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Abstract. We investigate the complexity of the degree and the constant
term of the minimal polynomial of a matrix. We show that the degree of
the minimal polynomial behaves as the matrix rank.

We compare the constant term of the minimal polynomial with the con-
stant term of the characteristic polynomial. The latter is known to be
computable in the logspace counting class GapL. We show that this
holds also for the minimal polynomial if and only if the logspace ezact
counting class C=L is closed under complement. The latter condition is
one of the main open problems in this area.

As an application of our techniques we show that the problem to decide
whether a matrix is diagonalizable is complete for AC°(C-L), the AC°-
closure of C=L.

1 Introduction

A rule of thumb says that Linear Algebra is in NC?. However, if we look more
closely, we see that this is a very rough statement. In particular, we are not able
to show that the various problems in Linear Algebra are equivalent under, say,
logspace many-one reductions.

It seems to be more appropriate to express the complexity of problems in Lin-
ear Algebra in terms of logspace counting classes. The initial step in this direction
was done by Damm [Dam91], Toda [Tod91], Vinay [Vin91], and Valiant [Val92].
They showed that the determinant of an integer matrix characterizes the com-
plexity class GapL (see [MV97] for more details on the history). Toda [Tod91]
showed more problems to be complete for GapL, including matrix powering,
and the inverse of a matrix. There are also graph theoretic problems related to
counting the number s-t-paths in a graph.

The verification of GapL functions is captured by the class C_L. An example
of a complete problem is to decide whether an integer matrix A is singular, i.e.,
whether det(A) = 0. More general, the decision problem, whether the rank of A
is less than some given number k, is complete for C_L. The problem whether the
rank of A equals k can be expressed as the conjunction of problems in C_L and
in coC_L, a class that we denote by C_L A coC_L. The problem to determine
the rank of a matrix is captured by the AC-closure of C_L, which we denote
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by AC°(C_L). Finally, the problem to decide whether two matrices have the
same rank is complete for AC°(C_L). The results on the rank were shown by
Allender, Beals, and Ogihara [ABO99].

The complexity of the minimal polynomial has been studied be-
fore [HT02](see also [HT00,HTO01]). In this paper, we show that there is a strong
relationship between the degree of the minimal polynomial of a matrix and the
matrix rank problem. Namely, the problems to decide whether the degree of the
minimal polynomial is less than k or equal k, for some given k, are complete
for C_L and C_L A coC_L, respectively. To decide whether the degrees of the
minimal polynomials of two matrices are equal is complete for AC?(C_L).

We also investigate the complexity of the constant term of the minimal poly-
nomial. The constant term of the characteristic polynomial is GapL-complete.
By analogy, we ask whether the constant term of the minimal polynomial can be
computed in GapL, too. We show that this question is strongly connected with
another open problem: the constant term of the minimal polynomial can be com-
puted in GapL if and only if C_L is closed under complement. This connection
is a consequence of a hardness result: to decide whether the constant terms of
the minimal polynomials of two matrices are equal is complete for ACO(C:L).

Whether C_L is closed under complement is one of the big open ques-
tions in this area. Recall that many related classes have this property:
NL [Imm88,Sze88], SL [NTS95], PL (trivially), and nonuniform UL [RAQ0].
Thus our results on the constant term of the minimal polynomial might offer
some new points to attack this problem.

A final observation is about the diagonalizability of matrices. In [HT01] it is
shown that this decision is hard for AC°(C_L). We show that this class also
is an upper bound for this problem. It follows that diagonalizability is complete
for AC°(C_L). We extend the result to simultaneous diagonalizability where
one has to decide whether all of k given matrices are diagonalizable by the same
diagonalizing matrix.

2 Preliminaries

We assume familiarity with some basic notions of complexity theory and lin-
ear algebra. We refer the readers to the papers [AB099,A096] for more de-
tails and properties of the considered complexity classes, and to the text-
books [Gan77,HJ91,HJ85] for more background in linear algebra.

Complezity Classes. For a nondeterministic Turing machine M, we denote the
number of accepting and rejecting computation paths on input x by acep(x)
and by rej,, (), respectively. The difference of these two quantities is gap,,, i.e.,
for all z : gapy,(x) = acem (z) — rejpr(x). The function class Gapl is defined as
the class of all functions gap,;(z) such that M is a nondeterministic logspace
bounded Turing machine. GapL has many closure properties: for example it is
closed under addition, subtraction, and multiplication (see [AO96]). In [AAM99]
(Corollary 3.3) it is shown that GapL is closed under composition in a very



strong sense: if each entry of an n x n matrix A is GapL-computable, then the
determinant of A is still computable in GapL.

A set S is in C_L, if there exists a function f € GapL such that for all =
we have © € S <= f(z) = 0. Since it is open whether C_L is closed under
complement, it makes sense to consider the Boolean closure of C_L, i.e., the
class of sets that can be expressed as a Boolean combination of sets in C_L.
For our purposes, it suffices to consider the following two classes: a) coC_L is
the class of complement sets L where L € C_L, b) C_L A coC_L [ABO99] is
defined as the class of intersections of sets in C_L with sets in coC_L, i.e.,

LeC_LAcoC_L<«= 3L, € C_L, Ly € coC_L: L=1L;nNL,.

For sets Sy and Sy, we say that Sy is AC -reducible to Sy, if there is a logspace
uniform circuit family of polynomial size and constant depth that computes Sy
with unbounded fan-in AND- and OR-gates, NOT-gates, and oracle gates for Ss.
In particular, we consider the classes AC°(C_L) and AC’(GapL): the sets that
are AC’-reducible to a set in C—L, respectively a function in GapL. The known
relationships among these classes are as follows:

C_LCC_LAcoC_LCAC’C_L) C AC°(GapL) C TC' C NC?.

Furthermore, we say that S is (logspace many-one) reducible to Ss, if there
is a function f € L (deterministic logspace) such that for all x we have
x € S1 < f(z) € S5. In an analogous way one can define AC- or NC!-many-
one reductions. Unless otherwise stated, all reductions in this paper are logspace
many-one.

Linear Algebra. Let A € F"*" be a matrix over the field F. The characteristic
polynomial of A is the polynomial x4(xz) = det(zI — A). A nonzero polyno-
mial p(z) over F is called an annihilating polynomial for A if p(A) = 0. The
Cayley-Hamilton Theorem states that x 4(z) is an annihilating polynomial for A.
The characteristic polynomial is a monic polynomial: its highest coefficient is
one. The minimal polynomial of A, denoted by pa(z), is the unique monic an-
nihilating polynomial for A with minimal degree. Note that if A is an integer
matrix, then all coefficients of x 4(z) and of p4(z) are also integer. Let’s denote
the degree of a polynomial p by deg(p). Then we have 1 < deg(pa(z)) =m < n.

Two matrices A, B € F™*" are called similar if there is a nonsingular matrix
P € F"*" such that A = PBP~'. Furthermore, A is called diagonalizable if A is
similar to a diagonal matrix. The matrices Ay, ..., Ay are called simultaneously
diagonalizable if there is a nonsingular matrix P such that PA, P!, ... PA,P~!
are diagonal.

Problems. Unless otherwise stated the domain for the algebraic problems are
the integers. By DETERMINANT we denote the problem to compute the deter-
minant of a given n x n matrix A. In POWERELEMENT there is additionally
given an integer m and have to compute (A™)1 ,, the element of A™ at posi-
tion (1,7n). Both POWERELEMENT and DETERMINANT are complete for GapL
[Ber84,Dam91,Tod91,Val92,Vin91].



Various decision problems are based on GapL-functions. The verification
of a GapL-function is captured by the class C_L. A GapL-complete function
yields a C_L-complete verification problem. For example, to verify whether the
determinant is zero, i.e., testing singularity, is complete for C_L. Similarly, to
verify whether A™ at position (1,n) is zero, is complete for C=L. The latter
problem we denote by POWERELEMENT_.

With respect to the minimal polynomial, MINPOLYNOMIAL is the problem to
compute the i-th coefficient d; of pa(z) for given A and i. MINPOLYNOMIAL is
computable in AC°(GapL) and is hard for GapL [HT01,HT02]. With respect
to the degree of the minimal polynomial, DEGMINPOL is the set of all triple
(A, k,b), where b is the k-th bit of deg(pa(x)).

There is a bunch of decision problems related to MINPOLYNOMIAL and
DeEGMINPOL: Given two matrices A and B, and k > 1,

— EQMINPOLYNOMIAL is to decide whether p4(z) = pgp(z),

— EQCTMINPoOL is to decide whether the minimal polynomials of A and B
have the same constant term,

— EQDEGMINPOL is to decide whether the minimal polynomials of A and B
have the same degree,

— DEGMINPOL= is to decide whether deg(pa(z)) = k,

DEGMINPOL< is to decide whether deg(ua(z)) < k.

Finally, the set of all diagonalizable matrices is denoted by DIAGONALIZABLE.
The set of all simultaneously diagonalizable matrices is denoted by
SIMDIAGONALIZABLE.

3 The Minimal Polynomial

In this section we investigate the complexity of the degree and the constant term
of the minimal polynomial of a matrix. The upper bounds on the complexity
of these problems follow easily from the predecessor paper [HT01,HT02]. The
main contributions here are the lower bounds for these problems. In particular,
we want to point out that the degree of the minimal polynomial has essentially
the same complexity as the matrix rank.

3.1 Upper Bounds

In [HTO01] it is shown that the minimal polynomial of a matrix A can be computed
in AC°(GapL). The algorithm was based on the following observation. Define
a; = vec(A?), where vec(A?) is the vector of length n? that is obtained by
putting the columns of A’ below each other, for i = 0,1,2,...,n. Then the
minimal polynomial p4(x) with degree m is characterized by the following two
properties:

(i) pa(A) = 0. Equivalently we can say that ag, a1, ...,a, are linearly depen-
dent, and



(ii) for every monic polynomial p(z) with degree m — 1, we have p(4) # 0.
Equivalently we can say that ag, a1, ...,an—1 are linearly independent.

Note that a,y,-..,ay, linearly depend on ag,ai,...,a,—1 in this case. Define
the n? x j matrices C; and the symmetric j x j matrices D; as

Ci=(avar - aj_1), Dj:CJT Gy, forj=1,...,n.

Then Cyy,,...,Cy and D,y,, ..., D, all have the same rank m, which is precisely
the degree of pua(z). Hence we have deg(ua(z)) = rank(D,,).

Let xp, () = 2" 4+ cp_12" "' + -+ + 1o + co. Since D,, is symmetric, we
have rank(D,) = n — [, where [ is the smallest index such that ¢ # 0. Because
Gapl is closed under composition [AAM99], each of the coefficients ¢,,—1, ..., co
is computable in GapL. Therefore, in C_L we can test whether one or several
of the ¢;’s are zero (note that C=L is closed under conjunction). In particular,
we get a method to verify the degree of the minimal polynomial.

Proposition 3.1. 1. DEGMINPOL< is in C=L.
2. DEGMINPOL_ is in C_L A coC_L,
3. DEGMINPoL, EQDEGMINPoOL are in AC’(C-L),

Part 1 and 2 of the proposition follow directly from the discussion above. The
problems in part 3 can be solved with some extra ACP-circuitry.
Next, we consider the coefficients of pa () = 2™ +d,,, 1™ ' +---+dy. The

vector (do,di,...,dm_1)T is the unique solution of the system of linear equations
Cmx = —a,,. Hence we get
(do,di,...,dm—1)" = —D'Cla,,. (1)

Notice that D,, nonsingular for m = deg(ua(x)), and each element of D! can
be computed in GapL [AAM99].

Let B be another matrix and we want to know whether A and B have the
same minimal polynomial, or, whether their minimal polynomials have the same
constant term. We can express the coefficients of up(x) analogously as for A in
equation (1). It follows that we can compare the coefficients in AC°(C_L).

Proposition 3.2. EQMINPOLYNOMIAL and EQCTMINPOL are in
AC’(C_L).

3.2 Lower Bounds

Allender, Beals, and Ogihara [ABO99] showed that the decision problem Feasible
Systems of Linear Equations, FSLE for short, is complete for AC°(C_L). More
precisely, an input for FSLE are an m x n matrix A and a vector b of length m
over the integers. One has to decide whether the system of linear equations
Az = b has a rational solution. We use FSLE as reference problem to show the
hardness results.



Theorem 3.3. EQDEGMINPOL, EQMINPOLYNOMIAL, and EQCTMINPOL
are hard for AC°(C_L).

Proof. Let A and b be an input for FSLE. Define the symmetric matrix B =

(;T 13) and vector ¢ = (b”,0)7 of length m + n. We prove that

(A,b) € FSLE <= (B,c) € FSLE (2)
= (= (0 B 0 8) is similar to D = (0 B 0 g) (3)
<= D € DIAGONALIZABLE (4)
< pc(zr) = pp(z) (5)
= deg(pc(z)) = deg(up()) (6)
= ctpo, (z)) = ct(up, (2)), (7)

where ct(uar(z)) denotes the constant term of ua(x), and C, = C + ol and
D, = D + al for an appropriate positive integer a to be chosen later.

Equivalences (2), (3), and (4) were shown in [HTO01]. For completeness, we
include a proof.

Equivalence (2). Note that the system ATz = 0 is always feasible.

Equivalence (3). Let xo be a solution of the system Bx = ¢. Define the nonsin-
I Io
0-1
similar to D. Conversely, if the above system is not feasible, then C' and D have
different ranks and can therefore not be similar.

gular matrix T = . It is easy to check that CT = T D, therefore C is

Equivalence (4). Observe that matrix C' is symmetric. Therefore, C is always
diagonalizable, i.e., C' is similar to a diagonal matrix, say C'. Now, if C' is similar
to D, then D is similar to C' as well, because the similarity relation is transitive.
Hence D is diagonalizable as well. Conversely, if D is diagonalizable, then D has
only elementary divisors of the form (z — ;) where ~; is any of its eigenvalues.
Since C' is diagonalizable, its elementary divisors are also linear. Note further-
more that C' and D have the same characteristic polynomial. Therefore, they
must have the same system of elementary divisors, i.e., they are similar.

Equivalence (5). If C is similar to D, then it is clearly that uc(xz) = pp(z). Con-
versely, if puc(x) = pup(z), then pup(z) contains only linear irreducible factors,
because uc(z) has this property (since C is symmetric matrix). Therefore D is
diagonalizable.

Equivalence (6). Recall that deg(uc(z)) is exactly the number of all distinct
eigenvalues of C. Since C' and D have the same characteristic polynomial, they
have the same eigenvalues, and therefore deg(uc(z)) < deg(up(x)). These de-
grees are equal iff every root of up(z) has multiplicity 1. The latter holds iff D
is diagonalizable.



Equivalence (7). Observe that equivalences (2) to (6) still hold when we replace
C, and D, for C' and D, respectively, for any a. For an appropriate choice
of a we show: if the constant terms of uc, (z) and pp, (z) are equal, then these
polynomials are equal.

Fix any a. Let Ay, ..., A be the distinct eigenvalues of C'. Then the distinct
eigenvalues of C, are A1 + a, ..., Ax + «. Since C, is symmetric and since C,
and D, have the same eigenvalues, we can write

k k

pe. (z) = [[(@ = (i +a)) and pp, (2) = [J@@ ~ (\i + )",

i=1 i=1

where t; > 1 for i = 1,2,...,k. In order to prove that uc, () = up,(z), we
have to show that all ¢; = 1, for an appropriate a.

Note that the constant terms of these polynomials are the product of the
eigenvalues (in the case of D,, with multiplicities #; each). Hence it suffices to
choose a such that all eigenvalues of C, are greater than 1. This is done as
follows. By p(C) we denote the spectral radius of C, i.e. p(C') = maxi<;<i |Ai].

The mazimum column sum matriz norm of C = (¢; ;) is defined as

2n+1

Cll = | max 21 ci,j
1=

It is well known that p(C) < ||C||. Therefore, if we choose (in logspace)
a = ||C|| + 2, then we have \; + a > 1, fori =1,2,...,k.
g

Corollary 3.4. EQDEcMINPOL, EQMINPOLYNOMIAL, and EQCTMINPOL
are complete for AC°(C_L).

Recall that the constant term of the characteristic polynomial can be com-
puted in GapL. Now assume for a moment, that the constant term of the min-
imal polynomial is in GapL as well. It follows that EQCTMINPOL is in C_L,
because this is asking whether the difference of two constant terms (a GapL-
function) is zero. By Corollary 3.4, it follows that AC°(C_L) = C_L. This
argument is a proof of the following corollary:

Corollary 3.5. If the constant term of the minimal polynomial of a matriz is
computable in GapL, then C_L is closed under complement.

Theorem 3.6. 1. DEGMINPOL< is hard for C=L, and
2. DEGMINPoOL= is hard for C_L A coC-L.

Proof. 1) To show the first claim, we reduce POWERELEMENT= to
DEGMINPOL<. Let A be a n x n matrix and m > 1 be an input for
POWERELEMENT=. One has to decide whether (A™);,, = 0. In [HT02] (see
also [HT01]) it is shown how to construct a matrix B in logspace such that

pp(z) = 22 — az™t! where a = (A™)1 .



Let C be the companion matrix of the polynomial 2>™*2, that is, a (2m + 2) x
(2m + 2) matrix, where all the elements on the first sub-diagonal are 1 and all
the other elements are 0. Then we have y¢(z) = pco(z) = ™2
BO
Define D = (0 c
least common multiple (for short: lem) of the polynomials pug(z) and uc(z).
Therefore we have

. It is known that the minimal polynomial of D is the

pp(z) = lem{z™ ! (2™t — q), x?™F2}

a2, ifa=0,
| a2 (gt ), if g # 0.

It follows that (A™)1 , = 0 <= deg(un(z)) = 2m + 2.

2) To show the second claim, we reduce an arbitrary language L € C_L A
coC_L to DEGMINPOL-. Namely, we compute (in logspace) matrices 4; and
Aj of order n; and ng, respectively, and integers 1 < m, < n such that for all w

w € L <= (AT)1n, =0 and (44); ., #0.

We show in Lemma 3.7 below that we may assume w.l.o.g. that m > [. Let
ar = (A7)1 ,, and ay = (AL)1 ,,. As explained in the first part of the proof, we
can compute matrices B; and By such that

—a;z™tt,

= 242 _ g gt

KB, (IE) = $2m+2

KB, (ZE)

By C we denote again the companion matrix of 2>™+2. For the diagonal block
B
matrix D = ( ' B, 0) , we get (for m > 1)

pup(z) = lem{up, (x), pp,(z), po(z)}
=lem{z™ (2™ —qy), 2T (2T — ay), 222
2m+1+3, fora; =0, ay #0,
3m + 3, for ay #0, az =0,
2m + 2, for a4 =0, as =0,
3m+3+r, fora; #0, ax #0, where r > 0.

In summary, we have
weL<<a =0anday #0 <= deg(up(z)) =2m+1+ 3.

The following lemma completes the proof of Theorem 3.6

Lemma 3.7. Let A be an n x n matriz and m > 1. For any k > 1 there is a
matriz A of order p = n(mk + 1) such that (A™)1 , = (A¥™); .

Proof. Define the following (mk + 1) x (mk + 1) block matriz A



04 Each block of A is a matrix of

01 order n. All blocks are zero except
Lo for the ones on the first block super-
' 0' I diagonal. Here we start with A followed
04 by (k — 1)-times I. This pattern occurs

01 m-times in total.

An_elementary calculation shows

S that A™* has A™ as its upper right
017 block at position (1,mk + 1). All other

blocks are 0. This proves the lemma.

4 Diagonalizability

In [HTO00] it is shown that the decision whether two matrices are similar is
complete for AC°(C_L). It is well known that DIAGONALIZABLE is hard for
AC’(C-L) (see Theorem 3.3) and is contained in AC°(GapL) [HT01]. In this
section we show that DIAGONALIZABLE and SIMDIAGONALIZABLE are complete
for AC°(C_L).

Theorem 4.1. DIAGONALIZABLE is complete for AC°(C_L).

Proof. It remains to prove that DIAGONALIZABLE is in AC"(C-L). Given
matrix A. In Section 3.1 we shown how to construct a matrix C,, such that
deg(pa(z)) = rank(Cy).

Matrix A is diagonalizable iff its minimal polynomial contains only linear
irreducible factors. This is the case iff deg(ua(x)) equals the number of distinct
eigenvalues of A. The latter number can be determined as the rank of the Hankel
matriz H4 associated with A (see Chapter XV. in [Gan77]). Therefore, we have

A is diagonalizable <= deg(ua(x)) = # of distinct eigenvalues of A

<= rank(C),) = rank(H ). (8)

Since each element of C),, and H4 can be computed in GapL, equation (8) can
be checked in AC’(C_L). 0
We consider the problem SIMDIAGONALIZABLE. Given matrices Ay, ..., Ay of

order n and k > 1. We have to test whether there is a nonsingular matrix .S such
that SA;S~" are diagonal, for all 1 < ¢ < k. If all matrices A; are diagonalizable
then they are simultaneously diagonalizable iff they are pairwise commutable,
ie. A; Aj = A; A, for all 4, j. The latter test can be done in NC!. Therefore the
main part is to test whether A; € DIAGONALIZABLE, for all i. By Theorem 4.1
we get the following:

Corollary 4.2. SIMDIAGONALIZABLE is complete for AC°(C_L).
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