
The Complexity of the Inertia
and some

Closure Properties ofGapL ∗

Thanh Minh Hoang
Abt. Theoretische Informatik

Universität Ulm

89069 Ulm, Germany

Thomas Thierauf
FB Elektronik und Informatik

FH Aalen

73430 Aalen, Germany

{hoang,thierauf}@informatik.uni-ulm.de

Abstract

Theinertiaof ann × n matrix A is defined as the triple
(i+(A), i−(A), i0(A)), wherei+(A), i−(A), andi0(A) are
the number of eigenvalues ofA, counting multiplicities,
with positive, negative, and zero real part. It is known that
the inertia of a large class of matrices can be determined
in PL (probabilistic logspace). However, the general prob-
lem, whether the inertia of anarbitrary integer matrix is
computable inPL, was an open question. In this paper we
give a positive answer to this question and show that the
problem is complete forPL.

As consequences of this result we show necessary and
sufficient conditions that certain algebraic functions like the
rank or the inertia of an integer matrix can be computed in
GapL.

1 Introduction

The problem of computing the inertia of a matrix plays
an important role in a number of applied fields, in particular
in control theory and in robotics. Matrix inertia, a funda-
mental topic in linear algebra, has been studied by many
researchers (for more detail, see e.g. [Gan77], Chapter XV)
a long time ago.

We are interested in thecomputational complexityof the
inertia of a matrix, which is the main topic of this paper. It
is well known that many problems from linear algebra can
be solved within certainlogspace counting classes, all of
which are contained in the parallel complexity class (uni-
form)NC2.

∗Supported by DFG grants Th 472/3-2 and Scho 302/7-1.

Maybe the most important class isGapL (studied
by [AO96]) that seems to capture the complexity of a lot of
problems from linear algebra quite naturally.GapL is the
extension of#L (first studied by [̀AJ93]) in the same way
as#P [Val79] can be extended toGapP [FFK94] in the
polynomial time setting.GapL is characterized precisely
by the determinant of an integer matrix [Ber84, Dam91,
Tod91, Vin91, Val92, MV97].

There are some interesting classes of decision problems
based onGapL.

• Verifications ofGapL-functions define the classC=L

(exact counting in logspace). The singularity problem,
i.e. the problem of deciding whether the determinant
of a matrix is zero, is complete forC=L.

• Inequalities onGapL-functions define the complexity
classPL (probabilistic logspace), in which one has to
decide whether the value of aGapL function on an
input is positive. For example, the problem of testing
if the determinant of a matrix is positive, is complete
for PL.

In a preceding paper [HT02a], we have studied the com-
plexity of the inertia. Using Routh-Hurwitz Theorem for
computing the inertia, we have proved that the inertia can be
verified inPL for many cases, in particular for symmetric
matrices and for matrices with no opposite nonzero eigen-
values. However, it remained open in [HT02a] whether the
inertia of anarbitrary integer matrix is inPL. In Section 3
we give a positive answer to this question. The inertia has
been shown to be hard forPL under logspace many-one re-
ductions [HT02a]. It follows that the inertia is complete for
PL.

We want to mention that Neff and Reif [Nef94, NR96]
have developed a method to approximate the roots of a poly-

1

nomial. However, it is not clear how to compute the inertia
of a matrix by approximating the roots of its characteristic
polynomial. The problem is that one must be able to decide
whether a root lies on an axis or not.

The second part of the paper is motivated by the question
whether one can improve the upper bounds on some func-
tions like the rank or the inertia toGapL. Our main results
are that these questions are equivalent to the collapse of cer-
tain complexity classes.

We show in Section 4.1 that the rank of a matrix can be
computed inGapL if and only if C=L = SPL, where
SPL is the class of all sets with the characteristic function
in GapL. As a consequence of the results about the inertia,
we show in Section 4.2 that the inertia of a matrix can be
computed inGapL if and only if PL = SPL. Note that
NL ⊆ C=L andSPL ⊆ ⊕L. Hence, as a corollary of
our results we get: if the rank or the inertia of a matrix can
be computed inGapL thenNL ⊆ ⊕L andC=L is closed
under complement. Both consequences are open problems
right now.

We also consider a relaxed version of the above question.
GapL is not known to be closed under division. Hence it
is natural to ask whether we can write the rank or the inertia
of a matrix as a quotient of twoGapL-functions. We show
in Section 4.1 that this is true for the rank of a matrix if and
only if C=L = coC=L. In Section 4.2 we show that this is
true for the inertia of a matrix if and only ifPL = C=L.

Finally, in Section 4.3, we characterize the case that the
absolute value of anyGapL-function can be computed in
GapL too.

2 Preliminaries

Complexity Classes. For a nondeterministic Turing ma-
chineM on inputx, we denote the number of accepting and
rejecting computation paths byaccM (x) and rejM (x), re-
spectively. The difference of these two quantities is denoted
by gapM (x). That is,gapM (x) = accM (x) − rejM (x).
The complexity class#L consists of all functionsf such
that f = accM , for some nondeterministic logspace Tur-
ing machine. Similarly, The classGapL consists of all
functions f such thatf = gapM , for some nondeter-
ministic logspace Turing machine. Based on these func-
tion classes, we define the following counting complexity
classes [AO96, ARZ99].

C=L = {S | ∃f ∈ GapL, ∀x : x ∈ S ⇐⇒ f(x) = 0 },

PL = {S | ∃f ∈ GapL, ∀x : x ∈ S ⇐⇒ f(x) > 0 },

SPL = {S | χS ∈ GapL },

whereχS is the characteristic function of setS. It is known
that

SPL ⊆ C=L ⊆ PL ⊆ NC2.

Also we haveNL ⊆ C=L.
Counting logspace hierarchies over these classes were

defined in [AO96]. We list some properties of these classes.

• It has been shown in [ABO99] that theExact Counting
Logspace Hierarchy(overC=L) collapses toLC=L =
AC0(C=L), and that one of the complete problems
for this hierarchy is the problem of computing one bit
of the rank of a matrix. Note thatAC0(C=L) is called
theAC0-closure ofC=L, it is the class of problems
AC0-reducible to the sets ofC=L.

• TheProbabilistic Logspace Hierarchy(overPL) col-
lapses toPL by the factAC0(PL) = NC1(PL) =
PL [Ogi98, BF00]. That is,PL is closed underAC0-
andNC1-reductions. In particular,PL is closed under
union, intersection and complement.

• C=L is closed under union and intersection. Whether
C=L is closed under complement is an open problem.

• SPLSPL = SPL. In particular,SPL is closed under
union, intersection and complement.

Complete Problems. Logspace counting classes are in-
teresting because of the complete problems therein. We give
some examples from linear algebra for these classes. When
nothing else is said, by matrices we mean square integer
matrices of ordern.

Problems complete forGapL are to compute one el-
ement of them-th power of a matrix and the determi-
nant [Tod91, Dam91, Vin91, Val92].

The singularity problem, i.e. the set

SINGULARITY = {A | det(A) = 0 },

is complete forC=L. More general, the sets

V-POWELEM = { (A, a, m) | (Am)1,n = a },

V-DET = { (A, a) | det(A) = a }, and

RANK < = { (A, r | rank(A) < r }

are also complete forC=L. Consequently

RANK≥ = { (A, r | rank(A) ≥ r }

is complete forcoC=L. The verification of the rank can be
written as the intersection of a set inC=L and incoC=L:

V-RANK = { (A, r | rank(A) = r }

= RANK < ∩ RANK≥.

This means thatV-RANK ∈ C=L ∧ coC=L. Moreover, it
is complete for this class. The problem of computing (one
bit of) the rank, i.e. the set

RANK = { (A, k, b) | thek-th bit of rank(A) is b }.

2

is a complete problem forAC0(C=L) [ABO99].
SincePL is the class ofAC0-reducible to the problem

of computing the high-order bit of the determinant, the set

POSDET = {A | det(A) > 0 }

is complete forPL. Furthermore,PL is characterized by
some problems related to matrix inertia [HT02a].

Recall that theinertia of an n × n matrix A is de-
fined as the triplei(A) = (i+(A), i−(A), i0(A)), where
i+(A), i−(A), andi0(A) are the number of eigenvalues of
A, counting multiplicities, with positive, negative, and zero
real part. We can define (with respect to some fixed cod-
ing) the problem of computing thek-th bit of the inertia as
follows:

INERTIA = { (A, k, b) | thek-th bit of i(A) is b }.

The verification of the inertia is the set

V-INERTIA = { (A, p, n, z) | i(A) = (p, n, z) }.

It has been shown by [HT02a] that INERTIA andV-INERTIA

are hard forPL under logspace many-one reductions, and
these problems are located inPL whenA is symmetric or
A has no opposite nonzero-eigenvalues.

Note: INERTIA as defined above is a decision problem.
When we say thatthe inertia is inPL, we actually refer to
the decision problem INERTIA (and not to a function com-
puting the inertia).

Closure Properties ofGapL. To analyze the complexity
of the inertia later on, we sum up some closure properties
of the considered classes.

Theorem 2.1 [AO96] Letf ∈ GapL. The following func-
tions are inGapL as well:

1. f(g(·)), for anyg ∈ FL,

2.
∑2|x|c

i=0 f(x, i), for any constantc,

3.
∏|x|c

i=0 f(x, i), for any constantc,

4.
(

f(x)
g(x)

)

, for anyg ∈ FL such thatg(x) = O(1).

The first property has been improved considerably. Essen-
tially, GapL is closed under a restrictive kind of composi-
tion as follows.

Theorem 2.2 [AAM03] The determinant of a matrix hav-
ing GapL-computable elements can be computed in
GapL.

For a given integer matrixA and an positive integerm, each
element of the power-matrixAm is known to be equal to
a sum of weighted(s, t)-paths in a directed graphH con-
structed easily fromA andm. Therefore, one can show the
fact that each element ofAm is computable inGapL when
the elements ofA are computable inGapL.

Parallel Polynomial GCD Computation. In the compu-
tation of the inertia that we present in Section 3, we need to
compute the gcd and the division of some univariate poly-
nomials. Parallel algorithms for polynomial gcd and poly-
nomial division are known [BvzGH82]. There are excellent
textbooks (see for example: Kozen [Koz91], or Ieradi and
Kozen [IK93]) where these algorithms are explained in de-
tail.

We consider the polynomial gcd computation in parallel.
For univariate polynomials with leading coefficients differ-
ent from zero:

p(x) = amxm + · · · + a0, and

q(x) = bnxn + · · · + b0, n ≤ m,

theSylvester matrixis defined as a matrix of ordern + m,
wheren andm columns are taken from the coefficients of
p andq, respectively. The following Sylvester matrix is an
example form = 4 andn = 2:

S =

a4 0 b2 0 0 0
a3 a4 b1 b2 0 0
a2 a3 b0 b1 b2 0
a1 a2 0 b0 b1 b2

a0 a1 0 0 b0 b1

0 a0 0 0 0 b0

Let

g = gcd(p, q) = xd + cd−1x
d−1 + · · · + c0.

(W.l.o.g. we can chooseg to be monic). For1 ≤ e ≤ n,
let S(e) be the matrix obtained fromS by deleting the last
2e rows, the laste columns of coefficients ofp, and the last
e columns of coefficients ofq, and letc(e) be the vector
(0, 0, . . . , 0, 1)T of length(m + n − 2e). Then the parallel
computation ofg can be done by the following two steps:

1. determine the degree ofg: this is the valued such that
det(S(d)) 6= 0 anddet(S(e)) = 0 for all e < d;

2. compute the vector of the coefficients ofg by the prod-
uct Sdx0, whereSd is the matrix obtained fromS by
deleting the lastd columns of coefficients ofp, and the
lastd columns of coefficients ofq, andx0 is a solution
of S(d)

x = c
(d).

For the complexity of the above computation of
gcd(p, q) we observe that:

3

• Step 1 can be done inC=L ∧ coC=L.

• In step 2, observe thatS(d)
x = c

(d) has the unique so-
lution x0 = (S(d))−1

c
(d) which is the last column

of the inverse(S(d))−1. Therefore, the coefficients
cd−1, . . . , c0 of g can be expressed by rational form
a/b whereb = det(S(d)) and alla’s are certain deter-
minants.

As a consequence of the parallel polynomial gcd com-
putation, there are parallel algorithms for the polynomial
division with remainder, which are based on computing de-
terminants (for more detail: see [IK93], Algorithm 15.2). It
is not hard to argue that by writing the coefficients ofp/q in
the rational forma/b where we get the numbersa andb by
some determinant computations.

3 Computing the Inertia in PL

We start by describing the Routh-Hurwitz method in
Section 3.1, In Section 3.2 we show how it can be used
to compute the inertia of matrices, where the associated
Routh-Hurwitz matrix is regular. The main part is Sec-
tion 3.3 where we show how to compute the inertia in the
singular case inPL.

3.1 The Routh-Hurwitz Theorem

Let A be ann × n matrix. The eigenvalues ofA are the
roots of the characteristic polynomialχA(x) = det(xI −
A). For the computation ofi(A), the inertia ofA, it suffices
to computei+(A) because we havei−(A) = i+(−A) and
i0(A) = n − i+(A) − i+(−A).

In order to computei+(A), we show how to determine
i+(p), the number of roots with positive real part of an inte-
ger polynomialp(x) = xn + c1x

n−1 + c2x
n−2 + · · ·+ cn,

counting multiplicities. A known method to determine
the number of roots in the right half-plane of a given real
polynomialp(x) is provided by Routh and Hurwitz (see
e.g. [Gan77], Volume 2, Chapter XV).

Definec0 = 1. TheRouth-Hurwitz matrixof p is defined
by then × n matrixΩ(p),

Ω(p) =

c1 c3 c5 c7 · · · 0
c0 c2 c4 c6 · · · 0
0 c1 c3 c5 · · · 0
0 c0 c2 c4 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · cn

.

That is, the diagonal elements ofΩ(p) areωi,i = ci. In the
i-th column, the elements above the diagonal areωi−1,i =
ci+1, ωi−2,i = ci+2, . . . until we reach either the first row

ω1,i or cn. In the latter case, the remaining entries are filled
with zeros. The elements belowωi,i areωi+1,i = ci−1,
ωi+2,i = ci−2, . . . , c1, c0, 0, 0, . . . down to the last row
ωn,i.

The successive leading principal minorsDi of Ω(p) are
called theRouth-Hurwitz determinants. They areD1 =

det(c1), D2 = det(

(

c1 c3

c0 c2

)

), . . . , Dn = det(Ω(p)).

Theorem 3.1 (Routh-Hurwitz) If Dn 6= 0, then the num-
ber of roots of the polynomialp(x) in the right half-plane is
determined by the formula

i+(A) = V (1, D1,
D2

D1
, . . . ,

Dn

Dn−1
),

whereV (x1, x2, . . .) computes the number of sign alterna-
tions in the sequence of numbersx1, x2, For the cal-
culation of the values ofV , for every group ofl successive
zero Routh-Hurwitz determinants (l is always odd!)

Ds 6= 0, Ds+1 = · · · = Ds+l = 0, Ds+l+1 6= 0

we have to setV (Ds

Ds−1
, Ds+1

Ds
, . . . ,

Ds+l+2

Ds+l+1
) = k +

1−(−1)kε

2 , wherel = 2k − 1 andε = sign(Ds

Ds−1

Ds+l+2

Ds+l+1
).

For s = 1, Ds

Ds−1
has to be replaced byD1; and for s = 0,

by c0.

A proof of this theorem can be found in [Gan77], Volume
2, Chapter XV, Section 6.

Note the assumptionDn 6= 0 in the theorem. That is,
we can apply the theorem directly only in the case that the
Routh-Hurwitz matrixΩ(p) is regular. We analyze thisreg-
ular casein Section 3.2 and then turn to thesingular case
in Section 3.3.

3.2 The Regular Case

Assume thatDn 6= 0. We apply the Routh-Hurwitz The-
orem 3.1 to determinei+(A). It is clear that all elements
of the Routh-Hurwitz matrix are computable inGapL.
Therefore, by Theorem 2.2, all the Routh-Hurwitz determi-
nantsDi are computable inGapL, too. It follows that one
can decide inPL whetherDi is positive, negative, or zero.
The k-th bit of i+ can be therefore computed by a family
of AC0-circuits withPL oracles. SinceAC0(PL) = PL,
the sets INERTIA andV-INERTIA are inPL.

Theorem 3.2 [HT02a] For matrices that have a regular
Routh-Hurwitz matrix,INERTIA andV-INERTIA are inPL.

4

3.3 The Singular Case

It is known from linear algebra thatDn = 0 if and only if
p(x) has a pair of opposite roots.Let us splitp(x) into even
and odd terms:p(x) = p1(x) + p2(x) where

p1(x) = xn + cn−2x
n−2 + cn−4x

n−4 + · · · ,

p2(x) = cn−1x
n−1 + cn−3x

n−3 + · · · .

Defineg(x) = gcd(p1(x), p2(x)) and consider the decom-
position

p(x) = g(x)p0(x). (1)

It follows that the opposite roots ofp(x) are precisely the
roots of g(x), and furthermore,p0(x) has no pair of op-
posite roots. Therefore we can determinei+(p0) by Theo-
rem 3.2.

Sincei+(p) = i+(g) + i+(p0), it now suffices to com-
pute i+(g). However, the Routh-Hurwitz method doesn’t
apply to g(x) becauseg(x) has purely pairs of opposite
roots (andg(x) is therefore of even degree). Nevertheless
we have

i+(g) =
1

2
(deg(g) − i0(g)). (2)

Consider Equation (2). The degreedeg(g) can be deter-
mined by polynomial gcd computation (see page 3). There-
fore, it remains to computei0(g).

Observe thati0(g) can be easily determined when all the
roots ofg are real because in this casei0(g) is exactly the
multiplicity of x = 0 as a root ofg(x). Recall that ifp(x)
is the characteristic polynomial of a symmetric matrix, then
all the roots ofp(x) are real. According to this observation
we have the following theorem which is useful later on.

Theorem 3.3 [HT02a] For symmetric matricesINERTIA

andV-INERTIA are inPL.

Coming back to the general case, by decomposition (1)
we have

i0(g) = i0(p) − i0(p0).

Note that we can easily determinei0(p0):

i0(p0) =

{

1 if p0(0) = 0,

0 otherwise.
(3)

Therefore it suffices to computei0(p): this gives usi0(g),
from which we geti+(g) by Equation (2).

Let us summarize: in order to computei+(p) it suffices
to computei0(p), the number of purely imaginary roots of
p(x).

We will explain below a theorem from linear algebra that
shows how to determine the number ofdistinct real roots
of a polynomialq(x). In order to apply this theorem to

determinei0(p), we first have to turnp(x) by 90◦. This is
done as follows.

It is known from linear algebra that for matricesA1 and
A2 of ordern andm, respectively, the eigenvalues of the
Kronecker productA1⊗A2 areλj(A1)λk(A2), for all j, k,
whereλj(A1) andλk(A2) are the eigenvalues ofA1 and
A2. For our purpose, observe that the eigenvalues of the

skew-symmetric matrixE =

(

0 −1
1 0

)

are the imaginary

numbers+i and−i. DefineB = E ⊗ A =

(

0 −A
A 0

)

,

whereA is the given matrix having the characteristic poly-
nomial p(x). Then the eigenvalues ofB are iλk(A) and
−iλk(A) whereλk(A) runs through all eigenvalues ofA.
It follows that the number of real eigenvalues ofB is ex-
actly equal to2i0(p). Let q(x) = χB(x), the characteristic
polynomial ofB. Then we have

i0(p) =
1

2
the number of real roots ofq

We conclude that in order to computei0(p), it suffices to
compute the number of real roots ofq(x).

The companion matrix of polynomialq(x) = xn +
c1x

n−1 + c2x
n−2 + · · · + cn is defined by

Q =

0 0 · · · 0 −cn

1 0 · · · 0 −cn−1

0 1 · · · 0 −cn−2

...
...

. . .
...

...
0 0 · · · 1 −c1

.

TheHankel matrixH = (hi,j) associated toq(x) is defined
by

hi,j = trace(Qi+j−2), for i, j = 1, . . . , n,

where trace(Qi+j−2) is the sum of all diagonal elements
of Qi+j−2. Note thatH is symmetric. By sig(H) we de-
note thesignatureof H , i.e. sig(H) = i+(H) − i−(H).
The following theorem can be found in [Gan77], Volume 2,
Chapter XV:

Theorem 3.4 Let H be the Hankel matrix associated with
polynomialq(x). Then

1. sig(H) is the number of distinctrealroots ofq(x),

2. rank(H) is the number of distinct roots ofq(x).

Obviously, for the given polynomialq, the elements of
its Hankel matrixH are computable inGapL. By the fact
after Theorem 2.2 this remains true when the coefficients of
q(x) are itself computable inGapL. As a consequence of
Theorem 3.3 and 3.4 we have the following corollary:

Corollary 3.5 The number of distinct real roots of a poly-
nomial with coefficients computable inGapL can be deter-
mined inPL.

5

According to Theorem 3.4 and Corollary 3.5 the idea for
computing the number of real roots ofq(x) is as follows.
q(x) will be decomposed into factors by

q(x) = q1(x)q2(x) · · · qt(x)

such that each polynomialqj has only roots of multiplic-
ity 1. Polynomials with this property are calledsquare free.
That is, for each of these polynomials the number of its real
roots is the same as the number ofdistinctreal roots. Hence
these numbers can be determined by Theorem 3.4. Finally,
the sum of these numbers yields the number of real roots of
q(x).

It remains to find a suitable decomposition forq(x).
Let α be a root ofq(x), with multiplicity m, i.e.

q(x) = (x − α)m h(x) andh(α) 6= 0.

andh(α) 6= 0. Consider the 1-st derivativeq(1) of q(x):

q(1)(x) = m(x − α)m−1 h(x) + (x − α)m h(1)(x).

Sinceα is a root ofq(1)(x) with multiplicity m − 1, it is
also a root ofgcd(q(x), q(1)(x)) with multiplicity m− 1. It
follows that the polynomial

q1(x) =
q(x)

gcd(q(x), q(1)(x))

is square free. Similarly, for thei-th derivativeq(i)(x), we
can show that all the polynomials

qi(x) =
gcd(q(x), q(i−1)(x))

gcd(q(x), q(i)(x))

are square free and they yield the desired decomposition

q(x) = q1(x)q2(x) · · · qn(x).

We summarize the algorithm for computingi+(A) on
inputA:

1. Compute the polynomials

p(x) = χA(x),

p0(x) =
p(x)

gcd(p1(x), p2(x))
,

according to decomposition (1),

q(x) = χE⊗A(x),

q(i)(x) = thei-th derivative ofq(x),

for i = 1, . . . , n,

qi(x) =
gcd(q(x), q(i−1)(x))

gcd(q(x), q(i)(x))
,

for i = 1, . . . , n.

2. Compute the Hankel matrixHi of qi(x),

for i = 1, . . . , n.

3. Compute the values

i+(Hi) andi−(Hi), for i = 1, . . . , n,

by Theorem 3.3,

i0(A) =
1

2

n
∑

i=1

sig(Hi),

i+(p0), by Theorem 3.2,

i0(p0), by Equation (3),

i0(g) = i0(A) − i0(p0),

i+(g) =
1

2
(deg(g) − i0(g)).

4. Outputi+(A) = i+(p0) + i+(g).

We show the main theorem.

Theorem 3.6 INERTIA andV-INERTIA are inPL.

Proof. It is sufficient to show thati+(A) can be verified in
PL.

By considering the computation ofi+(A), described
above, we observe that the polynomialsp, q andq(i), for
i = 1, . . . , n are integer polynomials with coefficients com-
putable inGapL.

As explained in the preliminary section, the degree of
a polynomial gcd can be verified inPL. Therefore, the
verifications ofdeg(p0) anddeg(qi) are inPL. Further-
more, the coefficients of polynomialsqi(x), and hence the
elements of matricesHi, have a rational forma/b wherea
andb are computable inGapL. Based on these observa-
tions, by Theorem 3.5, and by Corollary 3.5 we can show
that the set{ (A, i, k, l, s) | k = deg(gcd(q, q(i))), l =
deg(gcd(q, q(i−1))), s = sig(Hi) } is in PL. That means
that the signature of eachHi can be verified inPL. The
remaining values in Step 3 can be verified inPL as well.
Therefore the algorithm to verifyi+(A) can be imple-
mented by a family ofAC0-circuits withPL-oracles. Re-
call thatPL is closed underAC0-reductions. �

It has been shown in [HT02a] that INERTIA and
V-INERTIA are hard forPL under logspace many-one re-
ductions. Therefore we obtain the following corollary.

Corollary 3.7
INERTIA andV-INERTIA are complete forPL.

4 Closure Properties of GapL

In this section we show necessary and sufficient condi-
tions that certain algebraic functions like the rank or the in-
ertia of an integer matrix can be computed inGapL.

6

4.1 Matrix Rank

Assume that the rank of a matrix could be computed in
GapL. Then the verification of the rank,V-RANK , would
be in C=L. On the other handV-RANK is complete for
C=L ∧ coC=L. Hence this would implyC=L = coC=L.
The following theorem strengthens this collapse consider-
ably.

Theorem 4.1 C=L = SPL ⇐⇒ rank∈ GapL.

Proof. Assume thatC=L = SPL. Then V-RANK ∈
SPL. Hence, there is a functiong ∈ GapL such that for a
given matrixA of ordern and a numberr we have

rank(A) = r =⇒ g(A, r) = 1,

rank(A) 6= r =⇒ g(A, r) = 0.

It follows that

rank(A) =

n
∑

r=1

r g(A, r),

and therefore rank∈ GapL.
Conversely, suppose rank∈ GapL. ThenC=L =

coC=L as explained above. To show thatC=L = SPL,
we show thatV-POWELEM, a complete problem forC=L,
is in SPL. Recall that there is a reduction by [ABO99]
from V-POWELEM to V-RANK in the following way

(Am)1,n = 0 ⇐⇒ rank(B) = N − 1, and

(Am)1,n 6= 0 ⇐⇒ rank(B) = N,

where matrixB of orderN can be easily computed fromA.
Define aGapL-functiong as

g(B) = N − rank(B).

Then we have

g(B) =

{

1, if (Am)1,n = 0

0, otherwise.

Henceg is the characteristic function for deciding whether
(A, m, 1, n, 0) ∈ V-POWELEM. This shows that
V-POWELEM ∈ SPL. �

Next we weaken the assumption for the rank-function:
instead of oneGapL-function that computes the rank di-
rectly, suppose there are twoGapL-functionsg andh such
that the rank can be written as the quotient ofg andh, i.e.,
rank(A) = g(A)/h(A). We show that this is a necessary
and sufficient condition forC=L being closed under com-
plement.

Theorem 4.2
C=L = coC=L ⇐⇒ ∃g, h ∈ GapL rank= g/h.

Proof. Assume thatC=L = coC=L. Then the problem of
verifying the rank of a matrix,V-RANK , is in coC=L. That
is, there is a functionf ∈ GapL such that for any matrixA
and anyr,

rank(A) = r ⇐⇒ f(A, r) 6= 0.

Define functions

g(A) =

n
∑

r=0

rf(A, r),

h(A) =

n
∑

r=0

f(A, r).

Then we haveg, h ∈ GapL and rank= g/h as claimed.
Conversely, letg, h ∈ GapL such that rank= g/h. For

a given matrixA and an integerk ≥ 0, define

f(A, k) = g(A) − k h(A).

Thenf ∈ GapL and we have

rank(A) = r ⇐⇒ f(A, r) = 0.

It follows that the rank of a matrix can be verified inC=L.
HenceC=L = coC=L. �

Theminimal polynomialof a matrixA is the smallest de-
gree monic polynomialµ(x), that fulfills the characteristic
equation ofA, µ(A) = 0. In [HT02b], it has been shown
that the degree of the minimal polynomial is computation-
ally equivalent to matrix rank. Therefore, we can formulate
the above theorems also in terms of the degree of the mini-
mal polynomial.

There is an interesting alternative way of representing
the rank of a matrix. Consider ann×n symmetric matrixA
with the characteristic polynomial

χA(x) = xn + cn−1x
n−1 + · · · + c1x + c0.

It is well known from linear algebra that

rank(A) = k ⇐⇒ cn−k 6= 0 and

cn−k−1 = cn−k−2 = · · · = c0 = 0.

Furthermore, all coefficientsci are computable in
GapL [Ber84].

Define a vectorw = (wn, wn−1, · · · , w1, w0)
T , where

wj =
∑j

i=0 c2
i , for j = 0, 1, . . . , n. Hence every ele-

ment ofw is computable inGapL. Furthermore we have:
rank(A) = k if and only if

(i) w has precisely k + 1 positive elements,
wn, wn−1, . . . , wn−k, and

(ii) preciselyn − k zero elements,wn−k−1 = wn−k−2 =
· · · = w0 = 0.

7

Conversely, for a given nonnegativeGapL-vectorv, the
number of its positive elements is exactly the rank of the
diagonal matrix whose diagonal isv.

In summary, the problem of determining the rank of a
matrix is (logspace) equivalent to the problem of determin-
ing the number of consecutive zeros at the right end in a
GapL-vector.

4.2 Matrix Inertia

It is known that the rank can be reduced to the inertia by

rank(A) = rank(AT A) = i+(AT A). (4)

Recall that the functionsi+, i−, and i0 of the inertia are
computationally equivalent becausei+(A) = i−(−A) and
i0(A) = n− i+(A) − i−(A). The following theorem char-
acterizes the case that the upper bound for computing the
inertia can be improved fromPL to GapL.

Theorem 4.3 PL = SPL ⇐⇒ i+ ∈ GapL.

Proof. Assume thatPL = SPL. By Theorem 3.6, the
verification of i+ is in PL, and hence inSPL. That is,
there exists a functiong ∈ GapL such that

i+(A) = j =⇒ g(A, j) = 1,

i+(A) 6= j =⇒ g(A, j) = 0,

for a matrixA and for all0 ≤ j ≤ n. It follows that

i+(A) =

n
∑

j=1

j g(A, j),

and thereforei+ ∈ GapL.
Conversely, supposei+ ∈ GapL. Then the verification

of i+ is in C=L. Becausei+ is complete forPL by Corol-
lary 3.7, we havePL = C=L. By Equation (4), rank is in
GapL too. ThusC=L = SPL by Theorem 4.1. Therefore
PL = SPL. �

Like for the rank in Section 4.1 we show the following
theorem for a weaker condition that we can expressi+ as a
quotient of twoGapL-functions.

Theorem 4.4
PL = C=L ⇐⇒ ∃g, h ∈ GapL i+ = g/h.

Proof. Assume thatPL = C=L. Then the problem of
verifying i+ is in coC=L. That is, there is a functionf ∈
GapL such that for any matrixA and anyj, we have:

i+(A) = j ⇐⇒ f(A, j) 6= 0.

Define functions

g(A) =

n
∑

j=0

j f(A, j),

h(A) =

n
∑

j=0

f(A, j).

Then we haveg, h ∈ GapL andi+(A) = g/h as claimed.
Conversely, letg, h ∈ GapL such thati+ = g/h. For a

given matrixA and an integerk ≥ 0, define

f(A, k) = g(A) − k h(A).

Thenf ∈ GapL and we have

i+(A) = j ⇐⇒ f(A, j) = 0.

That is, we can verifyi+ in C=L. Therefore,PL = C=L.
�

4.3 Absolute value

For any functionf mapping to integers, by abs(f) we
denote the function of absolute values off . That is

abs(f)(x) =

{

f(x) if f(x) ≥ 0,

−f(x) otherwise.

Theorem 4.5
PL = SPL ⇐⇒ ∀f ∈ GapL abs(f) ∈ GapL.

Proof. SupposePL = SPL and letf ∈ GapL. Define
the setS = { x | f(x) > 0 }. By definition S ∈ PL

and thereforeS ∈ SPL, by assumption. That is, there is
g ∈ GapL such that for allx:

g(x) =

{

1, if x ∈ S,

0, otherwise.

Then we can write abs(f) = (2g − 1)f , and therefore
abs(f) ∈ GapL.

Conversely, letS ∈ PL. That is, for some functionf ∈
GapL, we can writeS = { x | f(x) > 0 }. We define the
following functions

g = abs(f) − abs(f − 1),

h =

(

g + 1

2

)

.

We haveg ∈ GapL, by assumption. It follows thath ∈
GapL by the closure properties ofGapL. Now observe
that

h(x) =

{

1 if f(x) > 0,

0 otherwise.

This shows thatS ∈ SPL, and thereforePL = SPL.
�

8

Open Problems

In the polynomial time setting it is known thatPP ⊆
SPPC=P. The proof is quite easy:

Let A = { x | f(x) > 0 } ∈ PP, for some
f ∈ GapP. A nondeterministic machineM on
input x guessesk > 0 and asks itsC=P-oracle
whetherf(x) = k. If the answer is “yes”, thenM
accepts. If the answer is “no”, thenM branches
once and accepts on one branch and rejects on the
other branch. This shows thatA ∈ SPPC=P.

Note that this proof doesn’t work in the logspace setting:
in the Ruzzo-Simon-Tompa model of space-bounded oracle
machines, the machine has to be deterministic while writing
a query. Hence we ask

• Is PL ⊆ SPLC=L?

BecauseSPPSPP = SPP, the above inclusion implies
thatC=P = SPP =⇒ PP = SPP. In the logspace
setting, we also haveSPLSPL = SPL [ARZ99], but the
above conclusion is open.

• DoesC=L = SPL =⇒ PL = SPL?

In particular, this question is equivalent to finding a reduc-
tion from the inertia to the rank of a matrix, and the latter
functions don’t look very different (in complexity).

Acknowledgments

We wish to thank Eric Allender and the referees for very
helpful comments on the paper.

References

[AAM03] E. Allender, V Arvind, and M. Mahajan.
Arithmetic complexity, Kleene closure, and
formal power series. Theory of Computing
Systems, 36(4):303–328, 2003.

[ABO99] E. Allender, R. Beals, and M. Ogihara. The
complexity of matrix rank and feasible sys-
tems of linear equations.Computational Com-
plexity, 8:99 –126, 1999.

[ÀJ93] C. Àlvarez and B. Jenner. A very hard log-
space counting class.Theoretical Computer
Science, 107:3–30, 1993.

[AO96] E. Allender and M. Ogihara. Relation-
ship among PL,#L, and the determinant.
RAIRO-Theoretical Informatics and Applica-
tions, 30:1 –21, 1996.

[ARZ99] E. Allender, K. Reinhardt, and S. Zhou. Iso-
lating, matching, and counting: uniform and
nonuniform upper bounds.Journal of Com-
puter and System Sciences, 59:164–181, 1999.

[Ber84] S. Berkowitz. On computing the determinant
in small parallel time using a small number
of processors.Information Processing Letters,
18:147–150, 1984.

[BF00] R. Beigel and B. Fu. Circuits over PP and
PL. Journal of Computer and System Sciences,
60:422–441, 2000.

[BvzGH82] A. Borodin, J. von zur Gathen, and J.
Hopcroft. Fast parallel matrix and GCD com-
putations. Information and Control, 52:241–
256, 1982.

[Dam91] C. Damm. DET = L#L. Technical Report
Informatik-Preprint 8, Fachbereich Informatik
der Humboldt-Universität zu Berlin, 1991.

[FFK94] S. Fenner, L. Fortnow, and S. Kurtz. Gap-
definable counting classes.Journal of Com-
puter and System Sciences, 48:116–148, 1994.

[Gan77] F. Gantmacher.The Theory of Matrices, vol-
ume 1 and 2. AMS Chelsea Publishing, 1977.

[HT02a] T. M. Hoang and T. Thierauf. The complexity
of the inertia. In22nd Foundations of Software
Technology and Theoretical Computer Science
(FSTTCS), Lecture Notes in Computer Sci-
ence 2556, pages 206–217. Springer-Verlag,
2002.

[HT02b] T. M. Hoang and T. Thierauf. On the minimal
polynomial of a matrix. In8th Annual Inter-
national Computing & Combinatorics Confer-
ence (COCOON), Lecture Notes in Computer
Science 2387, pages 37–46. Springer-Verlag,
2002.

[IK93] D. Ierardi and D. C. Kozen. Parallel resultant
computation. In J. H. Reif, editor,Synthesis of
parallel algorithms, pages 679–720. Morgan
Kaufmann, 1993.

[Koz91] Dexter Kozen.The Design and Analysis of Al-
gorithms. Springer-Verlag, 1991.

[MV97] M. Mahajan and V Vinay. Determinant:
Combinatorics, algorithms, and complexity.
Chicago Journal of Theoretical Computer Sci-
ence, 1997(5), 1997.

9

[Nef94] C. A. Neff. Specified precision root isolation
is in NC. Journal of Computer and System Sci-
ence, 48:429–463, 1994.

[NR96] C. A. Neff and J. H. Reif. An efficient algo-
rithm for the complex roots problem.Journal
of Complexity, 12:81–115, 1996.

[Ogi98] M. Ogihara. The PL hierarchy collapses.
SIAM Journal on Computing, 27:1430–1437,
1998.

[Tod91] S. Toda. Counting problems computation-
ally equivalent to the determinant. Technical
Report CSIM 91-07, Dept. of Computer Sci-
ence and Information Mathematics, Univer-
sity of Electro-Communications, Chofu-shi,
Tokyo 182, Japan, 1991.

[Val79] L. Valiant. The complexity of computing the
permanent. Theoretical Computer Science,
8:189–201, 1979.

[Val92] L. Valiant. Why is boolean complexity the-
ory difficult. In M.S. Paterson, editor,Boolean
Function Complexity, London Mathematical
Society Lecture Notes Series 169. Cambridge
University Press, 1992.

[Vin91] V Vinay. Counting auxiliary pushdown au-
tomata and semi-unbounded arithmetic cir-
cuits. In6th IEEE Conference on Structure in
Complexity Theory, pages 270–284, 1991.

10

