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he InformatikUniversit�at Ulm89069 Ulm, Germanyfhoang,thieraufg�informatik.uni-ulm.deAbstra
t. We investigate the 
omplexity of the degree and the 
onstantterm of the minimal polynomial of a matrix. We show that the degree ofthe minimal polynomial behaves as the matrix rank.We 
ompare the 
onstant term of the minimal polynomial with the 
on-stant term of the 
hara
teristi
 polynomial. The latter is known to be
omputable in the logspa
e 
ounting 
lass GapL. We show that thisholds also for the minimal polynomial if and only if the logspa
e exa
t
ounting 
lass C=L is 
losed under 
omplement. The latter 
ondition isone of the main open problems in this area.As an appli
ation of our te
hniques we show that the problem to de
idewhether a matrix is diagonalizable is 
omplete for AC0(C=L), theAC0-
losure of C=L.1 Introdu
tionA rule of thumb says that Linear Algebra is in NC2. However, if we look more
losely, we see that this is a very rough statement. In parti
ular, we are not ableto show that the various problems in Linear Algebra are equivalent under, say,logspa
e many-one redu
tions.It seems to be more appropriate to express the 
omplexity of problems in Lin-ear Algebra in terms of logspa
e 
ounting 
lasses . The initial step in this dire
tionwas done by Damm [Dam91℄, Toda [Tod91℄, Vinay [Vin91℄, and Valiant [Val92℄.They showed that the determinant of an integer matrix 
hara
terizes the 
om-plexity 
lass GapL (see [MV97℄ for more details on the history). Toda [Tod91℄showed more problems to be 
omplete for GapL, in
luding matrix powering,and the inverse of a matrix. There are also graph theoreti
 problems related to
ounting the number s-t-paths in a graph.The veri�
ation ofGapL fun
tions is 
aptured by the 
lassC=L. An exampleof a 
omplete problem is to de
ide whether an integer matrix A is singular, i.e.,whether det(A) = 0. More general, the de
ision problem, whether the rank of Ais less than some given number k, is 
omplete for C=L. The problem whether therank of A equals k 
an be expressed as the 
onjun
tion of problems in C=L andin 
oC=L, a 
lass that we denote by C=L^ 
oC=L. The problem to determinethe rank of a matrix is 
aptured by the AC0-
losure of C=L, whi
h we denote? This work was supported by the Deuts
he Fors
hungsgemeins
haft



by AC0(C=L). Finally, the problem to de
ide whether two matri
es have thesame rank is 
omplete for AC0(C=L). The results on the rank were shown byAllender, Beals, and Ogihara [ABO99℄.The 
omplexity of the minimal polynomial has been studied be-fore [HT02℄(see also [HT00,HT01℄). In this paper, we show that there is a strongrelationship between the degree of the minimal polynomial of a matrix and thematrix rank problem. Namely, the problems to de
ide whether the degree of theminimal polynomial is less than k or equal k, for some given k, are 
ompletefor C=L and C=L^ 
oC=L, respe
tively. To de
ide whether the degrees of theminimal polynomials of two matri
es are equal is 
omplete for AC0(C=L).We also investigate the 
omplexity of the 
onstant term of the minimal poly-nomial. The 
onstant term of the 
hara
teristi
 polynomial is GapL-
omplete.By analogy, we ask whether the 
onstant term of the minimal polynomial 
an be
omputed in GapL, too. We show that this question is strongly 
onne
ted withanother open problem: the 
onstant term of the minimal polynomial 
an be 
om-puted in GapL if and only if C=L is 
losed under 
omplement . This 
onne
tionis a 
onsequen
e of a hardness result: to de
ide whether the 
onstant terms ofthe minimal polynomials of two matri
es are equal is 
omplete for AC0(C=L).Whether C=L is 
losed under 
omplement is one of the big open ques-tions in this area. Re
all that many related 
lasses have this property:NL [Imm88,Sze88℄, SL [NTS95℄, PL (trivially), and nonuniform UL [RA00℄.Thus our results on the 
onstant term of the minimal polynomial might o�ersome new points to atta
k this problem.A �nal observation is about the diagonalizability of matri
es. In [HT01℄ it isshown that this de
ision is hard for AC0(C=L). We show that this 
lass alsois an upper bound for this problem. It follows that diagonalizability is 
ompletefor AC0(C=L). We extend the result to simultaneous diagonalizability whereone has to de
ide whether all of k given matri
es are diagonalizable by the samediagonalizing matrix.2 PreliminariesWe assume familiarity with some basi
 notions of 
omplexity theory and lin-ear algebra. We refer the readers to the papers [ABO99,AO96℄ for more de-tails and properties of the 
onsidered 
omplexity 
lasses, and to the text-books [Gan77,HJ91,HJ85℄ for more ba
kground in linear algebra.Complexity Classes. For a nondeterministi
 Turing ma
hine M , we denote thenumber of a

epting and reje
ting 
omputation paths on input x by a

M (x)and by rejM (x), respe
tively. The di�eren
e of these two quantities is gapM , i.e.,for all x : gapM (x) = a

M (x)� rejM (x). The fun
tion 
lass GapL is de�ned asthe 
lass of all fun
tions gapM (x) su
h that M is a nondeterministi
 logspa
ebounded Turing ma
hine. GapL has many 
losure properties: for example it is
losed under addition, subtra
tion, and multipli
ation (see [AO96℄). In [AAM99℄(Corollary 3.3) it is shown that GapL is 
losed under 
omposition in a very



strong sense: if ea
h entry of an n� n matrix A is GapL-
omputable, then thedeterminant of A is still 
omputable in GapL.A set S is in C=L, if there exists a fun
tion f 2 GapL su
h that for all xwe have x 2 S () f(x) = 0. Sin
e it is open whether C=L is 
losed under
omplement, it makes sense to 
onsider the Boolean 
losure of C=L, i.e., the
lass of sets that 
an be expressed as a Boolean 
ombination of sets in C=L.For our purposes, it suÆ
es to 
onsider the following two 
lasses: a) 
oC=L isthe 
lass of 
omplement sets L where L 2 C=L, b) C=L ^ 
oC=L [ABO99℄ isde�ned as the 
lass of interse
tions of sets in C=L with sets in 
oC=L, i.e.,L 2 C=L ^ 
oC=L() 9L1 2 C=L; L2 2 
oC=L : L = L1 \ L2:For sets S1 and S2, we say that S1 isAC0-redu
ible to S2, if there is a logspa
euniform 
ir
uit family of polynomial size and 
onstant depth that 
omputes S1with unbounded fan-in AND- and OR-gates, NOT-gates, and ora
le gates for S2.In parti
ular, we 
onsider the 
lassesAC0(C=L) andAC0(GapL): the sets thatareAC0-redu
ible to a set in C=L, respe
tively a fun
tion inGapL. The knownrelationships among these 
lasses are as follows:C=L � C=L ^ 
oC=L � AC0(C=L) � AC0(GapL) � TC1 � NC2:Furthermore, we say that S1 is (logspa
e many-one) redu
ible to S2, if thereis a fun
tion f 2 L (deterministi
 logspa
e) su
h that for all x we havex 2 S1 () f(x) 2 S2. In an analogous way one 
an de�ne AC0- or NC1-many-one redu
tions. Unless otherwise stated, all redu
tions in this paper are logspa
emany-one.Linear Algebra. Let A 2 F n�n be a matrix over the �eld F . The 
hara
teristi
polynomial of A is the polynomial �A(x) = det(xI � A). A nonzero polyno-mial p(x) over F is 
alled an annihilating polynomial for A if p(A) = 0. TheCayley-Hamilton Theorem states that �A(x) is an annihilating polynomial for A.The 
hara
teristi
 polynomial is a moni
 polynomial : its highest 
oeÆ
ient isone. The minimal polynomial of A, denoted by �A(x), is the unique moni
 an-nihilating polynomial for A with minimal degree. Note that if A is an integermatrix, then all 
oeÆ
ients of �A(x) and of �A(x) are also integer. Let's denotethe degree of a polynomial p by deg(p). Then we have 1 � deg(�A(x)) = m � n.Two matri
es A;B 2 F n�n are 
alled similar if there is a nonsingular matrixP 2 F n�n su
h that A = PBP�1. Furthermore, A is 
alled diagonalizable if A issimilar to a diagonal matrix. The matri
es A1; : : : ; Ak are 
alled simultaneouslydiagonalizable if there is a nonsingular matrix P su
h that PA1P�1; : : : ; PAkP�1are diagonal.Problems. Unless otherwise stated the domain for the algebrai
 problems arethe integers. By Determinant we denote the problem to 
ompute the deter-minant of a given n � n matrix A. In PowerElement there is additionallygiven an integer m and have to 
ompute (Am)1;n, the element of Am at posi-tion (1; n). Both PowerElement and Determinant are 
omplete for GapL[Ber84,Dam91,Tod91,Val92,Vin91℄.



Various de
ision problems are based on GapL-fun
tions. The veri�
ationof a GapL-fun
tion is 
aptured by the 
lass C=L. A GapL-
omplete fun
tionyields a C=L-
omplete veri�
ation problem. For example, to verify whether thedeterminant is zero, i.e., testing singularity, is 
omplete for C=L. Similarly, toverify whether Am at position (1; n) is zero, is 
omplete for C=L. The latterproblem we denote by PowerElement=.With respe
t to the minimal polynomial,MinPolynomial is the problem to
ompute the i-th 
oeÆ
ient di of �A(x) for given A and i. MinPolynomial is
omputable in AC0(GapL) and is hard for GapL [HT01,HT02℄. With respe
tto the degree of the minimal polynomial, DegMinPol is the set of all triple(A; k; b), where b is the k-th bit of deg(�A(x)).There is a bun
h of de
ision problems related to MinPolynomial andDegMinPol: Given two matri
es A and B, and k � 1,{ EqMinPolynomial is to de
ide whether �A(x) = �B(x),{ EqCTMinPol is to de
ide whether the minimal polynomials of A and Bhave the same 
onstant term,{ EqDegMinPol is to de
ide whether the minimal polynomials of A and Bhave the same degree,{ DegMinPol= is to de
ide whether deg(�A(x)) = k,{ DegMinPol� is to de
ide whether deg(�A(x)) � k.Finally, the set of all diagonalizable matri
es is denoted byDiagonalizable.The set of all simultaneously diagonalizable matri
es is denoted bySimDiagonalizable.3 The Minimal PolynomialIn this se
tion we investigate the 
omplexity of the degree and the 
onstant termof the minimal polynomial of a matrix. The upper bounds on the 
omplexityof these problems follow easily from the prede
essor paper [HT01,HT02℄. Themain 
ontributions here are the lower bounds for these problems. In parti
ular,we want to point out that the degree of the minimal polynomial has essentiallythe same 
omplexity as the matrix rank.3.1 Upper BoundsIn [HT01℄ it is shown that the minimal polynomial of a matrixA 
an be 
omputedin AC0(GapL). The algorithm was based on the following observation. De�neai = ve
(Ai), where ve
(Ai) is the ve
tor of length n2 that is obtained byputting the 
olumns of Ai below ea
h other, for i = 0; 1; 2; : : : ; n. Then theminimal polynomial �A(x) with degree m is 
hara
terized by the following twoproperties:(i) �A(A) = 0. Equivalently we 
an say that a0;a1; : : : ;am are linearly depen-dent, and



(ii) for every moni
 polynomial p(x) with degree m � 1, we have p(A) 6= 0.Equivalently we 
an say that a0;a1; : : : ;am�1 are linearly independent.Note that am; : : : ;an linearly depend on a0;a1; : : : ;am�1 in this 
ase. De�nethe n2 � j matri
es Cj and the symmetri
 j � j matri
es Dj asCj = (a0 a1 � � � aj�1); Dj = CTj Cj ; for j = 1; : : : ; n:Then Cm; : : : ; Cn and Dm; : : : ; Dn all have the same rank m, whi
h is pre
iselythe degree of �A(x). Hen
e we have deg(�A(x)) = rank(Dn).Let �Dn(x) = xn + 
n�1xn�1 + � � � + 
1x + 
0. Sin
e Dn is symmetri
, wehave rank(Dn) = n� l, where l is the smallest index su
h that 
l 6= 0. Be
auseGapL is 
losed under 
omposition [AAM99℄, ea
h of the 
oeÆ
ients 
n�1; : : : ; 
0is 
omputable in GapL. Therefore, in C=L we 
an test whether one or severalof the 
i's are zero (note that C=L is 
losed under 
onjun
tion). In parti
ular,we get a method to verify the degree of the minimal polynomial.Proposition 3.1. 1. DegMinPol� is in C=L.2. DegMinPol= is in C=L ^ 
oC=L,3. DegMinPol, EqDegMinPol are in AC0(C=L),Part 1 and 2 of the proposition follow dire
tly from the dis
ussion above. Theproblems in part 3 
an be solved with some extra AC0-
ir
uitry.Next, we 
onsider the 
oeÆ
ients of �A(x) = xm+dm�1xm�1+ � � �+d0. Theve
tor (d0; d1; : : : ; dm�1)T is the unique solution of the system of linear equationsCmx = �am. Hen
e we get(d0; d1; : : : ; dm�1)T = �D�1m CTmam: (1)Noti
e that Dm nonsingular for m = deg(�A(x)), and ea
h element of D�1m 
anbe 
omputed in GapL [AAM99℄.Let B be another matrix and we want to know whether A and B have thesame minimal polynomial, or, whether their minimal polynomials have the same
onstant term. We 
an express the 
oeÆ
ients of �B(x) analogously as for A inequation (1). It follows that we 
an 
ompare the 
oeÆ
ients in AC0(C=L).Proposition 3.2. EqMinPolynomial and EqCTMinPol are inAC0(C=L).3.2 Lower BoundsAllender, Beals, and Ogihara [ABO99℄ showed that the de
ision problem FeasibleSystems of Linear Equations , FSLE for short, is 
omplete for AC0(C=L). Morepre
isely, an input for FSLE are an m�n matrix A and a ve
tor b of length mover the integers. One has to de
ide whether the system of linear equationsAx = b has a rational solution. We use FSLE as referen
e problem to show thehardness results.



Theorem 3.3. EqDegMinPol, EqMinPolynomial, and EqCTMinPolare hard for AC0(C=L).Proof . Let A and b be an input for FSLE. De�ne the symmetri
 matrix B =� 0 AAT 0� and ve
tor 
 = (bT ;0)T of length m+ n. We prove that(A; b) 2 FSLE () (B; 
) 2 FSLE (2)() C = � B 00 � � � 0 0� is similar to D = � B 
0 � � � 0 0� (3)() D 2 Diagonalizable (4)() �C(x) = �D(x) (5)() deg(�C(x)) = deg(�D(x)) (6)() 
t(�C�(x)) = 
t(�D�(x)); (7)where 
t(�M (x)) denotes the 
onstant term of �M (x), and C� = C + �I andD� = D + �I for an appropriate positive integer � to be 
hosen later.Equivalen
es (2), (3), and (4) were shown in [HT01℄. For 
ompleteness, wein
lude a proof.Equivalen
e (2). Note that the system ATx = 0 is always feasible.Equivalen
e (3). Let x0 be a solution of the system Bx = 
. De�ne the nonsin-gular matrix T = �I x00 �1�. It is easy to 
he
k that CT = TD, therefore C issimilar to D. Conversely, if the above system is not feasible, then C and D havedi�erent ranks and 
an therefore not be similar.Equivalen
e (4). Observe that matrix C is symmetri
. Therefore, C is alwaysdiagonalizable, i.e., C is similar to a diagonal matrix, say C 0. Now, if C is similarto D, then D is similar to C 0 as well, be
ause the similarity relation is transitive.Hen
e D is diagonalizable as well. Conversely, if D is diagonalizable, then D hasonly elementary divisors of the form (x � 
i) where 
i is any of its eigenvalues.Sin
e C is diagonalizable, its elementary divisors are also linear. Note further-more that C and D have the same 
hara
teristi
 polynomial. Therefore, theymust have the same system of elementary divisors, i.e., they are similar.Equivalen
e (5). If C is similar to D, then it is 
learly that �C(x) = �D(x). Con-versely, if �C(x) = �D(x), then �D(x) 
ontains only linear irredu
ible fa
tors,be
ause �C(x) has this property (sin
e C is symmetri
 matrix). Therefore D isdiagonalizable.Equivalen
e (6). Re
all that deg(�C(x)) is exa
tly the number of all distin
teigenvalues of C. Sin
e C and D have the same 
hara
teristi
 polynomial, theyhave the same eigenvalues, and therefore deg(�C(x)) � deg(�D(x)). These de-grees are equal i� every root of �D(x) has multipli
ity 1. The latter holds i� Dis diagonalizable.



Equivalen
e (7). Observe that equivalen
es (2) to (6) still hold when we repla
eC� and D� for C and D, respe
tively, for any �. For an appropriate 
hoi
eof � we show: if the 
onstant terms of �C�(x) and �D�(x) are equal, then thesepolynomials are equal.Fix any �. Let �1; : : : ; �k be the distin
t eigenvalues of C. Then the distin
teigenvalues of C� are �1 + �; : : : ; �k + �. Sin
e C� is symmetri
 and sin
e C�and D� have the same eigenvalues, we 
an write�C�(x) = kYi=1(x� (�i + �)) and �D�(x) = kYi=1(x� (�i + �))ti ;where ti � 1 for i = 1; 2; : : : ; k. In order to prove that �C�(x) = �D�(x), wehave to show that all ti = 1, for an appropriate �.Note that the 
onstant terms of these polynomials are the produ
t of theeigenvalues (in the 
ase of D�, with multipli
ities ti ea
h). Hen
e it suÆ
es to
hoose � su
h that all eigenvalues of C� are greater than 1. This is done asfollows. By �(C) we denote the spe
tral radius of C, i.e. �(C) = max1�i�k j�ij.The maximum 
olumn sum matrix norm of C = (
i;j) is de�ned asjjCjj = max1�j�2n+1 2n+1Xi=1 j
i;j j:It is well known that �(C) � jjCjj. Therefore, if we 
hoose (in logspa
e)� = jjCjj+ 2, then we have �i + � > 1, for i = 1; 2; : : : ; k. �Corollary 3.4. EqDegMinPol, EqMinPolynomial, and EqCTMinPolare 
omplete for AC0(C=L).Re
all that the 
onstant term of the 
hara
teristi
 polynomial 
an be 
om-puted in GapL. Now assume for a moment, that the 
onstant term of the min-imal polynomial is in GapL as well. It follows that EqCTMinPol is in C=L,be
ause this is asking whether the di�eren
e of two 
onstant terms (a GapL-fun
tion) is zero. By Corollary 3.4, it follows that AC0(C=L) = C=L. Thisargument is a proof of the following 
orollary:Corollary 3.5. If the 
onstant term of the minimal polynomial of a matrix is
omputable in GapL, then C=L is 
losed under 
omplement.Theorem 3.6. 1. DegMinPol� is hard for C=L, and2. DegMinPol= is hard for C=L ^ 
oC=L.Proof . 1) To show the �rst 
laim, we redu
e PowerElement= toDegMinPol�. Let A be a n � n matrix and m � 1 be an input forPowerElement=. One has to de
ide whether (Am)1;n = 0. In [HT02℄ (seealso [HT01℄) it is shown how to 
onstru
t a matrix B in logspa
e su
h that�B(x) = x2m+2 � axm+1; where a = (Am)1;n:



Let C be the 
ompanion matrix of the polynomial x2m+2, that is, a (2m+ 2)�(2m + 2) matrix, where all the elements on the �rst sub-diagonal are 1 and allthe other elements are 0. Then we have �C(x) = �C(x) = x2m+2.De�ne D = �B 00 C�. It is known that the minimal polynomial of D is theleast 
ommon multiple (for short: l
m) of the polynomials �B(x) and �C(x).Therefore we have �D(x) = l
mfxm+1(xm+1 � a); x2m+2g= (x2m+2; if a = 0;x2m+2(xm+1 � a); if a 6= 0:It follows that (Am)1;n = 0() deg(�D(x)) = 2m+ 2.2) To show the se
ond 
laim, we redu
e an arbitrary language L 2 C=L ^
oC=L to DegMinPol=. Namely, we 
ompute (in logspa
e) matri
es A1 andA2 of order n1 and n2, respe
tively, and integers 1 � m; l � n su
h that for all ww 2 L() (Am1 )1;n1 = 0 and (Al2)1;n2 6= 0:We show in Lemma 3.7 below that we may assume w.l.o.g. that m > l. Leta1 = (Am1 )1;n1 and a2 = (Al2)1;n2 . As explained in the �rst part of the proof, we
an 
ompute matri
es B1 and B2 su
h that�B1(x) = x2m+2 � a1xm+1;�B2(x) = x2l+2 � a2xl+1:By C we denote again the 
ompanion matrix of x2m+2. For the diagonal blo
kmatrix D = �B1 B2 C � ; we get (for m > l)�D(x) = l
mf�B1(x); �B2(x); �C(x)g= l
mfxm+1(xm+1 � a1); xl+1(xl+1 � a2); x2m+2g=8>>><>>>:2m+ l + 3; for a1 = 0; a2 6= 0;3m+ 3; for a1 6= 0; a2 = 0;2m+ 2; for a1 = 0; a2 = 0;3m+ 3 + r; for a1 6= 0; a2 6= 0; where r > 0:In summary, we havew 2 L() a1 = 0 and a2 6= 0() deg(�D(x)) = 2m+ l+ 3: �The following lemma 
ompletes the proof of Theorem 3.6Lemma 3.7. Let A be an n � n matrix and m � 1. For any k � 1 there is amatrix eA of order p = n(mk + 1) su
h that (Am)1;n = ( eAkm)1;p.Proof . De�ne the following (mk + 1)� (mk + 1) blo
k matrix eA



0BBBBBBBBBBBBBBBBBBB�
0 A0 I. . . . . .0 I0 A0 I. . . . . .0 I . . . . . .0 I0

1CCCCCCCCCCCCCCCCCCCA
Ea
h blo
k of eA is a matrix oforder n. All blo
ks are zero ex
eptfor the ones on the �rst blo
k super-diagonal. Here we start with A followedby (k� 1)-times I . This pattern o

ursm-times in total.An elementary 
al
ulation showsthat eAmk has Am as its upper rightblo
k at position (1;mk+1). All otherblo
ks are 0. This proves the lemma.�4 DiagonalizabilityIn [HT00℄ it is shown that the de
ision whether two matri
es are similar is
omplete for AC0(C=L). It is well known that Diagonalizable is hard forAC0(C=L) (see Theorem 3.3) and is 
ontained in AC0(GapL) [HT01℄. In thisse
tion we show that Diagonalizable and SimDiagonalizable are 
ompletefor AC0(C=L).Theorem 4.1. Diagonalizable is 
omplete for AC0(C=L).Proof . It remains to prove that Diagonalizable is in AC0(C=L). Givenmatrix A. In Se
tion 3.1 we shown how to 
onstru
t a matrix Cn su
h thatdeg(�A(x)) = rank(Cn).Matrix A is diagonalizable i� its minimal polynomial 
ontains only linearirredu
ible fa
tors. This is the 
ase i� deg(�A(x)) equals the number of distin
teigenvalues of A. The latter number 
an be determined as the rank of the Hankelmatrix HA asso
iated with A (see Chapter XV. in [Gan77℄). Therefore, we haveA is diagonalizable () deg(�A(x)) = # of distin
t eigenvalues of A() rank(Cn) = rank(HA): (8)Sin
e ea
h element of Cn and HA 
an be 
omputed in GapL, equation (8) 
anbe 
he
ked in AC0(C=L). �We 
onsider the problem SimDiagonalizable. Given matri
es A1; : : : ; Ak oforder n and k � 1. We have to test whether there is a nonsingular matrix S su
hthat SAiS�1 are diagonal, for all 1 � i � k. If all matri
es Ai are diagonalizablethen they are simultaneously diagonalizable i� they are pairwise 
ommutable,i.e. Ai Aj = Aj Ai for all i; j. The latter test 
an be done in NC1. Therefore themain part is to test whether Ai 2 Diagonalizable, for all i. By Theorem 4.1we get the following:Corollary 4.2. SimDiagonalizable is 
omplete for AC0(C=L).
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