
The Computational Complexity

Column

by

Jacobo Torán

Dept. Theoretische Informatik, Universität Ulm
Oberer Eselsberg, 89069 Ulm, Germany

toran@informatik.uni-ulm.de
http://theorie.informatik.uni-ulm.de/Personen/jt.html

Parameterized Complexity in its origins was considered by many researchers to be
an exotic research �eld, orthogonal to the standard way of classifying problems in
complexity theory. In the last years however many surprising connections between
Parameterized Complexity and �classical� areas in complexity theory have been
established. Jörg Flum and Martin Grohe survey in this column some of these
interesting connections including links to the areas of bounded nondeterminism,
subexponential complexity or syntactic complexity classes.

Parameterized Complexity and

Subexponential Time

Jörg Flum∗ Martin Grohe†

∗Abteilung für Mathematische Logik, Albert-Ludwigs-Universität Freiburg, Eckerstr. 1,
79104 Freiburg, Germany. Email: flum@uni-freiburg.de
†Institut für Informatik, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099

Berlin, Germany. Email: grohe@informatik.hu-berlin.de

http://informatik.uni-ulm.de
http://www.uni-ulm.de
toran@informatik.uni-ulm.de
http://theorie.informatik.uni-ulm.de/Personen/jt.html

1. Introduction

Over the last 15 years, the theory of �xed-parameter tractability [13] has
developed into a well-established branch of algorithm design and complexity
theory. In this theory, the running time of algorithms is analyzed not only
in terms of the input size, but also in terms of an additional parameter of
problem instances. An algorithm is called �xed-parameter tractable (fpt) if
its running time is possibly super-polynomial in terms of the parameter of
the instance, but polynomial in the size. More precisely, an algorithm is fpt
if its running time is

f(k) · nO(1) (1.1)

for some computable function f , where n denotes the size of the input and
k the parameter. The idea is to choose the parameterization in such a way
that the parameter is small for problem instances appearing in a concrete
application at hand. Since f(k) is expected to be moderate for small k, �xed-
parameter tractability is a reasonable approximation of practical tractability
for such problem instances.

Fixed-parameter tractability is thus a speci�c approach to the design of
exact algorithms for hard algorithmic problems , an area which has received
much attention in recent years (see, for example, [17, 27]). Well known ex-
amples of non-trivial exact algorithms are the ever improving algorithms for
the 3-satis�ability problem [24, 25, 8, 20], the currently best being due to
Iwama and Tamaki [20] with a running time of roughly 1.324n, where n is
the number of variables of the input formula. In this article, we are mainly
interested in lower bounds for exact algorithms. For example, is there an al-
gorithm that solves the 3-satis�ability problem in time 2o(n)? The assumption
that there is no such algorithm is known as the exponential time hypothesis
(ETH). The exponential time hypothesis and related assumptions have been
studied from a complexity theoretic point of view in [14, 19, 18, 26]. Most
notably, Impagliazzo, Paturi, and Zane [19] have started to develop a theory
of hardness and completeness for problems with respect to subexponential
time solvability. An ultimate goal of such a theory would be to show the
equivalence of assumptions such as (ETH) with more established assump-
tions such as P 6= NP. Of course it is not clear at all if such an equivalence
can be proved without actually proving (ETH). Overall, we believe that it is
fair to say that subexponential time complexity is not very well understood.

What singles out �xed-parameter tractability among other paradigms for
the design of exact algorithms for hard algorithmic problems is that it is
complemented by a very well-developed theory of intractability. It is known

for quite a while that this intractability theory has close connections with
subexponential time complexity and the exponential time hypothesis [1]. But
only recently have these connections moved to the center of interest of re-
searchers in parameterized complexity theory [3, 10, 4, 5, 6]. This shift of
interest was caused by attempts to prove lower bounds for the parameter de-
pendence (the function f in (1.1)) of fpt-algorithms [3] and the investigations
of miniaturized problems in this context [10].

The purpose of this article is to explain these connections between pa-
rameterized and subexponential complexity. The intention is not primarily
to survey the most recent developments, but to explain the technical ideas
in su�cient detail. (For a recent survey on parameterized complexity theory,
see, for example, [9].) The main technical results are reductions between the
satis�ability problem and the weighted satis�ability problem, which asks for
satisfying assignments setting a speci�c number k of the variables to true.
We call an assignment setting exactly k variables to true a weight k assign-
ment. The reductions are based on a simple idea known as the k-log-n trick :
Specifying a weight k assignment to a set of n variables requires k · log n
bits. This can be used to reduce weighted satis�ability of a formula with n
variables to unweighted satis�ability of a formula with only k · log n variables.
A similar reduction can be used in the converse direction. To obtain reason-
ably tight reductions for speci�c classes of propositional formulas, some care
is required. The construction is carried out in the proof of Theorem 4.4.

All results presented in this article are known (essentially, they go back
to [1]), and they are not very deep. Nevertheless, we believe it is worth while
to present the results in a uniform and introductory manner to a wider audi-
ence. Our presentation may be slightly unfamiliar for the experts in the area,
as it is based on a new M-hierarchy of parameterized complexity classes. We
show that this hierarchy is entangled with the familiar W-hierarchy. The
M-hierarchy is a translation of a natural hierarchy of satis�ability problems
into the world of parameterized complexity, and �xed-parameter tractabil-
ity of the M-classes directly translates to subexponential complexity of the
corresponding satis�ability problems. Let us emphasize that even though we
will develop the theory in the setting of parameterized complexity, it directly
applies to subexponential complexity. The connection will be made explicit
in the last section of the article.

The article is organized as follows: After introducing our notation, we
start with a brief introduction into parameterized complexity theory. In
Section 4, we introduce the M-hierarchy and establish the connections be-
tween the M-hierarchy and subexponential time complexity on the one hand,
and between the M-hierarchy and the W-hierarchy on the other hand. In
Section 5, we study the miniaturized problems that originally led to the in-

troduction of the class M [1]. We prove a number of completeness results for
M[1], which are based on a combinatorial lemma known as the Sparsi�cation
Lemma [19]. (The proof of the Sparsi�cation Lemma itself is beyond the
scope of this article.) We put these results in the wider context of the syn-
tactically de�ned complexity class SNP in Section 6. Finally, in Section 7,
we translate the results back to the world of classical complexity theory and
the exponential time hypothesis.

One nice aspect of this area is that it has a number of very interesting
open problems. We conclude this article by listing a few of them.

2. Notation

The set of natural numbers (that is, positive integers) is denoted by N. For
integers n,m, we let [n,m] = {n, n + 1, . . . ,m} and [n] = [1, n]. Unless
mentioned explicitly otherwise, we encode integers in binary.

We use log n to denote the binary (base 2) logarithm of n ∈ N.
For computable functions f, g : N→ N, we say that f is e�ectively little-

oh of g and write f ∈ oe�(g) if there exist n0 ∈ N and a computable function
ι : N→ N that is non-decreasing and unbounded such that for all n ≥ n0,

f(n) ≤ g(n)

ι(n)
.

We mostly use the letter ι to denote computable functions that are non-
decreasing and unbounded (but possibly growing very slowly).

Throughout this paper we work with the e�ective version of �little-oh�. In
particular, we require subexponential algorithms to have a running time of
2o

e�(n) and not just 2o(n). The reason for this is that it gives us a correspon-
dence between �strongly uniform� �xed-parameter tractability and subex-
ponential complexity. A similar correspondence holds between �little-oh�
instead of �e�ective little-oh� and �uniform �xed-parameter tractability� in-
stead of �strongly uniform �xed-parameter tractability�. We prefer to work
with strongly uniform �xed-parameter tractability as it has a more robust
theory.

2.1. Propositional Logic

Formulas of propositional logic are built up from propositional variables X1,
X2, . . . by taking conjunctions, disjunctions, and negations. The negation of
a formula α is denoted by ¬α. We distinguish between small conjunctions ,

denoted by ∧, which are just conjunctions of two formulas, and big conjunc-
tions, denoted by

∧
, which are conjunctions of arbitrary �nite sequences of

formulas. Analogously, we distinguish between small disjunctions , denoted
by ∨, and big disjunctions , denoted by

∨
.

The set of variables of a formula α is denoted by var(α). An assignment
for a formula α is a mapping V : var(α) → {true, false}, and we write
V |= α to denote that V satis�es α.

We use a similar notation for Boolean circuits . In particular, we think
of the input nodes of a circuit γ as being labeled with variables, use var(γ)
to denote the set of these variables, and for an assignment V : var(γ) →
{true, false} we write V |= γ to denote that γ computes true if the input
nodes are assigned values according to γ.

The class of all propositional formulas is denoted by PROP, and the
class of all Boolean circuits by CIRC. Usually, we do not distinguish between
formulas and circuits, that is, we view PROP as a subclass of CIRC.

For t ≥ 0, d ≥ 1 we inductively de�ne the following classes Γt,d and ∆t,d

of propositional formulas: 1

Γ0,d = {λ1 ∧ . . . ∧ λc | c ≤ d, λ1, . . . , λc literals},
∆0,d = {λ1 ∨ . . . ∨ λc | c ≤ d, λ1, . . . , λc literals},

Γt+1,d = {
∧
i∈I

δi | I �nite index set and δi ∈ ∆t,d for all i ∈ I},

∆t+1,d = {
∨
i∈I

γi | I �nite index set and γi ∈ Γt,d for all i ∈ I}.

Γ2,1 is the class of all formulas in conjunctive normal form , which we often
denote by CNF. For d ≥ 1, Γ1,d is the class of all formulas in d-conjunctive
normal form, which we denote by d-CNF.

The size |γ| of a circuit γ is the number of nodes plus the number of
edges; thus for formulas the size is O(number of nodes). We usually use the
letter m to denote the size of a formula or circuit and the letter n to denote
the number of variables.

1We prefer to use Γ and ∆ instead of the more common Π and Σ to denote classes
of propositional formulas (Γ for conjunctions, ∆ for disjunctions). The reason is that we
want to reserve Π and Σ for classes of formulas of predicate logic. Often in parameterized
complexity, it is necessary to jump back and forth between propositional and predicate
logic, and it is helpful to keep them strictly separated on the notational level.

3. Fundamentals of Parameterized Complexity Theory

3.1. Parameterized Problems and Fixed-Parameter Tractability

As it is common in complexity theory, we describe decision problems as
languages over �nite alphabets Σ. To distinguish them from parameterized
problems, we refer to problems Q ⊆ Σ∗ as classical problems .

A parameterization of Σ∗ is a mapping κ : Σ∗ → N that is polynomial time
computable. A parameterized problem (over Σ) is a pair (Q, κ) consisting of
a set Q ⊆ Σ∗ and a parameterization κ of Σ∗. If (Q, κ) is a parameterized
problem over the alphabet Σ, then we call strings x ∈ Σ∗ instances of Q or of
(Q, κ) and the numbers κ(x) the corresponding parameters. Slightly abusing
notation, we call a parameterized problem (Q, κ) a parameterization of the
classical problem Q.

Usually, when representing a parameterized problem we do not mention
the underlying alphabet explicitly and use a notation as illustrated by the
following examples.

Example 3.1. Recall that a vertex cover in a graph G = (V,E) is a subset
S ⊆ V such that for each edge {u, v} ∈ E, either u ∈ S or v ∈ S. The
parameterized vertex cover problem is de�ned as follows:

p-Vertex-Cover
Instance: A graph G and a natural number k ∈ N.

Parameter: k.
Problem: Decide if G has a vertex cover of size k.

Example 3.2. The parameterized satis�ability problem for Boolean circuits
is de�ned as follows:

p-Sat(CIRC)
Instance: A Boolean circuit γ.

Parameter: |var(γ)|.
Problem: Decide if γ is satis�able.

More generally, for a class Γ of circuits or formulas, we let p-Sat(Γ) denote
the restriction of p-Sat(CIRC) to instances γ ∈ Γ.

p-Sat(Γ) is a parameterization of the classical problem Sat(Γ). There
are other interesting parameterizations of Sat(Γ), and we will see some later.

Example 3.3. The weight of an assignment V is the number of variables
set to true by V . A circuit γ is k-satis�able , for some k ∈ N, if there is a
satisfying assignment V of weight k for γ. The weighted satis�ability problem
WSat(Γ) for a class Γ of circuits asks whether a given circuit γ ∈ Γ is
k-satis�able for a given k. We consider the following parameterization:

p-WSat(Γ)
Instance: γ ∈ Γ and k ∈ N.

Parameter: k.
Problem: Decide if γ is k-satis�able.

De�nition 3.4. Let Σ be a �nite alphabet and κ : Σ∗ → N a parameteriza-
tion.

(1) An algorithm A with input alphabet Σ is an fpt-algorithm with respect
to κ if there is a computable function f : N→ N such that the running
time of A on input x is

f
(
κ(x)

)
· |x|O(1).

(2) A parameterized problem (Q, κ) is �xed-parameter tractable if there is
an fpt-algorithm with respect to κ that decides Q.

FPT denotes the class of all �xed-parameter tractable problems. 2

Example 3.5. p-Sat(CIRC) is �xed-parameter tractable.
Indeed, the obvious brute-force search algorithm decides if a circuit γ of

size m with n variables is satis�able in time O(2n ·m).

We leave it to the reader to show that p-Vertex-Cover is also �xed-
parameter tractable. On the other hand, p-WSat(2-CNF) does not seem
to be �xed-parameter tractable. We shall now introduce the theory to give
evidence for this and other intractability results.

3.2. Reductions

De�nition 3.6. Let (Q, κ) and (Q′, κ′) be parameterized problems over the
alphabets Σ and Σ′, respectively. An fpt-reduction (more precisely, fpt many-
one reduction) from (Q, κ) to (Q′, κ′) is a mapping R : Σ∗ → (Σ′)∗ such that:

(1) For all x ∈ Σ∗ we have x ∈ Q ⇐⇒ R(x) ∈ Q′.
2The notion of �xed-parameter tractability we introduce here is known as �strongly

uniform �xed-parameter tractability.� The alternative notion �uniform �xed-parameter
tractability� does not require the function f to be computable.

(2) R is computable by an fpt-algorithm with respect to κ.

(3) There is a computable function g : N→ N such that κ′(R(x)) ≤ g(κ(x))
for all x ∈ Σ∗.

We write (Q, κ) ≤fpt (Q′, κ′) if there is an fpt-reduction from (Q, κ) to
(Q′, κ′), and we write (Q, κ) ≡fpt (Q′, κ′) if (Q, κ) ≤fpt (Q′, κ′) and (Q′, κ′) ≤fpt

(Q, κ). We let
[
(Q, κ)

]fpt
be the class of parameterized problems fpt-reducible

to (Q, κ), that is,[
(Q, κ)

]fpt
=
{

(Q′, κ′)
∣∣ (Q′, κ′) ≤fpt (Q, κ)

}
.

For every class C of parameterized problems, we de�ne C-hardness and C-
completeness of a parameterized problem (Q, κ) in the usual way.

Example 3.7. Recall that an independent set in a graph is a set of pair-
wise non-adjacent vertices and consider the parameterized independent set
problem :

p-Independent-Set
Instance: A graph G and k ∈ N.

Parameter: k.
Problem: Decide if G has an independent set of size k.

Then p-Independent-Set ≤fpt p-WSat(2-CNF), where 2-CNF denotes
the class of all propositional formulas in 2-conjunctive normal form.

To see this, let G = (V,E) be a graph. For every vertex v ∈ V we
introduce a propositional variable Xv whose intended meaning is � v belongs
to the independent set�. We let

γ =
∧

{v,w}∈E

(¬Xv ∨ ¬Xw).

Then α is k-satis�able if and only if G has an independent set of size k.
(There is one detail here that requires attention: If v is an isolated vertex of
G, then the variable Xv does not occur in γ. Thus the claimed equivalence is
true for graphs without isolated vertices. We leave it to the reader to reduce
the problem for arbitrary graphs to graphs without isolated vertices.)

The converse also holds, that is,

p-WSat(2-CNF) ≤fpt p-Independent-Set,

but is much harder to prove [12]. By reversing the argument above, it is easy
to show that p-WSat(2-CNF−) ≤fpt p-Independent-Set, where 2-CNF−

denotes the class of all 2-CNF-formulas in which only negative literals occur.

We also need a notion of parameterized Turing reductions:

De�nition 3.8. Let (Q, κ) and (Q′, κ′) be parameterized problems over the
alphabets Σ and Σ′, respectively. An fpt Turing reduction from (Q, κ) to
(Q′, κ′) is an algorithm A with an oracle to Q′ such that:

(1) A decides (Q, κ).

(2) A is an fpt-algorithm with respect to κ.

(3) There is a computable function g : N → N such that for all oracle
queries �y ∈ Q′?� posed by A on input x we have κ′(y) ≤ g(κ(x)).

We write (Q, κ) ≤fpt-T (Q′, κ′) if there is an fptTuring reduction from (Q, κ)
to (Q′, κ′), and we write (Q, κ) ≡fpt-T (Q′, κ′) if (Q, κ) ≤fpt-T (Q′, κ′) and
(Q′, κ′) ≤fpt-T (Q, κ).

3.3. The W-Hierarchy

Recall the de�nitions of the classes Γt,d of propositional formulas.

De�nition 3.9. (1) For t ≥ 1, W[t] is the class of all parameterized prob-
lems fpt-reducible to a problem p-WSat(Γt,d) for some d ≥ 1, that
is,

W[t] =
⋃
d≥1

[
p-WSat(Γt,d)

]fpt
.

(2) W[SAT] is the class of all parameterized problems fpt-reducible to
p-WSat(PROP), that is,

W[SAT] =
[
p-WSat(PROP)

]fpt
.

(3) W[P] is the class of all parameterized problems fpt-reducible to
p-WSat(CIRC), that is,

W[P] =
[
p-WSat(CIRC)

]fpt
.

Observe that

FPT ⊆W[1] ⊆W[2] ⊆ · · · ⊆W[SAT] ⊆W[P].

One of the fundamental structural results of parameterized complexity theory
is the following normalization theorem for the W-hierarchy. For t, d ≥ 1 we
let Γ+

t,d be the class of Γt,d-formulas in which all literals are positive (that is,

no negation symbols occur) and Γ−t,d be the class of Γt,d-formulas in which all
literals are negative

Theorem 3.10 (Downey and Fellows [12, 11]).

(1) W[1] =
[
WSat(Γ−1,2)

]fpt
.

(2) For even t ≥ 2, W[t] =
[
WSat(Γ+

t,1)
]fpt

.

(3) For odd t ≥ 3, W[t] =
[
WSat(Γ−t,1)

]fpt
.

Many natural parameterized problems are complete for the �rst two levels
of the W-hierarchy. For example, p-Independent-Set is complete for W[1]
[11], and the parameterized dominating set problem is complete for W [2] [12].

3.4. W[P] and Limited Nondeterminism

We close this introductory section by presenting two results that establish
a very clean connection between the class W [P] and limited nondetermin-
ism [22, 16]. The �rst is a machine characterization of W [P]:

Theorem 3.11 ([2, 7]). A parameterized problem (Q, κ) over the alphabet
Σ is in W[P] if and only if there are computable functions f, h : N → N,
a polynomial p(X), and a nondeterministic Turing machine M deciding Q
such that for every input x on every run the machine M:

(1) performs at most f(k) · p(n) steps;

(2) performs at most h(k) · log n nondeterministic steps.

Here n = |x| and k = κ(x).

Let f : N → N. A problem Q ⊆ Σ∗ is in NP[f] if there is a polynomial
p and a nondeterministic Turing machine M deciding Q such that for every
input x on every run the machine M

(1) performs at most p(|x|) steps;

(2) performs at most f(|x|) nondeterministic steps.

There is an obvious similarity between the characterization of W [P] given
in Theorem 3.11 and the (classical) classes NP [f]. The next theorem estab-
lishes a formal connection:

Theorem 3.12 ([2]). The following statements are equivalent:

(1) FPT = W[P].

(2) There is a computable function ι : N → N that is non-decreasing and
unbounded such that PTIME = NP[ι(n) · log n].

The techniques used to prove this result are similar to those introduced in
the next section. Indeed, the direction (1) =⇒ (2) is an easy consequence of
Theorem 4.4.

The connection between parameterized complexity and limited nondeter-
minism can be broadened if one considers bounded parameterized complexity
theory, where some bound is put on the growth of the dependence of the
running time of an fpt-algorithm on the parameter (see [15]).

4. The M-Hierarchy

4.1. A New Parameterization of the Satis�ability Problem

In the following, we will consider di�erent parameterizations of the satis�a-
bility problem Sat(CIRC). We denote the input circuit by γ, its size by m,
and its number of variables by n. Without loss of generality we can always
assume that m ≤ 2n, because if m > 2n we can easily decide if γ is satis�able
in time mO(1). However, in general m can still be much larger than n.

If we parameterize Sat(CIRC) by n then we obtain the �xed-parameter
tractable problem p-Sat(CIRC). Let us now see what happens if we de-
crease the parameter. Speci�cally, let us consider the parameterizations(
Sat(CIRC), κh

)
, where

κh(γ) =

⌈
n

h(m)

⌉
for computable functions h : N → N. For constant h ≡ 1, κh is just our old
parameterization p-Sat(CIRC) ∈ FPT. At the other end of the scale, for
h(m) ≥ m ≥ n we have κh(γ) = 1, and essentially

(
Sat(CIRC), κh

)
is just

the NP-complete unparameterized problem Sat(CIRC). But what happens
if we consider functions between these two extremes?

If h(m) ∈ oe�(logm), then
(
Sat(CIRC), κh

)
is still �xed-parameter tracta-

ble. (To see this, use that Sat(CIRC) is trivially solvable in time mO(1) for
instances with m ≥ 2n.) If h(m) ∈ ωe�(logm) then for large circuits of size
close to 2n, but still 2o

e�(n), the parameter is 1 and �xed-parameter tractabil-
ity coincides with polynomial time computability. The most interesting range
from the perspective of parameterized complexity is

h(m) ∈ Θ(logm).

These considerations motivate us to introduce the following parameteri-
zation of the satis�ability problem for every class Γ of circuits.

p-log-Sat(Γ)
Instance: γ ∈ Γ of size m with n variables.

Parameter:
⌈

n
logm

⌉
.

Problem: Decide if γ is satis�able.

Obviously, p-log-Sat(Γ) is solvable in time

2n ·mO(1) ≤ 2k·logm ·mO(1) = mk+O(1),

where k =
⌈

n
logm

⌉
is the parameter. Intuitively it seems unlikely that the

problem is �xed-parameter tractable.
To phrase our �rst result in its most general form, we introduce a simple

closure property of classes of circuits: We call a class Γ paddable if for every
γ ∈ Γ and for every m′ ≥ |γ| there is a circuit γ′ ∈ Γ such that var(γ′) =
var(γ), the circuits γ and γ′ are equivalent, and m′ ≤ |γ′| ≤ O(m′). We call Γ
e�ciently paddable if, in addition, there is an algorithm that computes γ′ for
given γ and m′ ≥ |γ| in time (m′)O(1). Most natural classes of formulas and
circuits are e�ciently paddable, in particular all classes Γt,d and the classes
PROP and CIRC. For example, for the Γ1,2-formula

γ =
m∧
i=1

(λi1 ∨ λi2),

we can let λij = λmj for m < i ≤ m′ and j = 1, 2, and

γ′ =
m′∧
i=1

(λi1 ∨ λi2).

Proposition 4.1 ([3, 10]). Let Γ be an e�ciently paddable class of circuits.
Then

p-log-Sat(Γ) ∈ FPT ⇐⇒ Sat(Γ) ∈ DTIME
(
2o

e�(n) ·mO(1)
)
,

where n = |var(γ)| is the number of variables and m = |γ| the size of the
input circuit γ.

Proof: Suppose �rst that p-log-Sat(Γ) ∈ FPT. Let f : N → N be a com-
putable function and A an fpt-algorithm that decides p-log-Sat(Γ) in time

f(k) ·mO(1),

where k = dn/ logme is the parameter. Without loss of generality, we may
assume that f is increasing and time constructible, which implies that f(i) ≤
j can be decided in time O(j). Let ι : N→ N be de�ned by

ι(n) = max
(
{1} ∪ {i ∈ N | f(i) ≤ n}

)
.

Then ι is non-decreasing and unbounded, f(ι(n)) ≤ n for all but �nitely
many n, and ι(n) can be computed in time O(n2).

We shall prove that Sat(Γ) ∈ DTIME
(
2O(n/ι(n)) ·mO(1)

)
.

Let γ ∈ Γ, m = |γ| and n = |var(γ)|. Assume �rst that m ≥ 2n/ι(n). Note
that

k =

⌈
n

logm

⌉
≤ ι(n).

Thus f(k) ≤ f(ι(n)) ≤ n, and we can simply decide γ ∈ Sat(Γ) with the
fpt-algorithm A in time

f(k) ·mO(1) ≤ n ·mO(1) = mO(1).

Assume next that m < 2n/ι(n). Let m′ = 2dn/ι(n)e. Let γ′ ∈ Γ such that
var(γ′) = var(γ), the circuits γ and γ′ are equivalent, and m′ ≤ |γ′| ≤ O(m′).
Since Γ is e�ciently paddable, such a γ′ can be computed in time polynomial
in m′, that is, time 2O(n/ι(n)). Let k′ = n/ log |γ′|. Then k′ ≤ ι(n). We decide
γ′ ∈ Sat(Γ) with the fpt-algorithm A in time

f(k′) · (m′)O(1) ≤ n · 2O(n/ι(n)).

This completes the proof of the forward direction.

For the backward direction, let B be an algorithm solving Sat(Γ) in
DTIME

(
2O(n/ι(n)) · mO(1)

)
for some computable function ι : N → N that

is non-decreasing and unbounded. Let f be a non-decreasing computable
function with f(ι(n)) ≥ 2n for all n ∈ N. We claim that

p-log-Sat(Γ) ∈ DTIME(f(k) ·mO(1)).

Let γ ∈ Γ, m = |γ|, n = |var(γ)|, and k = dn/ logme. If m ≥ 2n/ι(n) then
algorithm B decides γ ∈ Sat(Γ) in time mO(1). If m < 2n/ι(n), then

k =

⌈
n

logm

⌉
≥ ι(n)

and thus f(k) ≥ 2n. Thus we can decide γ ∈ Sat(Γ) by exhaustive search
in time O(f(k) ·m). 2

In the following, we shall say that Sat(Γ) is subexponential (with respect
to the number of variables) if it is solvable in DTIME

(
2o

e�(n) ·mO(1)
)
.

4.2. The M-Hierarchy

Motivated by Proposition 4.1, we de�ne another hierarchy of parameterized
complexity classes in anlogy to De�nition 3.8:

De�nition 4.2. (1) For every t ≥ 1, we let M[t] =
⋃
d≥1

[
p-log-Sat(Γt,d)

]fpt
.

(2) M[SAT] =
[
p-log-Sat(PROP)

]fpt
.

(3) M[P] =
[
p-log-Sat(CIRC)

]fpt
.

Then by Proposition 4.1:

Corollary 4.3. (1) For t ≥ 1, M[t] = FPT if and only if Sat(Γt,d) is
subexponential for all d ≥ 1.

(2) M[SAT] = FPT if and only if Sat(PROP) is subexponential.

(3) M[P] = FPT if and only if Sat(CIRC) is subexponential.

The following theorem is essentially due to Abrahamson, Downey, and Fel-
lows [1] (also see [13]).

Theorem 4.4. For every t ≥ 1,

M[t] ⊆W[t] ⊆ M[t+ 1].

Furthermore, M[SAT] = W[SAT] and M[P] = W[P].

Proof: We �rst prove M[t] ⊆ W[t]. For simplicity, let us assume that t is
odd. Fix d ≥ 1 such that t+ d ≥ 3. We shall prove that

p-log-Sat(Γt,d) ≤fpt p-WSat(Γt,d). (4.1)

Let γ ∈ Γt,d. We shall construct a Γt,d-formula β such that

γ is satis�able ⇐⇒ β is k-satis�able. (4.2)

Let m = |γ|, n = |var(γ)|. To simplify the notation, let us assume that
` = logm and k = n/ logm are integers. Then n = k · `. Let X = var(γ),
and let X1, . . . ,Xk be a partition of X into k sets of size `.

For 1 ≤ i ≤ k and every subset S ⊆ Xi, let Y S
i be a new variable. Let Yi

be the set of all Y S
i and Y =

⋃k
i=1 Yi. Call a truth value assignment for Y

good if for 1 ≤ i ≤ k exactly one variable in Yi is set to true. There is a

bijection f between the truth value assignments V for X and the good truth
value assignments for Y de�ned by

f(V)(Y S
i) = true ⇐⇒ ∀X ∈ Xi :

(
V(X) = true ⇐⇒ X ∈ S

)
for all V : X → {true, false}, 1 ≤ i ≤ k, and S ⊆ Xi.

Let β′′ be the formula obtained from γ by replacing, for 1 ≤ i ≤ k and
X ∈ Xi, each occurrence of the literal X by the formula∧

S⊆Xi with X 6∈S
¬Y S

i

and each occurrence of the literal ¬X by the formula∧
S⊆Xi with X∈S

¬Y S
i .

Then an assignment V : X → {true, false} satis�es γ if and only if f(V)
satis�es β′′. Thus γ is satis�able if and only if β′′ has a good assignment.
Note that the size of each of the sets Yi is 2` = m. Thus the size of β′′ is
polynomial in m. Moreover, β′′ can easily be computed from γ in polynomial
time.

β′′ is not a Γt,d-formula: The transformation from γ to β′′ has turned the
small disjunctions (λ1 ∨ . . . ∨ λd) on the bottom level of γ into formulas∧

i

ν1i ∨ . . . ∨
∧
i

νdi.

Applying the distributive law to all these subformulas turns them into big
conjunctions of disjunctions of at most d literals, and since t is odd, it turns
the whole formula β′′ into a Γt,d-formula β′. Since d is �xed, the size only
increases polynomially, and β′ can be computed from β′′ in polynomial time.
And we still have: γ is satis�able if and only if β′ has a good assignment.

All that remains to do is add a subformula stating that all assignments
of weight k are good. We let

α =
k∧
i=1

∧
S,T⊆Xi
S 6=T

(¬Y S
i ∨ ¬Y T

i)

and β = α ∧ β′. Then β is (equivalent to) a Γt,d-formula that satis�es (4.2).

Next, we prove W[t] ⊆ M[t+1]. For simplicity, let us assume again that t
is odd. Let d = 2 if t = 1 and d = 1 otherwise. Recall that by Theorem 3.10,
WSat(Γ−t,d) is W[t]-complete. We shall prove that

p-WSat(Γ−t,d) ≤
fpt p-log-Sat(Γt+1,1). (4.3)

We simply reverse the idea of the proof that M [t] ⊆W[t].
Let β ∈ Γ−t,d and k ≥ 1, say,

β =
∧
i1∈I1

∨
i2∈I2

. . .
∧
it∈It

δ(i1, . . . , it), (4.4)

where each δ(i1, . . . , it) is a disjunction of at most d negative literals. Let
n = |var(β)| and ` = log n, and let us assume again that ` is an integer.
Furthermore, we assume that the variables of β are indexed with subsets of
{1, . . . , `}, or more precisely, that

var(β) = Y =
{
Y S
∣∣ S ⊆ {1, . . . , `}}.

For 1 ≤ i ≤ k and 1 ≤ j ≤ `, let Xij be a new variable. As above, let

Xi = {Xij | 1 ≤ j ≤ `} and X =
⋃k
i=1Xi. The idea is that every assignment

to the variables in Xi corresponds to a subset Si ⊆ {1, . . . , `} and hence to
a variable Y Si . Thus an assignment to all variables in X corresponds to a
subset {Y S1 , . . . , Y Sk} ⊆ Y and hence to an assignment to the variables in Y
of weight at most k (�at most� because the Si are not necessarily distinct).

Formally, let g be the following mapping from the assignments for X to the
assignments for Y of weight at most k: For every V : X → {true, false},
we let g(V) : Y → {true, false} the assignment that sets Y S1 , . . . , Y Sk to
true and all other variables to false, where for 1 ≤ i ≤ k

Si = {j | V(Xij) = true}.

Let γ′′ be the formula obtained from β by replacing each literal ¬Y S by the
subformula

χS =
k∧
i=1

(∨
j∈S

¬Xij ∨
∨

j∈{1,...,`}\S

Xij

)
.

(Remember that all literals in β are negative.) Then for every assignment
V : X → {true, false},

V satis�es γ′′ ⇐⇒ g(V) satis�es β.

The translation from β to γ′′ turns every δ = δ(i1, . . . , it) in (4.4) into a
disjunction δ′ of at most d formulas χS. Say,

δ′ =
(
χS1 ∨ . . . ∨ χSd

)
By applying the distributive law, this formula can be turned into a conjunc-
tion χ of kd disjunctions of d · ` literals. Applying this operation to every δ′

in γ′′, we obtain an equivalent Γt+1,1-formula γ′. Then for every assignment
V : X → {true, false},

V satis�es γ′ ⇐⇒ g(V) satis�es β.

This almost completes the proof. The only problem that remains to be solved
is that not all assignments g(V) have weight exactly k, because some of the
induced Si may be identical. Let

α′ =
∧

1≤i<i′≤k

∨̀
j=1

¬(Xij ↔ Xi′j).

Then for every V : X → {true, false} that satis�es α′, the assignment
g(V) has weight exactly k. Thus g induces a mapping from the assignments
for X that satisfy α′ onto the weight k assignments for Y . Note that α′ is
equivalent to a Γ2,1-formula α of size O(k2 · 22`) = O(k2 · n2). Furthermore,
given k, n, such a formula α can be computed in time polynomial in k and
n.

We let γ = α ∧ γ′. Then γ is satis�able if and only if β is k-satis�able.
The size m of γ is polynomial in the size of β, and the number of variables is
k · `, where ` = log n ≤ logm. By adding dummy variables (to the outermost
conjunction of γ) we can adjust the number of variables in such a way that
k = d|var(γ)|/ logme.

It remains to prove M [SAT] = W[SAT] and M[P] = W[P]. We can simply
carry out the preceding constructions without worrying about the form of the
resulting formulas. 2

Corollary 4.5. Let t, d ≥ 1.

(1) If W[t] = FPT then Sat(Γt,d) is subexponential.

(2) If Sat(Γt+1,1) is subexponential then W[t] = FPT.

By a more re�ned argument based on the same idea, Chen et al. [4]
strengthened part (1) of the corollary as follows:

Theorem 4.6 ([4]). Let t, d ≥ 1 such that t+ d ≥ 3. If

WSat(Γt,d) ∈ DTIME(f(k) · noe�(k) ·mO(1))

for some computable function f , then Sat(Γt,d) is subexponential.

In [5], this has further been strengthened by restricting the range of values
k for which the hypothesis is needed.

Let us brie�y return to the connections between W [P] and limited non-
determinism. Recall Theorem 3.12. We encourage the reader to prove the
direction (1) =⇒ (2); it follows easily from W [P] = M[P]. (The converse
direction of the theorem is also not hard to prove.) Let us summarize our
three characterizations of W [P] vs FPT in a corollary:

Corollary 4.7. The following three statements are equivalent:

(1) W[P] = FPT.

(2) Sat(CIRC) is subexponential.

(3) PTIME = NP[ι(n) · log n] for some computable function ι : N→ N that
is non-decreasing and unbounded.

5. M[1] and Miniaturized Problems

Originally, the class M [1] was de�ned in terms of so-called parameterized
miniaturizations of NP-complete problems [10]. Let Q ⊆ Σ∗ be any decision
problem. We de�ne:

p-mini-Q
Instance: x ∈ Σ∗ and m ∈ N in unary.

Parameter:
⌈
|x|

logm

⌉
.

Problem: Decide if x ∈ Q.

We call p-mini-Q the �miniaturization� of Q, because if we assume the pa-
rameter k = d|x|/ logme to be small, then the size |x| = bk · logmc of the
actual instance is very small compared to the �padded size� |x| + m. There
is an equivalent way of formulating the problem making this explicit:

Instance: x ∈ Σ∗ and k,m ∈ N in unary such
that |x| = bk · logmc.

Parameter: k.
Problem: Decide if x ∈ Q.

The main reason that we are interested in these strange problems is the
following equivalence:

Proposition 5.1. Let Σ be a �nite alphabet and Q ⊆ Σ∗. Then

p-mini-Q ∈ FPT ⇐⇒ Q ∈ DTIME(2o
e�(n)),

where n = |x| denotes the length of the instance x of Q.

We skip the proof, which is very similar to the proof of Proposition 4.1.
The main combinatorial tool in the development of a M [1]-completeness

theory is the Sparsi�cation Lemma due to Impagliazzo, Paturi, and Zane
[19]. The lemma says that the satis�ability problem for d-CNF-formulas
can be reduced to the satis�ability problem for d-CNF-formulas whose size
is linear in the number of variables by a suitable reduction that preserves
subexponential time solvability.

Lemma 5.2 (Sparsi�cation Lemma [19]). Let d ≥ 2. There is a com-
putable function f : N → N such that for every k ∈ N and every formula
γ ∈ d-CNF with n = |var(γ)| variables there is a ∆2,d-formula

β =

p∨
i=1

βi

such that:

(1) β is equivalent to γ,

(2) p ≤ 2n/k,

(3) |βi| ≤ f(k) · n for 1 ≤ i ≤ p.

Furthermore, there is an algorithm that, given γ and k, computes β in time
2n/k · |γ|O(1).

The idea of using the Sparsi�cation Lemma in this context goes back to
Cai and Juedes [3].

Theorem 5.3 ([3, 10]). p-mini-Sat(3-CNF) is M[1]-complete under fpt Tur-
ing reductions.

Proof: To prove that p-mini-Sat(3-CNF) ∈ M[1], we show that

p-mini-Sat(3-CNF) ≤fpt p-log-Sat(3-CNF).

Let (γ,m) be an instance of p-mini-Sat(3-CNF) and k = |γ|/ logm. By
padding γ we obtain an equivalent formula γ′ such that var(γ′) = var(γ) and
m′ = |γ′| ≥ m. Then

k′ =
|var(γ′)|
logm′

≤ |var(γ)|
logm

≤ |γ|
logm

= k.

Thus (γ,m) 7→ γ′ is an fpt-reduction from p-mini-Sat(3-CNF) to
p-log-Sat(3-CNF).

To prove hardness, we show that

p-log-Sat(d-CNF) ≤ftp-T p-mini-Sat(3-CNF)

for all d ≥ 3. Fix d ≥ 3.
Let γ ∈ d-CNF. Let m = |γ|, n = |var(γ)|, and k = dn/ logme.
Choose f : N → N (depending on d) and β =

∨p
i=1 βi (depending on γ

and k) according to the Sparsi�cation Lemma 5.2. Since

2n/k = 2
n

dn/ logme ≤ m,

we have p ≤ m, and β can be computed in time mO(1). Let 1 ≤ i ≤ p. Since
βi has at most f(k) · n clauses, there is a 3-CNF-formula β′i with at most
f(k) · d · n variables and of length |β′i| ∈ O(f(k) · d · n) such that

βi is satis�able ⇐⇒ β′i is satis�able.

Thus γ is satis�able if and only if there exists an i, 1 ≤ i ≤ p, such that β′i is
satis�able.

For 1 ≤ i ≤ p we have

k′i =

⌈
|var(β′i)|

logm

⌉
= O

(
f(k) · d · n

logm

)
= O(f(k) · d · k).

The desired Turing reduction decides if γ ∈ Sat(d-CNF) by querying the
instances (β′i,m), for 1 ≤ i ≤ p, of p-mini-Sat(3-CNF). 2

Corollary 5.4. p-log-Sat(3-CNF) is M[1]-complete under ftp Turing reduc-
tions.

Proof: We have noted in the proof of Theorem 5.3 that p-mini-Sat(3-CNF)
is fpt-reducible to p-log-Sat(3-CNF). 2

Polynomial time reductions between problems do not automatically give
fpt-reductions between their miniaturizations. Let us a call a polynomial
time reduction R from a problem Q ⊆ Σ∗ to a problem Q′ ⊆ (Σ′)∗ size
preserving if for all x ∈ Σ∗ we have |R(x)| ∈ O(|x|).

Lemma 5.5. Let Q ⊆ Σ∗ and Q′ ⊆ (Σ′)∗ such that there is a size preserving
polynomial time reduction from from Q to Q′. Then there is an fpt-reduction
from p-mini-Q to p-mini-Q′.

Proof: If R is a size-preserving polynomial time reduction from Q to Q′ then
(x,m) 7→ (R(x),m) de�nes an fpt-reduction from p-mini-Q to p-mini-Q′. 2

Corollary 5.6. The following problems are M[1]-complete under fpt Turing
reductions:

(1) p-mini-d-Colorability for every d ≥ 3,

(2) p-mini-Sat(d-CNF) for every d ≥ 3 and p-mini-Sat(CIRC).

Proof: The standard polynomial time reductions between d-Colorability,
Sat(CIRC), Sat(3-CNF) are size preserving. 2

Lemma 5.7. There is a size preserving polynomial time reduction from
WSat(CIRC) to Sat(CIRC).

We skip the proof. The main idea is to use a linear size circuit to count the
number of variables set to true.

Corollary 5.8. The following problems are M[1]-complete under fpt Turing
reductions:

(1) p-mini-Independent-Set,

(2) p-mini-Vertex-Cover,

(3) p-mini-WSat(d-CNF) for every d ≥ 2 and p-mini-WSat(CIRC).

Proof: The standard reductions from Sat(3-CNF) to Independent-Set,
from Independent-Set to Vertex-Cover and vice versa, from Indepen-
dent-Set to WSat(2-CNF), from WSat(2-CNF) to p-mini-WSat(CIRC)
are all size preserving. Thus the equivalence of the problems here and in
Corollary 5.6 follows from Lemma 5.7. 2

It is an open problem if the miniaturization p-mini-Short-NTM-Halt
of the following problem Short-NTM-Halt is M[1]-complete. The input
Turing machine is supposed to have just one work tape (or a �xed number),
but may have an arbitrary alphabet. The parameterization of this problem
by n is known to be W[1]-complete [12].

Short-NTM-Halt
Instance: A nondeterministic Turing machine M and

an n ∈ N in unary.
Problem: Decide if M , started with the empty tape,

halts in at most n steps.

Note that the standard reduction between Clique and Independent-
Set is not size preserving. Actually, we have:

Corollary 5.9. p-mini-Clique ∈ FPT.

Proof: Observe that Clique ∈ DTIME(nO(
√
n)), where n is the size of the

input. The reason is that a clique of size ` has Ω(`2) edges and thus can only
exist in a graph of size Ω(`2).

By Proposition 5.1, this implies that p-mini-Clique ∈ FPT. 2

Corollary 5.9 highlights how sensitive the whole theory is to the speci�c
encoding of the input and our �size measure�. For example, for graph prob-
lems it would also be natural to de�ne the �size� of an instance to be the
number of vertices. Then, obviously, there are �size�-preserving reductions
between Clique and Independent-Set. To investigate the role of size
measures, we de�ne a size measure on Σ∗ to be a polynomial time com-
putable function ν : Σ∗ → N. Of course a size measure is just another
parameterization. For now, we use a di�erent term and di�erent symbols to
avoid confusion between the two. We will discuss the relation between size
measures and parameterizations below.

Obviously, the actual input size, that is, ν(x) = |x| is a size measure,
which we call the standard size measure . Other natural size measures are the
number of vertices of a graph, that is,

νvert(x) =

{
|V | if x is the encoding of a graph (V,E),

|x| otherwise,

and the number of variables of a formula or circuit, that is,

νvar(x) =

{
|var(γ)| if x is the encoding of a circuit γ,

|x| otherwise,

We let

p-mini[ν]-Q
Instance: x ∈ Σ∗ and m ∈ N in unary.

Parameter:
⌈
ν(x)
logm

⌉
.

Problem: Decide if x ∈ Q.

By essentially the same proof as that of Propositions 4.1 and 5.1, we obtain
the following slightly more general result.

Proposition 5.10. Let Σ be a �nite alphabet and Q ⊆ Σ∗. Then

p-mini[ν]-Q ∈ FPT ⇐⇒ Q ∈ DTIME(2o
e�(ν(x)) · |x|O(1)).

By using the Sparsi�cation Lemma, it can be proved that:

p-mini[νvar]-Sat(d-CNF) ≡fpt-T p-mini-Sat(d-CNF)

p-mini[νvar]-WSat(d-CNF) ≡fpt-T p-mini-WSat(d-CNF)

p-mini[νvert]-d-Colorability ≡fpt-T p-mini-d-Colorability

p-mini[νvert]-Independent-Set ≡fpt-T p-mini-Independent-Set

p-mini[νvert]-Vertex-Cover ≡fpt-T p-mini-Vertex-Cover.

Furthermore, we clearly have

p-mini[νvert]-Clique ≡fpt-T p-mini[νvert]-Independent-Set.

Thus, by Corollaries 5.6 and 5.8, all these problems are M [1]-complete. It
is not known if p-mini[νvar]-Sat(CIRC) or just p-mini[νvar]-Sat(CNF) is re-
ducible to p-mini-Sat(CIRC).

Let us re-iterate that a size measure and a parameterization are really
the same thing (though introduced with di�erent intentions). This becomes
most obvious for the problems p-Sat(Γ), whose parameterization is just the
size measure νvar for Sat(Γ). Proposition 5.10 can be read as stating that
p-mini[ν]-Q ∈ FPT if and only if the parameterized problem (Q, ν) can
be solved by a subexponential fpt-algorithm , that is, an fpt-algorithm whose
running time is 2o

e�(k) · nO(1), where k is the parameter and n the input size.
A starting point for the whole theory was the question of whether the

parameterized vertex cover problem p-Vertex-Cover (cf. Example 3.1),
which is easily seen to be solvable in time O(2k · |G|), has a subexponential
fpt-algorithm. Note that the parameterization of p-Vertex-Cover is not
the same as the size measure νvert. Nevertheless, it can be proved:

Theorem 5.11 ([3, 10]). p-Vertex-Cover has a subexponential fpt-algo-
rithm if and only if M[1] = FPT.

6. Miniaturizations of Problems in SNP

There is a more general principle behind the results of the previous section,
which becomes apparent if we look at the syntactic form of the problems con-
sidered there: They all belong to the syntactically de�ned complexity class

SNP [23]. In this section, we shall prove that essentially, the miniaturizations
of all problems in SNP are in M [1]. Some care needs to be taken with regards
to the size measure.

Let us �rst recall the de�nition of the class SNP. Instances of problems
in SNP are relational structures such as graphs. Propositional formulas or
circuits can also be encoded by relational structures. A problem is in SNP if
it is de�nable by a formula ϕ of second-order logic of the form

∃X1 . . . ∃Xk ∀y1 . . . ∀y` ψ(X1, . . . , Xk, y1, . . . , y`). (6.1)

Here X1, . . . , Xk are relation variables , each with a prescribed arity, which
range over relations over the universe of the input structure. y1, . . . , y`
are individual variables , which range over elements of the input structure.
ψ(X1, . . . , Xk, y1, . . . , y`) is a quanti�er free formula , that is, a Boolean combi-
nation of atomic formulas of the form Rz1 . . . zr or z1 = z2, where z1, . . . , zr ∈
{y1, . . . , y`} and R is either one of the relation variables X1, . . . , Xk or a re-
lation symbol representing one of the relations of the structure (such as the
edge relation of a graph). Rz1 . . . zr is true in a structure under some in-
terpretation of the variables if the tuple (a1, . . . , ar) of elements interpreting
the individual variables (z1, . . . , zr) is contained in the relation interpreting
R. Then the meaning of the whole formula is de�ned inductively using the
usual rules for Boolean connectives and quanti�ers.

For a structure A we write A |= ϕ if ϕ holds in A. We can associate the
following problem with ϕ:

Dϕ

Instance: Structure A.
Problem: Decide if A |= ϕ.

Slightly abusing notation, we use SNP to denote both the class of formulas
of the form (6.1) and the class of all problems Dϕ, where ϕ is a formula of
the form (6.1).

Example 6.1. Let d ≥ 1. The following SNP-formula χ states that a graph
is d-colorable:

∃X1 . . . ∃Xd︸ ︷︷ ︸
Xi is the set of

elements of color i

∀x∀y
(d∨
i=1

Xix ∧
∧

1≤i<j≤d

¬(Xix ∧Xjx)︸ ︷︷ ︸
�Each element has exactly one color.�

∧
∧

1≤i≤d

(
Exy → ¬(Xix ∧Xiy)

)
︸ ︷︷ ︸

�Adjacent elements do not have the same color.�

)
.

Thus Dχ = d-Colorability and hence d-Colorability ∈ SNP.

An SNP-formula as in (6.1) is monadic if the relation variables X1, . . . , Xk

are all unary, that is, range over subsets of the structure. MSNP denotes
the class of all monadic SNP-formulas and at the same time the class of all
problems de�ned by such formulas. For example, the formula in Example 6.1
is monadic, and thus d-Colorability ∈ MSNP for all d ≥ 1. It is also not
hard to see that Sat(d-CNF) ∈ MSNP for all d ≥ 1.

We generalize the size measures νvert and νvar to arbitrary input structures
by letting

νelt(x) =

{
n if x is the encoding of a structure A with n elements,

|x| otherwise,

Then on graphs, νelt = νvert, and on d-CNF-formulas (if represented by struc-
tures in a standard way), νelt = νvar.

Proposition 6.2. For every problem Q ∈ MSNP, the miniaturized problem
p-mini[νelt]-Q is contained in the closure of M[1] under fpt Turing reductions.

It shown in [6] that for every problem Q ∈ MSNP the miniaturized prob-
lem p-mini[νelt]-Q is contained in W[1].

Problems such as Independent-Set or Vertex-Cover, at least if rep-
resented naturally, are not in SNP simply because the problem instances are
not just structures (graphs), but pairs consisting of graphs and natural num-
bers. For such problems, we de�ne a variant of SNP: Instead of formulas
(6.1) we consider formulas ϕ(X0) of the form

∃X1 . . . ∃Xk ∀y1 . . . ∀y` ψ(X0, X1, . . . , Xk, y1, . . . , y`), (6.2)

which have one additional relation variable occurring freely. Say, X0 is s-ary.
For a structure A and an s-ary relation S on A we write A |= ϕ(S) if ϕ holds
in A if X0 is interpreted by S. We can associate the following problem with
ϕ(X0):

WDϕ

Instance: A structure A and k ∈ N.
Problem: Decide if there is an s-ary relation S on

A of size |S| = k such that A |= ϕ(S).

We use W-SNP to denote the class of all problems WDϕ, where ϕ is an
SNP-formula of the form (6.2), and W-MSNP to denote the subclass of all
problems WDϕ, where ϕ is an MSNP-formula.

Example 6.3. The following formula witnesses that Independent-Set ∈
W-MSNP:

∀y1∀y2

((
X0y1 ∧X0y2

)
→ ¬Ey1y2

)
,

where the binary relation symbol E represents the edge relation of the input
graph.

Similarly, it can be shown that Vertex-Cover, Clique, andWSat(d-CNF)
for d ≥ 1 are in W-MSNP.

Proposition 6.4. For every problem Q ∈W-MSNP, the miniaturized prob-
lem p-mini[νelt]-Q is contained in the closure of M[1] under fpt Turing reduc-
tions.

Propositions 6.2 and 6.4 can be generalized to arbitrary (not necessarily
monadic) SNP-formulas, but only under an unnatural size measure. For
r ≥ 1, let

νrelt(x) =

{
nr if x is the encoding of a structure A with n elements,

|x| otherwise,

Call a formula of the form (6.1) or (6.2) r-ary if the maximum arity of the
relations (X0), X1, . . . , Xk is r. Observe that monadic formulas are 1-ary.
Propositions 6.2 and 6.4 generalize to r-ary formulas for every r ≥ 1, but
only under the size measure νrelt.

For a thorough discussion of miniaturized problems (in particular syntac-
tically de�ned problems such as those in SNP and W-SNP) under various
size measures we refer the reader to [6].

7. The Exponential Time Hypothesis

We are now ready to apply the results of the previous sections in a more
conventional setting.

In this section, we assume that d-CNF-formulas contain no repeated
clauses and are thus of size m = O(nd) (for �xed d).3 In particular, for
every computable function f(n) ∈ Ω(log n), this implies that

Sat(d-CNF) ∈ DTIME(2O(f(n)))⇐⇒Sat(d-CNF) ∈ DTIME
(
2O(f(n))·mO(1)

)
.

3Some care needs to be taken with this assumption because the proofs of some of
the earlier results involve padding arguments that are no longer available if we make the
assumption. The reader may be assured that we take care here.

We are concerned here with the �e�ective� version of the exponential time
hypothesis:

Sat(3-CNF) 6∈ DTIME(2o
e�(n)) (ETH)

Recall that by Proposition 5.1 and Corollary 5.6 we have

(ETH) ⇐⇒ M[1] 6= FPT.

We say that a problem Q ⊆ Σ∗ is subexponential with respect to a size
measure ν : Σ∗ → N if there is an algorithm deciding x ∈ Q in time

2o
e�(ν(x)) · |x|O(1).

The negation of (ETH) will be denoted by ¬(ETH). The results of the pre-
vious two sections yield the following two corollaries:

Corollary 7.1 ([19]). ¬(ETH) is equivalent to either of the following prob-
lems being subexponential:

(1) Sat(d-CNF) for d ≥ 3 with respect to the standard size measure and
νvar.

(2) WSat(d-CNF) for d ≥ 2 with respect to the standard size measure and
νvar.

(3) Sat(CIRC) and WSat(CIRC) with respect to the standard size mea-
sure.

(4) d-Colorability for d ≥ 3 with respect to the standard size measure
and νvert.

(5) Independent-Set with respect to the standard size measure and νvert.

(6) Clique with respect to νvert.

(7) Vertex-Cover with respect to the standard size measure and νvert.

It can further be proved that Independent-Set restricted to graphs of
degree at most 3 is equivalent to Independent-Set on arbitrary graphs
with respect to subexponential solvability [21].

Corollary 7.2 ([19]). ¬(ETH) implies that all problems in MSNP and W-
MSNP are subexponential with respect to νelt.

As Propositions 6.2 and 6.4, Corollary 7.2 can be generalized from monadic
to arbitrary SNP-problems for the size measures νrelt.

The �xed-parameter tractable Turing reductions between the miniatur-
ized problems that we gave in Section 5 can be translated to �subexponential�

reductions between the corresponding classical problems (so-called SERF-
reductions as de�ned in [19]), and it follows that the problems mentioned in
Corollary 7.1 are complete for MSNP or W-MSNP, respectively, under such
reductions.

In view of the previous section, there is a natural generalization of (ETH)
to t ≥ 1:

∃d ≥ 1 : Sat(Γt,d) 6∈ DTIME(2o
e�(n) ·mO(1)) (ETHt)

Then (ETH) = (ETH1). By Corollary 4.3, for all t ≥ 1 we have

(ETHt) ⇐⇒ M[t] = FPT.

Not much is known about (ETH t) for t ≥ 2. As a matter of fact, it is not
even known if

Sat(CNF) ∈ DTIME(2ε·n ·mO(1)) (7.1)

for some constant ε < 1. Suppose that (ETH) holds. Then for every d ≥ 3
there exists a positive constant

εd = inf
{
ε > 0

∣∣ Sat(d-CNF) ∈ DTIME(2ε·n ·mO(1))
}
.

It is known that εd < 1 for all d ≥ 3 and that the sequence is (εd)d≥3 is
non-decreasing and not ultimately constant [18]. The latter is a fairly deep
result; its proof combines the Sparsi�cation Lemma [19] with techniques for
the Sat(d-CNF)-algorithm due to Paturi, Pudlak, Saks, and Zane [24].

It is an open problem if limd→∞ εd = 1. Of course, if limd→∞ εd = 1 then
there is no constant ε < 1 satisfying (7.1). It is not known if the converse of
this statement also holds.

8. Open Problems

First of all, it would be very nice to prove that the W-hierarchy and the
M-hierarchy coincide on each level. In particular, if M [1] = W[1] then the
exponential time hypothesis would be equivalent to FPT 6= W[1], which we
may interpret as new evidence for the exponential time hypothesis. While
the question of whether M [1] = W[1] has received a lot of attention in the
parameterized complexity community, the question of whether M [t] = W[t]
for t ≥ 2 has not been looked at very intensely (and may in fact be easier,
as the classes get more robust on higher levels). It is also conceivable that
M[t+ 1] = W[t] for t ≥ 1.

A second interesting question is whether the M [1]-completeness of the
problem p-log-Sat(Γ1,3) (which may be viewed as a normal form result for

M[1]) has analogues for higher levels of the hierarchy. The result one would
hope for is that p-log-Sat(Γt,1) is M[t]-complete for t ≥ 2. Essentially the
same question is whether (ETH t) is equivalent to the statement

Sat(Γt,1) 6∈ DTIME(2o
e�(n) ·mO(1))

Proving such a result would probably require some form of a Sparsi�cation
Lemma for the higher levels, an interesting problem in itself. Of course one
could also try to eliminate the use of the Sparsi�cation Lemma from the
proof of the M[1]-completeness of p-log-Sat(Γ1,3) and possibly even prove
completeness under fpt many-one reductions (instead of Turing reductions).

And �nally, it is a notorious open question in parameterized complexity
theory if a collapse such as W [t] = FPT on some level t of the W-hierarchy
has any implications for the higher levels (ideally, implies W [t′] = FPT for
all t′). In view of the entanglement of the W-hierarchy and the M-hierarchy,
one possible approach to this question would be to prove a corresponding
result for the M-hierarchy. An equivalent formulation of the question for the
M-hierarchy is whether ¬(ETHt) implies ¬(ETHt′) for t

′ > t.

References

[1] K.A. Abrahamson, R.G. Downey, and M.R. Fellows. Fixed-parameter
tractability and completeness IV: On completeness for W[P] and PSPACE
analogs. Annals of Pure and Applied Logic , 73:235�276, 1995.

[2] L. Cai, J. Chen, R.G. Downey, and M.R. Fellows. On the structure of param-
eterized problems in NP. Information and Computation , 123:38�49, 1995.

[3] L. Cai and D. Juedes. On the existence of subexponential parameterized
algorithms. Journal of Computer and System Sciences , 67(4):789�807, 2003.

[4] J. Chen, B. Chor, M. Fellows, X. Huang, D. Juedes, I. Kanj, and G. Xia. Tight
lower bounds for certain parameterized NP-hard problems. In Proceedings of

the 19th IEEE Conference on Computational Complexity , pages 150�160, 2004.

[5] J. Chen, X. Huang, I. Kanj, and G. Xia. Linear fpt reductions and computa-
tional lower bounds. In Proceedings of the 36th ACM Symposium on Theory

of Computing, pages 212�221, 2004.

[6] Y. Chen and J. Flum. On miniaturized problems in parameterized complexity
theory. In Proceedings of the 1st International Workshop on Parameterized

and Exact Computation , 2004.

[7] Y. Chen, J. Flum, and M. Grohe. Bounded nondeterminism and alternation in
parameterized complexity theory. In Proceedings of the 18th IEEE Conference

on Computational Complexity , pages 13�29, 2003.

[8] E. Dantsin, A. Goerdt, E. A. Hirsch, R. Kannan, J. M. Kleinberg, Ch. H.
Papadimitriou, P. Raghavan, and U. Schöning. A deterministic (2−2/(k+1))n

algorithm for k-SAT based on local search. Theoretical Computer Science ,
289(1):69�83, 2002.

[9] R. Downey. Parameterized complexity for the skeptic. In Proceedings of the

18th IEEE Conference on Computational Complexity , 2003.

[10] R. Downey, V. Estivill-Castro, M. Fellows, E. Prieto-Rodriguez, and F. Rosa-
mond. Cutting up is hard to do: the parameterized complexity of k-cut and
related problems. In J. Harland, editor, Proceedings of the Australian Theory

Symposium, volume 78 of Electronic Notes in Theoretical Computer Science .
Elsevier Science Publishers, 2003.

[11] R.G. Downey and M.R. Fellows. Fixed-parameter tractability and complete-
ness I: Basic results. SIAM Journal on Computing , 24:873�921, 1995.

[12] R.G. Downey and M.R. Fellows. Fixed-parameter tractability and complete-
ness II: On completeness for W [1]. Theoretical Computer Science , 141:109�131,
1995.

[13] R.G. Downey and M.R. Fellows. Parameterized Complexity . Springer-Verlag,
1999.

[14] U. Feige and J. Kilian. On limited versus polynomial nondeterminism.
Chicago Journal of Theoretical Computer Science , 1997. Available at
http://cjtcs.cs.uchicago.edu/.

[15] J. Flum, M. Grohe, and M. Weyer. Bounded �xed-parameter tractability and
log2n nondeterministic bits. In Proceedings of the 31st International Collo-

quium on Automata, Languages and Programming , volume 3142 of Lecture
Notes in Computer Science , pages 555�567. Springer-Verlag, 2004.

[16] J. Goldsmith, M. Levy, and M. Mundhenk. Limited nondeterminism. SIGACT
News, 1996.

[17] J. Hromkovi£. Algorithmics for Hard Problems . Springer-Verlag, 2nd edition,
2003.

[18] R. Impagliazzo and R. Paturi. On the complexity of k-SAT. Journal of

Computer and System Sciences , 62:367�375, 2001.

[19] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly expo-
nential complexity? Journal of Computer and System Sciences , 63(4):512�530,
2001.

[20] K. Iwama and S. Tamaki. Improved upper bounds for 3-sat. In Proceedings

of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms , page
328, 2004.

[21] D.S. Johnson and M. Szegedy. What are the least tractable instances of max
independent set? In Proceedings of the 10th annual ACM-SIAM Symposium

on Discrete Algorithms , pages 927�928, 1999.

[22] C. Kintala and P. Fischer. Re�ning nondeterminism in relativised polynomial
time bounded computations. SIAM Journal on Computing , 9:46�53, 1980.

[23] C.H. Papadimitriou and M. Yannakakis. Optimization, approximation, and
complexity classes. Journal of Computer and System Sciences , 43:425�440,
1991.

[24] R. Paturi, P. Pudlák, M. E. Saks, and F. Zane. An improved exponential-time
algorithm for k-SAT. In Proceedings of the 39th Annual IEEE Symposium on

Foundations of Computer Science , pages 628�637, 1998.

[25] U. Schöning. A probabilistic algorithm for k-SAT and constraint satisfaction
problems. In Proceedings of the 40th Annual IEEE Symposium on Foundations

of Computer Science , pages 410�414, 1999.

[26] R. E. Stearns and H. B. Hunt III. Power indices and easier hard problems.
Mathematical Systems Theory , 23:209�225, 1990.

[27] G.J. Woeginger. Exact algorithms for NP-hard problems: A survey. In
M. Jünger, G. Reinelt, and G. Rinaldi, editors, Combinatorial Optimization
- Eureka, You Shrink!, Papers Dedicated to Jack Edmonds, 5th International

Workshop, volume 2570 of Lecture Notes in Computer Science , pages 185�208.
Springer Verlag, 2001.

