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Abstract In contrast, computing the determinant of a matrix
is logspace many-one complete f@apL [Dam9l,

We investigate the computational complexity of Tod91, Vin91, Val92], the class corresponding to

some important problems in linear algebra. GapP in the logspace setting. This huge difference in
o o the complexity of the two problernisis somewhat sur-

1. The problem of verifying the characteristic poly- ,ising since the permanent and the determinant have
pomlal of a matrix is known_ to pe in the complex- almost the same cofactor expansion, the only differ-
ity cIassC?I., (Exact Counting in LogspayeWe ence comes with the sign.
show that itis complete fo€-L under logspace GaplL turns out to capture the complexity of many
many-one reductions. other natural problems: computing

2. The problem of deciding whether two matrices
are similar is known to be in the complexity class
ACY(C_L). We show that it is complete for this e iterated matrix multiplication,
class under logspace many-one reductions. We
also consider the problems of deciding equiva- e the inverse of a matrix,
lence and congruence of matrices.

¢ the powers of a matrix,

¢ the characteristic polynomial of a matrix.

There are also graph theoretic problems related to
counting the numbet-¢-paths in a graph.

Interesting decision problems can be derived from
the above problems. For example, instead of comput-
ing the inverse of a matrix, it often suffices to decide
whether the inversexists That is to decide whether
the determinant is zero. More general, this motivates
the complexity clas€_L where one has teerify the
value of aGapL problem.

Problems that are hard f@&apL usually result in
'verification problems that are hard f@_L. The de-
terminant gives a nice example: checking singularity

1 Introduction

Valiant [Val79b, Val79a] initiated the study of the
computational complexity of counting problems. He
introduced the counting clasgP that, intuitively,
counts the number of solutions BYP-problems. An
example for a complete problem for this class is com-
puting the permanent of a matrix.

Since counting is restricted to nonnegative integers
Fenner, Fortnow, and Kurtz [FFK94] extendg® to
the classGapP, the closure o##P under subtraction.

It follows that computing the permanent of integer ma-  inote  however that there is no proof vyet that
trices isGapP-complete. GapL # GapP.




is complete forC_L. Also, verifying then-th power  to C_L. They ask whether it is complete in this class.
of a matrix is complete fo€_L. Again, we give a positive answer to this question: the
But there are exceptions! An example is to similarity problem is complete foA C°(C_L) under
logspace many-one reductions.
We also consider two related relations on matrices,
namely the equivalence relation and the congruence
relation. We show that equivalence is complete for

0
This can be solved by computing the produds. The ~ AC (C=L) as well. For congruence, we can only

product should be the identity matrix. Hence this can ShoW that it is hard foAC™(C-L). _
be solved ifNC', a subclass o€ _L. The maybe most challenging open problem here is

In contrast. if we have to whetherC_L is closed under complement. Many re-
lated classes have this property:

¢ verify the inverse of a matrix:
given matricesdA and B,
check whethedd~! = B.

¢ verify one entryof the inverse:

given matrixA, an integew and indices and;, e The most popular one is nondeterministic
decide whethefA=1); ; = a. logspace,NL, shown by Immerman [Imm8g]

and Szelepcsényi [Sze88].
This is still complete folC_L. In other words, veri-
fying oneentry of the inverse is a harder problem than ~® For symmetric logspac&L, this was shown by
verifying all elements. In the latter, we put too much Nisan and Ta-Shma [NTS95].
information in the input.

We consider the problem to Also, for probabilistic logspaceRL, it is trivial. For

unambiguous logspact]L, it is open as well. For the
« verify the characteristic polynomial of a matrix:  latter class, however, Reinhardt and Allender [RA97]
given a matrix4 and the coefficients of a p0|yn0- showed that thaonuniformversion of |t,UL/pO|y, is
mial p, closed under complement. This gives rise to the con-
check whetheg 4 = p. jecture thafUL is closed under complement too.
One possible way of provin@_L to be closed un-
It follows from a theorem of Berkowitz [Ber84] that der complement is to reduce the singularity problem
this is in C_L, and Santha and Tan [ST98] asked to the non-singularity problem. That is, given a ma-
whether it is complete there. trix A, construct a matrix3 (in logspace) such that
Recall that the determinant is the constant term injs singular if and only ifB is nonsingular. It is well
the characteristic polynomial of a matrix and that ver- known that one does not need to considernebitrary
ifying the determinant is complete fdC_L. Now,  matrix A: one can assume thatis an upper triangu-
with the different complexities of the above two in-  |ar matrix except for the entry in lower left corner. To
verse problems in mind, the question is: is it easier to prove our Comp|eteness result for Verifying the charac-
verify all the coefficients of the characteristic polyno- teristic polynomial, we manipulate such matrices. We
mial than to verify jusbneof them? We show that this  think that it is quite interesting to see such transfor-
is notthe case: Verifying the characteristic polynomial mations, because this can give some hints on how to
is complete forC_L. come up with a reduction as above to solve the com-
Furthermore, we consider plementation problem fo€_L. Therefore the meth-
ods we use are interesting in their own right. For more
background and interesting results we recommend the
paper of Allender, Beals, and Ogihara [ABO99].

e the similarity problem:
given matricesA and B,
check whether they are similar, that is, whether
there exists a nonsingular transformation ma-

trix P such thatd = P~'BP. 2 Preliminaries

Santha and Tan [ST98] showed that it is in  For a nondeterministic logspace bounded Turing
ACY(C_L), the class of sets that afeC"-reducible machineM, we denote the number of accepting paths



on inputx by accy/(x), and byrej,,(x) the number of e DETERMINANT
rejecting paths. The difference of these two numbers Input: an x n-matrix A.
isgapy,(z) = accy(x) — rejy, (). Output: det(A), the determinant of.
The class of logspace computable sets is denoted
by L, the corresponding function class L. The
class of sets computable in nondeterministic logspace
is denoted byNL.
For the counting classes, we hayd., the class
of functions accy/(z) for some nondeterministic
logspace bounded Turing machiné, and GapL These problems are all known to be@apL. For
based analogously on functiomgap,,. Based on  gach of them, we define tiverification problemas the
counting, we consider the language cléssL: aset  graph of the correspondinGapL-function. That is,
Aisin C_L, if there exists € GapL suchthatfor ¢, 5 function £ (z), we denote the graph gf asv-f
all (for verify f),

r€A < f(x)=0. v-f

e CHARPOLYNOMIAL
Input: an x n-matrix A.
Output: (co,c1,...,cn-1), the coefficients of
the characteristic polynomiaf(z) = z" +
Cn12" "1 + .- 4 ¢g of the matrixA.

= {(zy) [ flz) =y}
F_or setsA gndB A i (Iogsr.L)ace) many-one re- This yields the verification problems
ducible to B, in symbols: A < B, if there is a

function f € FL such that for allz we havez € e V-POWER,
A < f(z) € B. We also consider other reducibility

i ) e V-POWERELEMENT,
notions below. When we talk of reductions, we mean

logspace many-one reductions. e V-DETERMINANT, and
We note thatC_L is closed under many-one reduc-
tions: A <L B andB € C_LthenA € C_L. * V-CHARPOLYNOMIAL .
A setA is (logspace many-one) hafdr a complex-  The first three problems are known to be complete for
ity classC, if L <[, Aforeverysetl € C. Ifaddition-  C_1,. v-CHARPOLYNOMIAL is known to be inC_L.
ally AisinC, we callA (logspace many-one) complete e show in Section 3 that it is complete far_L as
for C. well.
Ais AC’-reducible toB, if there is a logspace uni- A special case 0f-DETERMINANT is

form circuit family of polynomial size and constant

depth that computes with unbounded fan-in and-, or- ~ ® SINGULARITY

gates and oracle gates Bt In particular, we consider Inpu_t: an X n-matrix A.
the classAC®(C_L) of sets that areAC°-reducible Decide whethedet(A) = 0.

to asetinC-L. _ Also SINGULARITY is complete folC_L.
Next we define the problems we are looking at. If  Related problems are computing the rank of a ma-

nothing else is said, our domain for the algebraic prob-trix, Rank, or deciding whether a system of linear
lems are the integers. Far x n matrices over the  equations is feasible, FSLE for short.

intergers we assume that the matrix elements have a

binary representation of at mastits. o FSLE )
Input: a matrixA and a vectob.
e POWER Decide whether there is a rational vectosuch
Input: an x n-matrix A andm, (1 < m < n). that Az = b.

Output: A™, them-th power ofA. .
P mAnp FSLE is complete foA C°(C_L) [ABO99].

e POWERELEMENT In Section 4 we consider three problems with com-
Input; an x n-matrix A and integers, 7, m with plexity related to FSLE. These are some standard
(1<i,j,m <mn). equivalence relations on matrices: equivalence, con-
Output: (A™); ;, the (i, j)-th entry of A™. gruence, and similarity of matrices.



e EQUIVALENCE Interpret A as representing a directed bipartite
Input: twon x n-matricesA and B. graph or2n nodes. That is, the nodes are arranged in
Decide whetherd and B are equivalent. Thatis, two columns ofn nodes each. In both columns, nodes
whether there exist two nonsingular matrices  are numbered from to n. If entry a;; of A is not
and(@ such thatd = PBQ. zero, then there is an edge labetggd from nodek in

the first column to nodéin the second column. Now,

Congruence is a special case of equivalence of twotake i, copies of this graph, put them in a sequence

symmetric matrices where we hage= P". and identify each second column of nodes with the

first column of the next graph in the sequence. Call
the resulting grapl@’.

G' hasm + 1 columns of nodes. Thweight of

a path inG’ is the product of all labels on the edges

of the path. The crucial observation now is that the

entry at positior(1,n) in A™ is the sum of the weights

Finally, the similarity problem is a special case of of all paths inG' from node 1 in the first column to

equivalence where we hag@= P~'. noden in the last column. Call these two nodeandt,

respectively.

_ As an intermediate result this provides a reduction
Input: twon x n-matricesA andB. _ from POWERELEMENT to the weighted path problem
Decide whetherA and B are similar.That is, graphs.
whether thej? exists a nonsingular magbsuch GraphG' is further modified: for each edgé;, /)
that A = P~ BP. with labelay, ;, introduce a new node and replace the

Santha and Tan [ST98] have shown that €dge by two edgesf, ) with label 1 and(u,!) with

SIMILARITY in AC°(C_L). We show in Sec- labela,;. Now all paths froms to ¢ haveevenlength,

tion 4 that it is complete forAC°(C-L) under butstillthe same weight. Add an edge labeledom ¢

logspace many-one reductions. More specifically, wet0 s. Finally, add self loops labeled 1 to all nodes,
reduce FSLE to BILARITY . This also holds for ~exceptt. Call the resulting graply.

e CONGRUENCE
Input; two symmetria: x n-matricesA andB.
Decide whetherd and B are congruent. That is,
whether there exists a nonsingular matfbsuch
that A = PTBP.

e SIMILARITY

EQUIVALENCE. For CONGRUENCE we can show Let B be the adjacency matrix a&. The deter-
that it is logspace many-one hard fa£°(C_L). minant of B can be expressed as the sum over all
weighted cycle covers off. However, every cycle
3 Verifying the Characteristic Polynomial cover of G consists of a path from to ¢, (due to the
extra edge front to s) and self loops for the remain-
To show that V-CHARPOLYNOMIAL is ing nodes. The single nontrivial cycle in each cover

complete for C_L, we give a reduction from has odd length, and thus corresponds to an even per-
V-POWERELEMENT t0 V-CHARPOLYNOMIAL . This mutation. Thereforejet(B) is precisely the sum over
follows from the reduction BWERELEMENT <% all weighted path frons to ¢ in G’. We conclude that
DETERMINANT which goes back to Toda [Tod91] and det(B) = (A™)1,, as desired. O
Valiant [Val92]. The reduction presented here is taken  \We want to use these techniques to show

from [ABO99].

v-POWERELEMENT <! v-CHARPOLYNOMIAL .
Theorem 3.1 [Tod91, Val92]

POWERELEMENT <’ DETERMINANT. The idea for this reduction is to construct a matrix,

where the coefficients of the characteristic polyno-
Proof. Let A be an x n matrix andl < m < n. mial of the matrix can be expressed in terms of the
We construct a matri® such tha{ A™), , = det(B). value (A™); . We show that the matri8 — Iy has
That is, w.l.o.g. we fix = 1 andj = n in the defini-  this property, whereB is the matrix from the proof
tion of POWERELEMENT. above andy is the N-dimensional identity matrix.



Let C = B — Iy. Matrix C is the adjacency ma- The empty places i’ are all zero. L is then x n
trix of a graph, call itH. We obtainH from graphG matrix with a one at positiotw, 1) and zero elsewhere,
in the above proof as follows: the subtraction Igf andR is then x n matrix with —1 at position(n, n)
from B corresponds to taking away all the self loops and zero elsewhere.
in graphG and adding a self loop with weight1 to Let the characteristic polynomial af' have the
the node:. form:

We consider the matriX in more detail. Let the
bipartite graph defined by matrix haven nodes and
edges. Then grapH hasN = m(n + e) + n nodes
and therefore” (andB) isa N x N matrix.

Except for the self loop at nodeand the edge from We give two ways how to compute the coeffi-
to s, graphH is acyclic. Thus we can put the nodes cientsc; in xe(z)
of H in such an order, that adjacency matiis upper
triangular for the firsiz — 1 rows with zeros along the 1. one way is to use elementary linear algebra and

N1
xco(z) = det(zIy — C) = 2V + Z cix'.
i=0

main diagonal. The last row @f has a one on the first bring matrix C' into triangular form. Then the
position, a minus one on the last position, and the rest characteristic polynomial is the product of the di-
is zero. agonal entries.

We also consider the upper triangledh Each col- _ _ _ _
umn of graph’ was split in our construction into two 2. & short cut is provided by results in combinato-
columns and we got a new node on every edge.The rial matrix theory that generalize the argument

first part we describe by the x e matrix F': given in the proof of Theorem 3.1 from the de-
terminant, the constant coefficient of the char-

acteristic polynomial, to all of its coefficients.

1---1 0---0 0---0 .
see [BRI1, Zei85, MV97, MV99]).
o 0---0 1---1 0---0 ( [ ])
: : : We start by giving the combinatorial argument which
o---0 0---0 -+ 1---1 is much shorter than the elementary argument.

The number of ones in theth row of F is the number
of edges leaving node in the first column of?’.

From each of the newly introduced nodes there is _ ) _
one edge going out. Hence this second part we can From combinatorial matrix theory we know that the
describe by the x n-matrix S, which has precisely one ~ Co€fficientc; in xc(z) equals the sum of the disjoint
non-zero entry in each row. The value of the non-zero Weighted cycles that covelV — i nodes inf, with

entry is the weight of the corresponding edgein appropriate sign. In the grap, all edges go from
Now we can write(? as follows: a layer to the next layer. The only exceptions are the

edge(t, s) and the self loofdt, ¢). So any cycle must
use precisely one of these, since the cycles should be
I F | | | disjoint. So the only disjoint cycles iH are of these
- = = - — = = two types:

The combinatorial way

e e covering one node: the cyclg, ¢t) with weight
‘ ‘ ‘ ‘ ‘ —1. The signis—1. Sowe havey | =1

| | | | F e covering2m + 1 nodes: each cycle that uses the
_ _ _ _ o edge(t, s) then traces out a path frosto ¢. The

| | | | | S sum of all these paths is precisély™), . The
sign of these cycles is1. Hencecy_(25,41) =
_(Am)l,n-

h
= |



All other coefficients must be zero. Therefore we have The determinant of a triangular matrix is the prod-
uct of the diagonal elements. Hence

= (1) det(D(z)) = 2V ((z+1)2™ +¢) =

— N N—-1_ . N—(2m+1)
xo(@) =a" + “r ' Note however that this is not the sameyas(z): the
The alaebr aic wa latter we changed with each multiplication of the last
g y row by z, and we did thi2m + 1 times. Therefore we
We bring(xIy — C) into upper triangular form by get
doing row transformations. det(D(z))
Forz = 0 itis easy to see thatet(—C) = 0. So xc(z) = T 2mtl
let z # 0. We multiply the last row by: and add the —  pN-(@mt1) ((x 1) 4 C) )

first row to it. This yields a zero in the first position

of the last row, but also some number-ot’s to the Note thatyc(0) = 0, so that this covers the cage= 0
right, coming from the first row of matri¥'. We iter- as well ’

ate the previous step: multiply the last row byand The problem that remains in order to determine
add all the rows from it such that thediagonal entry vo(z) is the value of the constant Note thate

cancels the entry in the last row. This in turn yields oy qenend on each of the above transformation steps.
some non-zero entries further to the right in the last From equation ( 2) we get far — —1

row coming from matrixS.
We continue doing this: xo(=1) = (=1)N-Cm+l),, ©)

o if the first nonzero entry (from the left) in the last
row is a integer constant, sayat position;, then
multiply the last row byz and subtractv times

On the other hand, we can determipe(—1) directly

the j-th row from the last row; Yol=1) = det((=1)Ty - C)
e if the first nonzero entry in the last row has the = det(~Iy — (B - Iyn))

form az, then we can directly subtraet times = det(—B)

the j-th row. = (=1)V det(B). (4)

Each iteration may put some more constants to the
right of the current position into the last row, because
of the matricesF’ and S. Since there ar@m of them

From the equations (3) and (4) it follows thamust
be — det(B). Hence,

in total, after2m such iterations, all non-zero entries (A™) 0 = a
in the last row are in the last positions. ’
This is the part of matrix® in the above descrip- —
tion of C. The non-zero entries are all integers except det(B) = a
for the last one: here we started with entry- 1 in —
the beginning. We di@m multiplications withz and xo(z) = 2N 4+ 2N-1 — qgN-(@m+1)
added some rows from matri (the one just abov&
in C). Thus the entry has the for(m + 1)z*™ + ¢ for In summary, both methods yield explicitly the

some constant. To eliminate the constant entries in  coefficients of y¢(z).  Therefore we have the
the last row, we multiply it one more time withand  desired reduction from v-POWERELEMENT  to
subtract some of the lastrows to obtain zeros inthe \.CHARPOLYNOMIAL . We conclude:

last row except for the last entry at positi¢iv, V),

which now has the forni(z + 1)z?™ 4 ¢)z. Let D(z) Theorem 3.2

be the resulting upper triangular matrix. V-CHARPOLYNOMIAL is complete folC_L.



The reductions shown in this section are actually not Now it is easy to check thalP has full rank and that
just logspace many-one reductions, but much strongetC P = PD. ThereforeC' and D are similar. O
logspace projectionsThat is, the output is a projection

of input values and, in addition, some constant valueserlce problems. Recall that two matricésand B of
(we only needed-1, 0, and1 as additional co.nsotants) the same orden are equivalent, if there exist nonsin-
that can be computed in logspace (actualiTi€"). gular matricesP and Q, such thatd = PBQ. It

is well known that this holds iffA and B have the
same rank. Allender, Beals, and Ogihara [ABO99]
have shown that the rank of a matrix can be com-
puted iNAC(C_L). Therefore BUIVALENCE is in
ACY(C_L). They also used the fact that a linear sys-
tem Az = b has a solution iffank(A) = rank(A|b).
From this we obtain that ®UIVALENCE is complete
for AC’(C_L).

Next we investigate the equivalence and congru-

4 Testing Similarity, Equivalence and Con-
gruence

Recall that two matricesi and B are similar, if
there exists a nonsingular matriR such thatA =
P~!'BP. Santha and Tan [ST98] showed that there is a
ACP-reduction from SMILARITY to vV-RANK. From
this it follows that SMILARITY is in ACY(C_L)

We show on the other hand that the probléra- Fact 4.2
sible system of linear equation§SLE, can be re-  EquivaLENCE is complete forAC’(C_L).
duced to BVILARITY . Since FSLE complete for
AC(C_L) [ABO99], this follows for SMILARITY Proof. LetAbe an x nmatrix andb = (b, ..., b,)

as well. a vector. LetC and D be the matrices defined in the
proof of Theorem 4.1. Then the systefix = b has
Theorem 4.1 a solution iff rank(A) = rank(Ab) iff rank(C) =
SIMILARITY is complete forAC’(C_L). rank D) iff C andD are equivalent. 0
Proof LetA be an x n matrix andb = (b...., bs) Recall that two symmetric matrice$ and B (over
ann vector. We will construct two matriceS andD,  the reals) of the same orderare congruent, if there
such that the systemz = b has a solution ifiC’ and exists a nonsingular matriR, such thatd = PT BP.
D are similar. It is known thatA and B are congruent iff they have
Define the same rank and signature. (The signature of a sym-
| b1 [ 0 metric matrix is the number of positive eigenvalues mi-
A ‘ : A : nus the number of negative eigenvalues of the matrix.)
C= | b, |» D= I 0 We don't have an upper bound on the complexity of
- o CONGRUENCE In particular, the complexity of com-
0---0 | 0 0---0 1 0 puting the signature is an open problem. As a lower

Suppose first that the systes: = b hasno so- bound, we can show that it is hard fAlC"(C_L).

lution. Then rankC) = rank(D) + 1, and therefore | emma4.3
C and D cannot be similar, because similar matrices ConGRUENCEIs hard for AC(C_L).

must have the same rank. (Note that the transforma-
tion matrix in the definition of 84ILARITY is nonsin-  Proof. We reduce BUIVALENCE to CONGRUENCE

gular.) Let A and B be twon x n matrices. We will con-
If, on the other handdz = b has a solution, sayy, struct two matrices” and D, such that4 and B are
then we can define a transformation matfixas fol-  €quivalent iffC' and.D are congruent.
lows: We defineC = (AT A)? andD = (BT B)2. Note
thatC and D are symmetric and we have
P In | o rank(A) = rank(AT A) = rank((AT A)?).

_ ThereforeA andC' have the same rank, and the same
0---0 | —1 holds for B and D. Moreover, the eigenvalues 6f



andD are all nonnegative. Therefore, their rank equals References

their signature. We conclude thdt and B have the
same rank iffiC’ and D have the same rardnd signa-

ture. This proves the claim.

Note that the reductions in Theorem 4.1 and
Fact 4.2 are not just logspace reductions but logspace
uniform projections. The reduction in Lemma 4.3 can [Ber84]

be computed ifTC°.

Open Problems

Two (real) symmetric matrices are congruent iff

they have the same rank and signature.

cide, whether two matrices have the same rank, is in
ACY(C_L). The complexity of the analog problem
for the signature is open. So we don't know the com-
plexity of the problem ©NGRUENCE We expect that
this problem complete foAC°(C_L) too. A related
problem is toverify the signature of a symmetric ma- [FFK94]
trix. Can this be done i€_L A coC_L, the class of

sets that can be written as the intersection of a set in

C_L and a set itoC-L?

A problem related to/-CHARPOLYNOMIAL is to
decide whether a polynomial is the minimal polyno-
mial of a given matrixA. We don’t know the com-

plexity of this problem.

A problem related to MILARITY is to decide
whether a given matri¥ is diagonalizable. That is,
whether it is similar to diagonal matrix. We don't

know the complexity of this problem.

The more important question is wheth€r_L is
closed under complement. An affirmative answer
would solve most of the above questions because then
all the complexity classes considered here coincide.
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