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1 Introdu
tionWhen a theoreti
al 
omputer s
ientist asks me my area of resear
h, I usuallysay 
omplexity theory. This is often followed by the question �what kind of
omplexity theory� to whi
h I inevitably reply �inside P�. And usually thequestioning stops there. In this brief survey, I would like to go further, anddes
ribe some of my favourite 
omplexity 
lasses. They all lie in the rangebetween NC1 and AC1; hen
e this title. I 
annot even begin to attempt being
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exhaustive, and I apologize in advan
e to those whose favourite results I haveomitted. Mu
h of this material (and mu
h more!) 
an be found in the text[42℄ and the surveys [1, 23℄.2 Prin
ipal 
lasses between NC1 and AC1Consider (uniform) families of polynomial size log depth 
ir
uits with internalAND and OR gates, and literals / 
onstants at the leaves. (No internalnegations, without loss of generality). Restri
ting the gates to have 
onstantfanin gives the 
omplexity 
lass NC1; leaving it unrestri
ted (limited, of
ourse, by the 
ir
uit size itself) gives AC1.Without loss of generality, we 
an assume that our 
ir
uits are layered:gates appear in layers, and wires 
onne
t adja
ent layers in one dire
tion.The maximum number of gates at any one layer of the 
ir
uit is 
alled thewidth of the 
ir
uit.Several well-known 
lasses are sandwi
hed in between; let's take a lookat ea
h of these. LogDCFL
''NNNNNNNNNNNNC1 // DLOG 88qqqqqqqqqqq

&&NNNNNNNNNNN
LogCFL // AC1NLOG 77oooooooooooFigure 1: The lands
ape between NC1 and AC12.1 NC1At the lower end, we begin with the 
lass NC1. NC1 has many equivalent
hara
terizations. It equals the 
lass of languages a

epted by

• alternating Turing ma
hines in logarithmi
 time ALOGTIME (underappropriate uniformity 
onditions). ([34℄)
• poly size programs over �nite monoids BP-M.A program over a monoid M = (S, ◦) is a list of instru
tions of theform 〈i, a, b〉 where i ∈ [n], a, b ∈ S. The instru
tion 〈i, a, b〉, on input

x ∈ {0, 1}n, evaluates to a if xi = 1, to b otherwise. The entire program,2



on input x ∈ {0, 1}n, thus 
onstru
ts a word w ∈ S∗. The programa

epts x if w evaluates to a designated value in M .A simple divide-and-
onquer approa
h establishes that programs over�nite monoids 
an be evaluated in NC1. Barrington [4℄ established the
onverse by showing that over any non-solvable group, words 
an be
onstru
ted to 
ode logi
al AND and negation. In parti
ular, he usedthe permutation group S5; thus programs over this group are 
ompletefor NC1.
• bounded-width poly size bran
hing programs BWBP.These are 
onstant-width layered graphs (one for ea
h input length)with designated start and �nish verti
es s, t, and edges labelled byliterals or 
onstants. An input is a

epted if the 
orresponding graphhas an st path where all edges are labelled by 1 or true literals.It is folklore (and easy to see) that programs over monoids 
an bedes
ribed in this form, and vi
e versa.Su
h programs are also equivalent to skew 
ir
uits, where OR gates areunrestri
ted but AND gates 
an have at most one input that is not aliteral or a 
onstant.
• bounded-width poly size 
ir
uits SC0.SC is the 
lass of polynomial size poly logarithmi
 width 
ir
uits (width

O(logi n) for SCi). (Again, wlog the 
ir
uits 
an be assumed to havenegations only at the leaves.) In simulating a 
ir
uit by a Turing ma-
hine, width roughly translates to spa
e and size to time; thus SC 
orre-sponds in the uniform setting to a simultaneous time-spa
e bound. (SCstands for Steve's Classes, named after Stephen Cook who proved the�rst non-trivial result about polynomial time log-squared spa
e PLoSS,i.e. SC2, in [11℄. See for instan
e [22℄). As des
ribed above, Barring-ton's result pla
es NC1 inside skew SC0. But even non-skew SC0 iseasily seen to be inside NC1, sin
e only a 
onstant amount of memoryis needed to evaluate the gates of the 
ir
uit layer by layer. Thus SC0equals NC1.
• poly size formulae F, even when restri
ted to log-width formula LWF.A formula is a 
ir
uit where ea
h gate has fanout at most 1. NC1 
ir-
uits 
an be 
onverted to formulae by dupli
ation; the blow-up in size isstill within a polynomial. Conversely, any formula 
an be restru
turedinto an equivalent one with polynomial blow-up in size and logarithmi
depth; a non-uniform way to do this was �rst des
ribed in [7, 35℄, whileit 
an be done uniformly as in [28℄. Further, any log depth formula 
an3



be restru
tured to log width (at the expense of depth, of 
ourse), asobserved in [20℄; thus LWF = F = NC1.
• predi
ates expressed in �rst-order logi
, augmented with a group quan-ti�er or a monoidal quanti�er QG over any non-solvable group G,FO[QG℄. [28℄.2.2 AC1At the higher end, we have AC1. Less is known about AC1; it equals the
lass of languages a

epted by
• alternating Turing ma
hines using logarithmi
 spa
e and making atmost logarithmi
 alternations between universal and existential stateson any 
omputation path ASP,ALT(log,log) (under appropriate unifor-mity 
onditions).
• Con
urrent read, 
on
urrent write PRAMs working in logarithmi
 timewith polynomially many pro
essors.Now 
onsider the intermediate 
lasses.2.3 DLOGDLOG is the 
lass of languages a

epted by deterministi
 logspa
e ma
hines.It also equals the 
lass of languages a

epted by log width poly size 
ir
uitsSC1. DLOG equals senten
es expressible in FO augmented with deterministi
transitive 
losure FO[DTC℄, [18℄, and it follows from [32℄ that DLOG alsoequals FO + symmetri
 transitive 
losure FO[STC℄.2.4 NLOGNLOG is the 
lass of languages a

epted by nondeterministi
 logspa
e ma-
hines. The indu
tive 
ounting te
hnique of Immerman and Szelep
sényi[19, 37℄ shows that NLOG is 
losed under 
omplementation. An equivalentformulations of NLOG is the 
lass of languages a

epted by uniform poly sizeskew 
ir
uits (or bran
hing programs); see [39℄. In des
riptive 
omplexity,NLOG is 
hara
terized by senten
es in �rst-order logi
 with positive transi-tive 
losure FO[pos TC℄, see [18℄. 4



2.5 LogCFLLogCFL, by de�nition, is the 
lass of languages redu
ible via logspa
e many-one redu
tions to some 
ontext-free language. It follows that ea
h su
h lan-guage 
an be a

epted by a ma
hine whi
h has logspa
e to perform theredu
tion, and a nondeterministi
 �nite 
ontrol and a sta
k to then parsethe CFL in polynomial time. Su
h ma
hines are 
alled AuxPDA(poly), andSudborough showed that they a

ept exa
tly LogCFL ([36℄). That is, al-lowing arbitrary interleaving of the two types of 
omputation involved �(1) deterministi
 logspa
e redu
tion, and (2) nondeterministi
 PDA � is nomore powerful than performing these two phases sequentially. (An aside: thepolynomial time restri
tion is ne
essary, sin
e Cook [10℄ showed that in un-bounded time, and even in exponential time, deterministi
 PDA augmentedwith logspa
e worktape 
apture all of P.)Using the notion of realizable pairs of surfa
e 
on�gurations, Ruzzo showed[33℄ that AuxPDA(poly) 
an be simulated by alternating TMs using logspa
eand having poly-sized proof trees. What is a proof-tree? Consider the 
om-putation graph of a logspa
e-bounded ATM, where nodes are time-stamped
on�gurations. (The logspa
e bound ensures a poly-sized graph; the time-stamping ensures that the graph is a
y
li
.) To prove that it a

epts itsinput, it su�
es to show a sub-graph that 
ontains (1) the initial 
on�gura-tion, (2) both 
hildren of ea
h universal node in
luded, (3) at least one 
hildof ea
h existential node in
luded, and (4) only a

epting 
on�gurations asleaves. Su
h a sub-graph, unfolded or expanded out by dupli
ating nodes ifne
essary so that it is a tree, is what we 
all a proof-tree. It is easy to seethat poly-sized graphs 
an have exponential-sized proof-trees. Ruzzo's proofshows that to des
ribe the 
omputations of AuxPDA(poly), poly-sized prooftrees su�
e. Conversely, if a logspa
e-bounded ATM has, for ea
h a

eptedinput, a proof-tree of size at most t(n), then an AuxPDA 
an a

ept thesame language in time t(n). Thus we have a 
hara
terization of LogCFLvia ATMs: LogCFL = ASP,TRSZ(log,poly). Note that the above proof-treede�nition 
an be applied to 
ir
uits as well. Using a very ni
e tree-
uttingargument, Venkateswaran showed [38℄ that a poly-sized 
ir
uit of any depth,but with a poly-size bound on its proof trees, 
an be �attened to log depth,at the 
ost of in
reasing the fanin of OR gates. This is the 
ir
uit 
lass SAC1,semi-unbounded alternating 
ir
uits. The 
onverse simulation is dire
t, giv-ing ASP,TRSZ(log,poly)=SAC1.An interesting o�shoot of Venkateswaran's 
onstru
tion is that ea
h Aux-PDA(poly) 
an be simulated by an AuxPDA(poly) whose sta
k height nevergrows beyond O(log2 n). (Only O(logn) pairs of surfa
e 
on�gurations, ea
hneeding O(log n) bits, need to be sta
ked.)5



More re
ently, in [27℄, M
Kenzie, Rienhardt and Vinay gave a dire
tproof that ASP,TRSZ(log,poly) is in LogCFL, thus eliminating the need forthe elaborate 
onstru
tion of Sudborough.The 
lass of all CFLs is not 
losed under 
omplementation. Nonetheless,one 
ould expe
t that a logspa
e redu
tion 
losure 
aptures 
omplementsas well, and indeed this is the 
ase. Interestingly, none of the above formsdire
tly show that LogCFL is 
losed under 
omplementation. The SAC1formulation was used by Borodin et al [6℄ to apply indu
tive 
ounting andthus establish this 
losure. This 
losure 
aptures a 
ertain symmetry betweenthe OR and AND operators: as long as one of them has bounded arity, weare within LogCFL.Bedard, Lemieux and M
Kenzie gave yet another 
hara
terization ofLogCFL in [5℄. Generalising the programs-over-monoids framework of Bar-rington, they show that LogCFL equals languages a

epted by programs overgroupoids. These are algebrai
 stru
tures where a non-asso
iative binary op-erator * on a set A is de�ned. Given a word w ∈ A∗, 
onsider all possibleways of parenthesising it to apply *. These di�erent ways yield a set of pos-sible values S(w). A

eptan
e is de�ned in terms of S(w) 
ontaining somedesignated element, or equalling some designated set. By imposing synta
ti

onditions on programs over groupoids, NC1, DLOG and NLOG 
an also be
aptured in this framework [5, 25℄.The framework of [5℄ dire
tly leads to a logi
al 
hara
terization as well:LogCFL is exa
tly those languages whose membership is expressible in �rst-order logi
 augmented by groupoidal quanti�ers. A more detailed treatmentof this 
hara
terization 
an be found in [24℄.2.6 LogDCFLLogDCFL is the 
lass of languages redu
ible via logspa
e many-one redu
-tions to some deterministi
 
ontext-free language. As in the 
ase of LogCFL,the two 
omputation phases in de
iding membership in a LogDCFL language
an be interleaved [36℄; thus LogDCFL equals DAuxPDA(poly). It is also
hara
terized in the PRAM model: it is the restri
tion of AC1 to 
on
urrentread owner-write (CROW) PRAMs, see [15, 16℄. One of the most non-trivialproperties about LogDCFL is that it is 
ontained in SC2; this was shown byCook in [11℄. No sub
lass of NC 
ontaining LogDCFL is known to be insideSC, though a possibly in
omparable 
hunk of NC 
onsisting of randomized(bounded two-sided error) logspa
e is also known to be in SC [30℄. Surpris-ingly, we do not yet know how to 
ombine these two 
onstru
tions to pla
erandomized poly time AuxPDA inside SC.6



2.7 A formal language viewFor many reasons, AC1 is not as interesting formally as the 
lasses withinit. The main reason is to do with proof-tree size: AC1 
ir
uits 
an haveexponentially large proof trees. This 
ru
ially impa
ts arithmeti
 versionsof these 
ir
uits; we will 
ome to that shortly. Another is that there is noneat 
hara
terization of AC1 via formal language 
lasses. From the formal-language-theoreti
 point of view, we have the following 
ontainment diagram:DCFL
((QQQQQQQQQQQQQRegular // Det Linear CFLs: DLin 44hhhhhhhhhhhhhhhhhhhh

**VVVVVVVVVVVVVVVVVVV
CFLsLinear CFLs: Lin 66mmmmmmmmmmmmmFigure 2: Formal Language ClassesAll the 
ontainments are proper, and DCFL and Lin are in
omparable.Applying very weak 
losures to these 
lasses � uniform FO proje
tions � givesexa
tly the 
omplexity 
lasses of Figure 1. Noti
e that AC1 is not 
overedhere. The jump from CFLs to 
ontext-sensitive languages is too big; 
losureof CSLs gives all of PSPACE. We need something mu
h smaller to 
aptureexa
tly AC1.2.8 CompletenessHere is a partial list of problems 
omplete for ea
h of these 
lasses:LogCFL Blo
kChoi
e(Dy
k-2), the hardest CFL: Given a sequen
e of blo
ks,ea
h 
ontaining a list of strings, 
an we pi
k exa
tly one string fromea
h blo
k so that their 
on
atenation, in that order, is in Dy
k-2 (thelanguage of balan
ed parentheses with two types of parentheses)?Non-zero Tame Tensor Formula [13℄: Given a tensor formula satisfyinga 
ertain �tameness� property, determine whether it is non-zero.Semi-extended regular expression membership [31℄: Given an expres-sion r over some alphabet Σ where r is like a regular expression but isalso allowed to use ∩, and given a string x ∈ Σ∗, determine whether

x ∈ L(r).NLOG Rea
hability in a dire
ted a
y
li
 graph.2-CNF-SAT. 7



Regular expression membership [21℄: Given a regular expression r oversome alphabet Σ and a string x ∈ Σ∗, determine whether x ∈ L(r).LogDCFL Blo
kChoi
e(Dy
k-2), the hardest DCFL: let Dy
k-2 be over
{a, b, c, d} with a and c opening, and mat
hed by b and d respe
tively.Given a string x0 ∈ (a + c)+, and a sequen
e of blo
ks B1, . . . , Bk ea
h
onsisting of one string in b(a + c)∗ and one in d(a + c)∗, 
an we pi
kexa
tly one string from ea
h blo
k so that their 
on
atenation, with x0,is in Dy
k-2?DLOG Rea
hability in an undire
ted graph, presented by its adja
en
y lists.[32℄Remains hard even if the graph is a two-tree forest. [12℄Bipartiteness: given an undire
ted graph, determine if it is bipartite.NC1 Rea
hability in a bounded-width layered graph.The Boolean Formula Value problem.The word problem over the group S5 (for that matter, over any �nitenon-solvable monoid).Fixed Regular expression membership: For a �xed regular expression
r over some alphabet Σ, given a string x ∈ Σ∗, determine whether
x ∈ L(r).3 Lesser-known 
lassesBy varying parameters appropriately between NC1 and LogCFL, we get somelesser-known 
lasses in this range:3.1 Synta
ti
 restri
tions

• BP-width: Within polysize, 
onstant-width BPs gives NC1 and un-bounded width BPs give NLOG. One 
ould thus 
onsider width w(n)BPs, for w a fun
tion of n. Vinay showed [41℄ that for ea
h polylog
w ∈ O(log ni), the 
orresponding 
lass is 
losed under 
omplement.But nothing mu
h more is known. For instan
e, even the smallest 
lasshere, log-width BPs, lying between NC1 and DLOG, is not known to
apture any natural problem in this range.

• OR fanin: Within poly size log depth 
ir
uits with 
onstant AND fanin,varying OR fanin from 
onstant to polynomial takes us from NC1 toSAC1 (i.e. LogCFL). What about OR fanin f(n) where f is, say, poly-log? Again, Vinay showed 
losure under 
omplement, [41℄. Also, just8



as SAC1 
ontains NLOG (at f = poly), ea
h of these 
lasses 
ontainsthe 
orresponding BP-width-
onstrained 
lass des
ribed above. But dothey 
apture any natural problems?
• Cir
uit-width: Constraining 
ir
uit width alone to polylog gives theSC hierar
hy, and very little of the NC hierar
hy is known to lie withinit. However, the de�ning property separating LogCFL from P is polysize proof trees (also referred to as poly degree). One 
ould 
ombine awidth restri
tion with a degree restri
tion to obtain a sub-hierar
hy ofSC within LogCFL. Limaye et al [26℄ de�ne what they 
all small SC de-noted sSC: its ith level has poly size poly degree O(logi) width 
ir
uits.Again, ea
h level here 
ontains the 
orresponding width-
onstrainedBPs, though no relationship with the 
onstrained-OR-fanin 
ir
uits isknown. Though these 
lasses are not yet known to be 
losed under
omplement, [26℄ shows that 
o-sSCi is in sSC2i. At the smallest level,sSC0 equals SC0, but it is not known whether sSC1 is as powerful asSC1.3.2 Language/Automata-theoreti
 
onstru
ts
• Let us take a 
loser look at Figures 1, 2. NC1 equals the 
losure ofregular languages. Yet some non-trivial non-regular CFL families arein
luded in it. These in
lude parenthesis languages [8℄, visibly push-down languages VPLs [3, 14℄, linear CFLs with an LL[1℄ 
ondition[17℄. (Imposing an LR[1℄ 
ondition is what 
orresponds to determin-ism. Thus CFLs with an LR[1℄ 
ondition equal DCFLs, linear CFLswith an LR[1℄ 
ondition equal languages a

epted by 1-turn DPDA,usually referred to as deterministi
 linear languages.)Let me highlight the membership in NC1 of VPLs. Firstly, what areVPLs? These are languages a

epted by visibly pushdown automataVPAs. So what are VPAs? These are PDAs with no ε moves, wherethe sta
k movement (push / no 
hange / pop) is di
tated solely by theinput letter being read. They are 
learly stronger than NFAs (they 
ana

ept anbn: push on a, pop on b), but also weaker than PDAs (they
annot a

ept anban: is a a push letter or a pop letter?). In [3℄, it wasshown that VPAs 
an be determinized; thus VPLs are in DCFLs. Butwell before this was known, these languages had been studied underthe name input-driven languages. Dymond gave a ni
e 
onstru
tion[14℄ showing that they are in fa
t in NC1. His approa
h is generi
 andworks not just for VPAs but for any PDA satisfying the following:9



1. no ε moves,2. an a

epting run should end with an empty sta
k,3. the height of the pushdown, after pro
essing i letters of the input,should be 
omputable in NC1. If there is more than one run(nondeterministi
 PDA), and if the height pro�les a
ross di�erentruns are di�erent, then the heights 
omputed should be 
onsistentwith a single run. Furthermore, if there is an a

epting run, thenthe heights 
omputed should be 
onsistent with some a

eptingrun.For su
h PDA, Dymond transforms the problem of re
ognition to aninstan
e of formula value problem, and then invokes Buss's ALogTimealgorithm [8℄ for it.VPAs satisfy these 
onditions (with appropriate padding to satisfy 
on-dition (2)). But mu
h more 
an be a
hieved via 
ondition (3). Theheight pro�les of all runs in a VPA are the same, and 
an be 
om-puted in TC0. Understanding exa
tly what 
an be pla
ed inside NC1by 
arefully using Dymond's proof is a ni
e question.An interesting proper generalization of VPAs are what Cau
al intro-du
ed in [9℄ and 
alls syn
hronized PDA. Languages a

epted by theseare 
ontained in DPDA but in
omparable with DLin. Does their 
lo-sure 
reate a new 
lass between NC1 and LogDCFL, or does it 
ollapseto one of these or even to DLOG?
• The fa
t that the logspa
e 
losure of Lin is NLOG is interesting. Thema
hine model for Linear CFLs is PDA whi
h, on ea
h run, make atmost 1 turn on the sta
k. That is, no sta
k symbols are pushed afterthe �rst pop move. Thus the ma
hine model for the logspa
e 
losure ofLin is AuxPDA(poly) making 1-turn in sta
k movement. This suggestsa �ne gradation between NLOG and LogCFL parameterized by thenumber of turns the AuxPDA is allowed to make. A similar gradationarises between DLOG and LogDCFL by 
onsidering the deterministi

ounterpart.3.3 Counting 
onstru
ts
• Unambiguity: Between DLOG and NLOG lies, quite naturally, unam-biguous logspa
e ULOG. Similarly, LogUCFL lies between LogDCFLand LogCFL. Interestingly, the 
orresponden
e between the formal lan-guage 
lass and the 
omplexity 
lass is not known to hold here: the10



logspa
e 
losure of unambiguous CFLs viz. LogUCFL, is 
ontained inunambiguous logspa
e ma
hines UAuxPDA(poly), but the 
onverse isnot known, and similarly for unambiguous Linear CFLs. There arealso 
lose relationships in the PRAM model: while LogDCFL is 
har-a
terized by log time CROW PRAMs, LogUCFL is 
ontained in by logtime CREW PRAMs, whi
h 
orrespond to a strong form of unambi-guity in AC1 
ir
uits. There are several subtleties in the de�nition ofunambiguous ma
hines/
ir
uits: is there at most one a

epting path,or at most one path from the initial to any 
on�guration, or at mostone path between any pair of 
on�gurations? For more about thesenuan
es, see [23, 29℄.
• Randomization: Between ULOG and NLOG lies one-sided-error ran-domized logspa
e RLOG: either none, or overwhelmingly many, a

ept-ing runs. Nisan showed [30℄ that RLOG (and even its two-sided-errorversion) is 
ontained in SC2. No 
lass above RLOG is known to be inSC. A natural 
ontainment to expe
t, sin
e LogDCFL is also in SC2,is that randomized LogCFL, RLogCFL, is also in SC2. So far this hasnot been shown to hold. But another interesting set of questions hereis to do with the appropriate de�nition of RLogCFL itself. LogCFLhas multiple 
hara
terizations, ea
h of whi
h 
an be randomized to give
ompeting de�nitions for RLogCFL:1. a randomized logspa
e redu
tion to some CFL2. a randomized AuxPDA(poly) with bounded error3. a randomized AuxPDA(poly) with sta
k-height bounded by O(log2 n)and bounded error4. an SAC1 
ir
uit with polynomially many supplementary randominput bits, and bounded errorWhi
h of these truly re�e
ts RLogCFL?4 ArithmetizationIn this se
tion, I will brie�y dis
uss arithmetizations of these 
lasses overintegers. There are two standard ways to arithmetize a 
ir
uit 
lass: (1) as-suming there are negations only at the leaves, repla
e AND and OR gates by

× and + gates respe
tively, or (2) 
ount the number of proof-trees. Both givethe same 
lass of fun
tions. Equivalent models 
an be appropriately arith-metized: For programs over monoids, 
onsider an NFA 
orresponding to11



the monoid, view the instru
tions as proje
tions transforming an input, and
ount the number of a

epting paths of the NFA on the transformed version.For bran
hing programs, 
ount the number of st paths. For LogCFL, 
ountthe number of parse trees in the target CFL. For NLOG and AuxPDA(poly),
ount the number of a

epting paths. And so on.The arithmetization of AC1 is not very interesting. Within log depth, a
ir
uit 
an, starting with 0s and 1s, 
ompute numbers that need exponentiallymany bits in their binary representation. This is be
ause they 
an haveexponentially large proof trees. For feasible 
omputation, we may be justi�edin restri
ting attention to poly size arithmeti
 
ir
uits that 
ompute numberswith feasible representation. This 
orresponds to poly size 
ir
uits with polydegree, and over integers, is essentially the same as Valiant's 
lass VP. Italso 
orresponds dire
tly to an arithmetization of one 
hara
terization ofLogCFL, namely, ASP,TRSZ(log,poly).Interestingly, all arithmetizations of LogCFL 
oin
ide: poly size polydegree arith 
ir
uits, poly size log depth #SAC1, number of a

epting pathsin AuxPDA(poly) ma
hines, number of parse trees in a CFL, number ofgood parenthesizations of a word over a groupoid. Venkateswaran's tree-
utting 
onstru
tion [38℄ pla
ing LogCFL in SAC1 is not parsimonious; itdoes not give a one-to-one 
orresponden
e between a

epting paths of theAuxPDA(poly) ma
hine and proof trees of the SAC1 
ir
uit. To establish theequivalen
e of #AuxPDA(poly) and #SAC1, two independent and di�erent
onstru
tions were des
ribed by [40℄ and [29℄ (see also [2℄). These 
an also bethought of as tree-
utting, but the 
uts are applied more 
arefully to uniquelyhalve the degree in a 
onstant number of stages. Sin
e these te
hniques applyto the Boolean 
ase as well, we have three di�erent proofs that LogCFL is inSAC1.Sin
e unbounded addition and bounded multipli
ation are both in NC1,it is easy to see that #SAC1 is in Boolean NC2.Over NLOG too, the two arithmetizations 
oin
ide: number of a

eptingpaths in an NLOG ma
hine, and number of proof trees in a poly size skew
ir
uit, both give the fun
tion 
lass #L.For LogDCFL and DLOG, it is not 
lear how to de�ne an arithmeti
 ver-sion. One possibility is to 
onsider fun
tional versions FLOG and FLogD-CFL. But this is not entirely satisfa
tory be
ause in this kind of frame-work, we expe
t arithmetization to yield more power. Another possibility forDLOG is to 
onsider #SC1, sin
e DLOG equals SC1. But #SC1 
an 
omputeinfeasible values, so this is an unreasonable 
lass. Yet another possibility is to
onsider poly degree SC1 
ir
uits, #sSC1. But it is not even known whethersSC1 is as powerful as SC1, so we may be restri
ting ourselves too mu
h thisway. An interesting spin on #sSC1 is that it is 
ontained in both #SAC112



and Boolean SC2. Thus, inverting the question of �How mu
h of NC is inSC?�, it gives a pie
e of SC inside NC.At NC1, the pi
ture is 
onsiderably murkier. Re
all that Boolean NC1 hasmultiple 
hara
terizations. #NC1 as log depth arithmeti
 
ir
uits has beenstudied quite a bit sin
e �rst formally de�ned in CMTV. There it is shownthat #BWBP equals #BP-M (or #BP-NFA, as referred to in [26℄), 
ontainsfun
tional NC1, and is 
ontained in #NC1. But the reverse 
ontainments arestill intriguingly open; we know that #NC1 
an be 
omputed by Boolean polysize 
ir
uits of bounded fanin and depth O(log n log∗ n), but the log∗n fa
torremains. However, if the 
onstant -1 is allowed, we get the 
lasses GapNC1and GapBWBP, and these are known to 
oin
ide, and they are 
ontained inFLOG.It turns out that #LWF and #F both equal #NC1. On the other hand,#BP-VPA equals #BWBP: adding a visibly pushdown sta
k to an NFAnot only does not in
rease the 
omplexity of the language 
lass, it doesnot in
rease the 
omplexity of the 
ounting fun
tion 
lass as well. Anotherarithmetization of a 
lass equivalent to NC1 is #sSC0; this 
ontains #BWBPand is 
ontained in FLOG, but no relationship to #NC1 is known. Theseresults are des
ribed in [26℄.Language 
lasses 
an be de�ned based on these arithmetizations; thepredi
ates typi
ally applied to NC1 and NLOG are:Is the # fun
tion greater than 0? yielding NC1, NLOGIs the Gap fun
tion greater than 0? yielding PNC1, PLAre two # (or Gap) fun
tions equal? yielding C=NC1, C=LWith these predi
ates, the multitude of arithmeti
 
lasses around NC1gives rise to a host of language 
lasses between NC1 and DLOG. I hope thatthe true pi
ture is 
onsiderably simpler.A
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