximum
matching of G1 in O(n

√
|L| log2 n) time steps, by using the maximum matching

quantum algorithm. From this matching, C1 can be found in O(|L|) time, see
[BM76]. Let L1 be the set of the edges of G adjacent to some vertex u with
C1(u) > 0. Step 3 updates every edge of L1 in O(l1 log m) time, where l1 = |L1|.

The total running time of steps 1 to 3 is O(n
√

l1 log2 n), since L ⊆ L1. The
total weight of G∗

1 is at most W − l1. Step 7 uses then at most T (n, W − l1, N
′)

time, where N ′ < N is the maximum edge weight of G∗
1 and it follows

T (n, W, N) = O(n
√

l1 log2 n) + T (n, W − l1, N
′),

Quantum Algorithms for Matching Problems 13

where T (n, 0, N ′) = 0. We apply the procedure recursively for some positive
integers l1, l2, . . . , lp with p ≤ N and

∑
1≤i≤p li = W , it follows

T (n, W, N) = O

(
n log2 n

p∑
i=1

√
li

)
.

Since
∑p

i=1

√
li ≤

√
p
∑p

i=1 li, then

T (n, W, N) = O

n log2 n

√√√√p

p∑
i=1

li

 = O
(
n log2 n

√
NW

)
.

Since W ≤ Nm it follows T (n, W, N) = O(n
√

mN log2 n) in the list model. The
running time for the matrix model follows setting m = n2.

Now we use the algorithm by [KLST01] to recover a maximum weight match-
ing of a bipartite graph G from a minimum weight cover of G.

Algorithm 3 Maximum Weight Matching

Input: Bipartite graph G = (X ∪ Y, E) with positive integer weights.
Output: Maximum weight matching M .
Complexity: M: O(n2N log2 n), L: O(n

√
mN log2 n) quantum steps.

1: D :=Minimum Weight Cover[G]
2: A := {{u, v} ∈ E | w(u, v) = D(u) + D(v)}
3: H := (V, A)
4: Make two copies of H, call them Ha and Hb. For each vertex u of H, let ua and

ub denote the corresponding vertex in Ha and Hb.
5: Union Ha and Hb to form Hab, and add to Hab the set of edges

{(ua, ub) | u ∈ V (H), D(u) = 0}.
6: Find a maximum matching K of Hab.
7: M = {(u, v) | (ua, va) ∈ K}

Theorem 8. The running time of a quantum algorithm for computing a maxi-
mum weight matching in a bipartite graph is O(n

√
mN log2 n) in the adjacency

list model and O(n2N log2 n) in the adjacency matrix model.

Proof. We use the above algorithm. The graph Hab has at most 2n nodes and
at most 3m edges. The maximum matching K can be constructed by a quan-
tum algorithm in time O(n

√
m log2 n) in the adjacency list model and in time

O(n2 log2 n) in the adjacency matrix model.

Corollary 2. The running time of a quantum algorithm for computing a maxi-
mum weight matching in a bipartite graph with constant edge weight is O(n

√
m log2 n)

in the adjacency list model and O(n2 log2 n) in the adjacency matrix model.

14 Sebastian Dörn

4.2 Minimum Weight Perfect Bipartite Matching

We give the quantum time complexity for computing a minimum weight perfect
matching in a bipartite graph. For this task we use shortest paths.

Shortest Paths: Given a weighted graph G = (V,E) and a source vertex vs

of the graph, compute a tree T , such that the shortest paths from v to all the
other vertices is in T .

The best classical algorithm for computing a minimum weight perfect matching
in a bipartite graph computes shortest paths in a graph, see Cook [CCPS98].
The time complexity for such an algorithm is given by the following Theorem.

Theorem 9. [see CCPS98] There is an algorithm for the minimum weight per-
fect matching problem for bipartite graphs with running time O(nS(n, m)), where
S(n, m) is the time needed to solve the shortest path problem on a digraph with
n vertices and m arcs.

For the shortest path problem we use the quantum algorithm by Dürr, et al.
[DHHM04].

Theorem 10. [DHHM04] The shortest path problem can be solved by a quan-
tum algorithm in time O(n1.5 log3 n) in the adjacency matrix model and in time
O(
√

nm log3 n) in the adjacency list model.

From this, we get the running time to compute the minimum weight perfect
matching in a bipartite graph.

Theorem 11. The running time of a quantum algorithm for the minimum
weight perfect matching problem for bipartite graphs is O(n2.5 log3 n) in the ad-
jacency matrix model and O(n

√
nm log3 n) in the adjacency list model.

Conclusion and Open Problems

We give a summary of the classical and quantum time upper bounds for the
regarded matching problems in unweighted and weighted graphs:

Problem Quantum Time Ref. Classical Time Ref.
Complexity Complexity

Maximal Matching M: O(n1.5 log2 n) Theorem 1 O(m) Trivial
L: O(

√
nm log2 n)

Maximum Matching M: O(n2 log2 n) Theorem 5 O(
√

nm) [MV80]
L: O(n

√
m log2 n) O(nw) [MS04]

Maximum Weight M: O(n2N log2 n) Theorem 8 O(
√

nW) [KLST01]
Bipartite Matching L: O(n

√
mN log2 n) O(

√
nm log(nN)) [GT89]

Minimum Weight M: O(n2.5 log3 n) Theorem 11 O(nS(n, m)) [CCPS98]
Perf. Bip. Matching L: O(n

√
nm log3 n)

Quantum Algorithms for Matching Problems 15

We give some interesting open questions in the area of quantum matching
algorithms:

1. Is the O(n2 log2 n) quantum algorithm for computing a maximum matching
optimal? The best quantum lower bound for this problem is Ω(n1.5). Is
there a better upper bound for computing a maximum matching in bipartite
graphs?

2. Gabow [Gab90] showed that both the minimum weight and the maximum
weight matching problems can be solved in time O(n(m + n log n)). He
presents an algorithm in which a maximum weight augmenting path in a
graph G can be found in time O(m + n log n). Enlarging in G the matching
with the path, after n steps the maximum weight matching is found.
It is open to find a quantum algorithm for the minimum weight and the
maximum weight matching for general graphs improving the running time
of the classical algorithm of Gabow.

Acknowledgments

For helpful comments I am grateful to Jacobo Torán.

References

[Amb02] A. Ambainis, Quantum Lower Bounds by Quantum Arguments, Journal
of Computer and System Sciences 64: pages 750-767, 2002.

[AS06] A. Ambainis, R. Špalek, Quantum Algorithms for Matching and Network
Flows, Proceedings of STACS’06, 2006.

[BBHT98] M. Boyer, G. Brassard, P. Høyer, A. Tapp, Tight bounds on quantum
searching, Fortschritte Der Physik 46(4-5): pages 493-505, 1998.

[BCWZ99] H. Buhrman, R. Cleve, R. de Wolf, Ch. Zalka, Bounds for Small-Error and
Zero-Error Quantum Algorithms, Proceedings of FOCS’99: pages 358-368,
1999.

[BDFLS04] A. Berzina, A. Dubrovsky, R. Freivalds, L. Lace, O. Scegulnaja, Quantum
Query Complexity for Some Graph Problems, Proceedings of SOFSEM’04:
pages 140-150, 2004.

[BM76] J. Bondy, U. Murty, Graph Theory with Applications, North-Holland, New
York, 1976.

[CCPS98] W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, A. Schrijver, Combi-
natorial Optimization, John Wiley & SONS, INC, New York, 1998.

[DHHM04] C. Dürr, M. Heiligman, P. Hoyer, M. Mhalla, Quantum query complexity
of some graph problems, Proceedings of ICALP’04: pages 481-493, 2004.

[Gab90] H. N. Gabow, Data structures for weighted matching and nearest com-
mon ancestors with linking, Proceedings of the 1st Annual ACM-SIAM
Symposium on Discrete Algorithms: pages 434-443, 1990.

[Gro96] L. Grover, A fast mechanical algorithm for database search, Proceedings
of STOC’96: pages 212-219, 1996.

[GT89] H.N. Gabow, R.E. Tarjan, Faster scaling algorithms for network problems,
SIAM Journal on Computing 18: pages 1013-1036, 1989.

16 Sebastian Dörn

[GY99] J. Gross, J. Yellen, Graph Theory and its Applications, CRC Press, Lon-
don 1999.

[HK73] J. E. Hopcroft, R. M. Karp, An n5/2 algorithm for maximum matchings in
bipartite graphs, SIAM Journal on Computing 2(4): pages 225-231, 1973.

[KLST01] M.-Y. Kao, T.-W. Lam, W.-K. Sung, H.-F. Ting, A Decomposition The-
orem for Maximum Weight Bipartite Matchings, SIAM Journal on Com-
puting 31: pages 18-26, 2001.

[MS04] M. Mucha, P. Sankowski, Maximum matchings via Gaussian elimination,
Proceedings of FOCS’04: pages 248-255, 2004.

[MV80] S. Micali, V.V. Vazirani, An O(
√

nm) Algorithm for Finding Maximum
Matching in General Graphs, Proceedings of FOCS’80: pages 17-27, 1980.

[NC03] M.A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Infor-
mation, Cambridge University Press, 2003.

[Zha04] S. Zhang, On the power of Ambainis’s lower bounds, Proceedings of
ICALP’04, Lecture Notes in Computer Science 3142: pages 1238-1250,
2004.

