
Multilinear Polynomials ModuloCompositesArkadev Chattopadhyay∗AbstratUnderstanding the power of onstant-depth iruits that are al-lowed to use MODm gates, where m is an arbitrary but �xed positiveinteger, is a fundamental and inviting problem in theoretial omputersiene. Despite intensive e�orts for more than twenty �ve years, thisproblem remains wide open.In this olumn, we fous our attention on the related, but muh sim-pler, model of omputing a boolean funtion by multilinear polynomi-als over the ring Zm, when m is a omposite number. As widely known,it is essential to understand this model in order to make progress withonstant-depth iruits with MOD gates. We survey some reent re-sults in this natural model that yield superpolynomial lower bounds onthe size of some restrited iruits with MODm gates. The ingredientsthat get used in these results are perhaps more interesting. Some nat-ural next steps emerge from these results that are also of independentmathematial interest. It is hoped that progress along these lines isfeasible and would provide further insight into the general problem.1 IntrodutionEri Allender [2℄ starts his reent survey of the state-of-a�airs in provinglower bounds on iruit size by noting that his earlier survey [1℄ remainsdepressingly urrent. While it is true that we annot pitifully �nd a fun-tion in EXP that annot be omputed by linear size depth-three iruitsomprising only MOD6 gates, the time honored George Polya priniple ofonsidering simpler problems seems to again provide ways to making mean-ingful progress. In this artile, we further argue that suh onsiderations
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have raised (and sometimes solved) natural and appealing problems that anbe stated in pure mathematial terms. This holds the promise that toolsfrom mainstream mathematis an be further exploited in the ontext ofunderstanding the omputational power of mod ounting.A series of interesting works on onstant-depth iruits have reently ap-peared. Here, we just fous on the ones that are motivated by iruits havingMODm gates, where m is an arbitrary number. Note that MODm is a booleanfuntion that is de�ned below:De�nition 1.1. Let A ⊆ Zm be some aepting set. Then, for eah x ∈
{0, 1}n, MODA

m(x) = 1 if ∑n
i=1 xi ≡ a (mod m) for some a ∈ A, otherwisethe funtion outputs 0.By default, the aepting set A is Zm −{0} and in this ase it is droppedfrom the supersript. The lass of funtions omputed by polynomial size andonstant-depth iruits1 of unbounded fan-in having AND, OR and MODmgates is alled ACC0[m]. The union of these lasses over all �xed positiveinteger m is de�ned to be the omplexity lass ACC0. As is the onvention, weoverload these terms to also mean the underlying iruits with no restritionson size. Understanding the omputational limitations of ACC0 is a majorgoal of omputational omplexity that remains unful�lled.Smolesnky[40℄ in the late eighties, building upon the elegant work ofRazborov [39℄, showed that ACC0[pk] iruits require exponential size toompute MODq, if p is a prime and k any �xed positive number and q has aprime fator di�erent from p. A simple exerise then shows that MAJORITYannot be omputed in sub-exponential size by suh iruits. Indeed, one anvery well imagine the exitement this generated bak at the time. Smolenskymade the following very tempting onjeture:Conjeture 1.2 (Smolensky). For any �xed positive integer m, ACC0[m]iruits needs exponential size to ompute MODq, if m, q are o-prime num-bers.At the moment, we seem to be far from proving (or disproving) Smolen-sky's onjeture. One may be inlined to think that iruits that are re-strited to have only MODm gates (and onstant depth, denoted by CC0[m])are easier to deal with? Suh a thought is espeially appealing, given thefollowing fat about prime moduli: for any prime p, iruits of onstant-depth having only MODp gates annot ompute all funtions. In partiular,they annot ompute a high degree funtion (over Zp) like OR, AND and1The input layer of all boolean iruits onsidered in this artile have aess to eahvariable and its negation, in addition to boolean onstants 0 and 1.



MODq, no matter how muh size is allowed. Indeed, this is a very strongomputational limitation and follows surprisingly easily from the fat that
Z∗

p is a group. In ontrast, depth-2 suh iruits having only MODm gatesan ompute everything:Fat 1.3 (Folklore, (see [7℄)). Let m be any number that has at leasttwo distint prime fators. Then, every n-variate boolean funtion f an beomputed by a depth-two iruit of size 2n having only MODm gates.In a reent work, Hansen and Kouký [32℄ observe that one an om-bine Fat 1.3 with the Razborov-Smolensky idea of approximating AND/ORgates by low degree polynomials over any �nite �eld to yield the followinginteresting result:Theorem 1.4 (implied in [32℄). Every quasipolynomial size iruit C om-prising AND, OR and MODm gates of depth d an be approximated very wellby a quasipolynomial size iruit C ′ of depth O(d) omprising only MODmgates, i.e. Prx

[
C ′(x) 6= C(x)

]
≤ 1/qpoly(n).This hints that proving Smolensky's onjeture for iruits with onlyMODm gates may be as hard as proving the general ase. Indeed, Smolen-sky obtains his result for ACC0[p] by showing the stronger result that theyannot even approximate well MODq. This strengthening is ruial to hisargument. Theorem 1.4, on the other hand, shows that suh a strengthenedresult (against MODq) for the speial ase of CC0[m] iruits is su�ient todeal with general ACC0[m] iruits.Nevertheless, the intuition that CC0[m] iruits are weaker and heneeasier to deal with, may not be entirely lost. For a boolean funtion f , letthe support set of f , denoted by supp(f), be the set of points in the ubewhere f evaluates to 1. The support set of a MODm gate is large in sizeand is in some sense uniformly spread out in the ube. Can the following betrue?Conjeture 1.5 (Large Support Set2, appears in [17℄). There existsa funtion h : N → N, suh that any non-onstant funtion omputed bya CC0[m] iruit of size s and depth d has a support set of size at least

2n

2Ω(log s)h(d) .2In the thesis [17℄, where this onjeture originates, it is alled the Small Support SetConjeture referring to the fat that funtions with a small support set are di�ult forCC0[m] iruits.



Indeed, the Large Support Set Conjeture is true in a very strong sensewhen m is a prime p (or a prime power). The argument goes through poly-nomials over Zp and we point this out in Setion 2 after the statement ofConjeture 2.7.Note that in partiular, the Large Support Set Conjeture implies thatAND (or OR) annot be omputed in small size by CC0[m] iruits. This isdual to the elebrated result that MODm annot be omputed easily by AC0iruits. Suh a possibility has long been onjetured by MKenzie, Péladeauand Thérien [33℄. The relative hardness of Smolensky's Conjeture and theLarge Support Set Conjeture is not lear. Unfortunately, both seem out ofhand for the moment.In this artile, we fous our attention on a very basi and natural modelof omputation: that of multilinear polynomials over the ring Zm. It iswell known that understanding this model is absolutely neessary beforesigni�ant progress on above onjetures an be made. Indeed, Razborov[39℄ and Smolensky [40℄ introdued omputation by polynomials over theprime �eld Zp as a key ingredient in their arguments for lower bounds ononstant-depth iruits3. Unfortunately, as reviewed in the next setion,understanding polynomials over Z6 already presents signi�ant di�ultiesand several questions remain open. Our study of polynomials is motivated bySmolensky's Conjeture and the Large Support Set Conjeture. In partiular,we aim to prove sort of their analogs in the polynomial world.Before we proeed further, it is important to point out that polynomialsover reals are also a very natural and interesting model of omputing booleanfuntions. It is indeed extremely relevant for understanding onstant-depthiruits. For lak of spae and the sake of fous, we leave out this topi here.The interested reader an onsult the exellent survey by Beigel [8℄ to getpointers to the older literature and more reent works like [37℄. Beigel [8℄ alsodisusses polynomials over �nite rings, but the survey is somewhat dated andbroader in sope than ours. Here we survey some reent (and some not soreent) works on polynomials over Zm and point out some of the hallengesthat lie ahead.2 Computation by PolynomialsAn interesting thing to observe is that every funtion f : {0, 1}n → Zm isexpressible as a multilinear polynomial over Zm. To see this one merely has toverify that eah so alled delta funtion is expressible by suh a polynomial.3In fat their methods also work over the ring Zpk , where p is a prime and k is �xedpositive integer.



More preisely, for eah w ∈ {0, 1}n, de�ne the delta funtion δw : {0, 1}n →
Zm as δw(x) = 1 if w = x and otherwise δw(x) = 0. Consider the set offuntions ∆ = {δw |w ∈ {0, 1}n}. It is easy to see that every funtion f anbe uniquely expressed as a Zm linear ombination of suh funtions. On theother hand,

δw(x) =
( ∏

i:wi=1

xi

)( ∏

i:wi=0

(1 − xi)
)
.The simple identity above implies that every Zm-valued funtion overthe boolean ube is expressible as a multilinear polynomial over the ring Zm.Indeed, a simple ounting argument shows that the polynomial orrespondingto eah suh funtion is unique. This enables us to view eah boolean funtionas an algebrai objet. Natural measures of the omplexity of this objetare its degree and the number of monomials appearing in it. Formalizingthings, let degm(f) denote the degree of the polynomial representing theboolean funtion f over Zm. In our disussion, polylogarithmi degree willbe onsidered small and nΩ(1) degree will be high. Exhibiting a funtion ofhigh degree is not hard. For example,AND(x) = x1x2 · · ·xnOR(x) = 1 −

n∏

i=1

(1 − xi) (2.1)showing that degm(OR) = degm(AND) = n. On the other hand, demandinga polynomial P to satisfy P (x) = f(x) for eah point x in the ube seemstoo restritive. A more natural de�nition, at least from a omputationalperspetive, was introdued in the very interesting work of Barrington, Beigeland Rudih [6℄. Let A ⊆ Zm be an aepting set. Then P represents fw.r.t A if it satis�es the following property for eah x in the boolean ube:
P (x) ∈ A (mod m) i� f(x) = 1. The �rst thing to note about this model, isthat there is not a unique polynomial omputing f w.r.t some �xed aeptingset A. A straightforward ounting argument shows that there are exatly
|A||supp(f)|(m−|A|)2n−|supp(f)| polynomials representing f w.r.t. the aeptingset A.De�nition 2.1. Let degA

m(f) denote the minimal degree among degrees ofpolynomials representing f w.r.t aepting set A. The generalized degree of
f , denoted by gen-degm(f), is then de�ned to be the degree of f w.r.t. tothe best aepting set, i.e.gen-degm(f) = min{degA

m(f) : A ⊆ Zm}.



While it is immediate that gen-degm(f) ≤ degm(f) for every f , it is aentral question in the theory of polynomial representations to determinehow muh degree savings an generalized representation ahieve over exatrepresentation in the ring Zm. For general m, it seems fairly non-trivial to getgood estimates of degA
m(f) for even a simple f like OR and AND. However,when m is a prime p (or a prime power), tight bounds an be obtained in asimple and elegant fashion. The fat that Z∗

p is a group turns out to be veryuseful:Fat 2.2 (Fermat's Gift). Let p be any prime. For every x 6≡ 0 (mod p),
xp−1 ≡ 1 (mod p).This gift is great for booleanization. Let P be any polynomial and A anyaepting set. Let Q(x) =

∑
a∈A 1 − (P (x) − a)p−1. Using Fermat's Gift, itis easy to verify that Q(x) is 0/1 valued modulo p and P (x) ∈ A (mod p) i�

Q(x) ≡ 1 (mod p). Thus, if P represented f w.r.t A, then Q is the uniquepolynomial orresponding to f . Noting that degree of Q is larger than P bya fator of at most p − 1, one gets linear lower bounds on the degree of P ifthe funtion represented is a hard funtion like OR and AND (reall equation(2.1)):Fat 2.3. For any prime p, gen-degp(f) ≥ degp(f)/(p − 1). In partiular,gen-degp(OR), gen-degp(AND) ≥
n

p − 1
.Unfortunately, when m ontains two distint prime fators, Fermat's giftstops working. One ould hope that given any aepting set A ⊂ Zm, thereis some univariate 0/1 valued polynomial R over Zm orresponding to theharateristi funtion of the set A. Indeed, Fermat's gift yields suh apolynomial when m is prime. Having some suh R would be enough forproving lower bounds on the generalized degree of f over Zm. This hope getskilled for the following reason: let m = p1p2 be a produt of two distintprimes. Reall, via hinese remaindering, the map a 7→ ((a mod p1), (a

mod p2)) forms a bijetion between Zm and Zp1 × Zp2. Thus, 0 and 1 in Zmorrespond to tuples (0, 0) and (1, 1) in Zp1 × Zp2.Fat 2.4. Let m = p1p2 be a produt of two distint primes. Then theharateristi funtion of the set A = {1} (and the set A = {0}) has no(univariate) polynomial representation over Zm.Proof. Assume for the sake of ontradition that R is suh a polyno-mial. Applying the Chinese Remaindering Theorem, R gives rise to



two polynomials, Rp1 over Zp1 and Rp2 over Zp2 with the property that
R(x) 7→ (Rp1(x mod p1), Rp2(x mod p2)). Now R(0) ≡ 0 (mod m). Hene,
Rp1(0) ≡ 0 (mod p1). Similarly, Rp2(0) ≡ 0 (mod p2). Observing that
R(1) ≡ 1 (mod m) and applying a similar argument yields the following:
Rp1(1) ≡ 1 (mod p1) and Rp2(1) ≡ 1 (mod p2). Thus, ombining thingsbak via hinese remaindering, R((0, 1)) ≡ (0, 1) (mod m) and R((1, 0)) ≡
(1, 0) (mod m). However, as R is the exat representation of the harater-isti funtion of A = {1}, R((0, 1)) ≡ R((1, 0)) ≡ (0, 0) (mod m), leading usto the required ontradition.Fat 2.4 has turned out to be somewhat of a serious blow to proving lowerbounds on the omposite degree of boolean funtions. To some extent, thisis explained by a surprising upper bound disovered by Barrington, Beigeland Rudih [6℄.Theorem 2.5 (Barrington, Beigel and Rudih). Let m have t distintprime fators. Let A = {1} and A′ = Zm−{0}. Then, degA

m(AND) = O(n1/t)and degA′

m (OR) = O(n1/t).The above theorem shows that omposite moduli an obtain non-trivialomputational advantage over their primal ounterparts when the aeptingset is arefully hosen. Even more surprisingly, the above theorem has beenexploited in expliit onstrutions in ombinatoris [29, 22℄ and very reentlyin obtaining e�ient loally deodable odes by Efremenko [20℄.Tardos and Barrington [42℄ obtained the following lower bound on thegeneralized degree of the OR funtion.Theorem 2.6 ([42℄). Let m have t ≥ 2 distint prime fators, and let q bethe smallest maximal prime power divisor of m. Then, gen-degm(OR) is atleast ((
1

q−1
− o(1)

)
log n

) 1
t−1 .The above lower and upper bounds on the degree for OR and AND hasnot been improved in more than ten years and it is an important hallengeto narrow down the gap between them. On the other hand, we speulate thefollowing:Conjeture 2.7. Let P be a multilinear polynomial of degree d over Zm.Let a ∈ Zm be suh that there exists an x0 ∈ {0, 1}n with P (x0) ≡

a (mod m).Then the number of points in the ube at whih P evaluates to ais at least 2n−O(dt), where m = p1 · · · pt and eah pi is a distint prime.It is simple to verify that this onjeture implies that for suh square-free
m, gen-degm(OR), gen-degm(AND) = nΩ(1/t). The onjeture above admits



a natural modi�ation to omposites with repeated prime fators. We donot state that formally to keep the disussion simple and foussed on theessential problem that lies ahead. Before we end this setion, it is worthmentioning that the above onjeture is known to be true for prime moduli(see for example [5℄). Using Ramsey Theory, Péladeau and Thérien [38℄prove a result that easily implies this onjeture for arbitrary m as long asthe degree d is a onstant.2.1 Computing MODqThe advantage of omposites over primes is not limited to omputing ANDand OR. Among other things, Bhatnagar et.al.[19℄ showed that one anompute the THRESHOLDk funtion by polynomials of degree O(n1/t+ǫ)over Zm, if m has t distint prime fators and k is a onstant. This isa generalization of the upper bound due to Barrington et.al. as OR isjust THRESHOLD1. Bhatnagar et.al. wondered if interesting degree up-per bounds ould be proved for the simple funtion MODq. Hansen [31℄,disproving a onjeture of Bhatnagar et.al. [19℄, showed the following:Theorem 2.8 (Hansen). Assume m = p1 · · · pt and q are o-prime satisfy-ing the following ondition: there exists positive integers b1, . . . , bt suh that∑t
i=1

1
bi

< 1 and pi ≥ qbi for all i. Then gen-degm(MODq) = O(n1/t).Tardos and Barrington's [42℄ tehnique an be adapted (see for example[13℄) to prove an Ω
(
(log n)1/(t−1)

) lower bound on gen-degm(MODq). Suhbounds degrade with the number of distint prime fators of m. In a break-through work, Bourgain [11℄ proved an Ω(log n) lower bound on the gen-eralized MODm-degree of MODq. Bourgain's method is interesting due toseveral reasons. First, it proves something stronger, showing that the orre-lation between the boolean funtion omputed by a sub-logarithmi degreepolynomial over Zm, w.r.t. an aepting set, and MODq is exponentiallysmall. Suh a orrelation bound was not know even for polynomials moduloprimes, a model whih one typially assumes we understand well. The re-sult, very signi�antly, improves upon a long line of work (see, for example,[21, 12, 24, 4, 26℄). Seond, Bourgain's method boils down to estimatingertain exponential sums. This is an elementary but powerful tehnique thathas spawned more reent progress [15, 30, 18℄. Due to its importane, weinlude a proof of Bourgain's result. Our treatment follows that of Chat-topadhyay [14, 16℄, that is very lose to the method of [11, 27℄ but is slightlysimpler and sharper.



De�nition 2.9. For any b ∈ {0, . . . , q − 1}, de�ne the bth MODq-residuelass of {0, 1}n, denoted by Mq(b), as the following:
Mq(b) = {x = (x1, . . . , xn) ∈ {0, 1}n |

n∑

i=1

xi = b (mod q)} (2.2)De�nition 2.10. For any polynomial P over Zm and a ∈ Zm, let P−1(a)de�ne the set of points in {0, 1}n where P evaluates to a.An intuition about a random and uniform set is that eah of the Mq(b) residuelasses are equally represented in suh a set. Bourgain's result essentiallyshows that if P has low degree, then P−1(a) appears pseudorandom4 to theMODq funtion. In other words, either eah of the MODq residue lasses arealmost equally represented in P−1(a) or the set is a very small fration of theube.Lemma 2.11 (Bourgain's Uniformity Lemma). For all positive o-prime integers m, q, there exists a positive onstant γ = γ(q) < 1 suh thatfor every polynomial P of degree d over Zm and every a ∈ Zm, the followingholds:
∣∣∣∣ Pr

[
x ∈

(
P−1(a) ∩ Mq(b)

)]
−

1

q
Pr

[
x ∈ P−1(a)

]∣∣∣∣ ≤ exp( −
γn

(
m2m−1

)d

)
.(2.3)Before we start the proof, let us reall an elementary fat about theprimitive roots of unity that we make repeated use of heneforth. Let em(y)denote the primitivem-th root of unity raised to the yth power, i.e. exp(2πjy

m
),where j is the omplex square root of −1. Then,Fat 2.12. If y = 0 then, 1

m

∑m−1
α=0 em(αy) is 1 and the expression is 0 other-wise.Armed with this basi fat, we prove the Uniformity Lemma below:Proof of Uniformity Lemma. We write Pr

[
x ∈

(
P−1(a) ∩ Mq(b)

)] as an ex-ponential sum. Thus,4The method employed by Bourgain to prove this result is losely related to methodemployed ommonly in ommuniation omplexity to estimate the disrepany of a fun-tion. Indeed, the quantity in the LHS of (2.3) is losely related to the disrepany ofMODq funtion w.r.t. polynomial mappings modulo m . The interested reader an �ndmore details on this point of view in [16, 17℄



Pr
x

[
x ∈

(
P−1(a) ∩ Mq(b)

)]

= Ex∈{0,1}n

[(
1

m

m−1∑

α=0

em

(
α(P (x) − a)

))(
1

q

q−1∑

β=0

eq

(
β(x1 + · · ·+ xn − b)

))](2.4)Expanding the sum inside the seond multipliand and treating the aseof β = 0 separately, one gets(2.4) =
1

q
Ex

[
1

m

m−1∑

α=0

em

(
α(P (x) − a)

)]

+
1

mq

∑

α∈[m],β∈[q]−{0}

Sm,q(α, β, P )em(−aα)eq(−bβ) (2.5)where,
Sm,q(α, β, P ) = Ex∈{0,1}n

[
em

(
αP (x)

)
· eq

(
β(x1 + · · · + xn)

)] (2.6)Observing that the �rst term in (2.5) is simply 1
q
Pr

[
x ∈ P−1(a)

] and
|em(−aα)| = |eq(−bβ)| = 1, we get :
∣∣∣∣ Pr

x

[
x ∈

(
P−1(a) ∩ Mq(b)

)
−

1

q
Pr
x

[
x ∈ P−1(a)

]∣∣∣∣ ≤
1

mq

∑

α∈[m],β∈[q]−{0}

|Sm,q(α, β, P )|(2.7)The Uniformity Lemma 2.11 gets proved by the bound on |Sm,q(α, β, P )|provided below. The bound below is the main tehnial ontribution ofBourgain.Lemma 2.13. For eah pair of o-prime integers m, q > 1 there exists aonstant γ = γ(q) suh that for every polynomial P of degree d > 0 in Zmand numbers α ∈ [m], β ∈ [q] − {0}, the following holds :
|Sm,q(α, β, P )| ≤ exp( −

γn

(m2m−1)d

)
. (2.8)



Before we begin our formal alulations, we note that a slightly weakerestimate of |Sm,q(α, β, P )| was �rst obtained by Bourgain [11℄ and later gen-eralized by Green et al [27℄. The ase when P is a linear polynomial wasessentially dealt with in [12℄ and forms our base ase5 just as in [11, 27℄.In order to explain the intuition behind our alulations, we develop somede�nitions and notations. Let f : {0, 1}n → Zm be any funtion. Considerany set I ⊆ [n]. Note that eah binary vetor v of length |I| an be thoughtof as a partial assignment to the input variables of f by assigning v to thevariables in I in a natural way. Let f I(v) be the subfuntion of f on variablesnot indexed in I indued by the partial assignment v to variables indexed in
I. For any sequene Y = {y1, . . . , yt} having t boolean vetors from {0, 1}n,let fY be the funtion de�ned by fY (x) = f(x) +

∑t
i=1 f(x ⊕ yi), where thesum is taken in Zm. Let I[Y ] ⊆ [n] be the set of those indies on whihevery vetor in Y is zero and J [Y ] be just the omplement of I[Y ]. Then,the following observation will be very useful in the ensuing alulation :Observation 2.14. Let P be a polynomial of degree d in n variables over

Zm. Then, for eah sequene Y of m − 1 boolean vetors in {0, 1}n, thepolynomial P
J [Y ](v)
Y is a polynomial of degree d− 1 in variables from I[Y ] foreah vetor v ∈ {0, 1}|J [Y ]| .Proof of Lemma 2.13. We drop the supersript from Sm,q to avoid lutter inthe following disussion.We shall indue on the degree d of the polynomial.Our IH is that there exists a positive real onstant µd−1 < 1 suh thatfor all polynomials R of degree at most d − 1 and for all n ≥ 0 we have

|S(α, β, R)| ≤ 2nµn
d−1. The base ase of d = 0 is easily veri�ed and is dealtwith in earlier works on orrelation. Note that µ0 depends only on q. Ourindutive step will yield a relationship between µd−1 and µd that will alsogive us our desired expliit bound of (2.8).As in [11, 27℄, we raise S to its mth power. Our point of departure fromthese work, is to write (S)m in a slightly di�erent way.

(S)m = Ey1,...,ym−1∈{0,1}nEx

[
em

(
P (x) +

m−1∑

j=1

P (x⊕ yj)

)
×

× eq

( n∑

i=1

xi +

n∑

i=1

(xi ⊕ y1
i ) + · · ·+

n∑

i=1

(xi ⊕ ym−1
i )

) ] (2.9)Let Y be the sequene of length m − 1 formed by a given set of vetors
y1, . . . , ym−1. We denote by u and v respetively the projetion of x to I[Y ]5We revisit this base ase later in Setion 3.4.1.



and J [Y ]. Let nI and nJ be the ardinality of I[Y ] and J [Y ] (note that
nI + nJ = n) . Then, one an verify

(2.9) = Ey1,...,ym−1∈{0,1}nEv∈{0,1}nJ

[
em

(
Qy1,...,ym−1

(v)
)
eq(nJ)×

× Eu∈{0,1}nI

[
em

(
P

I[Y ](v)
Y (u)

)
eq

(
m

nI∑

i=1

ui

)] ] (2.10)where Qy1,...,ym−1 is some polynomial that is determined by y1, . . . , ym−1 andpolynomial P .The key thing to note is that Observation 2.14 implies P
I[Y ](v)
Y to be apolynomial of degree at most d−1 over u for every sequene Y = y1, . . . , ym−1and every vetor v. Thus, the inside sum of (2.10) over the variable u anbe estimated using our indutive hypothesis. Noting that the number ofsequenes Y for whih |IY | = k is exatly (

n
k

)
(2m−1 − 1)n−k and using thetriangle inequality with the binomial theorem, we get.

|S|m ≤

n∑

k=0

(
n

k

)
(2m−1 − 1)n−k2n−k2kµk

d−1 = 2nm

(
1 −

1 − µd−1

2m−1

)n (2.11)The rest of the alulation proeeds exatly as in Green et. al. [27℄. Werepeat it here for the sake of self-ontainment. Taking the mth root of bothsides of (2.11), using the inequality (1 − x)1/m ≤ 1 − x/m if 0 ≤ x < 1 amd
m > 1 after rearranging, we obtain

1 − µd ≥
1 − µd−1

m2m−1
≥

1 − µ0(
m2m−1

)d
(2.12)Substituting γ = 1−µ0, one gets µd ≤ exp(

− γ
(m2m−1)d

). This immediatelyyields (2.8) in Lemma 2.13.3 Computation by a System of PolynomialsIt is natural to extend the notion of omputation of a boolean funtion by asingle polynomial to the notion of omputation by a system of polynomials.Apart from the fat that systems of polynomials are entral objets of interestin branhes of pure mathematis like algebrai geometry, the study of theiromputational power is motivated from proving lower bounds in both boolean



and arithmeti iruits. As before, the fat that our polynomials are overa ring Zm (rather than a �eld) and that we are interested in their behaviorover the boolean ube, presents di�ultiesLet P be a system of polynomials P1, . . . , Ps, eah over Zm and let
A1, . . . , As be their respetive aepting sets. The boolean funtion omputedby P, denoted by fP , is simply given by the following: for any x ∈ {0, 1}n,
fP(x) = 1 if Pi(x) ∈ Ai (mod m) for eah 1 ≤ i ≤ s, otherwise fP(x) = 0.The degree of the system P, denoted by deg(P), is the degree of a maximaldegree polynomial in P, i.e. max{deg(Pi) : i ≤ s}.De�nition 3.1. The s-simultaneous MODm-degree of a boolean funtion f ,denoted by degs

m(f), is the degree of a minimal degree system of s polyno-mials omputing f .Of ourse, making progress on proving degree lower bounds for a systemof polynomials in general is a harder problem than proving lower bounds onthe degree of a single polynomial. It may thus seem pointless to work withsystems of polynomials before resolving questions from the previous setion.However, onsider the following: we know that a linear polynomial over Zmannot represent any of AND, OR and MODq funtion. In fat, from resultsin the previous setion, we know that one provably needs almost logarithmidegree to represent them. Thus, one may hope to answer questions of thefollowing type: How large a lower bound on s an we prove so that degs
m(f) >

1? As we will see that even for this ase, proving strong lower bounds on s anbe non-trivial. Additionally, suh lower bounds yield new lower bounds onthe size of some restrited iruits for whih no other methods are urrentlyknown.3.1 Linear SystemsLet L = {ℓ1, . . . , ℓt} be a set of n-variate linear forms over Zm. Suh a setforms a linear map L : Zn
m → Zt

m. Conversely, given suh a linear map, thereexists a orresponding set of linear forms. For v ∈ Zt
m, let KL(v) representthe set of points in {0, 1}n, that satisfy ℓi = vi for all 1 ≤ i ≤ t. Then, weshow the following:Theorem 3.2 (Chattopadhyay, Goyal, Pudlák and Thérien [15℄).For every positive integer m, there exists a positive onstant c suh that thefollowing holds. Let L : Zn

m → Zt
m be a linear map. For any v ∈ Zt

m, if
KL(v) is non-empty, then

|KL(v)| ≥
2n

ct
. (3.1)



A simple averaging argument shows that for every L : Zn
m → Zt

m, thereexists a v ∈ Zt
m suh that KL(v) has size at least 2n/mt. Theorem 3.2 is akind of onentration result in the sense that it shows that every KL(v) is ofsize lose to the average size if it is non-empty. We note that the results in[43℄, based on methods introdued in [7℄, imply a lower bound of ( α

α−1
)n · 1

αton the size of KL(v) when it is non-empty, and α is an inreasing funtionof m. This is still exponentially weaker than what is given by (3.1).3.2 An ExursionBefore we prove Theorem 3.2, we draw on a notion from ombinatorial grouptheory. Consider a �xed �nite abelian group G. The Davenport onstant of
G, denoted by s(G), is the smallest integer k suh that every sequene ofelements of G of length at least k, has a non-empty subsequene that sumsto zero. The pigeon-hole-priniple shows that s(G) is �nite if G is �nite.This is beause if we have a sequene of length larger than |G|2, then someelement a of G is repeated at least |G| times. The sub-sequene formed bythe �rst |G| instanes of a indeed sums to zero as the order of every elementin G divides |G|. Thus, s(G) ≤ |G|2, whih gives a quadrati upper boundon the Davenport onstant w.r.t. the size of the group.For spei� groups, one an show muh better bounds. For instane,if the group is Zp, then one an show, using the polynomial method, that
s(Zp) is p. Clearly, the lower bound follows by onsidering the sequene of
(p − 1) ourrenes of the identity element. Suh a sequene has no non-empty subsequene summing to zero. The upper bound an be establishedas follows: Let a1, . . . , ap be a sequene of elements from Zp. Assume that nozero-sum subsequene of it exists. In other words, the polynomial a1x1+· · ·+
apxp over Zp evaluates to zero only at one point in the boolean ube {0, 1}p,whih is the all zero point. Thus, applying Fermat's Gift, the polynomial
P ≡ 1 − (a1x1 + · · · + apxp)

p−1, is exatly the OR funtion of p booleanvariables over Zp. However, reall that equation (2.1) shows that the degreeof the OR polynomial is p. This ontradition �nishes the argument.Olson [35℄ showed a more general statement: Let G be an abelian p-groupof the form Zpk1 ⊕ Zpk2 ⊕ · · · ⊕ Zpkr , where ⊕ denotes diret sum. He showsthat s(G) = 1+
∑r

i=1

(
pki −1

) in this ase. We show a little later that s(Zt
m)is at most c(m)t, where c(m) is a onstant that just depends on m. Beforedoing that, we reall another result by Olson [36℄ that onnets s(G) withthe set of boolean solutions to the equation g1x1 + . . . + gnxn = 0, denotedby K(G, n), where eah gi ∈ G.Theorem 3.3 (Olson's Theorem). |K(G, n)| ≥ max{1, 2n+1−s(G)}.



Proof adapted from [36℄. We prove this by indution of n. For n ≤ s(G)−1,the theorem is vauously true. Assuming it is true for n, we prove it for
n + 1. Let the equation be g1x1 + · · · + gn+1xn+1 = 0. By the de�nition of
s(G), there is a subsequene of g1, . . . , gs(G) that has a subsequene that sumsto zero. W.l.o.g., assume this subsequene to be g1, . . . , gt. Then onsiderthe equation (−g2)x2 + · · · + (−gt)xt + gt+1xt+1 + · · · + gn+1xn+1 = 0. Byour hypothesis, this equation on n variables has at least 2n+1−s(G) solutions.For eah suh solution point u, we obtain a solution to the original equationover n + 1 variables in whih the value of x1 is set to 1 in the following way:
x1 = 1, for 2 ≤ i ≤ t, xi is set to the value that is the omplement of its valuein u, and for t < i ≤ n + 1, xi is set to its orresponding value in u. Finally,extend the solutions of g2x2 + · · ·+ gn+1xn+1 = 0 to our original equation bysimply �xing x1 = 0 to obtain at least another 2n+1−s(G) solutions. Thus, wehave at least 2n+2−s(G) solutions in total, proving the theorem.3.3 A Simple Fourier Analyti ArgumentThe usefulness of Olson's Theorem for our purpose is evident from its fol-lowing immediate orollary:Corollary 3.4. Let L : Zn

m → Zs
m be a linear map. Then, for all v ∈ Zs

msuh that KL(v) is non-empty, we have |KL(v)| ≥ 2n+1−s(Zs
m).Proof. Let L ≡ {ℓ1, . . . , ℓt} be the underlying linear forms, where ℓi =

ai,1x1 + · · · + ai,nxn. As KL(v) is non-empty, there exists b ∈ {0, 1}n suhthat ℓi(b) = vi. Consider ℓ′i = a′
i,1x1 + · · · + a′

i,nxn, where a′
i,j = −ai,j if

bj = 1 and otherwise a′
i,j = ai,j, for eah 1 ≤ j ≤ n and 1 ≤ i ≤ t. De-�ne L′ ≡ {ℓ′1, . . . , ℓ

′
t}. Then, it is straight-forward to verify that sets KL(v)and KL′

(0s) are in one-to-one orrespondene with eah other. The resultfollows by observing that Olson's Theorem implies KL′

(0s) has size at least
2n+1−s(Zs

m).In view of Corollary 3.4, it is su�ient to establish an O(t) upper boundon s(Zt
m) for proving Theorem 3.2. Although, to the best of our knowledge,determining the exat bound on s(Zt

m) is still open, the linear upper boundthat we seek follows from the independent work of Meshulam [34℄ and Therien[43℄. We inlude a proof of this, using simple Fourier analysis over groups ofthe form Zt
m. Reall, from the proof of Bourgain's Theorem in Setion 2.1,

em(y) denotes the primitive m-th root of unity raised to the yth power.Theorem 3.5. If m is even, s(Zt
m) ≤ ct, where c = log m

log m−log(m−1)
is aonstant.



Proof. Let L ≡ {ℓ1, . . . , ℓt} be a linear map from Zs
m to Zt

m, suh that KL(0t)is a singleton set, i.e. ontains only the point 0s. Let λS : Zs
m → {0, 1} denotethe harateristi funtion for any set S ⊆ Zs

m. Then, using Fat 2.12, onewrites
λ{0,1}s(x) ≡

1

ms

s∏

j=1

[ m−1∑

a=0

em

(
axj

)
+

m−1∑

a=0

em

(
a(xj − 1)

)]

=
1

ms

s∏

j=1

[ m−1∑

a=0

(
1 + em(−a)

)
em

(
axj

)]
.Let m = 2ℓ. Then learly for a = ℓ, we have (1+em(a)) = 1+em(π) = 0 usinga basi trigonometri identity. Thus, noting that |supp(f̂ g)| ≤ |supp(f̂)| ·

|supp(ĝ)|, we see that |supp(λ̂{0,1}s)| ≤ (m − 1)s. Further,
λKL(0t)(x) ≡

[ t∏

j=1

(
1

m

m−1∑

a=0

em

(
aℓj(x)

))]
λ{0,1}s

(
x
)
.Thus, one onludes

∣∣∣∣supp(
λ̂KL(0t)

)∣∣∣∣ ≤ mt

∣∣∣∣supp(λ̂{0,1}s

)∣∣∣∣ ≤ mt(m − 1)s.Applying the Unertainty Priniple from Fourier Analysis, we get
mt(m − 1)s ≥ |Zs

m| = mswhene the result follows.The ase of an odd m an be dealt with by the following simple trik.Multiply eah linear form ℓi by 2. Viewing eah modi�ed linear form to beover Z2m (instead of over Zm), we obtain a new map L′ : Zs
2m → Zt

2m. It iseasily veri�ed that sets KL(0t) and KL′

(0t) are in one-to-one orrespondenewith eah other. Hene, applying Theorem 3.5 to KL′

(0t) yields bounds on
KL(0t) as well, though with a very slight worsening of the onstant c.Corollary 3.6. For every m, s(Zt

m) ≤ ct, where c = log(2m)
log(2m)−log(2m−1)

is aonstant that just depends on m.Combining Corollary 3.4 with bounds on s(Zt
m) as given above, we im-mediately derive Theorem 3.2 whih states that the size of eah non-empty

KL(v) is at least 2n

ct .



Remark 3.7. Here, we point out a onsequene of Theorem 3.2 for CC0[m]iruits. It easily yields a linear lower bound on the size of suh iruits6for omputing AND. Suh a bound was �rst obtained by Thérien [43℄. Italso makes some progress toward the Large Support Set Conjeture (seeConj. 1.5). While there it is onjetured that the size of the support set of afuntion omputed by a CC0[m] iruit deays polynomially w.r.t. the size ofthe iruit, Theorem 3.2 yields an exponential deay. Reently, Allender andKouký [3℄ have shown that a lower bound of the form n1+γ on the size of aCC0[m] iruit omputing AND (MODq), for any onstant γ > 0 that doesnot depend on the depth of the iruit, is enough to imply a superpolynomiallower bound on CC0[m] iruits omputing AND (MODq).3.4 Computing MODqUntil reently, it was not known if a linear system L = {ℓ1, . . . , ℓt} over Zmwith arbitrary aepting sets {A1, . . . , At} ould ompute MODq, even for
t = o(n). A stronger result of [15℄ (and impliit in the independent work ofHansen [30℄), showed that even polynomial systems of low degree and smallsize fail to orrelate well with MODq.De�nition 3.8. The Zq-disrepany of a boolean funtion f , denoted bydisq(f), is given by the following:disq(f) ≡

∣∣∣∣ Pr
[
f(x) = 1 ∧ x ∈ Mq(b)

]
−

1

q
Pr

[
[f(x) = 1

]∣∣∣∣The theorem below, �rst obtained in [15℄ and independently in [30℄, showsthat low-degree polynomial systems of small size have exponentially small
Zq-disrepany.Theorem 3.9 (Polynomial Uniformity). For all positive o-prime inte-gers m, q, there exists a positive onstant γ = γ(m, q) < 1 suh that thefollowing holds: let P = {P1, . . . , Pt} be a n-variate polynomial system ofdegree d over Zm, with aepting sets {A1, . . . , At}. Then,disq

(
fP

)
≤ (m − 1)texp( − n/γd

)
. (3.2)The above result follows from a simple use of exponential sums, hintingat their untapped potential in this ontext.6In fat, as the bound is information theoreti, one need not impose any restrition onthe depth of a iruit.



Remark 3.10. The speial ase of the Polynomial Uniformity Theorem, ob-tained by restriting the system to be linear, already leads to an interest-ing onsequene for iruits with MODm gates. Using this, [15℄ shows thatiruits (of arbitrary depth) omprising only MODm gates annot omputeMODq in sub-linear size, if (m, q) are o-prime. This signi�antly improvesupon the earlier result of Smolensky [41℄ that showed suh iruits need
Ω(log n) size. Further, [15℄ ombine this speial ase of the Polynomial Uni-formity Theorem with graph-theoreti arguments to prove that suh iruitsof bounded depth need superlinear number of wires to ompute MODq. This,in some sense, is the strongest known lower bound for general CC0[m] ir-uits.Very reently, Chattopadhyay and Wigderson [18℄ have been able to sig-ni�antly improve Theorem 3.9 for the ase of linear systems under the on-dition that m is preisely a produt of two primes.Theorem 3.11 (Two-Prime Uniformity). Let m, q be oprime positiveintegers, with m = p1p2 and eah pi is a prime. There exists a positiveonstant γ = γ(m, q) < 1 suh that the following holds: let L = {ℓ1, . . . , ℓt}be a n-variate linear system over Zm, with aepting sets {A1, . . . , At}. Then,disq

(
fL

)
≤ exp( − γn

)
. (3.3)An interesting thing to note is that the onstant γ in equation (3.3) above isindependent of the size t of the system. The argument of [18℄ is ompliatedand ombines ideas of using exponential sums from [15℄, estimates of Bour-gain (Lemma 2.13 in this artile) with the notion of matrix rigidity from theingenious work of Grigoriev and Razborov [28℄in arithmeti iruits. Whilespae onstraints will not allow us to over the entire argument, we desribesome details of the main ideas involved in proving the Two-Prime UniformityTheorem.3.4.1 Singleton Aepting SetsTo begin with, let us assume that eah aepting set is a singleton set. Inthis ase, w.l.o.g eah Ai ≡ {0}. Then, as before, one an write

Pr
x

[
fL(x) = 1 ∧ x ∈ Mq(b)

]

= Ex∈{0,1}n

[{ t∏

i=1

(
1

m

m−1∑

α=0

em

(
α(ℓi(x) − ai)

))}(
1

q

q−1∑

β=0

eq

(
β(x1 + · · · + xn − b)

)) ](3.4)



Mimiking arguments used in the proof of Bourgain's Uniformity Lemmato go from (2.4) to (2.7), we obtain,disq

(
fL

)
≤

1

mt

mt∑

j=1

Ex∈{0,1}n

[
em(rj(x))eq

(
b(x1 + · · ·+ xn)

)]where, eah rj is a linear polynomial obtained by a Zm-linear ombinationof ℓi's. Writing rj(x) = aj,1x1 + · · · + aj,nxn , we an separate variables andobtain
∣∣∣∣Ex∈{0,1}n

[
em

(
rj(x)

)
eq

(
b(x1 + · · · + xn)

)]∣∣∣∣ =
n∏

i=1

∣∣∣∣Exi∈{0,1}

[
em

(
aj,ixi

)
eq

(
bxi

)]∣∣∣∣

≤ exp(
− αn

)for some 0 < α < 1, where the last inequality is a simple exerise to deriveusing the fat that m, q are o-prime. Thus, in the singleton ase there is nodependene on t the number of polynomials in L.For general aepting sets, the �rst thing to do is to break down ouroriginal system into all possible singleton aepting set systems: we write
fL ≡

∑s
j=1 fLj , where Lj is a singleton system verifying if x satis�es ℓi(x) =

ai,j for 1 ≤ i ≤ t and ai,j ∈ Ai. Here s ≤ (m − 1)t as we may assume thateah Ai is a proper subset of Zm. This deomposition of fL, along with anappliation of triangle inequality allows us to deal with individual fLj in themanner presribed above for singleton aepting sets. It is straightforwardto verify that it proves Theorem 3.9 for the restrited ase of linear systems.Remark 3.12. The areful reader may have noted that forti�ed with Bour-gain's estimates from (2.8) in Lemma 2.13 for degree d polynomials, eahstep of the above argument readily adapts to polynomial systems of degree dyielding the Polynomial Uniformity Theorem. Further, it is worth pointingout that this tehnique yields muh stronger results for singleton polyno-mial systems just as in the ase of singleton linear systems desribed above.These stronger bounds yield exponential lower bounds for depth-four iruitsof type MAJ ◦ AND ◦MOD{0}
m ◦ ANDo(log n) (see Theorem 6 in [18℄).3.4.2 Low Rank SystemsThe �rst thing to note is that arguments in the previous setion for linearsystems of small size almost instantaneously generalize to systems of lowrank. Of ourse, we have to de�ne rank properly as we are over the ring Zm



with zero divisors. The de�nition we need is simply the following: the Zm-rank of L is the smallest positive integer r suh that there exists r linear formsin L that generate every other linear form in the system as some Zm-linearombination of them. W.l.o.g, let these basis forms be ℓ1, . . . , ℓr.Observation 3.13. Let L be a linear system of rank r. Then, disq

(
fL

)
≤

(m − 1)rexp( − γn
), where γ = γ(m, q) is a onstant.Proof. Assume w.l.o.g., that ℓ1, . . . , ℓr span the remaining t − r forms in L.Thus, the r-tuple (
ℓ1(x), . . . , ℓr(x)

) at any point x, determines ℓj(x) for any
ℓj ∈ L. Hene, we an write fL ≡

∑
j∈J fLj , as before, going over all possible

r-tuples of values of the singletons omposing Ai for i ≤ r, and keeping onlythose tuples for whih satisfying the �rst r equations implies satisfying theremaining t− r equations determined by them. Thus, |J | ≤ (m− 1)r and weonlude as in the proof of (linear subase of) Theorem 3.9.Hene, if our system has sublinear rank we an prove very good boundson the disrepany. A tempting intuition from linear algebra suggests thatsystems with high (i.e. linear) rank should be almost unsatis�able and henetheir solution set annot orrelate well with a nearly balaned funtion likeMODq. This may not be true beause our domain of interest is the booleanube and not Zn
m. Indeed, the following example on�rms this fear: let Lhave n linear forms, with the ith linear form being just xi. Eah aeptingset Ai ≡ {0, 1}. Thus, the rank of this system is n, but every point in ourboolean domain satis�es it!On the other hand, this ounter example represents a natural lass ofsystems, those that are sparse. We say L is k-sparse if eah ℓi ∈ L hasat most k non-zero oe�ients (out of the possible n) appearing in it. Thefollowing shows that sparse systems have low Zq disrepany.Lemma 3.14. Let L be a k-sparse linear system in Zm. Then, disq

(
fL

)
≤exp( − n/γk

) for some onstant γ(m, q), if m, q are o-prime.Proof. Consider any linear form ℓi in the system, with its aepting set Ai. As
L is k-sparse, the boolean funtion f ℓi depends on at most k variables. Hene,there is a polynomial Pi of degree at most k over Zm that exatly represents it,i.e. Pi(x) = f ℓi(x) for all x ∈ {0, 1}n. Replaing eah ℓi by its orresponding
Pi thus yields a singleton polynomial system P of degree at most k. Theargument gets �nished by mimiking the arguments in Setion 3.4.1 (see alsoRemark 3.12 in that setion).



3.4.3 Low Rigid RankIt turns out that we an ombine low rank and sparsity suh that we anhandle linear systems whih an be made to have low rank after a sparsehange to eah linear form. This is inspired by Valiant's famous notion ofrigidity [45, 46℄, used to attak (so far unsuessfully) size-depth trade-o�sfor omputing linear systems over �elds. We use the following de�nition:We say L is (k, r)-sparse if its assoiated linear forms ℓ1, . . . , ℓt satisfythe following property: eah ℓi an be written as ℓ′i + Li suh that the set
{Li|1 ≤ i ≤ t} has rank r and every ℓ′i is k-sparse.Lemma 3.15. Let L be a linear system that is (k, r)-sparse. Then, thereexists a onstant γ suh that disq

(
fL

)
≤ mrexp( − n/γk

), when m, q areo-prime numbers.Proof. As before, we look at the possible evaluations of the various linearforms. Let t be the size of L, and let ℓi = ℓ′i + Li. Wlog, assume that
L1, . . . , Lr are the linearly independent forms that span every other Li. Thenour idea is to split the sum into at most mr di�erent ones, orresponding tothe possible evaluations of L1, . . . , Lr. Let u be any suh evaluation in Zr

m.Given u, we know what eah Li evaluates to in Zm, for all i ≤ t. Hene,we know the set of values in Zm, denoted by Au
i , that ℓ′i ould evaluate toso that ℓi evaluates to some element in Ai. Sine, ℓ′i depends on at most kvariables, there exists a multilinear polynomial P u
i over Zm of degree at most

k suh that P u
i (x) = 0 (mod m) i� ℓ′i(x) ∈ Au

i . These observations allow usto write the following:disb
q

(
fL

)
=

∣∣∣∣
∑

u∈[m]r

Ex

[( r∏

j=1

1

m

m−1∑

a=0

em

(
a(Lj(x) − uj)

))
×

×

( t∏

i=1

1

m

m−1∑

a=0

em

(
aP u

i (x)
))

eq

(
b

n∑

i=1

xi

)] ∣∣∣∣Expanding out the produt of sums into sum of produts,disb
q

(
fL

)
≤

∑

u∈[m]r

1

mr+t

mr∑

i=1

mt∑

j=1

∣∣∣∣Ex

[
em

(
Ru

i (x) + Qu
j (x)

)
eq

(
b

n∑

i=1

xi

)] ∣∣∣∣,where eah Qu
j (x) is a polynomial of degree at most k obtained by a Zm-linear ombination of the t polynomials P u

1 , . . . , P u
t , and eah Ru

i is a linearpolynomial obtained by the ith Zm-linear ombination of the Li's. Thus,applying the bounds from Bourgain's estimate (2.8), we are done.



At this point, ould we hope that systems that are not (k, r)-sparse, i.e.do not have low rigid rank are hardly satis�able over the ube? Indeed, suha hope is generated from a beautiful result of Grigoriev and Razborov [28℄:they manage to show that if a linear system L over a �eld Fq has high rigidrank, then an exponentially small fration of the set of points in the booleanube satisfy the system. To show this, they introdue an ingenious notionof rank alled ommuniation rank. Porting their argument to our settingraises an obvious di�ulty: they work over a �eld and we work over the ring
Zm.However, in [18℄, we show that their argument an be generalized to oursetting in the following sense: let m = p1 · · · ps be a produt of s distintprimes. Let L ≡ {ℓ1, . . . , ℓt} be a linear system having t linear forms in
Zm. Via hinese remaindering, any linear form ℓi projets to s linear forms
ℓ1
i , . . . , ℓ

s
i , where ℓj

i is in the �eld Zpj
. Hene, L naturally projets to s linearsystems L1, . . . ,Ls, with Lj in Zpj

. Indeed, one ould onsider the rank andsparsity of eah Lj in the �eld Zpj
. Motivated by this, we say L in Zm is

r-simple if the set of linear forms an be partitioned into s sets J1, . . . , Jswith the following property: the projetion of the set of linear forms in Jj to
Zpj

forms a (
sm, (sm + 1)r

)-sparse system.Theorem 3.16 (Chattopadhyay and Wigderson [18℄, extendingGrigoriev and Razborov [28℄). Let L = {ℓ1, . . . , ℓt} be a system of tlinear forms, in n variables, over Zm, where m is a �xed positive integer withno repeated prime fators. If L is not r-simple, then
Pr

x∈R{0,1}n

[ t∧

i=1

ℓi(x) ∈ Ai

]
≤ exp( − Ω(r)

)
,where eah Ai ( Zm is an arbitrary set.We remark that the proof of the above theorem uses very di�erent teh-niques than any that we have overed here. In partiular, it involves aninteresting ombination of elementary additive ombinatoris and linear al-gebra. Theorem 3.16 provides a rank-sparsity ondition under whih thesystem beomes highly unsatis�able. It is worth noting that apart from as-suming that m is square-free, it does not limit the number of prime fatorsof m. Extending ideas from the proof of Lemma 3.15, [18℄ omplements theabove Theorem by the following:Lemma 3.17. Let L be a linear system over Zm with m = p1p2. Let linearforms in L admit a partition into sets J1 and J2 suh that the set of linear



forms in Ji are (k, r)-sparse over Zpi
for eah i ≤ 2. Then, if m, q areo-prime, disb

q

(
fL

)
≤ m2rexp( −

n

γk+m−1

)
.where γ = γ(m, q) is a onstant.Unfortunately, the argument in [18℄ for proving the above works only forthe ase when m is preisely a produt of two primes. It is not hard toombine Lemma 3.17 and Theorem 3.16 to prove the Two-Prime UniformityTheorem. We do not waste spae �lling in more details as the interestedreader an �nd the full argument in [18℄.4 ConlusionWe argued that the world of low-degree multilinear polynomials modulo aomposite is a very natural and fasinating setting to explore the power ofmodular ounting. Fundamental questions on the degree needed to representsimple funtions remain wide open. No serious bottlenek is known thatprevents us from making progress on them. We believe that with more e�ortsthese problems an be solved in the not too distant future.On the other hand, mysteriously log n omes up as a ommon barrier indi�erent settings. For instane, it shows up in the argument of Tardos andBarrington [42℄ seemingly for one reason and in Bourgain's [11℄ argumentfor seemingly another. Is it just oinidental? More intriguingly, by the re-sult of Beigel and Tarui [10℄ (improving upon an earlier work of Yao [48℄),we know that every funtion in ACC0 an be written as f

(
P (x1, . . . , xn)

),where f is a symmetri funtion and P is an integer polynomial of poly-logarithmi degree with oe�ients of magnitude at most quasipolynomial.Again Ω(log n)-degree bounds an be proven for P (via multiparty ommu-niation omplexity) to deompose a simple funtion like GIP that an betrivially omputed in ACC0[2]. Improving over log n is wide open! While itis oneivable that going past log n degree is di�ult for a general symmetrifuntion f , it is remarkable that we are stuk, more or less, at the same plaeeven when f is a very speial symmetri funtion like MODA
m. Viola andWigderson [47℄, using the language of Gower's norm [23℄, try to suggest ananswer. In a related work, Chattopadhyay [16℄ argues that troubles on bothfronts emanate from the tehnique of repeatedly raising the sum in questionto a �xed power, until the degree of the polynomial rashes to linear. Whilethese provide some lue, we feel that the mystery is not entirely solved.
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