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1 Introduction

The integer factorization problem (IF) consists in given an integer n, finding
a prime factor decomposition of n. Graph isomorphism (GI) is the problem
to decide whether two given graphs are isomorphic, or in different words,
whether there is a bijection between the nodes of both graphs respecting
the adjacency relation. These are two well known natural problems with
many applications and with a long history in the fields of mathematics and
computer science. Moreover, their decisional versions are the best known
examples of problems in the class NP that are neither known to be effi-
ciently solvable (in the class P) nor hard for NP. They have an intermediate
complexity and this lack of an exact classification has given much attention
to both problems in the past.

(The decisional version of) IF is one of the few examples of problems in
NP∩CoNP for which efficient algorithms (running in polynomial time in the
length of the representation of n) are not known. It is believed to be a hard
problem. In fact a considerable portion of modern cryptology relies in the
supposition that IF cannot be efficiently solved. The best algorithm for IF
runs in time O(exp(c log(n)

1
3 log log(n)

2
3 ) for some constant c.

GI is not known to be in NP∩CoNP but in a probabilistic generalization
of this complexity class. The best known algorithm, testing isomorphism of
two unrestricted graphs with n nodes each, runs in time O(exp(c

√
n log(n)).

On the other hand there are algorithms for the problem that work efficiently
for “almost all graphs” and in fact a straightforward linear time algorithm
can decide isomorphism for random graphs.

The best classical algorithms for IF and GI run therefore in exponential
time in the input size. The situation is different in the field of quantum
computation. In 1994 Shor gave an efficient quantum algorithm for factor-
ing integers. His methods have been extended to more general algebraic
problems and there is the hope that efficient quantum algorithms for graph
isomorphism might also be developed.

We give in this chapter an overview of several attempts for obtaining
efficient classical and quantum algorithms for IF and GI. In doing this we
point out several similarities between both problems. Finally we review a
result showing that IF and GI are in fact particular instances of a more
general algebraic problem, the ring isomorphism problem.

2 Factorization of integers: classical algorithms

A natural number p is called a prime number , if it is divided by exactly
two natural numbers (1 and p). The number 1 is not a prime. Any natural
number n ∈ N admits a decomposition

n = pc1
1 · · · pcr

r .
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into prime powers. The exponents cj ∈ N are uniquely determined by n.
A famous theorem of analytic number theory, the prime number theorem
(see [43]), states that

lim
x→∞

π(x)
x/ log(x)

= 1 , π(x) = # {p prime | p ≤ x} ,

i.e. the distribution of prime numbers among the natural numbers is asymp-
totically x

log(x) . The integer factorization problem (IF) is defined as follows:
given n ∈ Z, find the primes pj and exponents cj of its prime factor decom-
position.

No classical algorithm of polynomial complexity is known for this prob-
lem yet. Some important cryptographic systems (like RSA) draw their secu-
rity from this fact. Factorization is a search problem. A decisional version
of it (given n, k ∈ Z is there a prime factor of n grater than k) belongs
clearly to the class NP ∩ CoNP. Note that the inverse problem, i.e. the
computation of n from its given factors, is extremely simple, it is therefore
used in various public key systems and key exchange protocols which draw
their security from mathematical problems which are difficult to solve, but
easy to verify.

The naive approach to the factorization problem (brute force checking of
all possible prime factors) needs at most O(

√
n) operations to compute the

prime factorization of n (the smallest prime contained in n is bounded by√
n if n is composite). The prime number theorem tells us that we do not

gain a substantial speedup by restricting the search to prime numbers (not
taking into account the cost to compute them). We mention the following
algorithms which have been proposed in the last century to compute the
prime factorization:

� Factorization using reduced quadratic forms, the ideas going back to
C. F. Gauß. Today it is known that the computation of generators
of these forms is actually as hard as classical factorization, and not
practicable for large numbers. This method gave rise to several number
theoretical generalizations of the factorization problem, all known to
be in NP ∩ CoNP, but still without an efficient classical algorithm.

� Pollard’s %-method , using the birthday phenomenon to find pairs (x, y)
with gcd(x− y, n) 6= 1.

� The elliptic curve method , using the fact that non-invertible elements
of Z/nZ share a factor with n, and such elements can be found using
the group law on elliptic curves defined over Z/nZ. This is a typical
example of an algorithm using group structures to factor numbers.

� The various sieve methods, the most sophisticated algorithm for fac-
toring numbers known today. They make heavy use of the number
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theoretic background of the factorization problem, especially the the-
ory of number fields.

The best known algorithm today to solve this problem is the general
number field sieve (see [17, 10.5]) with expected running time

O
(
exp

(
log(n)

1
3 · log(log(n))

2
3 · (C + o(1))

))
for a constant C ≈ 1, 922. We note that until 2002, there was no efficient
deterministic algorithm to check if a given number is actually a prime. This
is due to the fact that the prime number theorem gives only an asymptotic
distribution of the prime numbers. If we pick a small interval [a, b] for very
large a, the distribution of primes in it is not structured at all. The fine
grained distribution is not known by today, it is connected to the famous
Riemann Hypothesis which has been the field of research for many decades
without a prove in sight.

3 Graph isomorphism: classical algorithms

The graph isomorphism problem (GI) consists in given two graphs G1 =
(V1, E1) and G2 = (V2, E2), decide whether there is a bijection f : V1 → V2

respecting the adjacency relations of the graphs. In symbols, for every
u, v ∈ V1, (u, v) ∈ V1 ⇐⇒ (f(u), f(v)) ∈ V2. GI is clearly in NP and
its complement is contained in AM, a probabilistic generalization of NP [11].
GI is not believed to be hard for NP, however no polynomial time algorithms
for the problem are known either.

The earliest significant algorithms for deciding isomorphism were restric-
ticted to trees [29,46]. They provided a canonical enumeration of the input
graphs that could be computed in linear time. The same technique was
used for the isomorphism of planar graphs [30]. Several years later this
result could be extended to graphs of bounded genus [21,36,38].

Babai used in [10] for the first time a group theoretic approach to the
graph isomorphism problem. He was able to prove that the problem re-
stricted to colored graphs (isomorphisms have to preserve the colors) for
which the color multiplicity is bounded, can be solved in random polyno-
mial time. Based on this work, Furst, Hopcroft and Luks [20] developed
polynomial time algorithms for several permutation group problems. They
also were able to derandomize Babai’s algorithm making it deterministic.

Using involved results on the structure on permutation groups, a break-
through was obtained by Luks in [37] when he gave a polynomial time al-
gorithm for testing isomorphism of graphs of bounded degree. By providing
a new degree reduction procedure and using Luks result, Zemlyachenco [47]
managed to give a moderately exponential procedure of exp(n( 2

3
+o(1))) for

4



deciding isomorphism for unrestricted graph classes. Subsequent improve-
ments of the bounded degree algorithm has brought this bound down to
exp(c

√
n log n), (announced in [12]), which still is the algorithm for unre-

stricted graph isomorphism with the lowest worst case complexity.
There are several algorithms based on vertex-classification schemes that

work well in practice. This is not surprising since it is known that trivial
algorithms perform well on randomly generated graphs. Babai, Erdös and
Selkow gave in [15] a straightforward linear time canonical labeling algorithm
for GI, proving that it works well for almost all graphs.

The existing algorithms for graph isomorphism could roughly be divided
into two main groups: those based on vertex classification methods and
those constructing canonical labelings of the graphs.

� Vertex classification methods: A natural technique to restrict the
search space when looking for an isomorphism is to divide the vertices
of the input graphs in certain classes so that the vertices in one class
in the first graph can only be mapped to vertices of the corresponding
class in the second graph. Some ways to do this are to divide the ver-
tices acording to their degree, the degree of their neighbors, the number
vertices reachable by paths of a certain length, etc. This method can
be used iteratively, refining the classifications of the vertices according
to previous classifications.

� Canonical labeling methods: The idea here is to find canonical rep-
resentatives for the different isomorphic graph classes. This problem
is in principle harder than deciding isomorphism but in some known
examples of restricted graph classes (like trees or planar graphs) the
algorithms for isomorphism provide in fact canonical representatives.
For unrestricted graphs the best known labeling algorithm works in
exp(n

1
2
+o(1)) steps [12].

For more facts about the graph isomorphism problem and its structural
complexity, we refer the reader to the textbook by Köbler, Schöning and
Torán [34].

4 Quantum algorithms for integer factorization

The first efficient algorithm to factor integers on quantum computers was
given by Peter W. Shor in [44]. His idea was to view the factorization prob-
lem as a period finding problem. Such problems can be solved on quantum
computers using the quantum Fourier transformation as we well explain
in the next section. Here we briefly show how to encode the factorization
problem into a period finding problem.

Let N be the number to be factored and a ∈ {2, . . . , N} be chosen ran-
domly. We first compute gcd(a,N) using Euclids Algorithm. If gcd(a,N) 6=
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1 the gcd is already a factor of N , otherwise we define the function f(n) =
an mod N , a mapping from Z to Z/NZ. Its smallest period is called the
order of a mod N (because it is the order of the multiplicative group gen-
erated by a if multiplication is defined mod N). First, since (Z/NZ)× =
{a mod N : gcd(a,N) = 1} has at most N − 1 elements (0 mod N is never
included in this set), the order of a is strictly less than N . We can compute
the order as shown in the next section using O(log(N)) measurements (it
should be noted that already the computation of the gcd takes up to log(N)3

steps).
By definition of the order an ≡ 1 mod N , which means N is a multiple of

an− 1. Suppose the order is even, then N is a multiple of (a
n
2 − 1)(a

n
2 + 1),

so we get a nontrivial factor of N by computing gcd(N, a
n
2 + 1). Some el-

ementary number theory shows that the probability of hitting a such that
the order is odd is bounded by φ(N)2−m, where φ(N) = #{a mod N :
gcd(a,N) = 1} < N is Eulers Totient function, and m is the number of
prime powers in the prime factor decomposition of N . The total number of
measurements needed to find a proper factor of N with given error proba-
bility ε is polynomial in log(N) and log(ε−1), as was proved first by Shor.

4.1 The quantum Fourier transform and period finding

The concept of Fourier transformation is a fundamental tool in many areas
of research. The quantum Fourier transform used in the field of quantum
computation is, viewed by mathematics, the Fourier transform on the finite
abelian group Z/nZ. In general, the Fourier transform of a finite abelian
group G is given by

f̂(χ) =
∑
g∈G

f(g)χ̄(g)

where f : G → C is any function and χ : G → C× is a homomorphism
of groups from G to the multiplicative group C× = C\{0}, and z̄ is the
complex conjugate of z ∈ C. For finite cyclic groups, χ(g)n = χ(gn) = 1
for the order n = #G, so χ(g) is actually a root of unity, necessarily of the
form χa(g) = exp(2πiag

n ) for some a ∈ Z. We may identify G with Z/nZ
and each a ∈ G with the homomorphism χa(g), and let∑

g∈G

f(g)χ̄a(g) =
∑
g∈G

f(g)e−2πi ag
n

be the Fourier transform of f at the value a ∈ G. The quantum Fourier
transform (QFT) is the normalized Fourier transform on Z/nZ:

f̂(a) =
1√
n

n−1∑
j=0

f(j)e−2πi aj
n .
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The Fourier operator ˆ is actually an automorphism of the C-space of func-
tions f : G→ C, the inverse transformation is given by

f(j) =
1√
n

n−1∑
a=0

f̂(a)e2πi aj
n .

The most interesting property of this transformation is the translation law:
Let f(a+ k) be the function a 7→ f(a+ k), the function f shiftet by k, then
its Fourier transform is

̂f(a+ k) = f̂(a) · e2πi ak
n

for any k ∈ Z, that is shifts are mapped to complex prefactors by the Fourier
transform. Suppose f is periodic: f(a + p) = f(a) for some p ∈ Z and all
a ∈ Z, then we get

f̂(a) = ̂f(a+ p) = f̂(a) · e2πi ap
n ⇒ f̂(a) ·

(
e2πi ap

n − 1
)

= 0 ∀a ∈ Z ,

which forces f̂(a) to be zero if a is not a multiple of n
p . The converse is also

true, so the QFT defines an isomorphism{
f : Z/nZ → C of period p

}
↔

{
f : Z/nZ → C supported on

n

p
Z

}
.

So if we want to compute the period of a function f : Z/nZ → C which
can be accessed only by evaluation, we compute f̂(a) for sufficiently many
a ∈ Z/nZ and calculate the greatest common divisor of those a for which
f̂(a) does not vanish. Classically there is no speedup in finding the period
this way, but computing a point in the support of a function is an easy task
for a quantum computer, since this is what measurement actually does. Let
us briefly note that the ket-notation |k〉 = |k〉(t) denotes the (column) vector
whose k-th amplitude component is one. In the following we regard this as
a function

|k〉 : {0, . . . , n− 1} → C , t 7→
{

1 if t = k
0 otherwise

.

The basic period finding algorithm is as follows: Let f : Z/nZ → C be a
function of period p. We assume the period is primitive, that is f has no
period which is smaller then p. First, initialize two registers in the state

ψ1 = ψ1(t) =
1√
n

n−1∑
k=0

|k〉|f(k)〉 .

Measurement of the second register to a value y collapses the state to

ψ2 =
1√

#{k ∈ Z/nZ : f(k) = y}
·

∑
f(k)=y

|k〉|y〉 =
1
√
p
·

p−1∑
j=0

|x+ jp〉|y〉
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since f is injective on the set {0, 1, . . . , p − 1} and f(k) = y is equivalent
to k = x + jp for x ∈ {0, . . . , p − 1} uniquely defined by y. Now we apply
the QFT to this state, which transforms the p-periodic state to a n

p -periodic
supported state:

ψ3(t) =
1
√
p

p−1∑
j=0

̂|x+ jp〉|y〉 =
1
√
p

p−1∑
j=0

e2πi
(x+jp)t

n |̂0〉|y〉 .

Since the equidistribution on all values is a function of period one, the Fourier
transform of it is the singleton at 0. By the inversion formula the Fourier
transform of |0〉 = |0〉(t) is the equidistribution

∑
|k〉(t). So actually we got

the state

ψ3(t) =
1
√
p

p−1∑
j=0

e2πi
(x+jp)t

n
1√
n

n−1∑
k=0

|k〉|y〉 .

Now if t is a multiple of n
p , we have

1
√
p

p−1∑
j=0

e2πi
(x+jp)t

n = e2πi xt
n · √p ,

while for other t the sum over the roots of unity exp(2πi (x+jp)t
n ) cancels to

zero. So this state has support on the set p⊥ = {0, n
p , 2

n
p , . . . , (p− 1)n

p}, and
is (up to complex phases) equidistributed. The equidistribution allows us
to bound the number of measurements needed to infer the period p. The
probability of measuring two adjacent points in the set p⊥ depends on the
length p of the period but not on the original length n of the register.

4.2 Generalization of the period finding algorithm

There are several generalizations of the period finding problem. The two
most important are real periods, almost-periods, and hidden subgroups, of
which we will explain the latter only. We briefly sketch the other generaliza-
tions: Periods of functions f : R → S can be computed by approximation,
that is using the period finding algorithm on the values of f at 1

N ,
2
N ,

3
N , . . .

for sufficiently large N . The algorithm used is a modification of the integer
period finding algorithm, which employs the same method. The complexity
of this algorithm depends on the choice of N and the smallest period of f .
An application of this technique can be found in [26], which gives an effi-
cient algorithm to compute the regulator and the class number of quadratic
number field (the complexity of this task is known to be at least as hard
as integer factorization). Such algorithms can be generalized to functions
f : Rn → S having a period lattice, that is a discrete subgroup L ⊂ Rn such
that f(x + λ) = f(x) for any x ∈ Rn and λ ∈ L, which are approximated
on a lattice of the form 1

N Zn for sufficiently large N . Applications occur
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again in algebraic number theory, see [25] for example. We will not consider
real functions here, since the effort to prove the probability bounds is rather
lengthy. However the lattice finding problem is closely related to the natural
generalization of the period problem for finite groups, which is in general
called the hidden subgroup problem (HSP):

Definition 4.1 Given a groupG and a function f : G→ S into an arbitrary
set S, find the subgroup H ≤ G such that f factorizes on H: f(g+h) = f(g)
for all g ∈ G and h ∈ H, and f(g) 6= f(g′) whenever g +H 6= g′ +H.

This problem has been studied for many types of groups G. Again the
property of the Fourier transform of mapping functions with periods to func-
tions with periodic supports can be used to find H in case of abelian groups
G. This is done by extending the concept of Fourier transform to arbitrary
finite abelian Groups. We need the concept of characters to introduce the
Fourier transform:

Definition 4.2 A character of a finite abelian group G is a homomorphism
χ : G→ C×.

As in the cyclic case, the Fourier transform of a function f : G→ C is

χ 7−→
∑
g∈G

f(g)χ̄(g) ,

defined on characters. By identifying the elements of G with these characters
we retrieve the usual notation of Fourier transforms defined on G itself.
We briefly show how this identification is established: By the fundamental
theorem for abelian groups, any finite abelian group is of the form

G ∼=
k⊕

j=1

Z/njZ ,

so any character of G is of the form

χ(g) =
k∏

j=1

χj(gj)

where χj is a character on Z/njZ. The set of homomorhjphisms χ : G → C×
is itself a group by multiplication, denoted by Ĝ, and the above product
representation shows G ∼= Ĝ, that is there is a bijection between elements
of G and characters of G. Characters of the cyclic factors of G are always
of the form χ(j)(a) = exp(2πi ab

nj
), the bijection is then

Z/njZ 3 b ↔ χ(j) =
[
a 7→ e

2πi ab
nj

]
∈ Ẑ/nZ .
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Characters of arbitrary abelian groups are (multiplicative) linear combina-
tions of these cyclic characters. Since each Z/nZ also carries a multiplicative
structure, we can define a multiplication in the additive group G artificially
by setting

g ∗ h = (g1, . . . , gk) ∗ (h1, . . . , hk) := (g1h1, . . . , gkhk) ,

and we obtain the identification of a ∈ G with the character χa : g 7→ χ(a∗g)
for any character χ which is the product of generating characters of the cyclic
factors. Thus we can define the Fourier transform taken on elements of G
instead of characters:

Definition 4.3 The (normalized) Fourier transform on G by χ is defined
as the transformation

f̂(a) =
1√
#G

∑
g∈G

f(g)χ̄(a ∗ g)

for any function f : G→ C.

Now we have to show that the Fourier transform on G provides the needed
properties. They follow from the known orthogonality relation for χ:∑

g∈G

χ(g) =
{

#G if χ = 1 is the trivial character
0 if χ 6= 1

.

The inversion formula for the general Fourier transform is

f(g) =
1√
#G

∑
a∈G

f̂(a)χ(a ∗ g) .

This is proved by

1√
#G

∑
a∈G

f̂(a)χ(a ∗ g) =
1

#G

∑
a∈G

∑
b∈G

f(b)χ̄(b ∗ a)χ(a ∗ g)

=
1

#G

∑
b∈G

f(b)
∑
a∈G

χ(a ∗ (g − b)) .

By the orthogonality relation the last sum selects the value b = g and re-
moves the normalization factor, and the value of the expression is f(g) as
asserted. So the Fourier transformation on G is still an automorphism of
functions from G to C, by the normalization factor it is also a unitary trans-
formation. It maps functions with period subgroup H ≤ G to functions
having support in some group H⊥, which is now more complex then the set
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n
p Z/nZ in the cyclic case. We use the equation

f̂(a) =
1√
#G

∑
g∈G

f(g)χ̄(g ∗ a) =
1√
#G

∑
g∈G

f(g + h)χ̄(g ∗ a)

=
1√
#G

∑
g∈G

f(h)χ̄((g − h) ∗ a) = f̂(a) · χ(h ∗ a)

which is true for all a ∈ G if and only if f̂(a) = 0 or χ(h ∗ a) = 1 for all
h ∈ H, that is if f̂ vanishes outside the dual group of H:

H⊥ = {a ∈ G : ∀h ∈ H : χ(h ∗ a) = 1} .

We have proven

Theorem 4.4 The Fourier operator ˆ gives an isomorphism between these
C-spaces:

� The set of functions f with f(g + h) = f(g) for all g ∈ G, h ∈ H.

� The set of functions f which vanish outside H⊥.

Finding the subgroup H therefore amounts to two tasks:

� Computation of H⊥ by the period finding algorithm (generalized to
k + 1 registers). This is again done by measuring the (k + 1)-th reg-
ister and applying the Fourier transform on G to the first k registers,
and measurement of enough elements from H⊥ to infer generators or
coefficients for H⊥.

� Computation of H from H⊥. Note that we actually do not want to
compute the set H, but its generators, or equivalently coefficients dj

such that

H =
k⊕

j=1

Z/djZ .

This is not difficult if the corresponding coefficients for H⊥ are known.
Important applications of the hidden subgroup problem, for example
the class number problem, content themselves with the determinant
of H, which is the product of the coefficients. There is an efficient
quantum algorithm for group decomposition, that is an algorithm to
compute the coefficients dj given generators of H.

We note that both group decomposition and hidden subgroup computa-
tion admit still no efficient classical algorithms. We conclude by stating the
complexity of the abelian hidden subgroup problem. Assume the following
preconditions:

11



� Elements of G can be represented uniquely as binary string, and it is
possible to recognize a representation classically in a number of steps
polynomial in the representation length.

� It is possible to compute (classically) the representation of the sum
and the inverse of elements using a number of steps polynomial in the
length of their representation.

� Both group operations and the evaluation of f can be implemented in
a quantum circuit.

Then we have

Theorem 4.5 There is a quantum algorithm with the following properties:
Given a finite abelian group G (represented by generators of cyclic factors
of prime power) and f : G → S satisfying 4.1, and some error probability
ε, it computes a set of elements of G along with coefficients (or equivalently
generator relations) for the subgroup H ′ generated by those elements, such
that

� the probability that H ′ = H is the period subgroup of f is ≥ 1− ε,

� the number of measurements performed is bounded by a polynomial in
log(ε−1) and the input length for the group G.

The proof uses the crucial fact that the Fourier transform of a H-period
function is not only supported by H⊥, but that function values are equidis-
tributed among this set (up to complex phases). The Fourier theory of
non-abelian groups is far more complicated, and we do not have the corre-
spondence of group elements to characters implicitly used in the definition
of the operation ∗. By now there is no general quantum algorithm known to
compute H in case of non-abelian groups. There are some works on special
group types, like dihedral groups or solvable groups, but these cover still a
very small portion of all non-abelian groups.

5 Quantum approach to graph isomorphism

5.1 The hidden subgroup problem and graph isomorphism

We observe that the graph isomorphism problem can be solved with the help
of the hidden subgroup problem. Let G = (V,E) be a graph with vertex
set V = {1, . . . n} and consider the symmetric group Sn of permutations
over n elements. For a permutation π ∈ Sn, π(G) is the graph resulting
from permuting the labels of the vertices in G according to π. The set of
automorphisms of G, Aut(G) = {π ∈ Sn | π(G) = G} is clearly a subgroup

12



of Sn. Consider the function fG acting on Sn defined as fG(π) = π(G).
Observe that for every σ ∈ Sn and π ∈ Aut(G),

fG(σ · π) = σ · π(G) = σ(G) = fG(σ).

Moreover fG has different values for the different cosets of Aut(G) in Sn:

σ1Aut(G) 6= σ2Aut(G) ⇒ σ1(G) 6= σ2(G) ⇒ fG(σ1) 6= fG(σ2).

In other words, Aut(G) is the hidden subgroup in Sn defined by fG. With
a generating set for Aut(G) it is possible to efficiently compute the order of
the subgroup, |Aut(G)|. With this one can decide the graph isomorphism
problem in the following way: Let G1 and G2 be the input graphs and
consider the graph G1 ∪ G2 defined by the vertices and edges of both G1

and G2. It is not hard to see that if G1 and G2 are not isomorphic then
|Aut(G1∪G2)| = |Aut(G1)| · |Aut(G2)|. On the other hand if the graphs are
isomorphic then |Aut(G1 ∪G2)| = 2|Aut(G1)| · |Aut(G2)| (we have to count
in this case the automorphisms interchanging the vertices of G1 and G2).

Because of this observation, efficient algorithms for HSP would imply the
existence of efficient algorithms for GI. But the symmetric group Sn needed
here is non-abelian and therefore the methods explained in the previous
section cannot be applied. There have been several attempts to extend
the algorithms for HSP from abelian to non-abelian groups [22, 31] but the
solved cases are not sufficient for solving GI. Hallgren, Russel and Ta-Shma
show in [28] how to solve the HSP efficiently in the cases where the hidden
subgroup is normal. Observe that this extends the results presented in the
previous section since every subgroup of an abelian group is normal. Bacon,
Childs and van Dam [13] have proposed a new approach giving efficient
quantum algorithms for various semi-direct product groups. Kuperberg [35]
developed a sieve algorithm for the hidden subgroup problem in the dihedral
group Dn with running time 2O(

√
n). Based on this result a subexponential

time algorithm for solving HSP on direct product groups was presented in [4]
Recently some negative results pointing to the impossibility of obtain-

ing efficient quantum algorithms for the HSP have been published. In [27]
it is shown that strong Fourier sampling is insufficient to efficiently resolve
the HSP on certain non-abelian groups and that multiregister Fourier sam-
pling over Ω(log |G|) registers is required to distinguish subgroups of certain
groups, including the symmetric group. A good overview of these results
can be seen in [5]

5.2 The quantum query model and graph isomorphism

The difficulty of obtaining non-trivial upper or lower bounds for the graph
isomorphism problem on classical or quantum computers motivates the study
of more restricted models, in which it is possible to establish differences be-
tween both computing paradigms.
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We consider here the quantum query model, a basic restricted model of
quantum computation. In the query model, the input x1, . . . , xN is contained
in a black box or oracle and can be accessed by queries. In a query we
give a position i as input to the black box and it outputs xi. The goal
is to compute a boolean function f : {0, 1}N → {0, 1} on the input bits
x = (x1, . . . , xN ) minimizing the number of queries. The classical version of
this model is known as decision tree. We can consider the query complexity
of a concrete boolean function in trying to show that the quantum model
presents advantages over the classical model.

The quantum query model was explicitly introduced by Beals et al. [14].
Unlike the classical case, the power of quantum parallelism can be used in
order to make queries in superposition. The state of the computation is
represented by |i, b, z〉, where i is the query register, b is the answer register,
and z is the working register. A quantum computation with T queries is a
sequence of unitary transformations

U0 → Ox → U1 → Ox → . . .→ UT−1 → Ox → UT ,

where each Uj is a unitary transformation that does not depend on the in-
put x, and Ox are query (oracle) transformations. The oracle transformation
Ox can be defined as Ox : |i, b, z〉 → |i, b⊕ xi, z〉. The computation consists
of the following three steps:

1. Go into the initial state |0〉.

2. Apply the transformation UTOx · · ·OxU0.

3. Measure the final state.

The result of the computation is the rightmost bit of the state obtained by
the measurement. The quantum computation determines f with bounded
error, if for every x, the probability that the result of the computation equals
f(x1, . . . , xN ) is at least 1 − ε, for some fixed ε < 1/2. In the query model
of computation each query counts as one computation step but all other
computation steps are free.

We consider upper and lower bounds for the number queries needed
to compute a boolean function stored in the black-box. If the black-box
contains N positions, then trivially N queries are sufficient. But in some
cases less quantum queries are needed. Grover [23] showed that in order
to compute the OR function of N inputs (x1, . . . , xN ), O(

√
N) quantum

queries are sufficient. This supposes a quadratic speed-up over the number
of classical queries for the same problem.

The idea that with quantum queries we could search more efficiently in
an unordered search space than with classical procedures gave initially some
hope for efficient quantum solution of NP problems. For example we can
consider than in a problem like graph isomorphism, each oracle position xi

14



encodes a 0 or a 1 depending on whether the i-th bijection is an isomorphism
between two given graphs. Computing the OR of these bits is equivalent to
solve the isomorphism problem. Since for graphs with n nodes there are n!
possible bijections, a naive application of Grover’s method would compute
the problem with O(

√
n!) queries, which is still a very large number of steps.

Some other methods have been proposed trying to improve the efficiency of
the search. One of these methods is the quantum walk.

5.3 Quantum walks and the fix-automorphism problem

Quantum walks are the quantum counterpart of Markov chains and random
walks. We present here some facts on quantum walks and their connection
to isomorphism problems. A discrete quantum walk is a way of formulating
local quantum dynamics on a graph. The walk takes discrete steps between
neighbouring vertices and is a sequence of unitary transformations. We
present a recent scheme for quantum search, based on any ergodic Markov
chain, given by Magniez et al. [40]. We use then this tool for the development
of a quantum algorithm for a special isomorphism problem.

Aharonov et al. [3] introduced quantum walks on graphs. They showed
how fast quantum walks spread and proved lower bounds on the possible
speed up by quantum walks for general graphs. Ambainis [7] constructed a
fundamental quantum walk algorithm for the element distinctness problem.
This was the first quantum walk algorithm that went beyond the capabil-
ity of Grover search. Magniez et al. [41] have used Ambainis algorithm for
finding a triangle in a graph. Szegedy [45] generalized the element distinct-
ness algorithm of Ambainis to an arbitrary graph by using Markov chains.
He showed that for a class of Markov chains, quantum walk algorithms are
quadratically faster than the corresponding classical algorithms. Buhrman
and Špalek [16] constructed a quantum algorithms for matrix multiplication
and its verification. Recently, Magniez et al. [40] developed a new scheme for
quantum search based on any ergodic Markov chain. Their work generalizes
previous results by Ambainis [7] and Szegedy [45]. They extend the class
of possible Markov chains and improve the quantum complexity. Dörn and
Thierauf [18,19] presented the first application of this new quantum random
walk technique for testing the associativity of a multiplication table.

Let P = (pxy) be the transition matrix of an ergodic symmetric Markov
chain on the state space X. Let M ⊆ X be a set of marked states. Assume
that the search algorithms use a data structure D that associates some
data D(x) with every state x ∈ X. From D(x), we would like to determine
if x ∈ M . When operating on D, we consider the following three types of
costs:

� Setup cost s: The worst case cost to compute D(x), for x ∈ X.

� Update cost u: The worst case cost for transition from x to y, and
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update D(x) to D(y).

� Checking cost c: The worst case cost for checking if x ∈ M by using
D(x).

Theorem 5.1 [40] Let δ > 0 be the eigenvalue gap of a ergodic Markov
chain P and let |M |

|X| ≥ ε. Then there is a quantum algorithm that determines
if M is empty or finds an element of M with cost

s+
1√
ε

(
1√
δ
u+ c

)
.

In the most practical applications (see [7, 41]) the quantum walk takes
place on the Johnson graph J(n, r), which is defined as follows: the vertices
are subsets of {1, . . . , n} of size r and two vertices are connected iff they
differ in exactly one number. It is well known, that the spectral gap δ of
J(n, r) is Θ(1/r) for 1 ≤ r ≤ n

2 .
Now we consider the fix-automorphism problem as an application of the

quantum walk search procedure. We have given a graph G = (V,E) with n
vertices represented as adjacency matrix and an integer k < n. One has to
decide whether G has an automorphism which moves at most k vertices of
G.

Theorem 5.2 The quantum query complexity of the fix-automorphism prob-
lem is O(n2k/(k+1)).

Proof . We apply the quantum walk search scheme of Theorem 5.1. To do
so, we construct a Markov chain and a data base for checking if a vertex of
the chain is marked.

Let G = (V,E) be the input graph with n vertices represented as adja-
cency matrix. Let U be a subset of vertices ofG of size r. We will determine r
later. Our quantum walk takes place on the Johnson graphs J(n, r). The
data base of the quantum walk is the induced subgraph on the set of vertices
U , denoted by G[U ], has U as its vertex-set, and it contains every edge of
G whose endpoints are in U . The marked vertices of J(n, r) correspond to
subsets U ⊂ V , such that G[U ] contains an automorphism which moves at
most k vertices of G. In every step of our walk we exchange one vertex of
U .

Now we determine the quantum query setup, update and checking cost.
The setup cost to determine G[U ] is O(r2) and the update cost is O(r).
Checking if G[U ] contains such a fixed automorphism needs no queries, since
we require only the data base for checking if the vertex U is marked.

If there is at least one automorphism which moves at most k vertices,
then there are at least

(
n−k
r−k

)
marked vertices of the Johnson graph. There-

fore we have

ε ≥ |M |
|X|

≥
(
n−k
r−k

)(
n
r

) ≥ Ω
(( r

n

)k
)
.
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Then the quantum query complexity of the fix-automorphism problem is

O(r2 +
(n
r

)k/2
· r1.5),

which is minimized for r = nk/(k+1). �

6 Reductions of integer factorization and graph
isomorphism to ring isomorphism

We review in this section a result from Kayal and Saxena [32] showing that
GI and IF are instances of a more general question: the ring isomorphism
problem. Ring isomorphism has received attention in the last years in con-
nection with the efficient primality test algorithm from [2]. Other applica-
tions of this problem can be seen in [9] and [1].

Definition 6.1 A finite ring with identity element 1 is a triple (R,+, ·),
where R is a finite set such that (R,+) is a commutative group with identity
element 0 and (R, ·) is a semigroup with identity element 1, such that multi-
plication distributes over addition. The characteristic of a ring R is defined
to be the smallest number of times one must add the ring’s multiplicative
identity element 1 to itself to get the additive identity element 0. Let I be
a ideal of R, the factor ring is the ring R/I = {a+ I : a ∈ R} together with
the operations (a+ I) + (b+ I) = (a+ b) + I and (a+ I)(b+ I) = ab+ I.

The polynomial ring R[X] is the ring of all polynomials in a variable X
with coefficients in the ring R.

Let n be the characteristic of the ring. The complexity of the problems
involving finite rings depends on the representation used to specify the ring.
We will use the following representation models of a ring:

� Table representation: A ring R is given as a list of all the elements of
the ring and their addition and multiplication tables.

� Basis representation: A ring R is given by m basis elements b1, . . . , bm
and the additive group can be expressed as

(R,+) =
m⊕

i+1

Znibi,

with ni|n for each i. The multiplication in R is given by specifying the
product of each pair of basis elements as an integer linear combination
of the basis elements: bi · bj =

∑m
k=1 aij,kbk for 1 ≤ i, j ≤ m with

aij,k ∈ Zn.
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� Polynomial representation: A ring R is given by

R = Zn[Y1, . . . , Ym]/(f1(Y1, . . . , Ym), . . . , fk(Y1, . . . , Ym)),

where Y1, . . . , Ym are basis elements and (f1(Y1, . . . , Ym), . . . , fk(Y1, . . . , Ym))
is an ideal generated by the polynomials f1, . . . , fk.

The table representation has size O(|R|2), which is a highly redundant rep-
resentation. The size of the basis representation is O(m3), where m is the
number of basis elements. This is in general exponentially smaller than
the size of the Ring |R| = Πm

i=1ni. Often the polynomial representation
is exponentially more succinct than the basis representation. For example
Z2[Y1, . . . , Ym]/(Y 2

1 , . . . , Y
2
m) has 2m basis elements and so the basis repre-

sentation would require Ω(23m) space.
Since the polynomial representation is of smaller size, for clarity of expo-

sition, we will use it here to express the rings. However, for complexity issues
this representation is too succinct and we will consider the rings given as
input to the problems given in basis representation. For a polynomial repre-
sentation, say R = Zn[Y1, . . . , Yt]/I an automorphism or isomorphism φ will
be specified by a set of t polynomials p1, . . . , pt with φ(Yi) = pi(Y1, . . . , Yt).

Definition 6.2 An automorphism of ring R is a bijective map φ : R 7→ R
such that for all x, y ∈ R, φ(x+ y) = φ(x) + φ(y) and φ(x · y) = φ(x) · φ(y).
An isomorphism between two rings R1, R2 is a bijective map φ : R1 7→ R2

such that for all x, y ∈ R1, φ(x+ y) = φ(x)+φ(y) and φ(x · y) = φ(x) ·φ(y).

We define some ring automorphism and isomorphism problems:

� The ring automorphism problem (RA) consists in given a ring R, de-
cide whether there is a non-trivial automorphism for R.

� The finding ring automorphism problem (FRA) consists in given a ring
R, find a non-trivial automorphism of R.

� The ring isomorphism problem (RI) consists in given two rings R1, R2,
decide whether there is an isomorphism between both rings.

All rings are given in its basis representation.

6.1 Factoring integers and finding ring automorphisms

We discuss the complexity of finding automorphisms in a ring and present
a result from Kayal and Saxena [32] showing that this problem is at least
as hard as factoring integers. Let ≤P

m denote a polynomial time many-one
reduction or transformation between problems.

Theorem 6.3 [9] IF ≤P
m FRA
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The quadratic and number field sieve methods can be easily viewed as trying
to find a non-obvious automorphism in a ring. Both methods aim to find
two numbers u and v in Zn such that u2 = v2 and u 6= ±v in Zn, where n
is an odd square-free composite number to be factored. We will encode this
in a ring such that finding its ring automorphisms gives us u and v.

We consider the ring R = Zn[Y ]/(Y 2 − 1), which has an obvious non-
trivial automorphism mapping Y onto −Y . The problem is to find another
non-trivial automorphism φ(R) 6= ±Y . Agrawal and Saxena give the follow-
ing proof:
Proof . Let φ(Y ) = aY + b, by definition of the factor ring R we have
φ(Y 2 − 1) = 0. Observe that φ(a+ b) = φ(a) + φ(b), φ(ab) = φ(a)φ(b), and
that Y 2 − 1 ≡ 0. Thus we have

φ(Y 2 − 1) = (aY + b)2 − 1 = a2Y 2 + 2abY + b2 − 1

= a2(Y 2 − 1 + 1) + 2abY + b2 − 1 = a2 + b2 − 1 + 2abY = 0.

This gives ab = 0 and a2 + b2 = 1 ∈ Zn. Notice that a and n are relatively
prime, that is (a, n) = 1, since otherwise

φ

(
n

(a, n)
Y

)
=

n

(a, n)
(aY + b) =

a

(a, n)
nY +

n

(a, n)
b = φ

(
n

(a, n)
b

)
,

because a
(a,n)nY ≡ 0 mod n. Therefore, b = 0 and a2 = 1. By assumption,

a 6= ±1 and so u = a and v = 1. Conversely given u and v with u2 = v2,
u 6= ±v in Zn we get φ(Y ) = u

vY as an automorphism of R. �

As shown in [32], factoring integers can be reduced to a number of ques-
tions about automorphisms and isomorphisms of rings, that is counting the
number of automorphisms of ring Zn[Y ]/(Y 2) or finding the isomorphisms
between rings Zn[Y ]/(Y 2 − a2) and Zn[Y ]/(Y 2 − 1) for a randomly chosen
a ∈ Zn. But for RA a polynomial time algorithm is known [32]. That means,
some automorphisms are easy to compute and some others not.

6.2 Graph isomorphism and ring isomorphism

An interesting fact is that there also is a connection between the graph
isomorphism and the ring isomorphism problems.

Theorem 6.4 [32] GI ≤P
m RI

We present the reduction from [9].
Proof . Let G = (V,E) be a simple graph on n vertices. Then define
polynomial pG as

pG(x1, . . . , xn) =
∑

(i,j)∈E

xi · xj ,
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and define ideal IG as

IG(x1, . . . , xn) = (pG(x1, . . . , xn), {x2
i }, {xixjxk}1≤i,j,k≤n).

Observe, that for a polynom ring with ideal IG in basis representation
the number of basis elements is bounded by O(n2) since any combination of
three variables are zero. In detail, Agrawal and Saxena proved the following:
Let G1 = (V,E1) and G2 = (V,E2) be simple graphs over n vertices and let
Fq be a field of odd characteristic. Then G1 is isomorphic to G2 iff

� either both graphs contain a clique of size m (Km) and n−m isolated
vertices (Dn−m), each (in this case isomorphism testing is trivial),

� or the rings R1 = Fq[Y1, . . . , Yn]/IG1(Y1, . . . , Yn) and
R2 = Fq[Z1, . . . , Zn]/IG2(Z1, . . . , Zn) are isomorphic.

R1 and R2 are polynomial rings with polynomials of degree at most
two. If π is an isomorphism mapping G1 onto G2 then an isomorphism
between both rings can be found as φ : R1 7→ R2 with φ(Yi) = Zφ(i), since
φ(pG1(Y1, . . . , Yn)) = pG2(Z1, . . . , Zn).

We show now, that there is no further isomorphism. Suppose, that
G1

∼= G2 and that G2 is not of the form Km ∪Dn−m. Let φ : R1 7→ R2 be
an isomorphism with

φ(Yi) = αi +
∑

1≤j≤n

βi,jZj +
∑

1≤j<k≤n

γi,j,kZjZk.

We will show now, which values for αi, βi,j and γi,j,k in φ(Yi) may occur.
For any isomorphism φ on rings it must hold that φ(0) = 0. In R1, Y 2

i = 0
and in R2, Z2

i = 0 for any value of i it follows, that

φ(Y 2
i ) = (φ(Yi))2 = α2

i + (higher degree terms) = 0.

Thus αi = 0. Again looking at the same equation:

φ(Y 2
i ) = (φ(Yi))2 = 2

∑
1≤j<k≤n

βi,jβj,kZjZk = 0.

The other terms disappeared since αi = 0 or they become of degree greater
two.

If more than one βi,j is non-zero, then we must have
∑

j,k∈J,j<k βi,jβi,kZjZk

divisible by pG2(Z1, . . . , Zn) with J the set of non-zero indices. Since pG2

is also homogeneous polynomial of degree two, it must be a constant multi-
ple of the above expression implying that G2 = K|J | ∪Dn−|J |. This is not
possible by assumption. Therefore, at most one βi,j is non-zero.

If all βi,j are zero, then φ(Yi, Yl) = 0 for all i, l which is not possible.
Hence, exactly one βi,j is non-zero. Define π(i) = j where j is the index with
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βi,j non-zero. We now prove, that π is not surjective. Suppose π(i) = π(l)
for i 6= l. Then φ(YiYl) = Zπ(i)Zπ(l) = 0. This is not possible. Hence π is a
permutation on [1, n]. Now consider φ(pG1(Y1, . . . , Yn)), then it follows that

0 = φ(pG1(Y1, . . . , Yn)) =
∑

(i,j)∈E1

φ(Yi)φ(Yj) =
∑

(i,j)∈E1

βi,π(i)βj,π(j)Zπ(i)Zπ(j)

The last expression must be divisible by pG2 . This gives βi,π(i) = βj,π(j)

for all i, j and implies that the expression is a constant multiple of pG2 or
equivalently, that G1 is isomorphic to G2. �

Notice, that the rings R1 and R2 constructed above have lots of automor-
phisms. For example, Yi 7→ Yi + Y1Y2 is a non-trivial automorphism of R1.
Thus, automorphisms of G1 do not directly correspond to automorphisms
of R1.
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