
On the notion of bit
omplexityClaus Diem ∗Abstra
tIn many works in the �elds of
omputational
omplexity, algorith-mi
 number theory and mathemati
al
ryptology as well as in relatedareas,
laims on the running times of algorithms are made. However,often no
omputational model is given and the analysis is performedin a more or less ad ho
 way,
ounting in an intuitive way �bit oper-ations�. On the other hand, the
omputational model of a su

essorRAM with logarithmi

ost fun
tion provides an adequate and for-mal basis for the analysis of the
omplexity of algorithms from a �bitoriented� point of view.This motivates the sear
h for a result on the simulation of ma
hinesin a suitably de�ned general model by su

essor RAMs. In this work, avery general RAM model is de�ned, and then a �quasi-optimal� resulton the simulation of su
h ma
hines by su

essor RAMs is given.1 Introdu
tionIn a large body of works in the �elds of
omputational
omplexity, algorithmi
number theory and mathemati
al
ryptography as well as in related areas,
laims on the running times or time
omplexity of algorithms are made.However, in a substantial part of these works, the analysis of the algorithmsis performed in a more or less intuitive and ad ho
 way without referen
e toa spe
i�
 model of
omputation.Often, the running time (or expe
ted running time) is
omputed by
ount-ing in some intuitive way �bit operations�. Or to phrase it di�erently: in a
ertain intuitive way, the bit
omplexity of algorithms is
onsidered. Su
han approa
h is
learly su�
ient if one is merely interested in questions on
omplexity from a �qualitative� point of view (disregarding exponents) � asis often the
ase in
omplexity theory. However, often more
on
rete state-ments are made, and then the question poses itself whether the
laimedrunning time holds true in a parti
ular �bit-oriented� model of
omputation.
∗Universität Leipzig, Mathematis
hes Institut, diem�math.uni-leipzig.de

diem@math.uni-leipzig.de

The situation
on
erning spa
e requirements or spa
e
omplexity is similarbut in fa
t � as we will dis
uss below � it is even worse be
ause it is even less
lear what is exa
tly meant by
laims
on
erning spa
e requirements.This is by far a new phenomenon. Already in 1980 Arnold S
hönhageobserved; see [5℄:Many of the
on
rete algorithms given in the literature are (atleast impli
itly) designed for multitape Turing ma
hines, some-times the higher �exibility of random a

ess ma
hines (with avariety of instru
tion sets) is required, and frequently it is totallyleft to the reader's imagination what the model of
omputationshould look like.Let us �x the following terminology: By a ma
hine type we mean a typeof Turing ma
hines, random a

ess ma
hines, et
.1 A model of
omputationis then a ma
hine type together with a time and a spa
e measure. In some
ases, these measures are obvious (e.g. for Turing ma
hines), but in other
ases � in parti
ular for RAM models � they are not, and
are has to betaken whi
h measure is used.It is intuitively obvious that if one speaks about running time withoutfurther
omments, one should have a sequential ma
hine type with a bit-oriented storage and atomisti
 instru
tion set in mind, and the time measuremust re�e
t the number of bit operations required. Of
ourse, we
annotgive a rigorous de�nition of these intuitive notions but some requirementsseem to be obvious: First, the ma
hine type must have a most redu
edset of instru
tions. Se
ond, the time needed for one instru
tion must byde�nition re�e
t the lengths of the numbers whi
h have to be
onsidered forits exe
ution.2One su
h model is the multi-tape Turing ma
hine model (with varioussimilar de�nitions). Another model is the su

essor RAM with logarithmi

ost measure (again with various similar de�nitions).We note here that the bit-oriented point of view of this work is slightlydi�erent from the atomisti
 point of view in [5℄. An atomisti
 model a

ord-ing to S
hönhage is for example the Storage Modi�
ation Ma
hine (SSM).1We do not give a rigorous general de�nition of �ma
hine type�, and �
onsistent withthis � we do not
laim any general mathemati
al propositions on ma
hine types. Themathemati
al propositions are rather for spe
i�
 ma
hine types.2We assume here impli
itly that the ma
hines have a program. Let us note here thatin an obvious way, Turing ma
hines
an also be based on programs. This point of view isemphasized by S
hönhage,
f. [5℄ and [6℄.

However, from our point of view, the SSM model is not bit-oriented be
auseit misses a bit-oriented (a priori) storage. Also, the su

essor RAM types(as de�ned in [5℄) with uniform time measure deserve to be
alled atomisti
but not bit-oriented, be
ause in one time unit arbitrarily many bits might be
hanged. Note here that it is shown in [5℄ that the SSM type (with obvioustime measure) is real time equivalent to
ertain su

essor RAM types withuniform time measure.3In many works on the
omplexity of
omputational problems arising inalgorithmi
 number theory,
ryptography and related areas, it seems to beassumed that the underlying model is on the one hand bit-oriented and onthe other hand, storage a

ess is more or less immediate. These requirementsare met by su

essor RAMs with logarithmi
 time measure. The very limitedinstru
tion set of these models does however often not make it possible toobtain the
laimed running times in a straightforward way. For example, veryoften the algorithms and their analyzes require the presen
e of instru
tionsfor addition and subtra
tion of registers.This situation motivates the sear
h for a general result whi
h transformsa result for any kind of random a

ess ma
hine model with �reasonable� timeand spa
e measures to a result for su

essor RAMs.In this work, we give a rigorous de�nition of a RAM type with a very gen-eral instru
tion set (whose ma
hines we
all RAM with extended instru
tionset). With an adequate (and intuitive) time measure, we show that ma
hinesof this type
an be simulated �quasi-optimally� (optimally up to �logarith-mi
 fa
tors�) by su

essor RAMs with logarithmi

ost measure. Con
erningspa
e
omplexity, the result is �quasi-optimal� too and in fa
t relates a parti
-ularly strong spa
e measure on su

essor RAMs with a weak spa
e measurefor the general RAM type. The result on time
omplexity shows in parti
ularthat RAMs with additional instru
tions for addition and subtra
tion and /or for AND, OR and, XOR and / or for
on
atenation and shifts
an be sim-ulated �quasi-optimally� by su

essor RAMs with respe
t to the logarithmi

ost fun
tion.The simulation is straightforward, and in fa
t, it essentially already ap-peared in the literature before;
f. the proof of [8, Theorem 19.28℄. However,an extensive sear
h in the literature did not reveal a result as the one given inthis work even for the simulation of RAMs with instru
tions for addition and3The use of the notion �real time equivalent� in [5℄ is di�erent for its use at other pla
esin the literature, e.g., in [7℄ and [8℄. In the spirit of [7℄, one might say that these modelssimulate ea
h other in linear time. With the de�nitions of [8℄, the time measures of themodels are linearly related.

subtra
tion by su

essor RAMs.4 It is exa
tly the la
k of a suitable referen
ewhi
h motivated the author to write this work.2 Basi
 de�nitions and observationsWe assume that the reader is familiar with RAM models, at least on anintuitive basis. Brie�y, a su

essor RAM type is a RAM type with only onearithmeti
 instru
tion: the
omputation of the su

essor.5In [5℄ two su
h types are de�ned,
alled RAM0 and RAM1. Let us re
allthe parti
ular de�nitions in [5℄ on a
on
eptual level and
ompare them toother de�nitions of RAM types in literature.Let us de�ne the set of natural numbers N as the set {0, 1, 2, . . .}.All ma
hines de�ned in [5℄ operate on the alphabet {0, 1} for input andoutput. Ea
h ma
hine has an input and output tape, whi
h are read re-spe
tively write only. Furthermore, they have a program based on someinstru
tion set. The instru
tion sets
ontain instru
tions based on the
odesinput, output, goto, halt. The input instru
tion reads a bit from the inputtape and � a

ording to the bit � jumps to one of two labels. The outputinstru
tion prints a bit.As usual for random a

ess ma
hines, a ma
hine of type RAM1 has reg-isters, an a

umulator, instru
tions to load a �xed natural number and toload and store data dire
tly and indire
tly, and an instru
tion for
ompari-son. All registers and the a

umulator
an store arbitrary natural numbers(or bit strings). The registers are indexed by natural numbers, and the a
-
umulator is by de�nition not a register. Di�erent from other random a

essma
hine types, the RAM1 type only has one �arithmeti
� (or operational)instru
tion: the
omputation of the su

essor. The type RAM0 is similar tothe type RAM1. The essential di�eren
es are that the type RAM0 does nothave an instru
tion for indire
t addressing but it has an additional addressregister instead.Usually, random a

ess ma
hine types de�ned in the literature have addi-tional �arithmeti
 instru
tions�. The most
ited type in the literature seemsto be the one by Aho, Hop
roft, and Ullman ([1℄). This type has instru
tionsfor addition, subtra
tion, multipli
ation and division with remainder. Other4In [7, Theorem 2.4℄ a
orresponding result is stated for RAMs with instru
tions forAND, OR and XOR. However, the very short argument in [7℄ does not seem to be reallyto the point.5In [8℄ a ma
hine type
alled su

essor RAM is de�ned whi
h has instru
tions for
omputation of the su

essor and the prede
essor. We do not follow this de�nition.

types have instru
tions for bitwise AND, OR and XOR, and still others havean instru
tion for
on
atenation;
f. [8, Se
tion 1.2℄.Let a RAM0 or RAM1 Π be given, and let x be an input to Π. Thenthere are essentially two di�erent de�nitions of running time of Π for x:the uniform and the logarithmi
 running time. With the uniform runningtime, ea
h instru
tion exe
uted is given the time 1. In order to de�ne thelogarithmi
 running time, we �rst de�ne the size of a natural number n as 0if n = 0 and ⌊log
2
(n)⌋+1 otherwise.6 Now for the logarithmi
 running time,ea
h instru
tion not involving registers or the a

umulator is given the time1, and the instru
tions involving registers or the a

umulator are given astime 1+ the sum of sizes of the numbers in the a

umulator or the registersin question involved (the a

umulator for
omparison and
omputation ofthe su

essor, the a

umulator and one register for dire
t a

ess and thea

umulator and two registers for indire
t a

ess).We de�ne the uniform or logarithmi
 time measure for Π as the fun
tionon the natural numbers assigning to ea
h natural number x the
orrespondingrunning time of Π upon input of x.On the other hand, when we speak of the state of the ma
hine at aparti
ular time, we refer to the state after a parti
ular number of operationshas been exe
uted, that is, after a parti
ular uniform time has passed.From a bit-oriented point of view, the logarithmi
 time measure is
learlythe more adequate one. After all it really measures the bits involved in theexe
ution of a parti
ular instru
tion. Be
ause of this, in the following webase our results for time
omplexity on this measure. We therefore
all thelogarithmi
 measure also the time
omplexity and denote it by T .We have already mentioned that it is shown in [5℄ that the two su

essorRAM types RAM0 and RAM1 are real time equivalent with respe
t to theuniform time measure. In fa
t, the simulation in [5℄ reveals that they arealso real time equivalent with the logarithmi
 time measure, thus it doesnot matter whi
h type we
hoose. Let us � somewhat arbitrarily � de�ne asu

essor RAM as a ma
hine of type RAM1.There are various measures of spa
e
omplexity for RAMs de�ned in theliterature. In this work, for su

essor RAMs we use three spa
e measures

S1, S2, S3 whi
h are again fun
tions on the inputs and are de�ned as follows:Let us �x a su

essor RAM Π and some input x to it. Let Ri,t be the
ontent of register Ri at time t. Let ut(i) := sgn(size(Ri,t)), that is, ut(i)6This de�nition of the size of a number follows the de�nitions in [8℄. In [7℄ the size of
0 is by de�nition 1. The logarithmi
 fun
tion in [1℄ is the same as the size in [7℄; see alsoSe
tion 4.

indi
ates if register i is used at time t. Further, let
b := sup{i ∈ N | register Ri is used during the
omputation}
=sup{i ∈ N | ∃t ∈ N : ut(i) = 1} .We now de�ne:

S1(x) := sup
t∈N

∞
∑

i=0

(size(Ri,t) + size(i) · ut(i)
)

S2(x) :=
∞
∑

i=0

sup
t∈N

(size(Ri,t) + size(i) · ut(i)
)

S3(x) :=
b

∑

i=0

sup
t∈N

(size(Ri,t) + size(i))Clearly,
S1 ≤ S2 ≤ S3 .Measure S2 seems to be the most a

epted measure in the literature;
f. [7℄,[8℄. Measures as S1 and S2 but without the term for the size of the registernumber are also often used in the literature. For example, in [1℄ the
orre-sponding variant of measure S2 is used. From a bit-oriented point of view,measure S2 is however more natural.In
ontrast to the de�nitions in [8℄, the spa
e measures are also de�nedfor inputs for whi
h the ma
hine does not terminate. For inputs for whi
hthe ma
hine terminates, the measure is always �nite, for inputs for whi
h thema
hine does not terminate it might be �nite or in�nite.Let � as de�ned above � T be the time
omplexity of Π. Then
S3 ∈ O(T) .Indeed, let us �x some input x upon whi
h Π terminates. Wlog. we
anassume that numbers > 0 are only loaded dire
tly and indire
tly (no �xednumber n > 0 is loaded). Then the su

essors of 0, . . . , b − 1 have to be
omputed. The logarithmi
 running time for this is ∑b−1

i=0
(1 + size(i)) ≥

∑b

i=0
size(i). Furthermore, if Ri,t is 6= 0, then at some time s < t, Ri,t has tobe stored in register Ri, and the logarithmi
 time needed for this is at leastsize(Ri,t).3 Dis
ussion and further de�nitionsWe now strive for a general result whi
h transfers propositions on a typeof random a

ess ma
hines with a very broad arithmeti
 instru
tion set to

propositions for su

essor RAMs. The instru
tion set should
ontain allinstru
tions of the su

essor RAM type and additional instru
tions whi
hwe
all higher arithmeti
 instru
tions. These higher arithmeti
 instru
tionsde�ne partial fun
tions from N
n to N for some n, as for example do the usualaddition and subtra
tion instru
tions.7In order that one
an obtain a transfer result as desired,
learly, the partialfun
tions de�ned by the higher arithmeti
 instru
tions must be
omputable.A subtle question is then what time and spa
e requirements one should
hargefor the exe
ution of an instru
tion at a parti
ular time. Our answer to thisquestion is to essentially the following: We again use su

essor RAMs tode�ne the higher arithmeti
 instru
tions, and we measure the time and spa
e
omplexities of the operations of these su

essor RAMs with the measuresde�ned above.We now des
ribe the ma
hines and the time and spa
e measures we
on-sider in detail.First, we generalize the de�nition of su

essor RAM (i.e. RAM1) in thefollowing way: We do not anymore have just one input tape but several inputtapes. Correspondingly, the input instru
tions now take the following form:input m, λ0, λ1Here m is a natural number ≤ the number of input tapes, and as before

λ0, λ1 are labels. The operation given by this instru
tion is as follows: Onesymbol is read from tape m and then a

ording to the symbol being 0 or 1,the program is
ontinued at label λ0 or λ1.We
all the resulting ma
hine type multi-inputtape su

essor RAM type(mi-su

essor RAM type for short).We now de�ne a type of
omputational ma
hines whi
h we
all RAM withextended instru
tion set as well as time and spa
e measures on them.The set of instru
tions of the new type has two parts. The �rst part
onsists of the instru
tions of the su

essor RAM model; we
all these in-stru
tions basi
 instru
tions. The se
ond part is given as follows: For ea
hsu

essor RAM P , we introdu
e an instru
tion cP . We
all these instru
-tions higher arithmeti
 instru
tions. The arithmeti
 instru
tion are thenthe instru
tion for
omputation of the su

essor and the higher arithmeti
instru
tions.7The instru
tions one usually
onsiders in RAM models de�ne fun
tions, not onlypartial fun
tions.

The synta
ti
 requirements for a (program of a) RAM with extendedinstru
tion set are as for su

essor RAMs.8Let now a (program for a) RAM with extended instru
tion set Π be given.Then the operation of Π is as follows: The basi
 instru
tions operate as usual.The operation of cP for a su

essor RAM P is as follows: This instru
tion
auses P to be exe
uted in the following way. If P has n input tapes, P takesas input the
ontent of registers 1, . . . , n of Π. The output tape of P is thea

umulator of Π. If P terminates, Π
ontinues with the next instru
tion, asusual. If P does not terminate, Π does not terminate either.We de�ne three time measures for su
h a ma
hine Π.
• simple uniform time simply
ounts the number of instru
tions of Π.
• extended uniform time is de�ned as follows: The time for ea
h basi
instru
tion is 1, and the time for some instru
tion cP is the uniformtime needed for the exe
ution of P with the inputs
urrently presentin the respe
tive registers of Π.
• extended logarithmi
 time is de�ned in the same manner based on log-arithmi
 time: The time for ea
h basi
 instru
tion is measured in log-arithmi
 time, and the time for cP is the logarithmi
 time needed forthe exe
ution of P with the inputs
urrently present in the respe
tiveregisters of Π.It is extended logarithmi
 time whi
h
aptures best the intuitive idea of abit-oriented measure for this ma
hine type, and therefore, similarly to above,we
all this measure time
omplexity and denote it by T .Let still some RAM ma
hine with extended instru
tion set Π be given,and let x be an input for Π. Let i = 1, 2, 3. The ith basi
 spa
e measureof Π applied to x is de�ned as Si(x) above applied to Π; let us denote thismeasure by SBi.We de�ne the 1st spa
e measure of the exe
ution of some arithmeti
 in-stru
tion P at a parti
ular (simple uniform) time of Π as the �rst spa
emeasure applied to P and the
orresponding input (present in the
orre-sponding registers of Π). Now S1(x) is the supremum of SB1(x) and the �rstspa
e measure applied to the exe
utions of the arithmeti
 instru
tions.The de�nition of the measures S2 and S3 is a bit more
ompli
ated: Let

i = 2, 3. Let P be a su

essor RAM su
h that cP o

urs in (the program8One
an (formally) de�ne RAMs and programs of RAMs in su
h a way that a RAMand the
orresponding program are (by de�nition) identi
al.

of) Π (it might o

ur several times). Then we de�ne Si,P (x) as Si(x) abovebut with respe
t to all states of P for all exe
utions of P during the exe-
ution of Π. Let cP1
, . . . , cPk

with distin
t ma
hines P1, . . . , Pk be all higherarithmeti
 instru
tions o

urring in the (program of) Π. Then we de�ne
Si(x) := SBi(x) +

∑k

j=1
Si,Pj

(x).Again we have
S1 ≤ S2 ≤ S3 ,and it is not di�
ult to see that
S2 ∈ O(T) .However, there are ma
hines for whi
h it does not hold that S3 ∈ O(T). Infa
t, S3
an be exponentially large with respe
t to T . For example, there ex-ists a su

essor RAM E whi
h
omputes 2n in a time of O(n). Now using theinstru
tion cE, one immediately obtains a RAM with extended instru
tionset whi
h upon input of n ∈ N stores 1 in register 2n and then terminatesand for whi
h T ∈ O(n) and S3 ≥ SB3 ≥ 2n.4 The resultIn order to formulate the main result, it is
onvenient to use the followingfun
tion,
alled logarithmi
 fun
tion in [1℄.De�nition For some n ∈ N, we de�ne l(n) := 1 if n = 0 and l(n) :=

⌊log
2
(n)⌋ + 1 otherwise.Theorem Let some RAM with extended instru
tion set Π be given. Thenthere exists a su

essor RAM Π′ su
h that the following holds:

Π′ terminates if and only if Π terminates, and the output of Π′ is equalto the output of Π. Furthermore:Let T be the time
omplexity of Π and T ′ the time
omplexity of Π′, andlet S1 be the 1st spa
e measure for Π and S ′

3
the 3rd spa
e measure for Π′.Then

T ′ ∈ O(T · l(S1)) ⊆ O(T · l(T))and
S ′

3
∈ O(S1 · l(S1)) .We give the proof in two parts: We �rst only show the result for the
asethat Π is a su

essor RAM, and then we address the simulation of arbitrary

RAMs with extended instru
tion set. Note that the �rst result is non-trivialbe
ause of the bound on the third spa
e measure of Π′. The simulation forthe �rst result
ontains the essential idea for the general result as well.The result for su

essor RAMsThe simulation Let a su

essor RAM Π be given. We now des
ribe thema
hine Π′ used for the simulation.Note �rst that � as shown in the example at the end of Se
tion 2 � thenumbers stored in the registers of Π
an be exponentially large with respe
tto the running time. This is, however, not possible for su

essor RAMs. Sowe need a way to store the numbers in the registers of Π without using toolarge numbers in the registers of Π′.A key idea for the simulation to simulate the registers and the a

umulatorof Π in the following way: There are
ells for data, and they always only
ontain 0 or 1. As a very naive approa
h to this idea, one might try to storethe register
ells in arrays. There are, however, some problems with thisapproa
h: First, how does one
ope with �over�ow� of arrays and se
ond,how does one use indire
t addressing in an e�
ient way? One possibilityfor the se
ond problem would be to try to transfer su
h an array into oneregister. But note that we do note have addition instru
tions at our disposal,so it is un
lear how to implement this idea in a su�
iently e�
ient way.Rather than storing the data of one register of Π in an array, we storeit in a linked list: Ea
h node of the list
ontains two entries whi
h are ea
hstored in one register of Π′: The �rst entry is a data element (being 0 or 1),and the se
ond entry is the address of the next node.In the same way, we simulate the a

umulator of Π, and furthermore, alsoin this way, we implement an address register used for indire
t addressing.We use a binary tree to guarantee fast a

ess to the simulated registers.The tree is as follows: Ea
h node of the tree has at most two
hildren, andthe edges to the
hildren are labeled with 0 or 1.9 Let us assume that atsome time t, register Rx of Π
ontains data d > 0, and let xk · · ·x0 be thebinary expansion of x and dℓ · · · d0 be the binary expansion of d. Then atthe
orresponding time of the simulation, there is a path from the root of thetree following the labels x0, . . . , xk. The end of the path is the beginning ofthe linked list, and the data
ells of the list
ontain d0, . . . , dℓ. If on the otherhand d = 0, there is no su
h path. (There might be a partial path in the9We only use this labeling for the present informal des
ription of the simulation. Onlythe
hildren but not the labels are stored.

tree but not a full path.) It is this tree stru
ture whi
h allows for e�
ientmanipulation of data of Π.During the operation, new verti
es are inserted into the tree if some reg-ister is used whi
h previously
ontains 0, and verti
es are deleted if a registeris set ba
k to 0.The stru
ture just des
ribed is stored in the registers with even addresses,and one node o

upies two
onse
utive even registers.In order to a

ess the storage e�
iently, we use a sta
k and a
ounter.These are stored in the registers with odd addresses. Addresses of (tuples of)registers of Π′ whi
h were used for the tree or the data
ells and are deletedare put onto the sta
k for reuse. (The sta
k is stored as an array, and ea
haddress o

upies one register � as usual.) The
ounter stores the largestaddress used for the tree and the lists. If the sta
k is empty, the
ounter isin
remented, and its value is used as an address.
Illustration If, for example, all registers from 0 to 15 of Π are o

upied,the tree looks like this. Here the edges with the numbers are the beginningsof the lists for the
ontents of the
orresponding registers of Π. (The numbersare not stored but only printed here for orientation.)

0
0

��~~
~~

~~
~~

1

��
==

==
==

=

◦
0

}}||
||

||
||

|

1

��

1

0

��

1

��
@@

@@
@@

@@

◦
0

vvnnnnnnnnnnnnnnnn

1
}}||

||
||

||
|

2
0

}}||
||

||
||

|

1

��

◦

0

��

1

��
@@

@@
@@

@@
3

0
!!

BB
BB

BB
BB

B

1

((QQQQQQQQQQQQQQQQ

◦

1

��

4

1

��

◦

1

��

6

1

��

◦

1

��

5

1

��

◦

1

��

7

1

��

8 12 10 14 9 13 11 15

If only registers 8, 12, 5 and 15 are o

upied, the tree looks as follows:
◦

0

����
��

��
��

1

��
??

??
??

??

◦
0

����
��

��
��

1

��

1

��
??

??
??

??

◦
0

wwnnnnnnnnnnnnnnn

1
~~}}

}}
}}

}}
◦

1

��
??

??
??

??
◦

1

''NNNNNNNNNNNNN

◦

1

��

◦

1

��

5 ◦

1

��

8 12 15Again the numbers indi
ate that at these edges linked lists start.If now, for example, register 15 is
leared, the
orresponding edge as wellas the two edges above are deleted, and the
orresponding addresses of Π′are put on the sta
k for reuse.The time and spa
e requirements We now outline the results on timeand spa
e requirements obtained via the simulation.The number of registers of Π′ used for the simulation is in O(S1). Be
auseof the use of the sta
k for storage management, the supremum of addressesused is in O(S1) as well. It follows that at during the whole
omputation thesupremum of numbers stored in the registers is in O(S1).Therefore S ′

3
∈ O(S1 · l(S1)).Now, in order to load the
ontent of the simulation of register Ri of Πat time t into the simulation of the a

umulator or the simulated addressregisters we have to go along O(l(Ri,t) + l(i)) nodes of the sear
h tree andthe linked list for the register.Again, the supremum of numbers stored in registers of Π′ in O(S1). Thisimplies that the logarithmi
 time for su
h an operation is in O((l(Ri,t)+l(i))·

l(S1)).Analogous
onsiderations apply to the
omputation of the su

essor and
omparison.All in all, the time
omplexity of Π′ is in O(T · l(S1)).As already remarked in Se
tion 2, S1 ∈ O(T) and thus T ′ ∈ O(T ·l(S1)) ⊆
O(T · l(T)).

The general
aseThe outline for the general
ase is in fa
t nearly as the one for the restri
ted
ase. We however also have to simulate the arithmeti
 instru
tions cP , andfor this we use the simulation for su

essor RAMs just outlined.We simulate the storage of Π′ exa
tly as just des
ribed, but we onlyuse registers Ri with odd i. The registers Ri with even i are then used tosimulate the higher arithmeti
 instru
tions. If cP is su
h a higher arithmeti
instru
tion, then we simulate it by a su

essor RAM P ′ as des
ribed in the�rst part of the proof.We now outline the results on time and spa
e
omplexity for the general
ase. In fa
t, with minor modi�
ations, the analysis in the spe
ial
ase stillapplies.The number of registers of Π′ used for the simulation of the registers,the a

umulator, the sta
k, the
ounter and the address register of Π is nowin O(SB1), and the supremum of addresses used for these stru
tures is in
O(SB1). Thus the supremum of numbers stored in any register of Π′ usedfor these stru
tures is in O(SB1) as well.By the previous result, there exists a
onstant C1 > 0 su
h that thesupremum of addresses of Π′ and the supremum of numbers stored in theregisters of Π′ used for the simulation of the arithmeti
 instru
tions is≤ C1S1.All in all, we obtain S ′

3
∈ O(S1 · l(S1)).The logarithmi
 time for the simulation of loading or storing in registersof Π′ is in O((l(Ri,t) + l(i)) · l(SB1)), and again we have an analogous resultfor the
omputation of the su

essor and
omparison.Furthermore, there exists a
onstant C2 > 0 su
h that the simulation ofany higher arithmeti
 instru
tion CP of Π′ at any parti
ular time of Π′
anbe performed in logarithmi
 time ≤ C2 times the logarithmi
 time of theexe
ution of P ′ with the parti
ular input.All in all, the time
omplexity of Π′ is in O(T · l(S1)).As already remarked, S1 ∈ O(T).5 Some further remarksWe now make some further remarks related to the Theorem.

• As usual, one also
an de�ne non-deterministi
 RAMs with extendedinstru
tion set. There are in fa
t two approa
hes: First, one
an still

leave the instru
tion set as above (in parti
ular, for ea
h determin-isti
 su

essor RAM P , we have an instru
tion cP) but allow non-determinism in the same way as one usually does for RAM models.And se
ond, one
an in fa
t also extend the instru
tion set, allowinginstru
tions
orresponding to non-deterministi
 su

essor RAMs. Inany
ase, the proof of the Theorem in an obvious way also leads toresults on the simulation of non-deterministi
 RAMs.
• As a variant of this, one
an
onsider randomized RAMs. Here thesame
omments as above apply. In parti
ular, we
an use the Theoremto transfer propositions on the running times of Monte Carlo or LasVegas algorithms. Propositions
on
erning Las Vegas algorithms areoften formulated via expe
ted running times in the following sense:For ea
h input x the time
omplexity T (x) is now a random variable,and one
onsiders the fun
tion assigning to ea
h input x the expe
tedvalue of T (x). Propositions on expe
ted running times de�ned like this
an then also easily be transferred. The same applies to propositionson spa
e
omplexity with respe
t to the various measures.
• A usual RAM type is as the su

essor RAM types but with two kinds ofarithmeti
 instru
tions: addition and subtra
tion. (In [7℄ and [8℄ this is
alled the standard RAM.) Now, there exist mi-su

essor RAMs A and
S whi
h
an perform addition and subtra
tion in linear time and with
onstant storage. Let now Π be a �standard RAM� with logarithmi
time measure T , and let the spa
e measures S1, S2, S3 be de�ned asabove. Then Π
an in an obvious way be simulated by a RAM withextended instru
tion set Π′ su
h that T ′ ∈ Θ(T) and Si ∈ Θ(S ′

i) for
i = 1, 2, 3. We
an then apply the Theorem to simulate Π by a su

essorRAM Π′′ with T ′′ ∈ O(T · l(S1)) and S ′′

3
∈ O(S1 · l(S1)). The same holdswith respe
t to RAMs whi
h have additional instru
tions for AND, OR,and XOR and / or for
on
atenation and shifts.

• As already mentioned, a
lassi
al and often
ited
omputational modelis the ma
hine type de�ned in [1℄ with logarithmi

ost fun
tion. Inthis ma
hine type there are instru
tions for addition, subtra
tion, mul-tipli
ation and division with remainder.As shown by S
hönhage ([5, Theorem 7.1℄), there exists a su

essorRAM whi
h
omputes the produ
t of two natural numbers m ≥ n ina logarithmi
 time of O(l(m) · l(l(m))). Furthermore, division with

remainder
an be performed e�
iently with Newton iteration, and thestated
omplexity then also holds true ([3, 4.3.3. D℄).Let now a ma
hine Π as in [1℄ be given, and let T and S1, S2, S3 bede�ned as above. Then by using only the se
ond part of the simulationfor the Theorem, we obtain a su

essor RAM Π′ simulating Π with
T ′ ∈ O(T ·l(S1)) and S ′

3
∈ O(S1 ·l(S1)). So we have the same
on
lusionas in the previous item.

• If one substitutes logarithmi
 by uniform time and extended logarith-mi
 by extended uniform time, the simulation does not lead to a �quasi-optimal� result. Indeed, let Π and Π′ be as in the simulation, and let Tuand T ′

u be the extended uniform resp. uniform time measures. If now Πis a su

essor RAM, the supremum of addresses used and the supremumof values in any register are ≤ Tu. One then obtains T ′ ∈ O(Tu · l(Tu)).If however Π is some RAM with extended instru
tion set, one only hasthat the supremum of addresses used and the supremum of values inany register of Π are ≤ 2Tu . One then merely obtains T ′

u ∈ O(T 2

u).
• Of
ourse, with RAMs with extended instru
tion set and the simpleuniform time measure, one
an obtain nearly arbitrarily small runningtimes. Two spe
ial
ases are however worthwhile mentioning:Let Π is a �standard RAM� with simple uniform time measure Ts. Thenwith the simulation we obtain a su

essor RAM Π with simple uniformtime measure T ′

s and T ′

s ∈ O(T 2

s). The argument for this is exa
tlyas the one for the previous item. This result is given in [8, Theorem19.28℄.However, if one allows all four arithmeti
 instru
tions, one obtains adramati
ally di�erent model; see [2℄, [4℄ and [8, Theorem 20.12℄, [8,Theorem 20.35℄: The set of languages whi
h
an be re
ognized in poly-nomially bounded time on a nondeterministi
 ma
hine
an then alsobe re
ognized in polynomially bounded time on a deterministi
 ma-
hine and is equal to the set of languages whi
h
an be re
ognized inpolynomially bounded spa
e on a Turing ma
hine. From a
omplex-ity theoreti
 point of view, this model
an be
onsidered as a parallelmodel.
• One
an �iterate� the de�nition of the ma
hine type �RAM with ex-tended instru
tion� set by de�ning a new type whi
h has as arithmeti

all instru
tions of the RAM with extended instru
tion set. By iterat-ing this pro
edure, we obtain a sequen
e RAM types indexed by thenatural numbers; let us
all any ma
hine of these types a RAM withiteratively extended instru
tion set. We
an now also iterate the de�ni-tion of the extended logarithmi
 time measure and the spa
e measures,obtaining in this way measures for all these ma
hines. Let now su
h aRAM Π be given. Then one
an also apply the simulation iteratively.Finally, one obtains a su

essor RAM Π′ whi
h simulates Π su
h thatthe following holds: With the notations as in the Theorem and theusual Õ-notation to
apture logarithmi
 fa
tors, we have:
T ′ ∈ T · Poly(l(S1)) ⊆ Õ(T) and S ′

3
∈ Õ(S1)

• It would be very interesting to have a general �quasi-optimal� resulton the simulation of random a

ess ma
hines in some model by Turingma
hines. However, no su
h result is known. The following statement ishowever obvious: Let Π be a RAM with extended instru
tion set. Thenthere exists a Turing ma
hine (with 1-dimensional tapes) simulating Πwith a time
omplexity of O(T · S1) ⊆ O(T 2).6 SummaryWe give a summary of the de�nitions and results of this work on an intuitivelevel.The starting point of this work is the observation that often the analysisof algorithms is performed in an ad-ho
 way without referen
e to a spe
i�
model of
omputation. Impli
itly however, the algorithms are usually ana-lyzed in some kind of random a

ess ma
hine (RAM) model with some kindof instru
tion set. This motivates the sear
h for a general transfer result to atruly bit-oriented model of
omputation. Su
h a result is given in this work.Brie�y, the result
an be stated as follows: If one de�nes the time andspa
e requirements of the instru
tions of the model in a bit-oriented way,one
an obtain a transfer whi
h is �quasi-optimal�, i.e. �optimal up to alogarithmi
 fa
tor�.Generally speaking, the result shows that if one employs the usual Õor O∗ notation, it really is justi�ed to take an intuitive and not too formalapproa
h to
omplexity of algorithms.Two aspe
ts should however be added to
aution the reader:

First, if one uses the O-notation and gives expli
it �logarithmi
 terms�, itreally is ne
essary to �rst state the
orresponding
omputational model. (Atleast as long as no stronger simulation result is known.)Se
ond, one might argue that a more adequate model of
omputationfor algorithms with large spa
e requirements is the multitape Turing model.There is, however, no general �quasi-optimal� transfer result from RAM mod-els to the Turing model known.A
knowledgmentI thank Pierri
k Gaudry for dis
ussions on
omputational models.Referen
es[1℄ A. Aho, J. Hop
roft, and J. Ullman. The design and analysis of
omputeralgorithms. Addison-Wesley, 1974.[2℄ A. Berton, G Mauri, and N. Sabadini. Simulations among
lasses ofrandom a

ess ma
hines and equivalen
e among numbers su

in
tly rep-resented. Ann. Dis
rete Math., 25:65�90, 1985.[3℄ D. Knuth. The Art of Programming, Vol. 2 (Seminumeri
al Algorithms).Addison-Wesley, 1969.[4℄ A. S
hönhage. On the power of random a

ess ma
hines. In H. Maurer,editor, Pro
. 6th Internat. Coll. on Automata, Languages and Program-ming, volume 71 of LNCS. Springer, 1979.[5℄ A. S
hönhage. Storage Modi�
ation Ma
hines. SIAM J. Computing,9:490�508, 1980.[6℄ A. S
hönhage, A. Grotefeld, and E. Vetter. Fast algorithms � a multitapeTuring ma
hine implementation. BI Wissens
haftsverlag, Mannheim,1994.[7℄ P. van Emide Boas. Ma
hine Models and Simulations. In J. van Leeuwen,editor, Handbook of Theoreti
al Computer S
ien
e, Volume A: Algo-rithms and Complexity. Elsevier, 1992.[8℄ K. Wagner and G. We
hsung. Computational Complexity. VEB Verlagder Wissens
haften, Berlin, and D. Reidel Publishing Co., Dordre
ht,1986.

	Introduction
	Basic definitions and observations
	Discussion and further definitions
	The result
	Some further remarks
	Summary

