
The Computational Complexity

Column

by

Jacobo Torán

Dept. Theoretische Informatik, Universität Ulm
Oberer Eselsberg, 89069 Ulm, Germany

toran@informatik.uni-ulm.de
http://theorie.informatik.uni-ulm.de/Personen/jt.html

Some of the most important and chalenging problems in complexity theory deal
with the separation of complexity classes. Apart from the results derived from the
hierarchy theorems and some lower bounds for restricted models of computation,
there are only few results in the �eld implying the separation of two classes.
Harry Buhrmann and Leen Torenvliet present in this column a di�erent approach
to obtain complexity separations. The method is not new, in fact it is based
on old ideas from Emil Post in the area of recursion theory. It has gained new
attention recently, since it has some advantages with respect to other separation
techniques. For example the proposed method does not relativize. The following
survey provides a very good introduction to this line of research.

A Post's Program For Complexity

Theory

Harry Buhrman∗ Leen Torenvliet†

∗Centrum voor Wiskunde en Informatica; Kruislaan 413; 1098 SJ Amsterdam;
buhrman@cwi.nl
†University of Amsterdam; ILLC; Plantage Muidergracht 24; 1018 TV Amsterdam;

leen@science.uva.nl

1

http://informatik.uni-ulm.de
http://www.uni-ulm.de
toran@informatik.uni-ulm.de
http://theorie.informatik.uni-ulm.de/Personen/jt.html

Abstract
In 1944, E. Post proposed a program that would lead to the identi�-

cation of separate degrees�equivalence classes de�ned by reductions�
of recursively enumerable sets. Post proposed to identify structural
properties that sets of di�erent degrees would not share. Thus prov-
ing that some sets in one degree have such a property, and all sets
in another degree do not have the property would imply that these
degrees are di�erent. We propose a similar program for the separation
of complexity classes and identify three properties that are potential
separators: auto-reducibility, robustness, and mitoticity. Some partial
results that do separate complexity classes have already been estab-
lished. Also, answering the question whether complete sets in certain
classes do or do not have these properties either way gives an answer
to separation problems of central interest.

1 Introduction

The major quest for the complexity theory community is �nding methods
that may separate complexity classes. For the standard sequential hierarchy
of complexity classes, P, NP, PSPACE, EXP, NEXP, EXPSPACE,... we
know that e.g., P 6= EXP by the ancient hierarchy theorems. However in
the game of separating complexity classes, the hierarchy theorems have a big
drawback. Their proofs relativize, as do many other techniques currently
known in complexity theory. As there are oracle worlds in which e.g., P =
PSPACE and others where P 6= PSPACE, such proofs can never be used to
determine the relations we are currently interested in.

Many approaches have been tried in recent and more distant history to
prove complexity classes di�erent. We name a few.

Lower bounds. The most direct approach to proving that complexity
classes A and B are not the same is of course to take a problem in one class
and prove a lower bound on it's computational complexity that shows that it
is not in the other. However, most complexity classes of interest have rather
large �exibility. Most time bounds that de�ne time complexity classes are
closed under taking polynomials and hence a lower bound would imply quite
a gap between A and B. As an example, better than linear lower bounds
have yet to be proven for satis�ability.

Diagonalization. Another way of proving that A and B are di�erent
is by constructing a problem in B that is not in A. Therefore we take an
enumeration of all �A-machines� and construct a language that is in B, but
di�ers from every �A-machine's language� in at least one point. To be able to
diagonalize we have to have a single machine of � B-complexity� that is able to

2

simulate all A languages, in other words B has to have a universal language
for A. This often means that A and B are rather far apart. Also, most
known diagonalization proofs relativize. Most notably, the well-known time
and space hierarchy theorems [11] have proofs of this type and relativize
as already mentioned above. There exist broad consensus nowadays that
techniques that relativize are of rather limited use.

Stronger Hypotheses. Sometimes it is easier to prove a more general
statement, from which the statement of interest then follows To give a rather
trivial example, it can be quite hard to prove that a given graph is 4-colorable,
yet its 4-colorability would follow easily from its planarity, which is easy to
prove. This is the idea behind the formulation of hypotheses even stronger
than the separation of complexity classes we are interested in, and work on
proving them. As an example, the Berman-Hartmanis conjecture that all
NP-complete problems are isomorphic immediately implies P 6= NP, as do
the following more recent hypotheses (for de�nitions see [10]).

1. The measure hypothesis: NP does not have p-measure 0.

2. The pseudo-NP hypothesis: there is an NP- language L such that any
DTIME(2n

e
) language L′ can be distinguished from L by an NP refuter.

3. The NP-machine hypothesis: there is an NP machine accepting {0}∗
for which no 2n

e-time machine can �nd in�nitely many accepting com-
putations.

Recently, Hitchkock and Pavan proved some interesting relations between
these hypotheses [10]. Thus far however, attempts to prove that e.g., NP
does not have p-measure 0 have not been successful.

The approach we propose is of a di�erent type. To show that classes A
and B are di�erent we could also identify some property such that some sets
in B have the property, whereas all sets in A do not have the property. It then
follows that A 6= B, without the direct proof of a di�erence in computational
complexity. The di�erence between A and B then proven is the structural
di�erence involving the property. This approach is not new. It was �rst
proposed in 1944, by E. Post, who then sought to prove that there were
more than just two Turing degrees in r.e. (namely 0 and 0′). That problem
was resolved by Friedberg and Muchnick [8, 12], who constructed incomplete
sets by diagonalization. This was however not the type of solution that Post
envisioned. His program was aimed at constructing non-recursive r.e. sets
with very �thin� complements, resulting in a set that could not be Turing
complete. Such a set was �nally constructed by Degtev [6]. In complexity
theory a similar approach can be identi�ed e.g., in the work on sparse sets.

3

Mahaney proved early-on that sparse sets cannot be NP-complete unless
P = NP as an addition to the aforementioned Berman-Hartmanis conjecture
and much work has been done since on sparse sets in complexity (See [9])
In fact sparseness is a structural property with which unconditionally the
di�erence between complexity classes can be shown. It is known that EXP
does not have sparse many-one complete sets [2] whereas P does. Therefore
P 6= EXP. The interesting question is therefore whether NP has sparse
m-complete sets. If it does, then NP 6= EXP and if it doesn't then P 6= NP.

In this survey we concentrate on three di�erent structural properties for
which similar results have been achieved. These properties also give a direct
separation between complexity classes. Most notably, these properties do not
relativize. Results that hold for these properties in the real world are not
true in some oracle worlds.

1. Auto-reducibility. A set A is auto-reducible if there exists a polynomial
time oracle machine M such that (∀x)A(x) = MA−{x}(x) = MA∪{x}(x).
That is, membership in A can be determined by M by asking queries
of A other than x.

2. Robustness. A set A is robust against some other set S under reduction
type r if A− S ≡r A.

3. Mitoticity. A set A is weakly mitotic under reduction type r if A ≡r
A1 ≡r A2 where A = A1 ∪ A2 and A1 ∩ A2 = ∅. A is moreover mitotic
if there exists a set B in P, such that A1 = A ∩B and A2 = A ∩B.

Some obvious relations hold between these properties, e.g., if A is strongly
mitotic, then A is also auto-reducible, but the converse is not necessarily true
(see [7]), and if A is not auto-reducible, then A is also not robust. For the
investigation of the above-mentioned properties we focus on complete sets.
Why? For the complexity classes in the complexity hierarchy, the inclusion
relation holds. If A ⊆ B and A 6= B, then at least the complete sets in B are
not in A. Therefore, complete sets in B might have properties that complete
sets in A do not, or vice versa.

2 Auto-Reducibility

There will not be many proofs in this survey. Nonetheless, we begin this
section with the proof of the theorem that all exponential time complete sets
are auto-reducible, because it is a beautiful example of a non-relativizing
proof and this proof idea underlies many of the other results concerning
auto-reducibility and robustness.

4

Figure 1: an exponential time computation

Picture an exponential time computation of a Turing machine as in Fig-
ure 1, computing membership of a string x in an exponential time complete
set A by a Turing machine M running in time 2p(|x|). Since this is a tableau
of an exponential-time computation, the contents of every cell in this tableau
can be computed by an exponential-time machine, and since there are only
exponentially many cells in the tableau all cells can be computed by an
exponential-time machine. Since A is complete for exponential time, there
exists a polynomial time oracle machine, call it Mtableau that can perform
either of the following tasks on input x.

1. Use oracle B to compute the outcome of the computation M(x). (With-
out loss of generality, assume that this outcome can be read from the
cell in position (i, j) = (2p(|x|), 2p(|x|)).)

2. Using oracle B∆{x}, �nd the coordinates of the �rst inconsistency (i, j)
in the computation done in the previous item, or report failure.

Now Mtableau simply has to perform these tasks for B = A − {x} and/or
B = A ∪ {x}. One of these is the correct oracle. Therefore, for one of these
it must both compute the right outcome, and report failure in trying to �nd
an inconsistency. Note here that, though Mtableau �nds the inconsistent cells,
if they exist, using oracle B∆{x}, checking that they are indeed inconsistent
only involves oracle B.

On the other hand, not every complexity class has the property that all
Turing complete sets are auto-reducible. We can in fact eventually both code

5

the universal set K and simultaneously diagonalize against polynomial-time
Turing reductions. This involves a surprising property of polynomial-time
Turing reductions. Namely they can either be forced to reject an input string
consistently or will accept a given input string no matter how one plays with
the oracle. We dubbed this the �type� of the reduction in [5], type 0 or type
1. Though this property seems mysterious, it is a rather easy consequence of
basic logic. Let us �rst look at the setup of the diagonalization. We take a
Turing complete set, which will be complete through a very simple reduction.
It will consist of strings 〈0, x〉 and 〈1, x〉, for strings x ∈ Σ∗ and strings 0b(n)

for some suitable fast increasing function b(n). Without loss of generality,
〈i, x〉 is not in {0}∗. In certain regions, we wish to code K, the complete
set either on 〈0, x〉 or on 〈1, x〉 and say whether we did so by putting 0b(n)

either out of (if coding is on 〈0, x〉) or in (if coding is on 〈1, x〉) the set we
are constructing. This can be done thanks to the aforementioned property:
Given n, let A be the set of all strings of length n through 2n, and some
polynomial time oracle machine M . Either (∀B ⊂ A)(∃C ⊂ A) such that
M 〈0,B〉∪〈1,C〉(0n) = 1, or ∃B ⊂ A such that (∀C ⊂ A)[M 〈0,B〉∪〈1,C〉(0n) = 0].
This is evidently true, since the or part of this claim is just the logical negation
of the either part. However this means that any oracle machine can either be
forced to accept (either case) while we can encode K on the set 〈0, B〉 or it
can be set up to reject (or case) while we can encode K on the set 〈1, C〉. To
complete the reduction, we put 0n in the set only in the second case and note
that this does not change the situation since the auto-reduction cannot query
0n. It is only the vast amounts of strings that have to be considered �nding
the type of the reduction that makes that the diagonalization must be done in
double exponential space. Basically we need to compute the behavior of the
Turing reduction on all subsets of A that can be queried on input 0n before
we can decide whether it is of type 0 or type 1. Since a Turing reduction
can be viewed as an exponentially bigger truth table, which can be inspected
line-by-line to determine the type in double exponential space, this behavior
can be computed in double exponential space.

Some remarks can be made.

• Looking closer at the type computation, its complexity can be brought
down to a non-constant number of alternations of exponential time
quanti�ers, since actually only a super-polynomial bound on the length
of strings in the type computation is needed.

• Limiting the reduction to truth table reductions, the space used in com-
puting the type can be brought down to single exponential. Therefore,
there exist non-truth-table auto-reducible sets in exponential space.

6

• The type of the reduction can be oracle information. Therefore there
exists an oracle A such that EXPA has non-auto-reducible Turing com-
plete sets.

These theorems lead to the following set of consequences of answers to
various auto-reducibility questions.
question yes no
Are all ≤T -complete sets in NL 6= NP PH 6= PSPACE
EXPSPACE ≤T auto-reducible?
Are all ≤T -complete sets in EEXP NL 6= NP PH 6= EXP
≤T auto-reducible? P 6= PSPACE
Are all ≤tt-complete sets in PSPACE NL 6= NP PH 6= PSPACE
≤tt-auto-reducible?
Are all ≤tt-complete sets in EXP NL 6= NP PH 6= EXP
≤tt-auto-reducible? P 6=PSPACE

3 Robustness

3.1 Non-adaptive reductions

Robustness of a (complete) set is the extension of the auto-reducibility ques-
tion to a set of forbidden queries. It is clear that, if a su�ciently dense set is
taken as a forbidden set of queries, then completeness is lost. The question
that we ask in the robustness setting is: how dense can the set of forbidden
queries be and what can it's computational complexity be. Let us begin with
an easy example. If EXP has polynomial-size circuits, i.e., a sparse complete
set, then EXP also has a tally complete set T . A proof for this can be found,
e.g., in [3], but the theorem is much older. Since P 6= EXP, the empty set
cannot be complete in EXP. Therefore, if we declare the set {0}∗ as forbid-
den queries, the set T will no longer be complete. In other words T −{0}∗ is
not complete for EXP, even if T is. If EXP is not contained in P/poly then
the situation is di�erent. In fact one can easily see that for any A that is
many-one complete for EXP (hence not sparse) and any sparse polynomial
time computable set S, the set A− S is still many-one complete.

This changes when we let the density of S grow. For any �xed ε > 0, the
set {〈x, 0|x|d

1
ε e〉 | x ∈ K} is clearly complete for EXP. On the other hand, the

set S = {〈x, 0|x|d
1
ε e〉 | x ∈ Σ∗} is polynomial-time computable, and K−S = ∅

and hence not complete in EXP. However, for every many-one complete set
A in EXP and sub-exponentially dense and subexponential-time computable
set S it is shown in [4] that.

7

1. A− S remains complete under randomized many-one reductions, and

2. A− S remains Turing complete.

The theorem is proved by observing that since sets in EXP are complete
under 1-1 reductions and dense, there must be many strings x such that
a many-one reduction of K × Σ∗ to A produces a string in Σ∗ − S, i.e., a
string that can be queried. Such a string is produced with high probability
by a randomized reduction, because there are many. On the other hand, an
iterative process querying A− S can produce such a string. Let f ′K be a 1-1
reduction from K × Σ∗ to A. Since S is of sub-exponential density we only
have to compute fK′(x, y) for a sub-exponential number of strings y to come
up with a string that is outside S. Moreover, taking the �rst |x|/2 bits of x
as input, say this is z, a computation of complexity roughly 2|x|/2 can come
up with a string y such that fK′(zv, y) is not in S for all v with |zv| = |x|
(hence fK′(x, y) is also not in S). But then, since A is complete, the outcome
of this process can be translated to a query to A which has about half the
size of |x|. Thus, to be able to answer this query, a new string has to be
found that is also outside S, but at a smaller length. At the bottom of this
process, see Figure 3.1, simply all strings can be examined. One of these will
give a string outside S for the next level higher up, which will give a string
for the next level higher up etc., until we �nd a string that �ts x.

The proof can be generalized to 2-tt reductions, but by the non-auto-
reducibility result of the previous section, it can not be generalized to 3-tt
reductions. Moreover, by the same non-autoreducibility result, the proof
does not relativize.

8

3.2 Adaptive Reductions

Since Turing complete sets for EXP may be sparse, the robustness question
for sets of polynomial or higher density is di�cult to answer without tackling
long-standing open problems. We can however address this question for sets
of logarithmic density. The basic idea is the same as the proof of the auto-
reducibility of exponential-time complete sets. We observe that the tableau
that is used there can also be recomputed by a reduction that is not allowed
to query a �xed set of small, logarithmic density. Instead of just assuming the
answer to the input, such a reduction could assume all the answers to a set
of queries whose cardinality is limited by the logarithm of the length of the
input as well. The number of possible settings of the answers to these queries
is bounded by a polynomial in the length of the input. Thus a polynomial
number of �competing� algorithms can be set up, that use the oracle A− S
to try to answer the question � x ∈ A?�

Some of these algorithms claim x ∈ A, whereas others claim x /∈ A. As all
possible settings to queries that fall into S are considered at least one of the
algorithms must compute the right answer. Moreover, the algorithms that
claim the wrong answer, must compute inconsistent contents in at least one
place in the tableau. Finally, such inconsistent contents can be recovered
by an algorithm that has the right 1 oracle setting. The number of di�er-
ent settings and runtimes are bounded by a polynomial. Hence all of these
computations can be performed by a single machine using oracle A− S.

As with the auto-reducibility results this result does not relativize and can
be generalized to include the delta classes in the exponential-time hierarchy.
This has the following consequences.

question yes no
Are ≤m-complete sets in EXP open EXP ⊆ 2o(n)−
robust against subexp-dense P sets? circuits
Are ≤T -complete sets in EXP robust EXP 6⊆ P/poly open
against sparse P sets?
Are ≤ T -complete sets in EEXP robust P 6= PSPACE PH 6= EXP
against log-dense P sets?

1An algorithm trying to �nd inconsistencies in the tableaux computed by competing
algorithms may ask a di�erent set of queries, yet as the total number of queries is bounded
by log|x| the total number of settings is still bounded by a polynomial.

9

4 Mitoticity

The third and strongest form of redundant storage of information in a com-
plete set is that of mitoticity. In the robustness problem we ask what happens
to the complete set when we take out a set S. In the mitoticity problem we
are not only interested in the density of the set taken out, but also in its
structure. What if we take out of a complete set A another complete set B.
Can A still remain complete? In other words, can we split a complete set
A into two complete sets A1 and A2. As we mentioned in the introduction,
there are two di�erent types of this mitoticity property. The most general
is the one in which we just ask: is there a separation? We call this notion
weak-mitoticity. A stronger notion, introduced under the name mitoticity
by Ambos-Spies [1] is the notion where there exists a set B in P where
A1 = A ∩ B and A2 = A ∩ B. Of course, mitoticity implies weak-mitoticity.
Mitoticity questions are dependent on the type r of the reduction and are
therefore often speci�ed as r-mitoticity, respectively weak-r-mitoticity.

A proof that all many-one complete sets in EXP are weakly-p-m-mitotic
can be found in [3]. The following proof that many-one complete sets in EXP
are also p-m-mitotic is due to Kurtz [13]. (The same theorem also appears
in [7] who proved this independently but later).

Consider a many-one complete set A in EXP. It is known that A is
complete under length increasing reductions. Let f be a length increasing
reduction from K×{0}∗ to A, and let p be a polynomial such that (∀x)[|x| <
|f(x)| < p(|x|). Now set g(1) = 1 and g(n) = p(g(n − 1) + 1 and let
B = {y|g(2n) ≤ |y| < g(2n + 1)}. Clearly, B ∈ P. Also, A ∩ B and A ∩ B
are many-one complete for EXP. To see this we provide a reduction from
K to A ∩ B (A reduction from K to A ∩ B can be constructed similarly.
For x ∈ Σ∗ we compute f(〈x, ε〉), . . . , f(〈x, 0p(|x|+1)〉). At least one of these
strings must be in B, hence in A ∩ B if and only if x ∈ K. We use the �rst
such string in this sequence as the query string for our reduction from K to
A ∩B.

The above proof can be extended to show that the complete sets under
2-tt reductions are also 2-tt mitotic. The idea of the proof is, given that
there are only 16 di�erent 2-tt reductions, a 2-tt complete set can, by case
analysis, be shown to be complete under 2-tt reductions that depend only
on queries longer than the input. Then Kurtz' proof can be adapted to also
show the theorem for 2-tt reductions.

From the relation between mitoticity and auto-reducibility it follows again
that this does not go through for 3-tt reductions�there exists a 3-tt complete
set in EXP that is not btt-autoreducible [5], hence not btt-mitotic. The
question whether all Turing complete sets in EXP are also Turing mitotic

10

still remains open. A nice picture of consequences to mitoticity questions as
in the previous section cannot (yet) be made.

Recently Glaÿer et al. [7] proved some new results on mitoticity and
autoreducibility. They showed, e.g., that the PSPACE complete sets are
weakly Turing mitotic, which makes the remaining open question for the
Turing mitoticity for EXP more urgent, but it also implies that proving
non-mitoticity for EXP could be quite hard. A yes/no separation result
like the results in the previous sections could be a non-mitoticity result for
EXPSPACE, which can be put next on this agenda.

5 Conclusions

Auto-reducibility, Robustness, and Mitoticity seem good candidates for struc-
tural properties that may show a separation of complexity classes that are
dear to us. Of these we think that Robustness is the most promising, since it
has the most dimensions along which a separation can be achieved. Namely,
type of the reduction, complexity of the complete set, density of the forbid-
den set, and complexity of the forbidden set. Mitoticity on the other hand
has the most still open problems of the three and therefore we cannot say
much about its potential. We will continue working on this.

A �nal thought: this survey has neither the pretense nor the intention of
being complete. It is just a collection of related results intended to arouse the
readers interest, and maybe even get more people working on this program.

References

[1] K. Ambos-Spies. p-mitotic sets. In E. Börger, G. Hasenjäger, and
D. Roding, editors, Logic and Machines, Lecture Notes in Computer
Science 177, pages 1�23. Springer-Verlag, 1984.

[2] L. Berman. On the structure of complete sets: Almost everywhere
complexity and in�nitely often speedup. Proc. 17th IEEE Symposium
on Foundations of Computing , pages 76�80, 1976.

[3] H. Buhrman, A. Hoene, and L. Torenvliet. Splittings, robustness and
structure of complete sets. SIAM Journal on Computing , 27(3):637�
653, 1998.

[4] H. Buhrman and L. Torenvliet. Separating complexity classes using
structural properties. In Proceedings 19th IEE Conference on Com-
putational Complexity , pages 130�138. IEEE Computer Society Press,
2004.

11

[5] H. Buhrman, D. van Melkebeek, L. Fortnow, and L. Torenvliet. Us-
ing autoreducibility to separate complexity classes. Siam Journal on
Computing, 29(5):1497�1520, 2000.

[6] A.N. Degtev. tt and m-degrees. Alg. Log., 12:143�161, 1973.
[7] C. Glaÿer, M. Ogihara, A. Pavan, A. Selman, and L. Zhang. Au-

toreducibility, mitoticity, and immunity. Technical Report 2004-22,
Department of Computer Science and Engineering, State University
of New York at Bu�alo, Bu�alo, NY, USA, December 2004.

[8] R.M. Friedberg. Two recursively enumerable sets of incomparable
degrees of unsolvability. In Proc. Nat. Acad. Sci., volume 43, pages
236�238, 1957.

[9] L. Hemachandra, M. Ogiwara, and O. Watanabe. How hard are sparse
sets? In Proc. Structure in Complexity Theory 7th Annual Conference ,
pages 222�238, Boston, Mass., 1992. IEEE Computer Society Press.

[10] J.M. Hitchkock and A. Pavan. Hardness hypotheses, derandomization,
and circuit complexity. In 24th Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science , pages 336�347.
Springer Verlag, December 2004.

[11] J. Hartmanis and R. Stearns. On the computational complexity of
algorithms. Trans. Amer. Math. Soc. , 117:285�306, 1965.

[12] A.A. Muchnik. On the unsolvability of the problem of reducibility in
the theory of algorithms. Dokl. Acad. Nauk SSSR, 108:194�197, 1956.

[13] S.Kurtz. Private communication.

12

	Introduction
	Auto-Reducibility
	Robustness
	Non-adaptive reductions
	Adaptive Reductions

	Mitoticity
	Conclusions

