
The Computational ComplexityColumnbyJaobo ToránDept. Theoretishe Informatik, Universität UlmOberer Eselsberg, 89069 Ulm, Germanyjaobo.toran�uni-ulm.dehttp://theorie.informatik.uni-ulm.de/Personen/jt.html
Polynomial size log depth iruits:Between NC1 and AC1Meena Mahajan∗Abstrat
1 IntrodutionWhen a theoretial omputer sientist asks me my area of researh, I usuallysay omplexity theory. This is often followed by the question �what kind ofomplexity theory� to whih I inevitably reply �inside P�. And usually thequestioning stops there. In this brief survey, I would like to go further, anddesribe some of my favourite omplexity lasses. They all lie in the rangebetween NC1 and AC1; hene this title. I annot even begin to attempt being
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exhaustive, and I apologize in advane to those whose favourite results I haveomitted. Muh of this material (and muh more!) an be found in the text[42℄ and the surveys [1, 23℄.2 Prinipal lasses between NC1 and AC1Consider (uniform) families of polynomial size log depth iruits with internalAND and OR gates, and literals / onstants at the leaves. (No internalnegations, without loss of generality). Restriting the gates to have onstantfanin gives the omplexity lass NC1; leaving it unrestrited (limited, ofourse, by the iruit size itself) gives AC1.Without loss of generality, we an assume that our iruits are layered:gates appear in layers, and wires onnet adjaent layers in one diretion.The maximum number of gates at any one layer of the iruit is alled thewidth of the iruit.Several well-known lasses are sandwihed in between; let's take a lookat eah of these. LogDCFL
''NNNNNNNNNNNNC1 // DLOG 88qqqqqqqqqqq

&&NNNNNNNNNNN
LogCFL // AC1NLOG 77oooooooooooFigure 1: The landsape between NC1 and AC12.1 NC1At the lower end, we begin with the lass NC1. NC1 has many equivalentharaterizations. It equals the lass of languages aepted by

• alternating Turing mahines in logarithmi time ALOGTIME (underappropriate uniformity onditions). ([34℄)
• poly size programs over �nite monoids BP-M.A program over a monoid M = (S, ◦) is a list of instrutions of theform 〈i, a, b〉 where i ∈ [n], a, b ∈ S. The instrution 〈i, a, b〉, on input

x ∈ {0, 1}n, evaluates to a if xi = 1, to b otherwise. The entire program,2



on input x ∈ {0, 1}n, thus onstruts a word w ∈ S∗. The programaepts x if w evaluates to a designated value in M .A simple divide-and-onquer approah establishes that programs over�nite monoids an be evaluated in NC1. Barrington [4℄ established theonverse by showing that over any non-solvable group, words an beonstruted to ode logial AND and negation. In partiular, he usedthe permutation group S5; thus programs over this group are ompletefor NC1.
• bounded-width poly size branhing programs BWBP.These are onstant-width layered graphs (one for eah input length)with designated start and �nish verties s, t, and edges labelled byliterals or onstants. An input is aepted if the orresponding graphhas an st path where all edges are labelled by 1 or true literals.It is folklore (and easy to see) that programs over monoids an bedesribed in this form, and vie versa.Suh programs are also equivalent to skew iruits, where OR gates areunrestrited but AND gates an have at most one input that is not aliteral or a onstant.
• bounded-width poly size iruits SC0.SC is the lass of polynomial size poly logarithmi width iruits (width

O(logi n) for SCi). (Again, wlog the iruits an be assumed to havenegations only at the leaves.) In simulating a iruit by a Turing ma-hine, width roughly translates to spae and size to time; thus SC orre-sponds in the uniform setting to a simultaneous time-spae bound. (SCstands for Steve's Classes, named after Stephen Cook who proved the�rst non-trivial result about polynomial time log-squared spae PLoSS,i.e. SC2, in [11℄. See for instane [22℄). As desribed above, Barring-ton's result plaes NC1 inside skew SC0. But even non-skew SC0 iseasily seen to be inside NC1, sine only a onstant amount of memoryis needed to evaluate the gates of the iruit layer by layer. Thus SC0equals NC1.
• poly size formulae F, even when restrited to log-width formula LWF.A formula is a iruit where eah gate has fanout at most 1. NC1 ir-uits an be onverted to formulae by dupliation; the blow-up in size isstill within a polynomial. Conversely, any formula an be restruturedinto an equivalent one with polynomial blow-up in size and logarithmidepth; a non-uniform way to do this was �rst desribed in [7, 35℄, whileit an be done uniformly as in [28℄. Further, any log depth formula an3



be restrutured to log width (at the expense of depth, of ourse), asobserved in [20℄; thus LWF = F = NC1.
• prediates expressed in �rst-order logi, augmented with a group quan-ti�er or a monoidal quanti�er QG over any non-solvable group G,FO[QG℄. [28℄.2.2 AC1At the higher end, we have AC1. Less is known about AC1; it equals thelass of languages aepted by
• alternating Turing mahines using logarithmi spae and making atmost logarithmi alternations between universal and existential stateson any omputation path ASP,ALT(log,log) (under appropriate unifor-mity onditions).
• Conurrent read, onurrent write PRAMs working in logarithmi timewith polynomially many proessors.Now onsider the intermediate lasses.2.3 DLOGDLOG is the lass of languages aepted by deterministi logspae mahines.It also equals the lass of languages aepted by log width poly size iruitsSC1. DLOG equals sentenes expressible in FO augmented with deterministitransitive losure FO[DTC℄, [18℄, and it follows from [32℄ that DLOG alsoequals FO + symmetri transitive losure FO[STC℄.2.4 NLOGNLOG is the lass of languages aepted by nondeterministi logspae ma-hines. The indutive ounting tehnique of Immerman and Szelepsényi[19, 37℄ shows that NLOG is losed under omplementation. An equivalentformulations of NLOG is the lass of languages aepted by uniform poly sizeskew iruits (or branhing programs); see [39℄. In desriptive omplexity,NLOG is haraterized by sentenes in �rst-order logi with positive transi-tive losure FO[pos TC℄, see [18℄. 4



2.5 LogCFLLogCFL, by de�nition, is the lass of languages reduible via logspae many-one redutions to some ontext-free language. It follows that eah suh lan-guage an be aepted by a mahine whih has logspae to perform theredution, and a nondeterministi �nite ontrol and a stak to then parsethe CFL in polynomial time. Suh mahines are alled AuxPDA(poly), andSudborough showed that they aept exatly LogCFL ([36℄). That is, al-lowing arbitrary interleaving of the two types of omputation involved �(1) deterministi logspae redution, and (2) nondeterministi PDA � is nomore powerful than performing these two phases sequentially. (An aside: thepolynomial time restrition is neessary, sine Cook [10℄ showed that in un-bounded time, and even in exponential time, deterministi PDA augmentedwith logspae worktape apture all of P.)Using the notion of realizable pairs of surfae on�gurations, Ruzzo showed[33℄ that AuxPDA(poly) an be simulated by alternating TMs using logspaeand having poly-sized proof trees. What is a proof-tree? Consider the om-putation graph of a logspae-bounded ATM, where nodes are time-stampedon�gurations. (The logspae bound ensures a poly-sized graph; the time-stamping ensures that the graph is ayli.) To prove that it aepts itsinput, it su�es to show a sub-graph that ontains (1) the initial on�gura-tion, (2) both hildren of eah universal node inluded, (3) at least one hildof eah existential node inluded, and (4) only aepting on�gurations asleaves. Suh a sub-graph, unfolded or expanded out by dupliating nodes ifneessary so that it is a tree, is what we all a proof-tree. It is easy to seethat poly-sized graphs an have exponential-sized proof-trees. Ruzzo's proofshows that to desribe the omputations of AuxPDA(poly), poly-sized prooftrees su�e. Conversely, if a logspae-bounded ATM has, for eah aeptedinput, a proof-tree of size at most t(n), then an AuxPDA an aept thesame language in time t(n). Thus we have a haraterization of LogCFLvia ATMs: LogCFL = ASP,TRSZ(log,poly). Note that the above proof-treede�nition an be applied to iruits as well. Using a very nie tree-uttingargument, Venkateswaran showed [38℄ that a poly-sized iruit of any depth,but with a poly-size bound on its proof trees, an be �attened to log depth,at the ost of inreasing the fanin of OR gates. This is the iruit lass SAC1,semi-unbounded alternating iruits. The onverse simulation is diret, giv-ing ASP,TRSZ(log,poly)=SAC1.An interesting o�shoot of Venkateswaran's onstrution is that eah Aux-PDA(poly) an be simulated by an AuxPDA(poly) whose stak height nevergrows beyond O(log2 n). (Only O(logn) pairs of surfae on�gurations, eahneeding O(log n) bits, need to be staked.)5



More reently, in [27℄, MKenzie, Rienhardt and Vinay gave a diretproof that ASP,TRSZ(log,poly) is in LogCFL, thus eliminating the need forthe elaborate onstrution of Sudborough.The lass of all CFLs is not losed under omplementation. Nonetheless,one ould expet that a logspae redution losure aptures omplementsas well, and indeed this is the ase. Interestingly, none of the above formsdiretly show that LogCFL is losed under omplementation. The SAC1formulation was used by Borodin et al [6℄ to apply indutive ounting andthus establish this losure. This losure aptures a ertain symmetry betweenthe OR and AND operators: as long as one of them has bounded arity, weare within LogCFL.Bedard, Lemieux and MKenzie gave yet another haraterization ofLogCFL in [5℄. Generalising the programs-over-monoids framework of Bar-rington, they show that LogCFL equals languages aepted by programs overgroupoids. These are algebrai strutures where a non-assoiative binary op-erator * on a set A is de�ned. Given a word w ∈ A∗, onsider all possibleways of parenthesising it to apply *. These di�erent ways yield a set of pos-sible values S(w). Aeptane is de�ned in terms of S(w) ontaining somedesignated element, or equalling some designated set. By imposing syntationditions on programs over groupoids, NC1, DLOG and NLOG an also beaptured in this framework [5, 25℄.The framework of [5℄ diretly leads to a logial haraterization as well:LogCFL is exatly those languages whose membership is expressible in �rst-order logi augmented by groupoidal quanti�ers. A more detailed treatmentof this haraterization an be found in [24℄.2.6 LogDCFLLogDCFL is the lass of languages reduible via logspae many-one redu-tions to some deterministi ontext-free language. As in the ase of LogCFL,the two omputation phases in deiding membership in a LogDCFL languagean be interleaved [36℄; thus LogDCFL equals DAuxPDA(poly). It is alsoharaterized in the PRAM model: it is the restrition of AC1 to onurrentread owner-write (CROW) PRAMs, see [15, 16℄. One of the most non-trivialproperties about LogDCFL is that it is ontained in SC2; this was shown byCook in [11℄. No sublass of NC ontaining LogDCFL is known to be insideSC, though a possibly inomparable hunk of NC onsisting of randomized(bounded two-sided error) logspae is also known to be in SC [30℄. Surpris-ingly, we do not yet know how to ombine these two onstrutions to plaerandomized poly time AuxPDA inside SC.6



2.7 A formal language viewFor many reasons, AC1 is not as interesting formally as the lasses withinit. The main reason is to do with proof-tree size: AC1 iruits an haveexponentially large proof trees. This ruially impats arithmeti versionsof these iruits; we will ome to that shortly. Another is that there is noneat haraterization of AC1 via formal language lasses. From the formal-language-theoreti point of view, we have the following ontainment diagram:DCFL
((QQQQQQQQQQQQQRegular // Det Linear CFLs: DLin 44hhhhhhhhhhhhhhhhhhhh

**VVVVVVVVVVVVVVVVVVV
CFLsLinear CFLs: Lin 66mmmmmmmmmmmmmFigure 2: Formal Language ClassesAll the ontainments are proper, and DCFL and Lin are inomparable.Applying very weak losures to these lasses � uniform FO projetions � givesexatly the omplexity lasses of Figure 1. Notie that AC1 is not overedhere. The jump from CFLs to ontext-sensitive languages is too big; losureof CSLs gives all of PSPACE. We need something muh smaller to aptureexatly AC1.2.8 CompletenessHere is a partial list of problems omplete for eah of these lasses:LogCFL BlokChoie(Dyk-2), the hardest CFL: Given a sequene of bloks,eah ontaining a list of strings, an we pik exatly one string fromeah blok so that their onatenation, in that order, is in Dyk-2 (thelanguage of balaned parentheses with two types of parentheses)?Non-zero Tame Tensor Formula [13℄: Given a tensor formula satisfyinga ertain �tameness� property, determine whether it is non-zero.Semi-extended regular expression membership [31℄: Given an expres-sion r over some alphabet Σ where r is like a regular expression but isalso allowed to use ∩, and given a string x ∈ Σ∗, determine whether

x ∈ L(r).NLOG Reahability in a direted ayli graph.2-CNF-SAT. 7



Regular expression membership [21℄: Given a regular expression r oversome alphabet Σ and a string x ∈ Σ∗, determine whether x ∈ L(r).LogDCFL BlokChoie(Dyk-2), the hardest DCFL: let Dyk-2 be over
{a, b, c, d} with a and c opening, and mathed by b and d respetively.Given a string x0 ∈ (a + c)+, and a sequene of bloks B1, . . . , Bk eahonsisting of one string in b(a + c)∗ and one in d(a + c)∗, an we pikexatly one string from eah blok so that their onatenation, with x0,is in Dyk-2?DLOG Reahability in an undireted graph, presented by its adjaeny lists.[32℄Remains hard even if the graph is a two-tree forest. [12℄Bipartiteness: given an undireted graph, determine if it is bipartite.NC1 Reahability in a bounded-width layered graph.The Boolean Formula Value problem.The word problem over the group S5 (for that matter, over any �nitenon-solvable monoid).Fixed Regular expression membership: For a �xed regular expression
r over some alphabet Σ, given a string x ∈ Σ∗, determine whether
x ∈ L(r).3 Lesser-known lassesBy varying parameters appropriately between NC1 and LogCFL, we get somelesser-known lasses in this range:3.1 Syntati restritions

• BP-width: Within polysize, onstant-width BPs gives NC1 and un-bounded width BPs give NLOG. One ould thus onsider width w(n)BPs, for w a funtion of n. Vinay showed [41℄ that for eah polylog
w ∈ O(log ni), the orresponding lass is losed under omplement.But nothing muh more is known. For instane, even the smallest lasshere, log-width BPs, lying between NC1 and DLOG, is not known toapture any natural problem in this range.

• OR fanin: Within poly size log depth iruits with onstant AND fanin,varying OR fanin from onstant to polynomial takes us from NC1 toSAC1 (i.e. LogCFL). What about OR fanin f(n) where f is, say, poly-log? Again, Vinay showed losure under omplement, [41℄. Also, just8



as SAC1 ontains NLOG (at f = poly), eah of these lasses ontainsthe orresponding BP-width-onstrained lass desribed above. But dothey apture any natural problems?
• Ciruit-width: Constraining iruit width alone to polylog gives theSC hierarhy, and very little of the NC hierarhy is known to lie withinit. However, the de�ning property separating LogCFL from P is polysize proof trees (also referred to as poly degree). One ould ombine awidth restrition with a degree restrition to obtain a sub-hierarhy ofSC within LogCFL. Limaye et al [26℄ de�ne what they all small SC de-noted sSC: its ith level has poly size poly degree O(logi) width iruits.Again, eah level here ontains the orresponding width-onstrainedBPs, though no relationship with the onstrained-OR-fanin iruits isknown. Though these lasses are not yet known to be losed underomplement, [26℄ shows that o-sSCi is in sSC2i. At the smallest level,sSC0 equals SC0, but it is not known whether sSC1 is as powerful asSC1.3.2 Language/Automata-theoreti onstruts
• Let us take a loser look at Figures 1, 2. NC1 equals the losure ofregular languages. Yet some non-trivial non-regular CFL families areinluded in it. These inlude parenthesis languages [8℄, visibly push-down languages VPLs [3, 14℄, linear CFLs with an LL[1℄ ondition[17℄. (Imposing an LR[1℄ ondition is what orresponds to determin-ism. Thus CFLs with an LR[1℄ ondition equal DCFLs, linear CFLswith an LR[1℄ ondition equal languages aepted by 1-turn DPDA,usually referred to as deterministi linear languages.)Let me highlight the membership in NC1 of VPLs. Firstly, what areVPLs? These are languages aepted by visibly pushdown automataVPAs. So what are VPAs? These are PDAs with no ε moves, wherethe stak movement (push / no hange / pop) is ditated solely by theinput letter being read. They are learly stronger than NFAs (they anaept anbn: push on a, pop on b), but also weaker than PDAs (theyannot aept anban: is a a push letter or a pop letter?). In [3℄, it wasshown that VPAs an be determinized; thus VPLs are in DCFLs. Butwell before this was known, these languages had been studied underthe name input-driven languages. Dymond gave a nie onstrution[14℄ showing that they are in fat in NC1. His approah is generi andworks not just for VPAs but for any PDA satisfying the following:9



1. no ε moves,2. an aepting run should end with an empty stak,3. the height of the pushdown, after proessing i letters of the input,should be omputable in NC1. If there is more than one run(nondeterministi PDA), and if the height pro�les aross di�erentruns are di�erent, then the heights omputed should be onsistentwith a single run. Furthermore, if there is an aepting run, thenthe heights omputed should be onsistent with some aeptingrun.For suh PDA, Dymond transforms the problem of reognition to aninstane of formula value problem, and then invokes Buss's ALogTimealgorithm [8℄ for it.VPAs satisfy these onditions (with appropriate padding to satisfy on-dition (2)). But muh more an be ahieved via ondition (3). Theheight pro�les of all runs in a VPA are the same, and an be om-puted in TC0. Understanding exatly what an be plaed inside NC1by arefully using Dymond's proof is a nie question.An interesting proper generalization of VPAs are what Caual intro-dued in [9℄ and alls synhronized PDA. Languages aepted by theseare ontained in DPDA but inomparable with DLin. Does their lo-sure reate a new lass between NC1 and LogDCFL, or does it ollapseto one of these or even to DLOG?
• The fat that the logspae losure of Lin is NLOG is interesting. Themahine model for Linear CFLs is PDA whih, on eah run, make atmost 1 turn on the stak. That is, no stak symbols are pushed afterthe �rst pop move. Thus the mahine model for the logspae losure ofLin is AuxPDA(poly) making 1-turn in stak movement. This suggestsa �ne gradation between NLOG and LogCFL parameterized by thenumber of turns the AuxPDA is allowed to make. A similar gradationarises between DLOG and LogDCFL by onsidering the deterministiounterpart.3.3 Counting onstruts
• Unambiguity: Between DLOG and NLOG lies, quite naturally, unam-biguous logspae ULOG. Similarly, LogUCFL lies between LogDCFLand LogCFL. Interestingly, the orrespondene between the formal lan-guage lass and the omplexity lass is not known to hold here: the10



logspae losure of unambiguous CFLs viz. LogUCFL, is ontained inunambiguous logspae mahines UAuxPDA(poly), but the onverse isnot known, and similarly for unambiguous Linear CFLs. There arealso lose relationships in the PRAM model: while LogDCFL is har-aterized by log time CROW PRAMs, LogUCFL is ontained in by logtime CREW PRAMs, whih orrespond to a strong form of unambi-guity in AC1 iruits. There are several subtleties in the de�nition ofunambiguous mahines/iruits: is there at most one aepting path,or at most one path from the initial to any on�guration, or at mostone path between any pair of on�gurations? For more about thesenuanes, see [23, 29℄.
• Randomization: Between ULOG and NLOG lies one-sided-error ran-domized logspae RLOG: either none, or overwhelmingly many, aept-ing runs. Nisan showed [30℄ that RLOG (and even its two-sided-errorversion) is ontained in SC2. No lass above RLOG is known to be inSC. A natural ontainment to expet, sine LogDCFL is also in SC2,is that randomized LogCFL, RLogCFL, is also in SC2. So far this hasnot been shown to hold. But another interesting set of questions hereis to do with the appropriate de�nition of RLogCFL itself. LogCFLhas multiple haraterizations, eah of whih an be randomized to giveompeting de�nitions for RLogCFL:1. a randomized logspae redution to some CFL2. a randomized AuxPDA(poly) with bounded error3. a randomized AuxPDA(poly) with stak-height bounded by O(log2 n)and bounded error4. an SAC1 iruit with polynomially many supplementary randominput bits, and bounded errorWhih of these truly re�ets RLogCFL?4 ArithmetizationIn this setion, I will brie�y disuss arithmetizations of these lasses overintegers. There are two standard ways to arithmetize a iruit lass: (1) as-suming there are negations only at the leaves, replae AND and OR gates by

× and + gates respetively, or (2) ount the number of proof-trees. Both givethe same lass of funtions. Equivalent models an be appropriately arith-metized: For programs over monoids, onsider an NFA orresponding to11



the monoid, view the instrutions as projetions transforming an input, andount the number of aepting paths of the NFA on the transformed version.For branhing programs, ount the number of st paths. For LogCFL, ountthe number of parse trees in the target CFL. For NLOG and AuxPDA(poly),ount the number of aepting paths. And so on.The arithmetization of AC1 is not very interesting. Within log depth, airuit an, starting with 0s and 1s, ompute numbers that need exponentiallymany bits in their binary representation. This is beause they an haveexponentially large proof trees. For feasible omputation, we may be justi�edin restriting attention to poly size arithmeti iruits that ompute numberswith feasible representation. This orresponds to poly size iruits with polydegree, and over integers, is essentially the same as Valiant's lass VP. Italso orresponds diretly to an arithmetization of one haraterization ofLogCFL, namely, ASP,TRSZ(log,poly).Interestingly, all arithmetizations of LogCFL oinide: poly size polydegree arith iruits, poly size log depth #SAC1, number of aepting pathsin AuxPDA(poly) mahines, number of parse trees in a CFL, number ofgood parenthesizations of a word over a groupoid. Venkateswaran's tree-utting onstrution [38℄ plaing LogCFL in SAC1 is not parsimonious; itdoes not give a one-to-one orrespondene between aepting paths of theAuxPDA(poly) mahine and proof trees of the SAC1 iruit. To establish theequivalene of #AuxPDA(poly) and #SAC1, two independent and di�erentonstrutions were desribed by [40℄ and [29℄ (see also [2℄). These an also bethought of as tree-utting, but the uts are applied more arefully to uniquelyhalve the degree in a onstant number of stages. Sine these tehniques applyto the Boolean ase as well, we have three di�erent proofs that LogCFL is inSAC1.Sine unbounded addition and bounded multipliation are both in NC1,it is easy to see that #SAC1 is in Boolean NC2.Over NLOG too, the two arithmetizations oinide: number of aeptingpaths in an NLOG mahine, and number of proof trees in a poly size skewiruit, both give the funtion lass #L.For LogDCFL and DLOG, it is not lear how to de�ne an arithmeti ver-sion. One possibility is to onsider funtional versions FLOG and FLogD-CFL. But this is not entirely satisfatory beause in this kind of frame-work, we expet arithmetization to yield more power. Another possibility forDLOG is to onsider #SC1, sine DLOG equals SC1. But #SC1 an omputeinfeasible values, so this is an unreasonable lass. Yet another possibility is toonsider poly degree SC1 iruits, #sSC1. But it is not even known whethersSC1 is as powerful as SC1, so we may be restriting ourselves too muh thisway. An interesting spin on #sSC1 is that it is ontained in both #SAC112



and Boolean SC2. Thus, inverting the question of �How muh of NC is inSC?�, it gives a piee of SC inside NC.At NC1, the piture is onsiderably murkier. Reall that Boolean NC1 hasmultiple haraterizations. #NC1 as log depth arithmeti iruits has beenstudied quite a bit sine �rst formally de�ned in CMTV. There it is shownthat #BWBP equals #BP-M (or #BP-NFA, as referred to in [26℄), ontainsfuntional NC1, and is ontained in #NC1. But the reverse ontainments arestill intriguingly open; we know that #NC1 an be omputed by Boolean polysize iruits of bounded fanin and depth O(log n log∗ n), but the log∗n fatorremains. However, if the onstant -1 is allowed, we get the lasses GapNC1and GapBWBP, and these are known to oinide, and they are ontained inFLOG.It turns out that #LWF and #F both equal #NC1. On the other hand,#BP-VPA equals #BWBP: adding a visibly pushdown stak to an NFAnot only does not inrease the omplexity of the language lass, it doesnot inrease the omplexity of the ounting funtion lass as well. Anotherarithmetization of a lass equivalent to NC1 is #sSC0; this ontains #BWBPand is ontained in FLOG, but no relationship to #NC1 is known. Theseresults are desribed in [26℄.Language lasses an be de�ned based on these arithmetizations; theprediates typially applied to NC1 and NLOG are:Is the # funtion greater than 0? yielding NC1, NLOGIs the Gap funtion greater than 0? yielding PNC1, PLAre two # (or Gap) funtions equal? yielding C=NC1, C=LWith these prediates, the multitude of arithmeti lasses around NC1gives rise to a host of language lasses between NC1 and DLOG. I hope thatthe true piture is onsiderably simpler.AknowledgementsThe idea of writing this survey arose after a talk I gave at a Dagstuhl sem-inar on Ciruits, Logi and Games in November 2006, and I thank HeribertVollmer for the invitation to partiipate in the seminar. I gratefully aknowl-edge many helpful and insightful disussions over several oasions with EriAllender, Nutan Limaye, Kamal Lodaya, Pierre MKenzie, Antoine Meyer,Raghavendra Rao, Jayalal Sarma, H Venkateswaran and V Vinay.13
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