
Quantum Algorithms for Algebraic Problems ∗

Sebastian Dörn

Institut für Theoretische Informatik

Universität Ulm

89069 Ulm, Germany

Thomas Thierauf

Fak. Elektronik und Informatik

HTW Aalen

73430 Aalen, Germany

{sebastian.doern,thomas.thierauf}@uni-ulm.de

Abstract

In this paper we present quantum query and time complexity bounds
for several group testing problems. For a set S and a binary operation
on S, we consider the decision problems whether a given structure with
the promise of being a groupoid, semigroup, monoid or quasigroup is in
fact a semigroup, monoid, quasigroup or a group. In particular, we give
the first application of the new quantum random walk technique by Mag-
niez, Nayak, Roland, and Santha [MNRS07] that improves the previous
bounds by Ambainis [Amb04] and Szegedy [Sze04]. Our quantum algo-
rithms for these problems improve the best known classical complexity
bounds. We also present upper and lower bounds for testing distributivity
and commutativity.

1 Introduction

Quantum algorithms have the potential to demonstrate that for some problems
quantum computation is more efficient than classical computation. A goal of
quantum computing is to determine for which problems quantum computers
are faster than classical computers.

The most important known basic quantum algorithms are Shor’s [Sho94]
polynomial time factorization algorithm and Grover’s search algorithm [Gro96].
Since then, we have seen some generalisations and applications of these two basic
quantum techniques. The Shor algorithm has been generalized to quantum
algorithms for the hidden subgroup problem (see e.g. [CEMM98]). Grover’s
search algorithm can be used for quantum amplitude amplification [BHMT02]
and quantum random walk search [Amb04, Sze04, MNRS07]. The application
of these quantum search tools is a fast growing area in quantum computing.
For example, quantum algorithms have been presented for several problems
from computer science (see e.g. [BHT98, BDHHMSW01, Amb04]), graph theory
(see e.g. [DHHM04, MSS05, AS06, Doe07a, Doe07b]) and (linear) algebra (see
e.g. [MN05, BS06, DT07, DT08a, DT08b]).

∗Supported by DFG grants Scho 302/7-2.

1

In this paper we study the quantum complexity of group testing problems.
For a set S of size n and a binary operation on S, we consider the decision prob-
lems whether a given structure with the promise of being a groupoid, semigroup,
monoid or quasigroup is in fact a semigroup, monoid, quasigroup or a group.
In particular, we give the first application of the new quantum random walk
technique by Magniez, Nayak, Roland, and Santha [MNRS07] that improves
the previous bounds by Ambainis [Amb04] and Szegedy [Sze04]. We present
also upper and lower bounds for testing distributivity and commutativity. This
paper is a summary of our conference papers from FCT’07 [DT07] and SOF-
SEM’08 [DT08b].

The motivation for studying the query complexity of algebraic problems is
twofold. On the one hand side, these are fundamental and basic problems which
have many applications in computer science. For example, testing if a black box
is a group is very useful in cryptography. On the other hand, we can analyze
how powerful are our tools for the construction of lower and upper bounds for
the quantum query complexity of these problem. For many problems we can
find optimal quantum algorithms by a combination of Grover search, amplitude
amplification and quantum walk search. But for some problems this doesn’t
seem to work. Maybe this can be a motivation for the development of new
quantum techniques.

In this paper our input is an operation table for a set S of size n × n. In
Section 3 we consider the semigroup problem, that is, whether the operation
on S is associative. Rajagopalan and Schulman [RS00] developed a random-
ized algorithm for this problem that runs in time O(n2). As an additional
parameter, we consider the binary operation ◦ : S × S → S′, where S′ ⊆ S.
We construct a quantum algorithm for this problem whose query complexity
is O(n5/4), if the size of S′ is constant. Our algorithm is the first application
of the new quantum random walk search scheme by Magniez, Nayak, Roland,
and Santha [MNRS07]. With the quantum random walk of Ambainis [Amb04]
and Szegedy [Sze04], the query complexity of our algorithm would not improve
the obvious Grover search algorithm for this problem. Furthermore we show a
quantum query lower bound for the semigroup problem of Ω(n), which holds
also if the size of S′ is constant.
In Section 4 we have given a finite set S of size n with a binary operation
◦ : S × S → S represented by a table. One has to decide whether S has
an identity element or is a monoid. We show that the identity problem can be
solved with linearly many quantum queries. This is optimal, since we also prove
a tight lower bound for this problem. Moreover we show a linear lower bound
of the quantum query complexity for testing whether a groupoid is a monoid.
In Section 5 we consider several group problems. Given a groupoid, semigroup,
monoid or quasigroup S by its operation table, we have to decide whether S is
a group. We present a randomized algorithm for testing whether a semigroup
resp. monoid is a group with running time of O(n

3
2). This improves the naive

O(n2) algorithm that searches for an inverse in the operation table for every
element. Then we show that on a quantum computer the complexity can be
improved to Õ(n

11
14). Furthermore we give nearly optimal quantum query algo-

rithms for testing whether a groupoid or quasigroup is a group.

2

In Section 6 we present several bounds for testing commutativity. We prove that
the quantum query complexity of the commutativity problem for groupoids,
semigroups and monoids is Θ(n). In addition, we show that the commutativity
problem can be solved in logarithmic number of quantum queries to the oper-
ation table if it is a quasigroup resp. group.
In Section 7 we consider the distributive problem, given a set S and two binary
operations ⊕ : S × S → S and ⊗ : S × S → S represented by a table. One has
to decide whether (S,⊕,⊗) is distributive, i.e. we have to test whether the two
equations a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) and (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c) are
satisfied. We show a linear lower bound on the quantum query complexity for
this problem. Moreover we prove that the distributive problem can be decided
with linear quantum query complexity, if (S,⊕) is a commutative quasigroup.

2 Preliminaries

2.1 Algebraic Structures

Let S be some set and ◦ a binary operation on S. Then the pair (S, ◦) is called
a groupoid . If ◦ is associative, then (S, ◦) is a semigroup. If there is an identity
element in addition, then (S, ◦) is a monoid . If, moreover, every element has
an inverse, then (S, ◦) is a group.

The operation ◦ is cancellative, if for every a, b ∈ S the equations a ◦ x = b
and x◦a = b have a unique solution, respectively. When ◦ is cancellative, (S, ◦)
is called a quasigroup. Clearly, every group is a quasigroup. We mostly assume
that (S, ◦) is given by an operation table T . Then (S, ◦) is a quasigroup iff
every row and column of T is a permutation of S. A quasigroup (S, ◦) is a loop,
if it has an identity element.

2.2 Quantum Query Model

In the query model, the input x1, . . . , xN is contained in a black box or oracle
and can be accessed by queries to the black box. As a query we give i as input to
the black box and the black box outputs xi. The goal is to compute a Boolean
function f : {0, 1}N → {0, 1} on the input bits x = (x1, . . . , xN) minimizing
the number of queries. The classical version of this model is known as decision
tree.

The quantum query model was explicitly introduced by Beals et
al. [BBCMW01]. In this model we pay for accessing the oracle, but unlike
the classical case, we use the power of quantum parallelism to make queries in
superposition. The state of the computation is represented by |i, b, z〉, where i
is the query register, b is the answer register, and z is the working register. A
quantum computation with T queries is a sequence of unitary transformations

U0 → Ox → U1 → Ox → . . . → UT−1 → Ox → UT ,

where each Uj is a unitary transformation that does not depend on the input x,
and Ox are query (oracle) transformations. The oracle transformation Ox can

3

be defined as Ox : |i, b, z〉 → |i, b⊕ xi, z〉. The computations consists of the
following three steps:

1. Go into the initial state |0〉.

2. Apply the transformation UT Ox · · ·OxU0.

3. Measure the final state.

The result of the computation is the rightmost bit of the state obtained by the
measurement.

The quantum computation determines f with bounded error, if for every
x, the probability that the result of the computation equals f(x1, . . . , xN) is at
least 1−ε, for some fixed ε < 1/2. In the query model of computation each query
adds one to the query complexity of an algorithm, but all other computations
are free. The time complexity of the algorithm is usually measured in terms of
the total circuit size for the unitary operations Ui. All quantum algorithms in
this paper are bounded error.

The quantum query complexity of black box computation has become a
great interest in quantum computing. The black box model provides a simple
and abstract framework for the construction of quantum algorithms. All quan-
tum algorithms can be formulated in the black box model, we can determine
the speed up against classical algorithm, and we can prove lower bounds for the
quantum query complexity.

2.3 Tools for Quantum Algorithms

For the basic notation on quantum computing, we refer the reader to the text-
book by Nielsen and Chuang [NC03]. Here, we give three tools for the con-
struction of our quantum algorithms.

2.3.1 Quantum Search.

A search problem is a subset P ⊆ {1, . . . , N} of the search
space {1, . . . , N}. With P we associate its characteristic function
fP : {1, . . . , N} → {0, 1} with

fP (x) =

1, if x ∈ P,

0, otherwise.

Any x ∈ P is called a solution to the search problem. Let k = |P | be the
number of solutions of P .

Theorem 2.1 [Gro96, BBHT98, BCWZ99] Let P ⊆ [N] be a search problem
and k the number of solutions of P .

1. Finding one solution of P can be done in O(
√

N/k) expected quantum
queries to fP with probability of at least a constant. The search algorithm
does not require prior knowledge of k.

4

2. Finding one solution of P can be done in O(
√

N) quantum queries to fP

with probability of at least a constant, provided there is one.

3. Whether k > 0 can be decided in O(
√

N) quantum queries to fP with
probability of at least a constant.

4. Finding all solutions of P can be done in O(
√

kN) quantum queries to fP

with probability of at least a constant.

The running time complexity of Grover search is larger than its query complexity
by a logarithmic factor.

2.3.2 Amplitude Amplification.

The quantum amplitude amplification is a generalization of Grover’s search
algorithm [Gro96]. Let A be an algorithm for a problem with small success
probability at least ε. Classically, we need Θ(1/ε) repetitions of A to increase
its success probability from ε to a constant, for example 2/3. The corresponding
technique in the quantum case is called amplitude amplification.

Theorem 2.2 [BHMT02] Let A be a quantum algorithm with one-sided error
and success probability at least ε. Then there is a quantum algorithm B that
solves A with success probability 2/3 by O(1√

ε
) invocations of A.

2.3.3 Quantum Walk.

Quantum walks are the quantum counterpart of Markov chains and random
walks. The quantum walk search provide a promising source for new quan-
tum algorithms, like element distinctness algorithm [Amb04], triangle find-
ing [MSS05], testing group commutativity [MN05], matrix verification [BS06].
Let P = (pxy) be the transition matrix of an ergodic symmetric Markov chain
on the state space X.

Let M ⊆ X be a set of marked states. Assume that the search algorithms
use a data structure D that associates some data D(x) with every state x ∈ X.
From D(x), we would like to determine if x ∈ M . When operating on D, we
consider the following three types of costs:

• Setup cost s: The worst case cost to compute D(x), for x ∈ X.

• Update cost u: The worst case cost for transition from x to y, and update
D(x) to D(y).

• Checking cost c: The worst case cost for checking if x ∈ M by using D(x).

Magniez et al. [MNRS07] developed a new scheme for quantum search, based
on any ergodic Markov chain. Their work generalizes previous results by Am-
bainis [Amb04] and Szegedy [Sze04]. They extend the class of possible Markov
chains and improve the query complexity as follows.

5

Theorem 2.3 [MNRS07] Let δ > 0 be the eigenvalue gap of an ergodic Markov
chain P and let |M |

|X| ≥ ε. Then there is a quantum algorithm that determines if
M is empty or finds an element of M with cost

s +
1√
ε

(
1√
δ
u + c

)
.

In the most practical applications (see [Amb04, MSS05]) the quantum walk
takes place on the Johnson graph J(n, r), which is defined as follows: the
vertices are subsets of {1, . . . , n} of size r and two vertices are connected iff
they differ in exactly one number. It is well known, that the spectral gap δ of
J(n, r) is Θ(1/r) for 1 ≤ r ≤ n

2 .
We apply the quantum walk on the graph categorical product of two John-

son graphs. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs, the graph
categorical product G = (V,E) = G1 × G2 of G1, G2 is defined as follows:
V = V1 × V2, and ((g1, g2), (g′1, g

′
2)) ∈ E iff (g1, g

′
1) ∈ E1 and (g2, g

′
2) ∈ E2.

2.4 Tool for Quantum Query Lower Bounds

In this paper, we use the following special case of a method by Ambai-
nis [Amb02] to prove lower bounds for the quantum query complexity.

Theorem 2.4 [Amb02] Let F = {f : [n]× [n] → [n]} be the set of all possible
input function, and Φ : F → {0, 1}. Let A,B ⊂ F such that Φ(f) = 1 and
Φ(g) = 0 for all f ∈ A and g ∈ B. Let R ⊂ A× B, and m,m′, l, l′ be numbers
such that

1. for every f ∈ A, there are at least m different g ∈ B such that (f, g) ∈ R.

2. for every g ∈ B, there are at least m′ different f ∈ A such that (f, g) ∈ R.

3. for every f ∈ A and x, y ∈ [n], there are at most l different g ∈ B such
that (f, g) ∈ R and f(x, y) 6= g(x, y).

4. for every g ∈ B and x, y ∈ [n], there are at most l′ different f ∈ A such
that (f, g) ∈ R and f(x, y) 6= g(x, y).

Then every bounded-error quantum algorithm that computes Φ has quantum

query complexity Ω
(√

m·m′

l·l′

)
.

Let f, g : [n]× [n] → [n] be two functions, we define

d(f, g) = |{x, y ∈ [n] | f(x, y) 6= g(x, y) }|.

In some cases, we consider the special case A,B ⊂ {0, 1}n×n and (f, g) ∈ R if
and only if f and g differ in exactly one position. Then it is l = l′ = 1, and
every bounded-error quantum algorithm that computes f has quantum query
complexity of Ω

(√
m ·m′

)
.

6

3 The Semigroup Problem

In the semigroup problem we are given two sets S and S′ ⊆ S and a binary
operation ◦ : S × S → S′ represented by a table. We denote with n the size of
the set S. One has to decide whether S is a semigroup, that is, whether the
operation on S is associative.

The complexity of this problem was first considered by Rajagopalan and
Schulman [RS00], who gave a randomized algorithm with time complexity
O(n2 log 1

δ), where δ is the error probability. They also showed a lower bound
of Ω(n2). The previously best known algorithm was the naive O(n3)-algorithm
that checks all triples.

In the quantum setting, one can do a Grover search over all triples
(a, b, c) ∈ S3 and check whether they are associative. The quantum query com-
plexity of the search is O(n3/2). We construct a quantum algorithm for the
semigroup problem that has query complexity O(n5/4), if the size of S′ is con-
stant. Furthermore we give a quantum query lower bound of Ω(n) for this
problem. Our algorithm is the first application of the recent quantum random
walk search scheme by Magniez et al. [MNRS07]. The quantum random walk of
Ambainis [Amb04] and Szegedy [Sze04] doesn’t suffice to get an improvement
of the Grover search mentioned above.

Theorem 3.1 Let k = nα be the size of S′ with 0 < α ≤ 1. The quantum
query complexity of the semigroup problem is

O(n
5+α

4), for 0 ≤ α ≤ 1
3 ,

O(n
6+2α

5), for 1
3 < α ≤ 3

4 ,

O(n
3
2), for 3

4 < α ≤ 1.

Proof . We use the quantum walk search scheme of Theorem 2.3. To do so, we
construct a Markov chain and a database for checking if a vertex of the chain
is marked.

Our quantum walk is done on the categorical graph product GJ of two
Johnson graphs J(n, r). Let A and B be two subsets of S of size r. We
will determine r later. We search for a pair (a, b) ∈ S2, such that a, b are two
elements of a non-associative triple. Then the marked vertices of GJ correspond
to pairs (A,B) with (A ◦ B) ◦ S 6= A ◦ (B ◦ S). In every step of the walk, we
exchange one row and one column of A and B.

The database of our quantum walk is the set

D(A,B) = { (a, b, a ◦ b) | a ∈ A ∪ S′ and b ∈ B ∪ S′ }.

Now we compute the quantum query costs for the setup, update and checking.
The setup cost for the database D(A,B) is O((r + k)2) and the update cost is
O(r + k).

To check whether a pair (A,B) is marked, we have to test if (A ◦B) ◦ S 6=
A ◦ (B ◦ S). We claim that the quantum query cost to check this inequality is
O(
√

nrk): fix a pair (b, c) ∈ B×S. We check whether (A◦b)◦c 6= A◦(b◦c). To

7

get (b◦c) we make one query to the oracle. Because (b◦c) ∈ S′, the computation
of A ◦ (b ◦ c) can be done by using our database. We obtain r values which we
denote by (y1, . . . , yr). The evaluation of (A ◦ b) needs no queries by using our
database, let (z1, . . . , zr) be the result. Note that zi ∈ S′ for all i. Now we use
Grover’s algorithm for searching a s ∈ S′ such that s ◦ c 6= yj for a j ∈ [r] with
s = zj . This search can be done in O(

√
k) quantum queries. The outer loop is

a Grover search for a pair (b, c) ∈ B × S. Therefore, the total checking cost is
O(
√

nrk).
The spectral gap of the walk on GJ is δ = O(1/r) for 1 ≤ r ≤ n

2 , see [BS06].
If there is a triple (a, b, c) with (a ◦ b) ◦ c 6= a ◦ (b ◦ c), then there are at least(
n−1
r−1

)2
marked sets (A,B). Therefore we have

ε ≥ |M |
|X|

≥

((
n−1
r−1

)(
n
r

))2

=
r2

n2
.

Let r = nβ for 0 < β < 1. Assuming r > k, then the quantum query complexity
of the semigroup problem is

O
(
r2 +

n

r

(√
r · r +

√
nrk

))
= O

(
n2β + n1+β

2 + n
3+α−β

2

)
.

Now we choose β depending on α such that this expression is minimal. Suppose
that 2β ≤ 1+ β

2 , i.e. β ≤ 2
3 . From the equation 1+ β

2 = 3+α−β
2 , we get β = 1+α

2 .
Then the quantum query complexity of the semigroup problem is O(n

5+α
4) for

r = n
1+α

2 and α ≤ 1
3 . Otherwise if 2β > 1+ β

2 , i.e. β > 2
3 , we get β = 3+α

5 from
the equation 2β = 3+α−β

2 . Then the quantum query complexity is O(n
6+2α

5)
for r = n

3+α
5 and α > 1

3 . If α > 3
4 , the query complexity is bigger than O(n

3
2),

therefore we use Grover search instead of quantum walk search. �

For the special case that α = 0, i.e., only a constant number of elements
occur in the operation table, we get

Corollary 3.2 The quantum query complexity of the semigroup problem is
O(n

5
4), if S′ has constant size.

Note that the time complexity of our algorithm is O(n1.5 log n).

Theorem 3.3 The semigroup problem requires Ω(n) quantum queries.

Proof . Let S be a set of size n and ◦ : S × S → {0, 1} a binary operation
represented by a table. We apply Theorem 2.4. The set A consists of all n× n
matrices, where the entry of position (1, 1), (1, c), (c, 1) and (c, c) is 1, for
c ∈ S − {0, 1}, and zero otherwise. The operation tables of A are associative,
since (x ◦ y) ◦ z = x ◦ (y ◦ z) = 1 for all x, y, z ∈ {1, c} and zero otherwise.

The set B consists of all n× n matrices, where the entry of position (1, 1),
(1, c), (c, 1), (c, c) and (a, b) is 1, for fixed a, b, c ∈ S − {0, 1} with a, b 6= c, and
zero otherwise. Then (a ◦ b) ◦ c = 1 and a ◦ (b ◦ c) = 0. Therefore the operation
tables of B are not associative.

8

From each T ∈ A, we can obtain T ′ ∈ B by replacing the entry 0 of T
at (a, b) by 1, for any a, b /∈ {0, 1, c}. Hence we have m = Ω(n2). From each
T ′ ∈ B, we can obtain T ∈ A by replacing the entry 1 of T ′ at position (a, b)
by 0, for a, b /∈ {0, 1, c}. Then we have m′ = 1. By Theorem 2.4, the quantum
query complexity is Ω(

√
m ·m′) = Ω(n). �

From our proof follows, that the lower bound holds also for constant size of S′.

4 The Monoid Problem

In the monoid problem we are given a finite set S of size n with a binary
operation ◦ : S × S → S represented by a table. One has to decide whether S
is a monoid.

The monoid problem is an extention of the semigroup problem of the pre-
vious section. We have to verify whether the groupoid (S, ◦) is associative and
has an identity element. We show that the identity problem requires linearly
many quantum queries. We start by considering the 1-column problem: given
a 0-1-matrix of order n, decide whether it contains a column that is all 1.

Lemma 4.1 The 1-column problem requires Ω(n) quantum queries.

Proof . We use Theorem 2.4. The set A consists of all matrices, where in n− 1
columns there is exactly one entry with value 0, and the other entries of the
matrix are 1. The set B consists of all matrices, where in every column there
is exactly one entry with value 0, and the other entries of the matrix are 1.
From each matrix T ∈ A, we can obtain T ′ ∈ B by changing one entry in the
1-column from 1 to 0. Then we have m = n. From each matrix T ′ ∈ B, we can
obtain T ∈ A by changing one entry from 0 to 1. Then we have m′ = n. By
Theorem 2.4, the quantum query complexity is Ω(n). �

Theorem 4.2 The identity problem requires Ω(n) quantum queries.

Proof . We reduce the 1-column problem to the identity problem. Given a
0-1-matrix M = (mi,j) of order n. We define S = {0, 1, . . . , n} and a operation
table T = (ti,j) with 0 ≤ i, j ≤ n for S as follows:

ti,j =

0, if mi,j = 0,

i, if mi,j = 1,

and t0,j = ti,0 = 0. Then M has a 1-column iff T has an identity element. �

Finding an identity element is simple. We choose an element a ∈ S and then
we test if a is the identity element by using Grover search in O(

√
n) quantum

queries. The success probability of this procedure is 1
n . By using the amplitude

amplification we get an O(n) quantum query algorithm for finding an identity
element (if there is one). Since the upper and the lower bound match, we have
determined the precise complexity of the identity problem.

9

Corollary 4.3 The quantum query complexity of the identity problem is Θ(n).

Corollary 4.4 Whether a groupoid is a monoid requires Ω(n) quantum queries.

5 Group Problems

In this section we consider the decision problems whether a given structure with
the promise of being a groupoid, semigroup, monoid or quasigroup S of size n
with a binary operation ◦ is in fact a group.

5.1 Group testing for Monoids

We consider the problem whether a given finite monoid M is in fact a group.
That is, we have to check whether every element of M has an inverse. The
monoid M has n elements and is given by its operation table and the identity
element e.

To the best of our knowledge, this special group problem has not been
studied before. The naive approach for the problem checks for every element a ∈
M , whether e occurs in a’s row in the operation table. The query complexity is
O(n2). We develop a (classical) randomized algorithm that solves the problem
with O(n

3
2) queries to the operation table. Then we show that on a quantum

computer the query complexity can be improved to Õ(n
11
14).

Theorem 5.1 Whether a given monoid is a group can be decided with

1. O(n
3
2) queries by a randomized algorithm.

2. O(n
11
14 log n) by a quantum query algorithm.

Proof . We start by presenting the classical algorithm. Let a ∈ M , we consider
the sequence of powers a, a2, a3, Since M is finite, there will be a repetition
at some point. We define the order of a as the smallest power t, such that
at = as, for some s < t. Clearly, if a has an inverse, s must be zero.

Lemma 5.2 Let a ∈ M of order t. Then a has an inverse iff at = e.

Hence the powers of a will tell us at some point whether a has an inverse. On
the other hand, if a has no inverse, the powers of a provide more elements with
no inverse as well.

Lemma 5.3 Let a ∈ M . If a has no inverse, then ak has no inverse, for all
k ≥ 1.

Our algorithm has two phases. In phase 1, it computes the powers of
every element up to certain number r. That is, we consider the sequences
Sr(a) = (a, a2, . . . , ar), for all a ∈ M . If e ∈ Sr(a) then a has an inverse by
Lemma 5.2. Otherwise, if we find a repetition in the sequence Sr(a), then,
again by Lemma 5.2, a has no inverse and we are done.

10

If we are not already done by phase 1, i.e. there are some sequences Sr(a)
left such that e 6∈ Sr(a) and Sr(a) has pairwise different elements. Then the
algorithm proceeds to phase 2. It selects some a ∈ M uniformly at random
and checks whether a has an inverse by searching for e in the row of a in the
operation table. This step is repeated n/r times.

For the correctness observe that the algorithm accepts with probability 1
if M is a group. Now assume that M is not a group. Assume further that
the algorithm does not already detect this in phase 1. Let a be some element
without an inverse. By Lemma 5.2, the sequence Sr(a) has r pairwise different
elements which don’t have inverses too by Lemma 5.3. Therefore in phase 2,
the algorithm picks an element without an inverse with probability of at least
r/n. By standard arguments, the probability that at least one out of n/r many
randomly chosen elements has no inverse, is constant.

The query complexity of the algorithm is bounded by rn in phase 1 and by
n2/r in phase 2. Total the query complexity of the algorithm is

O
(
nr + n2/r

)
,

which is minimized for r = n
1
2 . Hence the query complexity for testing if a

semigroup is a group, is O(n
3
2).

For the quantum query complexity we use Grover search and amplitude
amplification. In phase 1, we search for an a ∈ M , such that the sequence Sr(a)
has r pairwise different entries different from e. This property can be checked
by first searching Sr(a) for an occurance of e by a Grover search with

√
r log r

queries. Then, if e doesn’t occur in Sr(a), we check whether there is an element
in Sr(a) that occurs more than once. This is the element distinctness problem
and can be solved with r2/3 log r queries, see [Amb04]. Therefore the quantum
query complexity of phase 1 is bounded by

√
n · r2/3 log r. In phase 2 we search

for an a ∈ M such that a has no inverse. Therefore we actually search the row
of a in the operation table. Hence this takes

√
n queries. Since at least r of the

a’s don’t have an inverse, by amplitude amplification we get
√

n
√

n/r = n/
√

r
queries in phase 2. In summary, the quantum query complexity is

O(
√

n · r2/3 log r +
n√
r
),

which is minimized for r = n
3
7 . Hence we have a O(n

11
14 log n) quantum query

algorithm. �

The time complexity of our classical algorithm is O(n
3
2). Our quantum im-

plementation has nearly quadratic speed up over the classical algorithm. In the
quantum algorithm we have used several Grover search subroutines, one ampli-
tude amplification, and one application of the quantum walk element distinct-
ness procedure by Ambainis [Amb04]. Therefore the quantum time complexity
is O(n

11
14 logc n) for a constant c, since the element distinctness procedure has

running time of O(n
2
3 logc n).

Corollary 5.4 The time complexity of the group testing algorithm is O(n
3
2) in

the classical setting and O(n
11
14 logc n) in the quantum setting.

11

5.2 Group testing for Semigroups

Now we consider the problem whether a finite semigroup (S, ◦) is in fact a group.
The naive approach for this problem searches first for an identity element e of S
and then checks whether e occurs in every row of the operation table. The query
complexity of this procedure is O(n2), resp. O(n) in the quantum case.

Theorem 5.5 Whether a given semigroup is a group can be decided with

1. O(n
3
2) queries by a randomized algorithm.

2. O(n
11
14 log n) by a quantum query algorithm.

Proof . Our input is a finite semigroup (S, ◦), and we want to decide whether
it is in fact a group. To do so, we first search for an identity element and then
use the algorithm of Theorem 5.1. To find the identity element, we start by
choosing an element a of S and search for an element e ∈ S such that a ◦ e = a.
Then e is our candidate for the identity element. Recall that we finally want to
decide whether S is a group. In this case, the identity element is unique. Hence
if our candidate e doesn’t work we can safely reject the input, even in the case
that S actually has an identity element. To test our candidate e, it suffices to
check whether b ◦ e = b for all b ∈ S. Obviously the two steps can be done in
O(n) queries classically and O(

√
n) quantum queries with Grover search. �

The result should be contrasted with the following: if we want to decide whether
a given semigroup is in fact a monoid, then the best known algorithms make
O(n2) queries classically and O(n) queries in the quantum setting.

5.3 Group testing for Quasigroups

Next we assume that the input (S, ◦) is a quasigroup. Rajagopalan and Schul-
man [RS00] showed, that in a quasigroup we can deterministically compute a
set of generators of size log n in quadratic time. Light observed (see [CP61])
that if R ⊂ S is a set of generators of S, then it suffices to test all triples
a, b, c in which b is an element of R. Therefore Light’s observation results in an
O(n2 log n) deterministic algorithm for verifying associativity of quasigroups.

Theorem 5.6 Whether a given quasigroup or a loop is a group can be decided
with expected quantum query complexity of Θ(n).

Proof . First we prove the upper bound. We have to verify if the quasigroup
(S, ◦) is associative. Therefore we choose three elements a, b, c ∈ S, and then we
verify if (a◦b)◦c 6= a◦(b◦c). Rajagopalan and Schulman [RS00] showed that any
non-associative quasigroup has at least n− 2 non-associative triples. Therefore
the success probability for finding a non-associative triple (if there is one) is
at least n−2

n3 . By using the quantum amplitude amplification we have an O(n)
quantum query algorithm for finding a non-associative triple in a quasigroup
(if there is one).

For the lower bound, we apply Theorem 2.4 in connection with an idea
of [RS00] for proving an Ω(n2) lower bound for this problem in classical com-
puting. The set A consists of the operation table T of the group (Zm

2 ,+), where

12

+ is the vector addition modulo 2. Let a, b, c ∈ Zm
2 with a 6= 0. The set B

consists of all operation tables of (Zm
2 , ◦), where ◦ is equal to + except in the

following four positions:

1. b ◦ c = b + (a + c),

2. b ◦ (a + c) = b + c,

3. (a + b) ◦ c = b + c,

4. (a + b) ◦ (a + c) = a + b + c.

All tables of B are quasigroups, because the above modifications simply ex-
change two elements in two rows of the table T , but they are not associative,
since

a + b = (c ◦ (a + b)) ◦ c 6= c ◦ ((a + b) ◦ c) = b.

The relation R is defined by

R = { (T, T ′) ∈ (A,B) | T ′ originates of the above four modifications of T }.

Then R satisfies m = Ω(n3), m′ = 1, l = Ω(n) and l′ = 1. �

5.4 Group testing for Groupoids

We consider the problem whether an arbitrary (S, ◦) is in fact a group. There is
a O(n2 log n) deterministic algorithm for this problem by [RS00]. We develop
a quantum algorithm that has time complexity O(n

13
12 log2 n). Furthermore,

we present an O(n log n) query algorithm for this problem, that has a time
complexity O(n2 log n) however. The latter algorithm is nearly optimal with
respect to the query complexity, as we prove a linear lower bound for this
problem.

We need a generalization of a lemma from [RS00]. First we generalize the
notion of a cancellative operation.

Definition 5.7 Let (S, ◦) be a groupoid with n elements represented by its op-
eration table T . Let I, J ⊆ [n] be two index sets and let TI,J be the subtable of T
indexed by I and J . We call ◦ cancellative on TI,J , if every element occurs at
most once in every row and ervery column of TI,J .

Lemma 5.8 [RS00] Let ◦ be cancellative on a r × n subtable of its operation
table. If ◦ is non-associative, then it has at least r/4 non-associative triples.

Proof . Let (a, b, c) be a non-associative triple and a = a′ ◦ a′′. Consider the
following cycle of equations:

(a′ ◦ a′′) ◦ (b ◦ c) = ((a′ ◦ a′′) ◦ b) ◦ c)
= (a′ ◦ (a′′ ◦ b)) ◦ c)
= a′ ◦ ((a′′ ◦ b)) ◦ c))
= a′ ◦ (a′′ ◦ (b ◦ c))
= (a′ ◦ a′′) ◦ (b ◦ c).

13

Every equation is an application of the associativity law. Since (a, b, c) is a non-
associative triple, the first equation fails. Therefore at least one of the other
equations must fail as well. Hence at least one of the following four triples must
be non-associative:

1. (a′, a′′, b),

2. (a′, a′′ ◦ b, c),

3. (a′′, b, c),

4. (a′, a′′, b ◦ c).

If ◦ is cancellative on a r × n subtable, then a can be written as a′ ◦ a′′ in r
different ways. Then the associativity fails in at least one of the four categories
for each of these r pairs. Hence there is a category for which there are at least
r/4 failures. Since each category identifies either a′ or a′′, there are no duplicate
triples in any category. �

Theorem 5.9 Whether a groupoid is a group can be decided by a quantum
algorithm within O(n

13
12 logc n) expected steps, for some constant c.

Proof . Let (S, ◦) be a groupoid represented by its operation table T . Recall
that if S is a group, then ◦ is cancellative. Our first step is to determine whether
the operation is associative. To do so, we choose an arbitrary subset A of S of
size r. We determine r later. Then we check whether ◦ is cancellative on the
subtable TA of T , where TA is the r × n table that consists of the rows of T
indexed by A. This is not the case, if we find a row or column in TA with two
equal elements. Hence we can solve this with a Grover search and the element
distinctness quantum algorithm by Ambainis [Amb04]. The quantum query
complexity of this procedure is O(

√
rn

2
3 +

√
nr

2
3).

If any of the considered rows and colmuns are not cancellative then we
are done. Otherwise we randomly choose three elements a, b, c ∈ S and check
whether (a ◦ b) ◦ c 6= a ◦ (b ◦ c). If the operation is not associative, then the
probability of finding a non-associative triple is at least r

4n3 by Lemma 5.8. By
using the quantum amplitude amplification we have an O(n

3
2 /
√

r) quantum
query algorithm for finding a non-associative triple.

If there is no non-associative triple, then (S, ◦) is a semigroup. Whether
this semigroup is a group can be decided with O(n

11
14 log n) quantum queries by

Theorem 5.5. The total expected quantum query complexity of this algorithm
we get

O

(
√

rn
2
3 +

√
nr

2
3 +

n
3
2

√
r

+ n
11
14 log n

)
.

This expression is minimized for r = n
5
6 . Hence the expected time complexity

of this algorithm is O(n
13
12 logc n) for a constant c. �

By setting r = n in Lemma 5.8, we have

14

Corollary 5.10 Whether a groupoid is a quasigroup can be decided by a quan-
tum algorithm within O(n

7
6 log n) expected steps.

We can further improve the query complexity of the problem, if we allow a
larger running time.

Theorem 5.11 Whether a groupoid is a group can be decided with O(n log n)
expected quantum queries.

Proof . Let (S, ◦) be a groupoid represented by its operation table T . A well
known fact from algebra is, that if (S, ◦) is a quasigroup, then a random subset
R ⊂ S with c log n elements is a set of generators with probability at least
1 − exp(c) (see [RS00]). We choose a random subset R of O(log n) elements
of S. Then we check whether R is a generating set of (S, ◦). To do so, let
S0 = R. We compute inductively Si = Si−1 ∪ (R ◦ Si−1). This adds at least
one element in a step, until we reach some k ≤ n such that Sk = S. In this
case, R is a set of generators. For each element a added to some set Si, we
query the log n elements R ◦ a to look for further elements. In total we query
at most the O(n log n) elements of the R × S submatrix of T . The quantum
time is bounded by O(n3/2 log n).

If R is a set of generators, we have to verify whether the multiplication table
is associative. Light observed (see [CP61]) that if R is a set of generators of S,
then it suffices to test all triples a, b, c in which b is an element of R. By using
Grover search, the quantum query for finding a non-associative triple (if there
is one) is O(n

√
log n). By Theorem 5.5 we can decide whether this semigroup

is a group. The total quantum query complexity of is O(n log n). �

The upper bound of Theorem 5.11 almost matches the lower bound we have.

Theorem 5.12 Whether a groupoid is a quasigroup or a group requires Ω(n)
quantum queries.

Proof . We apply the Theorem 2.4. Let A be the operation table T of Zn and
let ◦ be the addition modular n. Then T is a quasigroup resp. group. The set
B consists of all n×n matrices T ′, where one entry of T ′ is modified. Therefore
the tables of B forming no quasigroup resp. group. The relation R is defined
by

R = { (T, T ′) ∈ (A,B) | d(T, T ′) = 1 }.

Then R satisfies that m = n2(n− 1), m′ = 1, l = n− 1 and l′ = 1. Therefore
the quantum query complexity to decide whether a groupoid is a quasigroup
resp. group is Ω(n). �

6 The Commutativity Problem

In the commutativity problem we are given a finite set S of size n with a binary
operation ◦ : S × S → S represented by a table. One has to decide whether S
is a commutative. In the quantum setting, one can solve the problem in linear
time by a Grover search over all tuples (a, b) ∈ S2 that checks whether the

15

tuples are commutative. We show that the commutativity problem requires
Ω(n) quantum queries, even when S is a monoid.

Theorem 6.1 The quantum query complexity of the commutativity problem for
groupoids, semigroups, and monoids is Θ(n).

Proof . We start by showing the lower bound for semigroups via Theorem 2.4.
Let S = {0, 1, . . . , n−1}. The set A consists of the zero matrix of order n. The
set B consists of all n × n matrices, where the entry of position (a, b) is 1, for
a 6= b ∈ S−{0, 1}, and 0 otherwise. All operation tables of the sets A and B are
semigroups. Then we have m = Ω(n2), m′ = 1, and the quantum query lower
bound for testing if a given semigroup is commutative is Ω(n).

We reduce the commutativity problem for semigroups to the commutativity
problem for monoids. Let S be a semigroup represented as a operation table T .
We define a monoid M = S ∪{e} with the identity element e 6∈ S, that is, with
a ◦ e = e ◦ a = a, for all a ∈ S. Then the semigroup S is commutative iff the
monoid M is commutative. �

Magniez and Nayak [MN05] quantize a classical Markov chain for testing the
commutativity of a black box group given by the generators. They constructed
an O(k2/3 log k) quantum query algorithm, where k is the number of generators
of the group. In the case when (S, ◦) is a quasigroup, a random set of c log n
elements will be a set of generators with probability at least 1− exp(c) [RS00].
Therefore we obtain the following result:

Theorem 6.2 Whether a quasigroup, loop or group is commutative can be de-
cided with quantum query complexity O((log n)

2
3 log log n).

7 The Distributivity Problem

In the distributivity problem we are given a set S and two binary operations
⊕ : S × S → S and ⊗ : S × S → S represented by tables. One has to decide
whether (S,⊕,⊗) is distributive, i.e. we have to test whether the two equations
a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) and (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c) are satisfied. A
triple (a, b, c) ∈ S3 that fulfills both equations is called a distributive triple. In
classical computing, it is not known whether this problem can be solved in less
than cubic time. In the quantum setting, one can do a Grover search over all
triples (a, b, c) ∈ S3 and check whether each triple is distributive. The quantum
query complexity of the search is O(n3/2). We show a linear lower bound on
the query complexity.

Theorem 7.1 The distributivity problem requires Ω(n) quantum queries.

Proof . Let S = {0, 1, . . . , n − 1}. We apply the Theorem 2.4. The set A
consists of all pairs of n× n matrices T⊕ and T⊗, where T⊗ is the zero-matrix,
and the entry at position (1, 0) in T⊕ is 1, and 0 otherwise. It is easy to see,
that the tables of A are distributive, since x⊗ (y ⊕ z) = (x⊗ y)⊕ (x⊗ z) = 0
for all x, y, z ∈ S. The set B consists of all pairs of n× n matrices T ′

⊕ and T ′
⊗,

16

where the entry of position (1, 0) in T ′
⊕, and (a, b) in T ′

⊗ is 1, for a, b ∈ S−{0, 1},
and 0 otherwise. Then a ⊗ (b ⊕ c) = 0 and (a ⊗ b) ⊕ (a ⊗ c) = 1 with b 6= c.
Therefore the tables of B are not distributive.

From each (T⊕, T⊗) ∈ A, we can obtain (T ′
⊕, T ′

⊗) ∈ B by replacing the
entry 0 of T⊗ at (a, b) by 1, for any a, b /∈ {0, 1}. Hence we have m = Ω(n2).
From each (T ′

⊕, T ′
⊗) ∈ B, we can obtain (T⊕, T⊗) ∈ A, by replacing the entry 1

of T⊗ at position (a, b) by 0, for a, b /∈ {0, 1}. Thus we have m′ = 1. By
Theorem 2.4, the quantum query complexity is Ω(

√
m ·m′) = Ω(n). �

If (S,⊕) is a commutative quasigroup, then we can get a faster algorithm
to check distributivity. The key is that one non-distributive triple implies the
existence of more such triples. Similar to Lemma 5.8, we have the following
lemma.

Lemma 7.2 Let S be a set and ⊕,⊗ be two binary operations on S, such that
(S,⊕) is a commutative quasigroup. If (S,⊕,⊗) is non-distributive, then it has
at least Ω(n) non-distributive triples.

Proof . Let (a, b, c) be a non-distributive triple. Let a = a′ ⊕ a′′ and consider
the following cycle.

(a′ ⊕ a′′)⊗ (b⊕ c) = ((a′ ⊕ a′′)⊗ b)⊕ ((a′ ⊕ a′′)⊗ c)
= ((a′ ⊗ b)⊕ (a′′ ⊗ b))⊕ ((a′ ⊕ a′′)⊗ c)
= (a′ ⊗ b)⊕ (a′′ ⊗ b)⊕ (a′ ⊗ c)⊕ (a′′ ⊗ c)
= (a′ ⊗ b)⊕ (a′ ⊗ c)⊕ (a′′ ⊗ (b⊕ c))
= (a′ ⊗ (b⊕ c))⊕ (a′′ ⊗ (b⊕ c))
= (a′ ⊕ a′′)⊗ (b⊕ c).

Consider the case that a⊗(b⊕c) 6= (a⊗b)⊕(a⊗c) and hence, the first equation
above doesn’t hold. It follows that at least one of the other equations does not
hold too. Therefore at least one of the following triples must be non-distributive:

1. (a′, a′′, b),

2. (a′, a′′, c),

3. (a′′, b, c),

4. (a′, b, c),

5. (a′, a′′, b⊕ c).

Since (S,⊕) is a quasigroup, a can be written as a′ ⊕ a′′ in n different ways.
For each of these, distributivity fails in at least one of the five categories from
above. Therefore there exists a category for which there are ≥ n/5 failures.

The case that (a⊕ b)⊗ c 6= (a⊗ c)⊕ (b⊗ c) can be handled similarly �

By using Lemma 7.2 in combination with the amplitude amplification (sim-
ilar to Theorem 5.1) we have

17

Theorem 7.3 Let (S,⊕) be a commutative quasigroup and (S,⊗) a groupoid.
Whether (S,⊕,⊗) is distributive can be decided with expected quantum query
complexity of O(n).

Conclusions

In this paper we presented quantum query and time complexity bounds for
several group testing problems. For a set S and a binary operation on S, we
considered the decision problems whether a given structure with the promise
of being a groupoid, semigroup, monoid or quasigroup is in fact a semigroup,
monoid, quasigroup or a group. We also presented upper and lower bounds for
testing distributivity and commutativity.

The table below summarizes the quantum query complexity (QQC) and
the quantum time complexity (QTC) of the algebraic problems considered in
the paper.

Problem Description QQC QTC

Semigroup I Decide if ◦ : S × S → S′ is
a semigroup for constant size
of S′.

Ω(n)
O(n

5
4)

O(n
3
2 log n)

Semigroup II Decide if a grupoid is a semi-
group.

Ω(n)
O(n

3
2)

O(n
3
2 log n)

Monoid I Decide if a groupoid is a
monoid.

Ω(n)
O(n

3
2)

O(n
3
2 log n)

Monoid II Decide if a semigroup is a
monoid.

O(n) O(n log n)

Quasigroup Decide if a groupoid is a quasi-
group.

Ω(n)
O(n

7
6)

O(n
7
6 log n)

Group I Decide if a groupoid is a group. Ω(n)
O(n log n)

O(n
13
12 logc n)

Group II Decide if a semigroup/monoid is
a group.

O(n
11
14 log n) O(n

11
14 logc n)

Group III Decide if a quasigroup/loop is a
group.

Θ(n) O(n log n)

Commut. I Decide if a groupoid/ semi-
group/monoid is commutative.

Θ(n) O(n log n)

Commut. II Decide if a quasigroup/group is
commutative.

Õ(log
2
3 n) Õ(log

2
3 n)

It remains open to close the gaps between the upper and the lower bounds
where they don’t match. For example, some open questions are the following.

18

1. Is there a quantum algorithm for the semigroup problem which is better
than O(n1.5) for |S′| = n?

2. Is there are a classical or a quantum algorithm for the distributivity prob-
lem which is faster than the trivial bounds of O(n3) resp. O(n1.5)?

3. Are we able to prove a nontrivial lower bound for the decision problem
whether a semigroup or monoid is a group?

Acknowledgments

We thank the referees of the paper from the FCT’07 and SOFSEM’08 confer-
ences for valuable hints.

References

[Amb02] A. Ambainis, Quantum Lower Bounds by Quantum Arguments, Jour-
nal of Computer and System Sciences 64: pages 750-767, 2002.

[Amb03] A. Ambainis, Quantum walks and their algorithmic applications, In-
ternational Journal of Quantum Information 1: pages 507-518, 2003.

[Amb04] A. Ambainis, Quantum walk algorithm for element distinctness, Pro-
ceedings of FOCS’04: pages 22-31, 2004.

[AS06] A. Ambainis, R. Špalek, Quantum Algorithms for Matching and Net-
work Flows, Proceedings of STACS’06: pages 172-183, 2006.

[BBCMW01] R. Beals, H. Buhrman, R. Cleve, M. Mosca, R. de Wolf, Quantum
lower bounds by polynomials, Journal of ACM 48: pages 778-797, 2001.

[BBHT98] M. Boyer, G. Brassard, P. Høyer, A. Tapp, Tight bounds on quantum
searching, Fortschritte Der Physik 46(4-5): pages 493-505, 1998.

[BCWZ99] H. Buhrman, R. Cleve, R. de Wolf, Ch. Zalka, Bounds for Small-
Error and Zero-Error Quantum Algorithms, Proceedings of FOCS’99:
pages 358-368, 1999.

[BDHHMSW01] H. Buhrman, C. Dürr, M Heiligman, P. Høyer, F. Magniez, M.
Santha, R. de Wolf, Quantum Algorithms for Element Distinctness,
Proceedings of CCC’01: pages 131-137, 2001.

[BHMT02] G. Brassard, P. Hóyer, M. Mosca, A. Tapp, Quantum amplitude
amplification and estimation, AMS Contemporary Mathematics, Vol.
305: pages 53-74, 2002.

[BHT98] G. Brassard, P. Hóyer, A. Tapp, Quantum Cryptanalysis of Hash and
Claw-Free Functions, Proceedings of LATIN’98: pages 163-169, 1998.

[BS06] H. Buhrman, R. Špalek, Quantum Verification of Matrix Products,
Proceedings of SODA’06: pages 880-889, 2006.

19

[CEMM98] R. Cleve, A. Ekert, C. Macchiavello, M. Mosca, Quantum algo-
rithms revisited, Proceedings of the Royal Society of London, Series
A: pages 339-354, 1998. pages 339-354, 1998.

[CP61] A.H. Clifford, G.B. Preston, The Algebraic Theory of Semigroups,
American Mathematical Society, 1961.

[DHHM04] C. Dürr, M. Heiligman, P. Høyer, M. Mhalla, Quantum query com-
plexity of some graph problems, Proceedings of ICALP’04: pages 481-
493, 2004.

[DHTW08] S. Dörn, D. Haase, J. Torán, F. Wagner, Isomorphism and
Factorization-Classical and Quantum Algorithms, In Mathematical
Analysis of Evolution, Information and Complexity, Wiley, 2008.

[Doe07a] S. Dörn, Quantum Complexity Bounds of Independent Set Problems,
Proceedings of SOFSEM’07 (SRF): pages 25-36, 2007.

[Doe07b] S. Dörn, Quantum Algorithms for Graph Traversals and Related Prob-
lems, Proceedings of CIE’07: pages 123-131, 2007.

[DT07] S. Dörn, T. Thierauf, The Quantum Query Complexity of Algebraic
Properties, Proceedings of FCT’07: pages 250-260, 2007.

[DT08a] S. Dörn, T. Thierauf, The Quantum Complexity of Group Testing,
Proceedings of SOFSEM’08: pages 506-518, 2008.

[DT08b] S. Dörn, T. Thierauf, On the Quantum Query Complexity of Matrix
Products and the Determinant, Preprint, 2008.

[Gro96] L. Grover, A fast mechanical algorithm for database search, Proceed-
ings of STOC’96: pages 212-219, 1996.

[MN05] F. Magniez, A. Nayak, Quantum complexity of testing group commu-
tativity, Proceedings of ICALP’05: pages 1312-1324, 2005.

[MNRS07] F. Magniez, A. Nayak, J. Roland, M. Santha, Search via Quantum
Walk, Proceedings of STOC’07: pages: 575-584, 2007.

[MSS05] F. Magniez, M. Santha, M. Szegedy, Quantum Algorithms for the Tri-
angle Problem, Proceedings of SODA’05: pages 1109-1117, 2005.

[NC03] M.A. Nielsen, I. L. Chuang, Quantum Computation and Quantum
Information, Cambridge University Press, 2003.

[RS00] S. Rajagopalan, L. J. Schulman, Verification of identities, SIAM J.
Computing 29(4): pages 1155-1163, 2000.

[Sim94] D.R. Simon, On the power of quantum computation, Proceedings of
FOCS’94: pages 116-123, 1994.

[Sho94] P. Shor, Algorithms for quantum computation: discrete logarithms and
factoring, Proceedings of FOCS’94: pages 124-134, 1994.

20

[Sze04] M. Szegedy, Quantum speed-up of Markov chain based algorithms, Pro-
ceedings of FOCS’04: pages 32-41, 2004.

21

