The Computational Complexity
Column

by

Jacobo Toran

Dept. Theoretische Informatikl, Universitat Ulm
Oberer Eselsberg, 89069 Ulm, Germany
jacobo.toran@uni-ulm.de
http://theorie.informatik.uni-ulm.de/Personen/jt.html

POLYNOMIAL SIZE LOG DEPTH CIRCUITS:
BETWEEN NC! AND AC!

Meena Mahajan*

Abstract

1 Introduction

When a theoretical computer scientist asks me my area of research, I usually
say complexity theory. This is often followed by the question “what kind of
complexity theory” to which I inevitably reply “inside P”. And usually the
questioning stops there. In this brief survey, I would like to go further, and
describe some of my favourite complexity classes. They all lie in the range
between NC! and AC!; hence this title. I cannot even begin to attempt being

*The Institute of Mathematical Sciences, CIT Campus, Chennai 600041, India.

1


http://informatik.uni-ulm.de
http://www.uni-ulm.de
jacobo.toran@uni-ulm.de
http://theorie.informatik.uni-ulm.de/Personen/jt.html

exhaustive, and I apologize in advance to those whose favourite results I have
omitted. Much of this material (and much more!) can be found in the text
[42] and the surveys [I, 23].

2 Principal classes between NC!' and AC!

Consider (uniform) families of polynomial size log depth circuits with internal
AND and OR gates, and literals / constants at the leaves. (No internal
negations, without loss of generality). Restricting the gates to have constant
fanin gives the complexity class NC!; leaving it unrestricted (limited, of
course, by the circuit size itself) gives AC!.

Without loss of generality, we can assume that our circuits are layered:
gates appear in layers, and wires connect adjacent layers in one direction.
The maximum number of gates at any one layer of the circuit is called the
width of the circuit.

Several well-known classes are sandwiched in between; let’s take a look
at each of these.

LogDCFL

N

NC! —= DLOG LogCFL —— AC!

o~

NLOG
Figure 1: The landscape between NC! and AC!

2.1 NC!

At the lower end, we begin with the class NC!. NC! has many equivalent
characterizations. It equals the class of languages accepted by

e alternating Turing machines in logarithmic time ALOGTIME (under
appropriate uniformity conditions). (|34])

e poly size programs over finite monoids BP-M.
A program over a monoid M = (S,0) is a list of instructions of the
form (i, a,b) where i € [n], a,b € S. The instruction (i, a,b), on input
x € {0,1}", evaluates to a if z; = 1, to b otherwise. The entire program,

2



on input z € {0,1}", thus constructs a word w € S*. The program
accepts x if w evaluates to a designated value in M.

A simple divide-and-conquer approach establishes that programs over
finite monoids can be evaluated in NC!. Barrington [4] established the
converse by showing that over any non-solvable group, words can be
constructed to code logical AND and negation. In particular, he used

the permutation group Ss; thus programs over this group are complete
for NC!.

bounded-width poly size branching programs BWBP.

These are constant-width layered graphs (one for each input length)
with designated start and finish vertices s,t, and edges labelled by
literals or constants. An input is accepted if the corresponding graph
has an st path where all edges are labelled by 1 or true literals.

It is folklore (and easy to see) that programs over monoids can be
described in this form, and vice versa.

Such programs are also equivalent to skew circuits, where OR gates are
unrestricted but AND gates can have at most one input that is not a
literal or a constant.

bounded-width poly size circuits SC°.

SC is the class of polynomial size poly logarithmic width circuits (width
O(log" n) for SCi). (Again, wlog the circuits can be assumed to have
negations only at the leaves.) In simulating a circuit by a Turing ma-
chine, width roughly translates to space and size to time; thus SC corre-
sponds in the uniform setting to a simultaneous time-space bound. (SC
stands for Steve’s Classes, named after Stephen Cook who proved the
first non-trivial result about polynomial time log-squared space PLoSS,
i.e. SC2, in [IT]. See for instance [22]). As described above, Barring-
ton’s result places NC! inside skew SC°. But even non-skew SCP is
easily seen to be inside NC!, since only a constant amount of memory
is needed to evaluate the gates of the circuit layer by layer. Thus SC°
equals NC!.

poly size formulae F, even when restricted to log-width formula LWF.
A formula is a circuit where each gate has fanout at most 1. NC! cir-
cuits can be converted to formulae by duplication; the blow-up in size is
still within a polynomial. Conversely, any formula can be restructured
into an equivalent one with polynomial blow-up in size and logarithmic
depth; a non-uniform way to do this was first described in |7, B5)], while
it can be done uniformly as in [28|. Further, any log depth formula can

3



be restructured to log width (at the expense of depth, of course), as
observed in [20]; thus LWF = F = NC!.

e predicates expressed in first-order logic, augmented with a group quan-
tifier or a monoidal quantifier ()¢ over any non-solvable group G,

FOIQ]. [28).

2.2 AC!

At the higher end, we have AC!. Less is known about AC!; it equals the
class of languages accepted by

e alternating Turing machines using logarithmic space and making at
most logarithmic alternations between universal and existential states
on any computation path ASP,ALT(log,log) (under appropriate unifor-
mity conditions).

e Concurrent read, concurrent write PRAMs working in logarithmic time
with polynomially many processors.

Now consider the intermediate classes.

2.3 DLOG

DLOG is the class of languages accepted by deterministic logspace machines.
It also equals the class of languages accepted by log width poly size circuits
SC!. DLOG equals sentences expressible in FO augmented with deterministic
transitive closure FO[DTC], [I8], and it follows from [32] that DLOG also
equals FO + symmetric transitive closure FO[STC].

2.4 NLOG

NLOG is the class of languages accepted by nondeterministic logspace ma-
chines. The inductive counting technique of Immerman and Szelepcsényi
[19, B7] shows that NLOG is closed under complementation. An equivalent
formulations of NLOG is the class of languages accepted by uniform poly size
skew circuits (or branching programs); see [39]. In descriptive complexity,
NLOG is characterized by sentences in first-order logic with positive transi-
tive closure FO[pos TC], see [18].



2.5 LogCFL

LogCFL, by definition, is the class of languages reducible via logspace many-
one reductions to some context-free language. It follows that each such lan-
guage can be accepted by a machine which has logspace to perform the
reduction, and a nondeterministic finite control and a stack to then parse
the CFL in polynomial time. Such machines are called AuxPDA (poly), and
Sudborough showed that they accept exactly LogCFL (|36]). That is, al-
lowing arbitrary interleaving of the two types of computation involved —
(1) deterministic logspace reduction, and (2) nondeterministic PDA — is no
more powerful than performing these two phases sequentially. (An aside: the
polynomial time restriction is necessary, since Cook [10] showed that in un-
bounded time, and even in exponential time, deterministic PDA augmented
with logspace worktape capture all of P.)

Using the notion of realizable pairs of surface configurations, Ruzzo showed
[33] that AuxPDA (poly) can be simulated by alternating TMs using logspace
and having poly-sized proof trees. What is a proof-tree? Consider the com-
putation graph of a logspace-bounded ATM, where nodes are time-stamped
configurations. (The logspace bound ensures a poly-sized graph; the time-
stamping ensures that the graph is acyclic.) To prove that it accepts its
input, it suffices to show a sub-graph that contains (1) the initial configura-
tion, (2) both children of each universal node included, (3) at least one child
of each existential node included, and (4) only accepting configurations as
leaves. Such a sub-graph, unfolded or expanded out by duplicating nodes if
necessary so that it is a tree, is what we call a proof-tree. It is easy to see
that poly-sized graphs can have exponential-sized proof-trees. Ruzzo’s proof
shows that to describe the computations of AuxPDA (poly), poly-sized proof
trees suffice. Conversely, if a logspace-bounded ATM has, for each accepted
input, a proof-tree of size at most ¢(n), then an AuxPDA can accept the
same language in time t(n). Thus we have a characterization of LogCFL
via ATMs: LogCFL = ASP,TRSZ(log,poly). Note that the above proof-tree
definition can be applied to circuits as well. Using a very nice tree-cutting
argument, Venkateswaran showed [38] that a poly-sized circuit of any depth,
but with a poly-size bound on its proof trees, can be flattened to log depth,
at the cost of increasing the fanin of OR gates. This is the circuit class SAC!,
semi-unbounded alternating circuits. The converse simulation is direct, giv-
ing ASP,TRSZ(log,poly)=SAC!.

An interesting offshoot of Venkateswaran’s construction is that each Aux-
PDA (poly) can be simulated by an AuxPDA (poly) whose stack height never
grows beyond O(log®n). (Only O(logn) pairs of surface configurations, each
needing O(logn) bits, need to be stacked.)

5



More recently, in [27], McKenzie, Rienhardt and Vinay gave a direct
proof that ASP, TRSZ(log,poly) is in LogCFL, thus eliminating the need for
the elaborate construction of Sudborough.

The class of all CFLs is not closed under complementation. Nonetheless,
one could expect that a logspace reduction closure captures complements
as well, and indeed this is the case. Interestingly, none of the above forms
directly show that LogCFL is closed under complementation. The SAC!
formulation was used by Borodin et al [6] to apply inductive counting and
thus establish this closure. This closure captures a certain symmetry between
the OR and AND operators: as long as one of them has bounded arity, we
are within LogCFL.

Bedard, Lemieux and McKenzie gave yet another characterization of
LogCFL in [B]. Generalising the programs-over-monoids framework of Bar-
rington, they show that LogCFL equals languages accepted by programs over
groupoids. These are algebraic structures where a non-associative binary op-
erator * on a set A is defined. Given a word w € A*, consider all possible
ways of parenthesising it to apply *. These different ways yield a set of pos-
sible values S(w). Acceptance is defined in terms of S(w) containing some
designated element, or equalling some designated set. By imposing syntactic
conditions on programs over groupoids, NC*, DLOG and NLOG can also be
captured in this framework [3], 25].

The framework of [5] directly leads to a logical characterization as well:
LogCFL is exactly those languages whose membership is expressible in first-
order logic augmented by groupoidal quantifiers. A more detailed treatment
of this characterization can be found in [24].

2.6 LogDCFL

LogDCFL is the class of languages reducible via logspace many-one reduc-
tions to some deterministic context-free language. As in the case of LogCFL,
the two computation phases in deciding membership in a LogDCFL language
can be interleaved [36]; thus LogDCFL equals DAuxPDA (poly). It is also
characterized in the PRAM model: it is the restriction of AC! to concurrent
read owner-write (CROW) PRAMs, see |15, [I6]. One of the most non-trivial
properties about LogDCFL is that it is contained in SC?; this was shown by
Cook in [IT]. No subclass of NC containing LogDCFL is known to be inside
SC, though a possibly incomparable chunk of NC consisting of randomized
(bounded two-sided error) logspace is also known to be in SC [30]. Surpris-
ingly, we do not yet know how to combine these two constructions to place
randomized poly time AuxPDA inside SC.

6



2.7 A formal language view

For many reasons, AC! is not as interesting formally as the classes within
it. The main reason is to do with proof-tree size: AC! circuits can have
exponentially large proof trees. This crucially impacts arithmetic versions
of these circuits; we will come to that shortly. Another is that there is no
neat characterization of AC! via formal language classes. From the formal-
language-theoretic point of view, we have the following containment diagram:

Regular —— Det Linear CFLs: DLin

\

Linear CFLs: Lin

CFLs

Figure 2: Formal Language Classes

All the containments are proper, and DCFL and Lin are incomparable.
Applying very weak closures to these classes — uniform FO projections — gives
exactly the complexity classes of Figure . Notice that AC! is not covered
here. The jump from CFLs to context-sensitive languages is too big; closure
of CSLs gives all of PSPACE. We need something much smaller to capture
exactly AC!.

2.8 Completeness

Here is a partial list of problems complete for each of these classes:

LogCFL BlockChoice(Dyck-2), the hardest CFL: Given a sequence of blocks,
each containing a list of strings, can we pick exactly one string from
each block so that their concatenation, in that order, is in Dyck-2 (the
language of balanced parentheses with two types of parentheses)?
Non-zero Tame Tensor Formula [T3]: Given a tensor formula satisfying
a certain “tameness” property, determine whether it is non-zero.
Semi-extended regular expression membership [31]: Given an expres-
sion 7 over some alphabet ¥ where r is like a regular expression but is
also allowed to use N, and given a string x € ¥*, determine whether

x € L(r).

NLOG Reachability in a directed acyclic graph.
2-CNF-SAT.



Regular expression membership [2T]: Given a regular expression r over

some alphabet ¥ and a string x € ¥*, determine whether z € L(r).

LogDCFL BlockChoice(Dyck-2), the hardest DCFL: let Dyck-2 be over

{a,b,c,d} with a and ¢ opening, and matched by b and d respectively.
Given a string 2 € (a + ¢)™, and a sequence of blocks By, ..., B each
consisting of one string in b(a + ¢)* and one in d(a + ¢)*, can we pick
exactly one string from each block so that their concatenation, with x,
is in Dyck-27

DLOG Reachability in an undirected graph, presented by its adjacency lists.

[32]
Remains hard even if the graph is a two-tree forest. [12]
Bipartiteness: given an undirected graph, determine if it is bipartite.

NC! Reachability in a bounded-width layered graph.

3

The Boolean Formula Value problem.

The word problem over the group S5 (for that matter, over any finite
non-solvable monoid).

Fixed Regular expression membership: For a fixed regular expression
r over some alphabet Y, given a string x € X*, determine whether
x € L(r).

Lesser-known classes

By varying parameters appropriately between NC! and LogCFL, we get some
lesser-known classes in this range:

3.1 Syntactic restrictions

e BP-width: Within polysize, constant-width BPs gives NC! and un-

bounded width BPs give NLOG. One could thus consider width w(n)
BPs, for w a function of n. Vinay showed [4T] that for each polylog
w € O(logn'), the corresponding class is closed under complement.
But nothing much more is known. For instance, even the smallest class
here, log-width BPs, lying between NC! and DLOG, is not known to
capture any natural problem in this range.

OR fanin: Within poly size log depth circuits with constant AND fanin,
varying OR. fanin from constant to polynomial takes us from NC! to
SAC! (i.e. LogCFL). What about OR fanin f(n) where f is, say, poly-
log? Again, Vinay showed closure under complement, [A1]. Also, just

8



3.2

as SAC! contains NLOG (at f = poly), each of these classes contains
the corresponding BP-width-constrained class described above. But do
they capture any natural problems?

Circuit-width: Constraining circuit width alone to polylog gives the
SC hierarchy, and very little of the NC hierarchy is known to lie within
it. However, the defining property separating LogCFL from P is poly
size proof trees (also referred to as poly degree). One could combine a
width restriction with a degree restriction to obtain a sub-hierarchy of
SC within LogCFL. Limaye et al [26] define what they call small SC de-
noted sSC: its ith level has poly size poly degree O(log") width circuits.
Again, each level here contains the corresponding width-constrained
BPs, though no relationship with the constrained-OR-fanin circuits is
known. Though these classes are not yet known to be closed under
complement, [26] shows that co-sSC? is in sSC?. At the smallest level,
sSCY equals SC?, but it is not known whether sSC! is as powerful as
SC*.

Language/Automata-theoretic constructs

Let us take a closer look at Figures [, Bl NC! equals the closure of
regular languages. Yet some non-trivial non-regular CFL families are
included in it. These include parenthesis languages [8], visibly push-
down languages VPLs [3, [14], linear CFLs with an LL[1] condition
[I7]. (Imposing an LR[1] condition is what corresponds to determin-
ism. Thus CFLs with an LR[1] condition equal DCFLs, linear CFLs
with an LR|[1] condition equal languages accepted by 1-turn DPDA,
usually referred to as deterministic linear languages.)

Let me highlight the membership in NC! of VPLs. Firstly, what are
VPLs? These are languages accepted by visibly pushdown automata
VPAs. So what are VPAs? These are PDAs with no £ moves, where
the stack movement (push / no change / pop) is dictated solely by the
input letter being read. They are clearly stronger than NFAs (they can
accept a™b": push on a, pop on b), but also weaker than PDAs (they
cannot accept a™ba": is a a push letter or a pop letter?). In [3], it was
shown that VPAs can be determinized; thus VPLs are in DCFLs. But
well before this was known, these languages had been studied under
the name input-driven languages. Dymond gave a nice construction
[T4] showing that they are in fact in NC!. His approach is generic and
works not just for VPAs but for any PDA satisfying the following:

9



3.3

1. no € moves,
2. an accepting run should end with an empty stack,

3. the height of the pushdown, after processing i letters of the input,
should be computable in NC!. If there is more than one run
(nondeterministic PDA), and if the height profiles across different
runs are different, then the heights computed should be consistent
with a single run. Furthermore, if there is an accepting run, then
the heights computed should be consistent with some accepting
run.

For such PDA, Dymond transforms the problem of recognition to an
instance of formula value problem, and then invokes Buss’s ALogTime
algorithm [8] for it.

VPAs satisfy these conditions (with appropriate padding to satisfy con-
dition (2)). But much more can be achieved via condition (3). The
height profiles of all runs in a VPA are the same, and can be com-
puted in TCO. Understanding exactly what can be placed inside NC!
by carefully using Dymond’s proof is a nice question.

An interesting proper generalization of VPAs are what Caucal intro-
duced in [9] and calls synchronized PDA. Languages accepted by these
are contained in DPDA but incomparable with DLin. Does their clo-
sure create a new class between NC! and LogDCFL, or does it collapse
to one of these or even to DLOG?

The fact that the logspace closure of Lin is NLOG is interesting. The
machine model for Linear CFLs is PDA which, on each run, make at
most 1 turn on the stack. That is, no stack symbols are pushed after
the first pop move. Thus the machine model for the logspace closure of
Lin is AuxPDA (poly) making 1-turn in stack movement. This suggests
a fine gradation between NLOG and LogCFL parameterized by the
number of turns the AuxPDA is allowed to make. A similar gradation
arises between DLOG and LogDCFL by considering the deterministic
counterpart.

Counting constructs

Unambiguity: Between DLOG and NLOG lies, quite naturally, unam-
biguous logspace ULOG. Similarly, LogUCFL lies between LogDCFL
and LogCFL. Interestingly, the correspondence between the formal lan-
guage class and the complexity class is not known to hold here: the

10



logspace closure of unambiguous CFLs viz. LogUCFL, is contained in
unambiguous logspace machines UAuxPDA (poly), but the converse is
not known, and similarly for unambiguous Linear CFLs. There are
also close relationships in the PRAM model: while LogDCFL is char-
acterized by log time CROW PRAMs, LogUCFL is contained in by log
time CREW PRAMSs, which correspond to a strong form of unambi-
guity in AC! circuits. There are several subtleties in the definition of
unambiguous machines/circuits: is there at most one accepting path,
or at most one path from the initial to any configuration, or at most
one path between any pair of configurations? For more about these
nuances, see [23], 29).

e Randomization: Between ULOG and NLOG lies one-sided-error ran-
domized logspace RLOG: either none, or overwhelmingly many, accept-
ing runs. Nisan showed [30] that RLOG (and even its two-sided-error
version) is contained in SC2. No class above RLOG is known to be in
SC. A natural containment to expect, since LogDCFL is also in SC?,
is that randomized LogCFL, RLogCFL, is also in SC2. So far this has
not been shown to hold. But another interesting set of questions here
is to do with the appropriate definition of RLogCFL itself. LogCFL
has multiple characterizations, each of which can be randomized to give
competing definitions for RLogCFL:

1. a randomized logspace reduction to some CFL

2. a randomized AuxPDA (poly) with bounded error

3. arandomized AuxPDA (poly) with stack-height bounded by O(log® n)
and bounded error

4. an SAC! circuit with polynomially many supplementary random
input bits, and bounded error

Which of these truly reflects RLogCFL?

4 Arithmetization

In this section, T will briefly discuss arithmetizations of these classes over
integers. There are two standard ways to arithmetize a circuit class: (1) as-
suming there are negations only at the leaves, replace AND and OR gates by
x and + gates respectively, or (2) count the number of proof-trees. Both give
the same class of functions. Equivalent models can be appropriately arith-
metized: For programs over monoids, consider an NFA corresponding to

11



the monoid, view the instructions as projections transforming an input, and
count the number of accepting paths of the NFA on the transformed version.
For branching programs, count the number of st paths. For LogCFL, count
the number of parse trees in the target CFL. For NLOG and AuxPDA (poly),
count the number of accepting paths. And so on.

The arithmetization of AC! is not very interesting. Within log depth, a
circuit can, starting with Os and 1s, compute numbers that need exponentially
many bits in their binary representation. This is because they can have
exponentially large proof trees. For feasible computation, we may be justified
in restricting attention to poly size arithmetic circuits that compute numbers
with feasible representation. This corresponds to poly size circuits with poly
degree, and over integers, is essentially the same as Valiant’s class VP. It
also corresponds directly to an arithmetization of one characterization of
LogCFL, namely, ASP,TRSZ(log,poly).

Interestingly, all arithmetizations of LogCFL coincide: poly size poly
degree arith circuits, poly size log depth #SAC!, number of accepting paths
in AuxPDA (poly) machines, number of parse trees in a CFL, number of
good parenthesizations of a word over a groupoid. Venkateswaran’s tree-
cutting construction [38] placing LogCFL in SAC! is not parsimonious; it
does not give a one-to-one correspondence between accepting paths of the
AuxPDA (poly) machine and proof trees of the SAC! circuit. To establish the
equivalence of #AuxPDA (poly) and #SAC!, two independent and different
constructions were described by [A0] and [29] (see also [2]). These can also be
thought of as tree-cutting, but the cuts are applied more carefully to uniquely
halve the degree in a constant number of stages. Since these techniques apply
to the Boolean case as well, we have three different proofs that LogCFL is in
SAC!.

Since unbounded addition and bounded multiplication are both in NC!,
it is easy to see that #SAC! is in Boolean NC2.

Over NLOG too, the two arithmetizations coincide: number of accepting
paths in an NLOG machine, and number of proof trees in a poly size skew
circuit, both give the function class #L.

For LogDCFL and DLOG, it is not clear how to define an arithmetic ver-
sion. One possibility is to consider functional versions FLOG and FLogD-
CFL. But this is not entirely satisfactory because in this kind of frame-
work, we expect arithmetization to yield more power. Another possibility for
DLOG is to consider #SC!, since DLOG equals SC!. But #SC! can compute
infeasible values, so this is an unreasonable class. Yet another possibility is to
consider poly degree SC! circuits, #sSC!. But it is not even known whether
sSC! is as powerful as SC!, so we may be restricting ourselves too much this
way. An interesting spin on #sSC! is that it is contained in both #SAC!

12



and Boolean SC?. Thus, inverting the question of “How much of NC is in
SC?” it gives a piece of SC inside NC.

At NC!, the picture is considerably murkier. Recall that Boolean NC! has
multiple characterizations. #NC! as log depth arithmetic circuits has been
studied quite a bit since first formally defined in CMTV. There it is shown
that #BWBP equals #BP-M (or #BP-NFA, as referred to in [26]), contains
functional NC!, and is contained in #NC!. But the reverse containments are
still intriguingly open; we know that #NC! can be computed by Boolean poly
size circuits of bounded fanin and depth O(lognlog”n), but the log*n factor
remains. However, if the constant -1 is allowed, we get the classes GapNC!
and GapBWBP, and these are known to coincide, and they are contained in
FLOG.

It turns out that #LWF and #F both equal #NC!. On the other hand,
#BP-VPA equals #BWBP: adding a visibly pushdown stack to an NFA
not only does not increase the complexity of the language class, it does
not increase the complexity of the counting function class as well. Another
arithmetization of a class equivalent to NC! is #sSC?; this contains #BWBP
and is contained in FLOG, but no relationship to #NC! is known. These
results are described in [26].

Language classes can be defined based on these arithmetizations; the
predicates typically applied to NC' and NLOG are:

Is the # function greater than 07 yielding NC!, NLOG
Is the Gap function greater than 0?7 yielding PNC!, PL
Are two # (or Gap) functions equal? yielding C=NC!, C=L

With these predicates, the multitude of arithmetic classes around NC!
gives rise to a host of language classes between NC! and DLOG. T hope that
the true picture is considerably simpler.

Acknowledgements

The idea of writing this survey arose after a talk I gave at a Dagstuhl sem-
inar on Circuits, Logic and Games in November 2006, and I thank Heribert
Vollmer for the invitation to participate in the seminar. I gratefully acknowl-
edge many helpful and insightful discussions over several occasions with Eric
Allender, Nutan Limaye, Kamal Lodaya, Pierre McKenzie, Antoine Meyer,
Raghavendra Rao, Jayalal Sarma, H Venkateswaran and V Vinay.

13



References

1]

2]

3]
4]

[5]
6]

7]
8]
9]
[10]
11)
12]
13]
14

[15]

E. Allender. Arithmetic circuits and counting complexity classes. In J. Kra-
jicek, editor, Complexity of Computations and Proofs, Quaderni di Matematica
Vol. 13, pages 33-72. Seconda Universita di Napoli, 2004. An earlier version
appeared in the Complexity Theory Column, SIGACT News 28, 4 (Dec. 1997)
pp. 2-15.

E. Allender, J. Jiao, M. Mahajan, and V. Vinay. Non-commutative arith-
metic circuits: depth reduction and size lower bounds. Theoretical Computer
Science, 209:47-86, 1998.

R. Alur and P. Madhusudan. Visibly pushdown languages. In STOC, pages
202211, 2004.

D. Barrington. Bounded-width polynomial size branching programs recognize
exactly those languages in NC'. Journal of Computer and System Sciences,
38:150-164, 1989.

F. Bedard, F. Lemieux, and P. McKenzie. Extensions to Barrington’s M-
program model. Theoretical Computer Science, 107:31-61, 1993.

A. Borodin, S. Cook, P. Dymond, W. Ruzzo, and M. Tompa. Two applica-
tions of inductive counting for complementation problems. SIAM Journal of
Computation, 18(3):559-578, 1989.

R. P. Brent. The parallel evaluation of general arithmetic expressions. Journal
of the ACM, 21:201-206, 1974.

S. Buss. The Boolean formula value problem is in ALOGTIME. In STOC,
pages 123-131, 1987.

D. Caucal. Synchronization of pushdown automata. In Proc. 10th Develop-
ments in Language Theory Conference, LNCS 4036. Springer, 2006.

S. Cook. Characterizations of pushdown machines in terms of time-bounded
computers. Journal of Assoc. Comput. Mach., 18:4-18, 1971.

S. A. Cook. Deterministic CFL’s are accepted simultaneously in polynomial
time and log squared space. In STOC, pages 338-345, 1979.

S. A. Cook and P. McKenzie. Problems complete for L. Journal of Algorithms,
8:385-394, 1987.

C. Damm, M. Holzer, and P. McKenzie. The complexity of tensor calculus.
Computational Complexity, 11(1/2):54-89, January 2003.

P. W. Dymond. Input-driven languages are in log n depth. In Information
processing letters, pages 26, 247-250, 1988.

P. W. Dymond and W. L. Ruzzo. Parallel RAMs with owned global memory
and deterministic context-free language recognition. J. ACM, 47(1):16-45,
2000. extended abstract in ICALP 86: LNCS 226 pp. 95-104.

14



[16]

[17]
[18]
[19]

[20]

[21]

[22]

23]

[24]

[25]
[26]

[27]

[28]

[29]

[30]
[31]

H. Fernau, K.-J. Lange, and K. Reinhardt. Advocating ownership. In V. Chan-
dru and V. Vinay, editors, Proc. 16th FSTETCS, LNCS 1180, pages 286—297.
Springer, December 1996.

O. Ibarra, T. Jiang, and B. Ravikumar. Some subclasses of context-free lan-
guages in NC'. Information Processing Letters, 29:111-117, 1988.

H. Immerman. Languages which capture complexity classes. SIAM J. Com-
put., 4:760-778, 1987.

N. Immerman. Nondeterministic space is closed under complementation.

SIAM Journal on Computing, 17(5):935-938, Oct 1988.

S. Istrail and D. Zivkovic. Bounded width polynomial size Boolean formu-
las compute exactly those functions in ACY. Information Processing Letters,
50:211-216, 1994.

T. Jiang and B. Ravikumar. A note on the space complexity of some decision
problems for finite automata. Information Processing Letters, 40:25-31, 1991.

D. S. Johnson. A catalog of complexity classes. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, Volume A: Algorithms and Com-
plexity (A), pages 67-161. 1990.

K.-J. Lange. Complexity and structure in formal language theory. Fundamenta
Informaticae, 25:327-352, 1996. Preliminary version in Proceedings of 8th
IEEE Structure in Complexity Theory Conference, 1993, 224-238.

Lautemann, McKenzie, Schwentick, and Vollmer. The descriptive complexity
approach to LOGCFL. JCSS: Journal of Computer and System Sciences, 62,
2001.

F. Lemieux. Finite Groupoids and their Applications to Computational Com-
plezity. PhD thesis, McGill University, 1996.

N. Limaye, M. Mahajan, and B. V. R. Rao. Arithmetizing classes around NC!
and L. In STACS, LNCS wvol. 4393, 2007.

P. McKenzie, K. Reinhardt, and V. Vinay. Circuits and context-free languages.
In Proceedings of 5th Annual Internat. Conf. on Computing and Combinatorics

(COCOON), Tokyo, Japan, LNCS 1627, pages 194-203, 1999.

D. A. Mix-Barrington, N. Immerman, and H. Straubing. On uniformity within
NC!. J. Comput. Syst. Sci., 41(3):274-306, 1990.

R. Niedermeier and P. Rossmanith. Unambiguous auxiliary pushdown au-
tomata and semi-unbounded fan-in circuits. Information and Computation,
118(2):227-245, 1995.

N. Nisan. RL C SC. Computational Complezity, 4(11):1-11, 1994.

Petersen. The membership problem for regular expressions with intersection is
complete in LOGCFL. In STACS: Annual Symposium on Theoretical Aspects
of Computer Science LNCS 2285, pages 513-522, 2002.

15



[32]
[33]
[34]

[35]

[36]
[37]
[38]
[39]

[40]

[41]

[42]

O. Reingold. Undirected st-connectivity in logspace. In Proc. 37th STOC,
pages 376-385, 2005.

W. Ruzzo. Tree-size bounded alternation. Journal of Computer and System
Sciences, 21:218-235, 1980.

W. Ruzzo. On uniformity within NC'. Journal of Computer and System
Sciences, 22:365-383, 1981.

P. Spira. On time hardware complexity tradeoffs for boolean functions. In
Proceedings of 4th Hawaii International Symposium on System Sciences, pages
525-527, 1971.

I. Sudborough. On the tape complexity of deterministic context-free language.
Journal of Association of Computing Machinery, 25(3):405-414, 1978.

R. Szelepcsényi. The method of forced enumeration for nondeterministic au-
tomata. Acta Informatica, 26(3):279-284, 1988.

H. Venkateswaran. Properties that characterize LogCFL. Journal of Computer
and System Sciences, 42:380-404, 1991.

H. Venkateswaran. Circuit definitions of nondeterministic complexity classes.
SIAM J. on Computing, 21:655—670, 1992.

V. Vinay. Counting auxiliary pushdown automata and semi-unbounded arith-
metic circuits. In Proceedings of 6th Structure in Complexity Theory Confer-
ence, pages 270-284, 1991.

V. Vinay. Hierarchies of circuit classes that are closed under complement. In
CCC ’96: Proceedings of the 11th Annual IEEE Conference on Computational
Complexity, pages 108-117, Washington, DC, USA, 1996. IEEE Computer
Society.

H. Vollmer. Introduction to Circuit Complexity: A Uniform Approach.
Springer-Verlag New York Inc., 1999.

16



	Introduction
	Principal classes between NC1 and AC1
	NC1
	AC1
	DLOG
	NLOG
	LogCFL
	LogDCFL
	A formal language view
	Completeness

	Lesser-known classes
	Syntactic restrictions
	Language/Automata-theoretic constructs
	Counting constructs

	Arithmetization

