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1 Introduction

In 1994, Peter Shor gave e�cient quantum algorithms for factoring integers
and extracting discrete logarithms [20]. If we believe that nature will permit
us to faithfully implement our current model of quantum computation, then
these algorithms dramatically contradict the Strong Church-Turing thesis.1

The e�ect is heightened by the fact that these algorithms solve computa-
tional problems with long histories of attention by the computational and
mathematical communities alike.

In this article we discuss the branch of quantum algorithms research aris-
ing from attempts to generalize the core quantum algorithmic aspects of
Shor's algorithms. Roughly, this can be viewed as the problem of generaliz-
ing algorithms of Simon [21] and Shor [20], which work over abelian groups,
to general nonabelian groups.

The article is meant to be self-contained, assuming no knowledge of quan-
tum computing or the representation theory of �nite groups. We begin in
earnest in Section 2, describing the problem of symmetry �nding : given
a function f : G → S on a group G, this is the problem of determining
{g ∈ G | ∀x, f(x) = f(gx)}, the set of symmetries of f . We switch gears in
Section 3, giving a short introduction to the circuit model of quantum compu-
tation. The connection between these two sections is eventually established
in Section 4, where we discuss the representation theory of �nite groups and
the quantum Fourier transform - a unitary transformation speci�cally tuned
to the symmetries of the underlying group. Section 4.2 is devoted to Fourier
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1By this we mean the statement �Any reasonable model of computation can be e�-
ciently simulated on a probabilistic Turing machine.� [5]
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sampling, the basic algorithmic method that connects the symmetry �nding
problem and the Fourier �symmetry� basis e�ected by the quantum Fourier
transform. Finally, we discuss some algorithmic successes in Section 5.

The reader should be cautioned that in many places we have forsaken
precision for the sake of improved readability (such as it is), and have made no
attempt to survey the rich and fascinating landscape of quantum algorithms.
In fact, our selection of algorithms to highlight in Section 5 is motivated
by an attempt to emphasize the relationship between representation theory
and quantum algorithms; as such, many of the exciting technical advances
in this area are unrepresented. The reader is encouraged to explore these
other directions; indeed, one recent and closely related development is the
discovery of e�cient algorithms for �nding hidden nonlinear structures in
vector spaces over �nite �elds [6, 7].

2 Symmetries and Computation

Groups were invented to abstract the concept of symmetry. After all, if
A is a geometric object then the identity map on A is surely a symmetry;
furthermore, composing two symmetries ought to result in a symmetry, as
should �inverting� a symmetry. The computational problem we describe be-
low is the problem of inferring the family of symmetries of a given object
(typically combinatorial rather than geometric, in our story). For example,
the group S10 acts on the Petersen graph, of Figure 1, by permuting the 10
vertices. The symmetries of the Petersen graph under this action are those
permutations that preserve incidence�these symmetries form a subgroup
isomorphic to S5.

2

Let G be a �nite group that acts on a setX. This means that we associate
with every group element g a permutation πg of the set X in such a way that
the group operation of G is respected: πg ◦ πh = πgh. Thus the map g 7→ πg

is a homomorphism from G into the group of all possible permutations of X.
We will write g ·x or gx for πg(x) when it won't cause confusion. Examples of
groups acting on sets are everywhere: (i.) The group Sn of all permutations
of n letters acts on n letters by...permutation! (ii.) Any group G acts on
itself by left-multiplication, associating with each element g the permutation
πg : h 7→ gh. (iii.) The group A4 acts as the symmetries of a regular
tetrahedron. For more discussion, see Dummit and Foote's text [8]. Observe

2One pleasing way to view the S5 action on the Petersen graph P is to identify the
vertices of P with the 10 subsets of {1, . . . , 5} of size 2 in such a way that adjacent vertices
correspond to pairs of subsets with nontrivial intersection; the obvious action of S5 yields
the entire family of automorphisms of P .
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Figure 1: The Petersen graph.

that if G acts on the set X, then it also acts on the set of all functions
{f : X → S} by the rule

g · f : x 7→ f(g−1 · x) . (1)

(Here g ∈ G, f : X → S is a function, and the −1 is introduced so that this
action composes correctly: g1(g2(f)) = (g1g2)f .) For a function f on X, the
symmetries of f are the group elements g for which g ·f = f . These elements
form a subgroup S(f) = SG(f) of G. While we will often drop the subscript
G in this notation, SG(f) does of course depend both on the choice of G and
the details of the action of G on X.

Our signature computational problem shall be the problem of determining
the symmetries S(f) of a function f . We shall be very generous regarding
the �presentation� of the function f (and the group G), merely asking that f :
X → S be provided as an oracle. We shall assume, among other things, that
the elements ofX (and G) have a canonical representation as strings of length
O(log |X|) (and O(log |G|)) and that we can perform operations such as g−1,
g1g2, and g · x in polynomial time in the lengths of these representations.

Before any discussion of quantum computation, we advertise below a num-
ber of interesting computational problems that directly reduce to symmetry
�nding.

2.1 Order �nding

Let us consider the possible symmetries of a function f : Zn → S, where
Zn = {0, . . . , n−1} is the cyclic group of size n acting on itself by translation
(i. e., addition modulo n). When is f invariant under a translation? This is
the problem of period �nding : we say that a function f on Zn is t-periodic
if ∀x, f(x + t) = f(x). The least such integer t is called the period of f . It
is easy to show that f is m-periodic if and only if m is an integer multiple
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of the period t. Evidently, the subgroup S(f) of all symmetries of f is the
cyclic subgroup of Zn generated by t. In this case, the group in question is
G = Zn, and the set on which the group acts is X = Zn as well.

A similar problem, that of order �nding, is a central component of Shor's
celebrated quantum algorithm for factoring [20]. Recall that for a prime p,
the group Z∗

p is the set {1, . . . , p− 1} under multiplication modulo p. Order
�nding is the problem of determining the (multiplicative) order of an element
x of Z∗

p, i. e., determining the least integer t such that xt ≡ 1 mod p. If we
de�ne f : Zp−1 → Z∗

p by the rule

f : s 7−→ xs mod p

then the period of the function f is one more than the order of x. Thus order
�nding reduces to symmetry �nding. In order �nding, the group Zp−1 acts
on itself, so that G = X = Zp−1.

2.2 Hidden shifts of the Legendre symbol

Let p be a prime number. A nonzero element x of Zp is called a quadratic
residue modulo p if there exists an integer n such that n2 ≡ x mod p. It is
not hard to check that setting

χ2 : x 7−→


0 if x = 0;

1 if x is a quadratic residue modulo p;

−1 otherwise.

de�nes a multiplicative function on Zp (so that χ2(yz) = χ2(y)χ2(z)). The
image of x under χ2 is known as the Legendre symbol of x modulo p. �Shift-
ing� the function χ2 has been proposed as a pseudorandom generator [22]:
speci�cally, �xing a prime p and a length ` > log p, translation of χ2 by a
randomly selected element t ∈ Zp de�nes a sequence

χ2(t), χ2(t+ 1), . . . , χ2(t+ `) .

One way to �break� such a generator is to completely recover t from this
sequence of values. To place the problem of breaking the pseudorandom
generator in our context, we consider the (potentially easier) problem of
determining t given oracle access to the entire shifted function

ft : x 7−→ χ2(x+ t) .

Though the sequence of bits χt(0), . . . , χt(`) has been conjectured to be
pseudorandom for appropriate values of `, the function ft de�ned above does
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possess some rich symmetries. To capture these symmetries, we introduce the
group of a�ne linear transformations of Zp. A function α : Zp → Zp is a�ne
linear if it has the familiar form α(x) = ax+ b, where a 6= 0. (Here a, b ∈ Zp

and all arithmetic is done modulo p.) These functions form a nonabelian
group, denoted Ap, under composition: observe that if α(x) = ax + b and
α′(x) = a′x+ b′ then α ◦ α′(x) = aa′x+ ab′ + b.

Recalling that Ap acts on the functions on Zp via equation (1), we in-
vestigate the symmetries of ft under Ap. A short calculation shows that if
α(x) = ax+ t(a− 1) and, furthermore, χ2(a) = 1, then

[α−1 · ft](y) = ft(ay + t(a− 1)) = χ2(ay + t(a− 1) + t)

= χ2(a(y + t)) = χ2(a)χ2(y + t)

= χ2(y + t) = ft(y) .

It is easy to check that elements of the form x 7→ ax + t(a − 1), where a
is a quadratic residue, each represent a symmetry of f ; together these form
S(ft), the symmetry subgroup of ft (under this Ap action). Moreover, each
ft induces a di�erent subgroup of Ap; evidently, solving this �hidden shift�
problem can be reduced to symmetry �nding under the group Ap, acting on
the set X = Zp.

2.3 Graph automorphism and isomorphism

Let G = (V,E) denote a simple undirected graph with vertex set V =
{1, . . . , n} and edge set E. An automorphism of G is a permutation π of
the vertices V that preserves incidence: (v, w) ∈ E ⇔ (π(v), π(w)) ∈ E.
These automorphisms, taken together, form a subgoup Aut(G) of Sn, the
group of all permutations of V = {1, . . . , n}. The graph automorphism prob-
lem is the problem of determining if Aut(G) is nontrivial (that is, if there is
a nontrivial automorphism of G).

Let us express this problem in our framework of symmetry �nding. First,
we let a permutation π ∈ Sn act on an edge (u, v) by the rule π(u, v) =
(π(u), π(v)); it acts on the edge set E by πE = {π(u, v) | (u, v) ∈ E}. De�ne
the function sG on Sn by the rule

sG(π) = πE .

Then Aut(G) is precisely the group S(sG): thus solving the symmetry �nding
problem in this case determines the entire automorphism group of G (and, in
particular, the answer to the graph automorphism problem for this graph).
This is another example of a symmetry �nding problem, where the group is
G = Sn acting on itself.
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We remark that the task of determining if two graphs G1 and G2 are
isomorphic reduces to the above situation by considering the automorphisms
of the (disjoint) union G1 ∪ G2. Indeed, if the graphs are not isomorphic, the
only automorphisms of G1 ∪ G2 would be of the form π ∪ σ, where π is an
automorphism of G1 and σ is an automorphism of G2. On the other hand, if
τ : G1 → G2 is an isomorphism, then there exists an automorphism of G1∪G2

which swaps G1 and G2, and then applies τ−1 ∪ τ .

3 Quantum computing

For the sake of analogy, we begin by retelling the story of classical compu-
tation: beginning with an input vector v ∈ {0, 1}n, we carry out a sequence
of local transformations, each of which a�ects but a constant number of co-
ordinates by subjecting them to some function ti : {0, 1}c → {0, 1}c. In
order for this story to really capture the familiar circuit model, we need to
be more generous with �workspace,� initially embedding v into the �rst n
coordinates of {0, 1}ω. Finally, we honor the �rst bit of the result by al-
lowing it to determine the outcome of this computation which, in this way,
determines a Boolean function. The story is most exciting when it realizes
some Boolean function we care about as a particularly short (or particularly
nicely-structured) sequence of transformations.

The story of quantum computation can be told by �unitarily extend-
ing� the tale above: beginning with an input vector v ∈ H⊗n, we carry
out a sequence of local unitary transformations, each of which a�ects but a
constant number of coordinates by subjecting them to an arbitrary unitary
(i. e., length-preserving linear) operator ti : H⊗c → H⊗c. The �rst unfamil-
iar character appearing in the quantum tale is H, which we take to be a
2-dimensional complex vector space, on which we have an inner product 〈·, ·〉
and hence also a notion of length: ‖x‖2 = |〈x, x〉|. To maximize our analogy
with the classical story, we select an orthonormal basis for H consisting of
two orthonormal vectors named |0〉 and |1〉. Leaving the details of what we
mean by H⊗n and a unitary operator �a�ecting but a constant number of
coordinates� to the reader's imagination for the moment, we continue to say
that in this quantum case, as well, we shall embed H⊗n inside H⊗ω to be
equally generous regarding workspace and, furthermore, allow the �rst coor-
dinate of the resulting state to determine the outcome of this computation in
an appropriate fashion. For our purposes, an e�cient quantum computation
is one that involves a polynomial number of local transformations.

Despite whatever �compelling analogies� the reader has been cajoled to
accept by the story above, this computational model appears complicated
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and suspicious, especially if you have been brought up on a healthy diet of
recursive function theory, Turing machines, and classical circuit complexity.
However, this model of �unitary evolution� is one of the essential features
of quantum mechanics, a physical model that predicts both qualitative and
quantitative features of the small-scale behavior of the universe. To the best
of our current knowledge, the many fundamental curiosities and surprises
that manifest in quantum mechanics are facts of nature, though they be
wildly inconsistent with our physical intuition born of a lifetime of experience
with classical macroscopic phenomena. Engineering advances of the last
decade demonstrate that these quantum phenomena are available for human
tinkering and, hopefully, for the highly-structured sort of tinkering that would
comprise �computation.�

Let us return to �ush out the remaining details of the model of quantum
computation introduced above. The state of the computation, throughout
the process above, lies in H⊗n, the n-fold tensor power of H. In general, if
A and B are vector spaces with orthonormal bases {ai} and {bj}, a tensor
product of these spaces is a vector space, denoted A⊗ B, along with a map
(a,b) 7→ a ◦ b of A × B to A ⊗ B so that ◦ is linear in each coordinate
and, furthermore, the set {ai ◦ bj} is a basis for A⊗ B. As we assume that
A and B have an inner product, we can naturally de�ne an inner product
on A ⊗ B by extending the rule 〈a ◦ b, a′ ◦ b′〉 = 〈a, a′〉〈b,b′〉; this will, in
particular, make the basis ai◦bj above orthonormal. Unfolding the de�nition
and trusting that ◦ is associative (it is), we �nd that H⊗n is a vector space
with 2n orthonormal basis vectors

|a1〉 ◦ · · · ◦ |an〉 , (a1, . . . , an) ∈ {0, 1}n ,

one for each binary string in {0, 1}n ! It is customary to use the symbol ⊗
for the map ◦ above (even though this overloads the symbol, which we also
used to denote the vector space A⊗B); furthermore, it is customary in this
case to use the notation |a1 . . . an〉 for the vector |a1〉 ⊗ · · · ⊗ |an〉.

This apparent relationship between the basis of H⊗n and the �interme-
diate states� that appeared in our notion of classical computation is not an
accident. Indeed, our rule for feeding (classical) inputs to a quantum ma-
chine will be to identify the classical input a ∈ {0, 1}n with the unit-length
basis vector |a〉 ∈ H⊗n.

It is easy to check that if U is a unitary operator on the vector space A,
then U naturally de�nes a unitary operator on A ⊗ B by the rule a ⊗ b 7→
(Ua)⊗b. It is precisely this sense in which the local operators discussed in the
de�nition of computation above are applied to a �constant number of indices.�
The sequence of unitary (and hence length-preserving) operators associated
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with a quantum computation thus carries any unit length input vector a
to a unit length result r. While we naturally have a clear interpretation of
the input vector a as an element of {0, 1}n, the result r is typically a linear
combination

r =
∑

a∈{0,1}n

αa |a〉 , αa ∈ C

with exponential support. What we can be sure of, however, is that r has
unit length:

∑
a |αa|2 = 1. These amplitudes |αa|2 evidently give rise to a

probability distribution on {0, 1}n - this is how we shall extract a classical
(though stochastic) output from a quantum computation; indeed, we shall
say that the probability that the computation accepts is the probability that
the �rst bit is a 1 according to this probability distribution.

We remark that this curious method for �terminating� our quantum com-
putation is, along with the rule of unitary evolution, directly borrowed from
the model of quantum mechanics used to model the universe: this is the
process of measurement. This is the second time we have justi�ed a poten-
tially surprising aspect of the model by direct appeal to the mathematical
foundations of quantum mechanics. Indeed, one of the original motivations
for de�ning (and yearning for) such a model is that it would allow us to
�simulate� and study quantum systems of physical interest. Especially after
hearing this explanation for the genesis of the model, it is natural to wonder if
the new features of the model o�er any new traction in the classical computa-
tional arena. We'll see below is that the answer is yes: quantum computation
can, in some cases, uncover exactly the combinatorial symmetries mentioned
in Section 2.

We describe, in the next section, how these symmetries are related to
the unitary evolution (and measurement) in the model above. To brie�y
advertise what comes ahead, however, we remark that with any �nite group
G one may inexorably associate a �nite collection of �harmonic objects,�
objects that precisely capture the symmetry structure of G. These objects,
taken together, de�ne a unitary basis change in the set of C-valued functions
on G. For many groups of interest, this unitary basis change can be e�ciently
carried out on a quantum computer, thus exposing the symmetries of objects
on which G acts.
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4 Group harmonics and applications

4.1 Representations of �nite groups

Let G be a group acting on a set X; as in Section 2, we may �extend� this
group action to the set of functions CX , {f : X → C} by the rule

(πf)(x) = f(π−1x) .

This case, where we consider C-valued functions on X (rather than the var-
ious �combinatorial� choices taken in Section 2) is especially attractive be-
cause we can bring to bear the tools of linear algebra to study these actions
and their symmetries. To emphasize this connection, we observe that CX
is a complex vector space with a distinguished basis: the delta functions
fx : y 7→ δxy (where δxy is equal to one when x = y and is zero otherwise).
Notationally, if we let |x〉 denote the function fx above, elements of CX can
be written ∑

x∈X

ax |x〉 , ax ∈ C ,

a convention we shall adopt throughout. Now we can view the action of G
on CX as a family of linear operators; in particular, each g is associated with
a linear operator ρg : CX → CX in such a way that ρgρh = ρgh.

Note that with this linear algebraic view of group actions, g ∈ S(f) (that
is, the group element g is a symmetry of a function f) exactly when f is an
eigenvector with eigenvalue 1 of the map ρg. This suggests a general study of
the eigenvalues and invariant spaces of these group actions, a lifestyle known
as the representation theory of �nite groups. The general de�nition is the
following:

De�nition 1. Let G be a �nite group. A representation of G is a homo-
morphism ρ : G → GL(V ), where GL(V ) is the collection of invertible linear
operators on a (�nite dimensional) C-vector space V . The dimension of ρ,
denoted dρ, is the dimension of V .

Observe that ρ assigns to each group element g a linear operator ρ(g) so
that ρ(g)ρ(h) = ρ(gh), just as in our permutation example above. Indeed,
any action of G on a set X immediately induces a representation of G (on
CX). The representations of a group G o�er a principled approach to the
problem of understanding symmetries under G and its subgroups. We remark
that when G is �nite (as always, in this article), we may assume without loss
of generality that representations come equipped with an inner product for
which each ρ(g) is unitary.
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What renders the theory especially attractive is that a given �nite groupG
possesses a �nite number of atomic �irreducible� representations, in terms of
which all others can be expressed. To develop this decomposition machinery,
we set down a few more de�nitions. We say that two representations ρ1 :
G → GL(V1) and ρ2 : G → GL(V2) are equivalent when they are related
by a (linear) isomorphism E : V1 → V2; speci�cally, for every g we have
ρ2(g) = Eρ1(g)E

−1. (If these ρi happened to be de�ned on the same space,
they would be related by a change of basis.) The familiar notion of direct sum
can be applied to sew together a pair of representations: if ρ1 : G→ GL(V1)
and ρ2 : G→ GL(V2) are two representations of G, we may construct a new
representation on V1 ⊕ V2 with the action

v ⊕w 7→ ρ1(g)v ⊕ ρ2(g)w ;

we name this representation ρ1 ⊕ ρ2 : G → GL(V1 ⊕ V2). In matrix form,
ρ1 ⊕ ρ2(g) can be realized as a block diagonal matrix, with each of the ρi(g)
forming one of two blocks.

Finally returning to the notion of irreducibility promised above, if ρ :
G→ GL(V ) is a representation, we say that a subspace W of V is invariant
when each ρ(g) �xesW as a space. Of course, V and {0} are always invariant.
When these are the only invariant spaces, the representation is said to be
irreducible. As mentioned above, a �nite group G has a �nite number of
distinct irreducible representations up to equivalence; we let Ĝ denote this
�nite set of (equivalence classes of) irreducible representations. Every other
representation of G can expressed as a direct sum of copies of representations
in Ĝ.

Our discussion of group actions in Section 2 leads us to naturally de-
�ne another representation. Recall that any group G acts on itself by left-
multiplication. As before, this allows G to act on the space CG = {f : G→
C} = span ({|g〉 | g ∈ G}) via

g : |h〉 7→ |gh〉 .

The representation so de�ned is called the left regular representation of G.
We remark that this representation is not irreducible (unless |G| = 1). In
particular, note that the element

∑
g∈G |g〉 is �xed by any permutation, and

in particular by those that correspond to left multiplication by elements of
G. The linear span of this element is clearly a one-dimensional invariant sub-
space of CG. This same argument applies to any permutation representation:
evidently, every representation discussed in the article thus far is reducible!
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We remark that if the full symmetric group Sn acts on

C{1, . . . , n} =

{
n∑

i=1

ai |i〉 | ai ∈ C

}

by permuting the |i〉, the vector space perpendicular to the vector
∑

i |i〉 is
an irreducible representation of dimension n−1. (The inner product used to
make sense of the word perpendicular is the one consistent with the |i〉 basis:
〈|i〉 , |j〉〉 = δij.)

This example above might suggest that the general problem of decom-
posing a representation into irreducible pieces (or, indeed, even identifying
irreducible representations) is quite di�cult and, potentially, delicate. This
is true; however, there is a remarkable tool that considerably simpli�es these
questions. Given an irreducible ρ, its character at a group element g is de-
�ned to be χρ(g) , tr ρ(g), the trace of ρ(g). The important feature of these
characters is that under the pairing

(χ, ψ) =
1

|G|
∑

g

χ(g)ψ(g−1) ,

we �nd that for irreducible representations ρ and σ,

(χρ, χσ) =

{
1 if ρ and σ are equivalent,

0 otherwise.

As it is clear that for two representations β and γ, χβ⊕γ(g) = χβ(g) + χγ(g),
this pairing o�ers an immediate method for determining if a given represen-
tations is reducible and, moreover, decomposing a representation into irre-
ducibles. Indeed, observe that if β is a representation and σ irreducible then
(χβ, χσ) is precisely the number of times σ appears in the decomposition of
β.

With these tools it is possible to show that the left regular representation
R : G→ GL(CG) of a group G has a generic decomposition into irreducible
representations. In particular, every irreducible representation ρ ofG appears
in R exactly dρ times. We write

R =
⊕
ρ∈Ĝ

ρ⊕dρ =
⊕
ρ∈Ĝ

ρ⊕ · · · ⊕ ρ︸ ︷︷ ︸
dρ

. (2)

In particular, counting dimensions on both sides of this equation yields the
equality |G| =

∑
ρ d

2
ρ.
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The Fourier transform The de�nition of CG immediately distinguishes
the group basis of CG: the elements {|g〉}. On the other hand, the direct
sum decomposition of Equation (2) above provides an alternate (and, in
general, transverse) means of describing elements of CG: in terms of their
projections into the spaces ρ⊕dρ . If f : G → C is a function and ρ ∈ Ĝ, the
Fourier transform of f at ρ is the linear operator

f̂(ρ) =

√
dρ

|G|
∑
g∈G

f(g)ρ(g−1) .

If we select a basis for the space Vρ on which ρ operates, f̂(ρ) is realized as a

dρ×dρ matrix of complex numbers. Taken over all ρ ∈ Ĝ, the linear operators
f̂(ρ) determine

∑
ρ d

2
ρ = |G| complex numbers�exactly the dimension of CG.

With the scaling factor
√
dρ/|G| appearing above, this transformation from

f ∈ CG to these matrices is unitary and actually corresponds to writing f in
a basis consistent with the decomposition (2) of CG above. More prosaically,
the Fourier transform is a unitary map from the group basis {|g〉} to the basis

{|ρ, i, j〉 : ρ ∈ Ĝ and 1 ≤ i, j ≤ dρ} , (3)

where the i and j entries correspond to the rows and columns of the matrices
f̂(ρ) above.

The reason for this long digression, and the critical fact that weds quan-
tum computing and representation theory, is that the Fourier transform, as
described above, can be e�ciently computed on a quantum computer for
many groups of interest [4, 15]. In this context, the unitary Fourier trans-
form is called the quantum Fourier transform, and is a key ingredient in the
algorithms we discuss in the sequel.

4.2 Looking for hidden symmetries in coset states

We now discuss a special case of the symmetry �nding problem presented in
Section 2. Suppose we are given oracle access to a function f : G → S and
a promise that f is a transversal of some unknown subgroup H of G in the
sense that

f(hx) = f(x) ⇔ h ∈ H .

For concreteness, we will assume that S is the set of integers {1, 2, . . . , n}
for a suitably large n. As f is constant and distinct on each coset of H,
the problem of determining S(f) is precisely the problem of determining the
�hidden� subgroup H. This problem is aptly titled the Hidden Subgroup
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Problem (HSP). The standard method of Fourier sampling [5] for solving
such problems on a quantum computer proceeds as follows.

Our �rst step is to prepare the �uniform superposition over G,� i. e., the
state

1√
|G|

∑
g∈G

|g〉 ,

and then �evaluate� the oracle function f on this state.3 The resulting state
of the system is

1√
|G|

∑
g∈G

|g〉|f(g)〉 . (4)

Now, we wish to �measure the second register� (that is, the one contain-
ing |f(g)〉), thereby isolating the elements of G where f takes a particular
value k ∈ S. In general, a quantum measurement on a vector space V is
described by an orthogonal decomposition V = W1 ⊕ . . . ⊕Wk; when such
a measurement is applied to a vector v, it results in the measured value i
with probability ‖Πi(v)‖2, where Πi projects onto the subspaceWi. Since we
are supposing that v has length 1, this yields a probability distribution on
i. The state of our system after the measurement will be the (renormalized)
projection

Πiv

‖Πiv‖2
2

∈ Wi .

In our case, the state (4) lives in the space V = CG⊗ CS. We have speci�c
bases in mind, too: the basis for the space CG is {|g〉 : g ∈ G}, while the
basis for CS is {|1〉, |2〉, . . . , |n〉}. Our desired measurement corresponds to
the orthogonal decomposition

V = [CG⊗ |1〉]⊕ [CG⊗ |2〉]⊕ · · · ⊕ [CG⊗ |n〉] .

The result of this measurement will be the (renormalized) projection of the
state (4) to one of the subspaces CG ⊗ |k〉; that is, it will be a uniform
superposition over all elements of G where f takes the particular value k.
The set of such group elements is, by the conditions we imposed on f , a
coset of some hidden subgroup H. We are thus left in the �coset state�

1√
|H|

∑
h∈H

|ch〉 , (5)

3To make this a unitary operation, we actually need some additional �empty�
workspace. The quantum oracle is the map U : |x, y〉 7→ |x, y ⊕ f(x)〉, where ⊕ de-
notes the (clearly unitary) operation of bitwise addition. In our case, x =

∑
g∈G |g〉 and

y = |00 · · · 0〉, where the register containing y is large enough to accommodate the possible
values of f .
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where c is an unknown but, fortunately, random element of G. Next, we
apply the Quantum Fourier Transform from Section 4.1. Let us �rst view
the above state as the scaled characteristic function

ψ(g) =

{
1/
√
|H| if g ∈ cH,

0 otherwise.
(6)

Recall that the Fourier transform of this function, at an irreducible ρ ∈ Ĝ, is
a dρ × dρ matrix denoted by ψ̂(ρ). Thus, the Quantum Fourier Transform of

the above state will be indexed by |Ĝ|-many representations ρ, and d2
ρ-many

entries for each such ρ. Concretely, the new state is given by∑
ρ,i,j

ψ̂(ρ)ij|ρ, i, j〉 . (7)

We think of this state as being indexed by three registers: the �rst register
speci�es the representation ρ, the second register speci�es the �row� i, and
the third register speci�es the �column� j. Our task now is to perform some
kind of measurement on the above state, and attempt to determine the hid-
den subgroup H based on this measurement. For instance, we may simply
measure the �rst register - resulting in a particular representation σ with
probability ∑

i,j

∣∣∣ψ̂(σ)ij

∣∣∣2 =
∥∥∥ψ̂(σ)

∥∥∥2

2
.

This method is called weak Fourier sampling. Alternatively, we may apply
strong Fourier sampling, which will completely measure all of the registers.
The result of strong sampling is a matrix entry ψ̂(τ)kl, occurring with prob-
ability |ψ̂(τ)kl|2. (Note that this measurement depends on the basis in which
σ is expressed by our Fourier transform.)

In the coming sections, we will describe how one can e�ciently reconstruct
normal subgroups via the weak Fourier sampling method discussed above. As
any subgroup of an abelian group is normal, this will allow us to completely
solve the HSP on abelian groups. In particular, this will imply that the
period �nding and order �nding applications discussed in Section 2 have
e�cient solutions on a quantum computer.

Some progress has also been made in the arena of non-normal subgroups.
For instance, Hallgren, Ip, and Van Dam [22] constructed an e�cient quan-
tum algorithm for the hidden shifts of the quadratic character discussed in
Section 2 (their algorithm actually departs from the Fourier sampling frame-
work above, directly using the oracle as �phase information�; the a�ne group
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formulation of the problem presented in Section 2 was solved by strong sam-
pling in [16]). Kuperberg [14] devised a �sieve� algorithm to solve the hidden
subgroup problem in the dihedral groups Dn with subexponential running
time 2O(

√
n). (We remark that no classical algorithm can have running time

2o(n).) We will brie�y discuss these algorithms in Section 5.2.2. Finally, in
Section 5.3, we will discuss an approach developed by Bacon, Childs, and
van Dam [3] that has given rise to e�cient algorithms for various semi-direct
product groups, including the Heisenberg groups Zp n Z2

p.

Sadly, our �nal example of Graph Automorphism, where we seek to �nd
certain hidden subgroups of the symmetric group Sn, still de�es the com-
munity's attempts at devising e�cient algorithms. In fact, several negative
results have shown that solving the HSP using coset states in the symmet-
ric groups (and some other group families) requires so-called multiregister
Fourier sampling. This entails sampling several coset states ψ1, ψ2, . . . , ψk

and then performing some kind of (non-separable) measurement on the ten-
sor product ψ1⊗ψ2⊗· · ·⊗ψk of the k registers. In the case of the symmetric
group, we must use at least Ω(log |G|) many samples [10, 18]. As we will later
discuss, however, all is not lost even in this area. Indeed, even for some group
families to which these negative results apply, there are quantum algorithms
which perform better than any possible classical algorithm.

5 Algorithmic progress

5.1 Reconstructing normal subgroups

In this section, we will show how to resolve the HSP e�ciently in the case
where the hidden subgroup is normal. The results of this section are due to
Hallgren, Russell, and Ta-shma [11]. As every subgroup of an abelian group
is normal, our discussion will include the HSP on abelian groups as a special
case. Recall from Section 4.1 that the Quantum Fourier Transform is the
basis change operator that maps the group basis to the Fourier basis; that
is, it rewrites a function ψ ∈ CG (indexed by group elements) as another
function ψ̂ (indexed by representations, rows, and columns). As discussed
in Section 4.2, performing �weak Fourier sampling� on ψ̂ will then measure
a particular representation ρ ∈ Ĝ, while ignoring the rows and the columns.
The probability of observing ρ is equal to the norm ‖ψ̂(ρ)‖2 of the Fourier
transform of ψ at ρ.

We �rst let ψ be the �coset state� (5) from Section 4.2; it's easy to show
that our analysis will not depend on the value of c, and so we assume that
c = 1. Then ψ takes the value 1/

√
|H| on the hidden subgroup H of G,
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and is zero elsewhere. The Fourier transform of ψ at an irreducible ρ is then
given by

ψ̂(ρ) =

√
dρ

|G|
∑
h∈G

ψ(h)ρ(h) =

√
dρ|H|
|G|

Πρ
H

where Πρ
H , |H|−1

∑
h∈H ρ(h). It's easy to check that (Πρ

H)2 = Πρ
H , i. e., Πρ

H

is a projection operator. The probability of measuring a particular ρ using
weak sampling is then

PH(ρ) ,
∥∥∥ψ̂(ρ)

∥∥∥2

=
dρ|H|
|G|

rk Πρ
H . (8)

This distribution takes a particularly nice form whenH is a normal subgroup.
Let H⊥ denote the set of representations from Ĝ whose kernel contains H.
The representations in H⊥ (that is, representations which are trivial on H)
are precisely the same as the representations of the quotient group G/H.

Lemma 1. Let H be a normal subgroup of G. If ρ is an element of H⊥, then
the probability of observing ρ is equal to d2

ρ|H|/|G|; otherwise, the probability
of observing ρ is zero.

Proof. If ρ ∈ H⊥, then for every h ∈ H, ρ(h) is the identity operator. Since
Πρ

H is simply the average of these, it is also equal to the identity operator,
and thus has full rank. Hence

PH(ρ) =
dρrk Πρ

H |H|
|G|

=
d2

ρ|H|
|G|

.

Now, if we add up the contributions to PH from the representations in H⊥,
we have∑

ρ∈H⊥

PH(ρ) =
∑

ρ∈H⊥

d2
ρ|H|
|G|

=
|H|
|G|

·
∑

ρ∈Ĝ/H

d2
ρ =

|H|
|G|

· |G/H| = 1 .

Hence the representations outside H⊥ must contribute zero probability.

We now show that one can reconstruct a normal subgroup H of an arbitrary
�nite group G in polynomial time, simply by sampling from the distribution
PH . Once enough samples have been produced, we then reconstruct the
subgroup by intersecting the kernels of our sampled representations.

Theorem 1. Let H be a normal subgroup of G. Let σ1, . . . , σs be independent
random variables sampled from the distribution PH , with s = c log |G|. Then

Pr

[
H 6=

⋂
i

kerσi

]
≤ e−

(c−2)2

2c
log |G| .
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Proof. Let N0 = G, and let Ni = ∩i
j=1 kerσj be the intersection of the kernels

sampled thus far. As they are intersections of normal subgroups, each Ni is
normal in G. By Lemma 1, we cannot observe any representations except
those whose kernel contains H, and thus H ⊂ kerσi for every i. Hence

H ⊆ Ns ⊆ Ns−1 ⊆ · · · ⊆ N0 = G .

Our theorem rests on the fact that, with each new sample, we will make
progress along the above chain with probability at least 1/2; reaching H will
thus take roughly log |G| many steps. We thus claim that if Ni 6= H, then
Prσi+1∈PH

[Ni+1 = Ni] ≤ 1/2. Indeed, by making use of Lemma 1 again, we
see that

Pr[Ni+1 = Ni] = Pr[Ni ⊆ kerσ] =
∑

ρ∈N⊥i

d2
ρ

|H|
|G|

= |G/N1| ·
|H|
|G|

=
|H|
|Ni|

≤ 1/2 .

To complete the proof, we will need to apply a Cherno� bound. Let Xi

be indicator random variables de�ned by Xi = 1 if Ni = H or Ni 6= Ni−1

and zero otherwise. While the Xi are not necessarily independent, our claim
above showed that Pr[Xi = 0|σ1, . . . , σi−1] ≤ 1/2. We can thus de�ne new
independent random variables Yi satisfying Pr[Yi = 0] = 1/2 and

∑
Yi ≤∑

Xi. By the Cherno� bound given in [11], Pr[
∑

i Yi ≤ (s− a)/2] < e−a2/2s.
This implies that

Pr

[∑
i

Xi ≤ c log |G|

]
< e−(c−2)2 log |G|/2c .

Thus
∑

iXi ≥ log |G| with overwhelming probability; but in this case, Ni (
Ni−1 for every i, and hence Ns = H.

We remark that the problem of reconstructing a normal subgroup by com-
puting an intersection of representation kernels may, for general groups, be
a very di�cult problem. However, with the aid of a classical machine we
can easily perform this task on abelian groups. By the structure theorem for
�nite abelian groups, we need only discuss the cyclic groups G = Zn. Now,
suppose α ∈ Zn is a generator for the hidden subgroup in question, and that
χg1 , χg2 , . . . , χgs are the sampled representations (that is, characters) of Zn.
By Theorem 1 above, we know that⋂

i

kerχgi
= 〈α〉 .
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We claim that the left hand side is simply kerχg where g = gcd(g1, g2, . . . , gs).
If x ∈ ∩i kerχgi

, then

χgi
(x) = e

2πigix

n = 1 ,

and hence gix ≡ 0 mod n, for every i. By taking linear combinations, we
have gx ≡ 0 mod n, and thus x ∈ kerχg. On the other hand, if x satis�es
gx ≡ 0 mod n, then certainly gix ≡ 0 mod n for every i, since the gi are
integer multiples of g. We have thus shown that 〈α〉 = kerχg. Along with
Theorem 1, this proves that we can reconstruct hidden subgroups of cyclic
groups e�ciently by weak Fourier sampling a su�cient number of characters,
and then computing their gcd using a classical machine.

5.2 Sieve Algorithms

5.2.1 Weak Sampling Fails

As we have shown, weak Fourier sampling (that is, measuring the represen-
tation name only) allows for the reconstruction of normal subgroups and, in
particular, arbitrary subgroups of abelian groups. For some groups, however,
this method cannot solve the HSP e�ciently [11]. The following proposition,
due to Alagic, Moore and Russell [1] shows that certain subgroups of prod-
uct groups are indistinguishable using weak Fourier sampling alone. This is
an example of a family of groups where strong Fourier sampling (that is,
measuring the rows and columns in addition to the representation name) is
necessary for resolving the HSP.

Proposition 1. Let G be a group with an involution µ /∈ Z(G), and let
H = {1,m} ≤ Gn where m is chosen uniformly at random from the conjugacy
class [(µ, . . . , µ)]. Then the total variation distance between the weak Fourier
sampling distributions (8) for the subgroups H and {1} is at most 2−n/2.

Proof. We upper bound the total variation distance between the distributions
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in question:∥∥P{1} − PH

∥∥
1

=
∑
ρ∈cGn

∣∣∣∣ dρ

|G|n
rk Πρ

{1} −
2dρ

|G|n
rk Πρ

H

∣∣∣∣
=
∑
ρ∈cGn

∣∣∣∣ dρ

|G|n
rk Πρ

{1} −
2dρ

|G|n
tr

[
11ρ + ρ(m)

2

]∣∣∣∣
=

1

|G|n
∑
ρ∈cGn

∣∣∣∣d2
ρ − d2

ρ

(
1 +

χρ(m)

dρ

)∣∣∣∣
=

1

|G|n
∑
ρ∈cGn

|dρ · χρ(m)| .

Viewing the last line as an inner product, we apply Cauchy-Schwarz to get

∥∥P{1} − PH

∥∥
1
≤ 1

|G|n

(∑
ρ

d2
ρ

)1/2(∑
ρ

χρ(m)χ∗ρ(m)

)1/2

=
1

|G|n/2

∑
ρ∈cGn

χρ(m)χ∗ρ(m)

1/2

=
1

|G|n/2

∑
ρ∈ bG

χρ(µ)χ∗ρ(µ)

n/2

.

Here we have used the fact that the character of an irreducible
Gn-representation is an n-fold product of characters of irreducible G-
representations. The term

∑
ρ χρ(µ)χ∗ρ(µ) is in fact the character of the

so-called conjugation representation of G; this is the representation de�ned
on CG by linearly extending the rule g · x 7→ gxg−1. The character of this
representation, evaluated at µ, is exactly the number of �xed points of the
conjugation action of µ on G, i. e., the size of the centralizer Cµ. As µ is
not in the center, Cµ is a proper subgroup, and hence χC(µ) ≤ |G|/2, which
completes the proof.

5.2.2 Sieve Algorithm Sketch

Recent negative results have shown that even strong Fourier sampling is in-
su�cient to e�ciently resolve the HSP on certain highly nonabelian groups.
For instance, Hallgren, Moore, Rötteler, Russell and Sen [10] showed that
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multiregister Fourier sampling over Ω(log |G|) registers is required to e�-
ciently distinguish subgroups of certain families of groups; these families
include the symmetric groups (presumably critical for the Graph Isomor-
phism application discussed in Section 2.3), and the nonabelian direct prod-
uct groups. Despite this, we can still do provably better than classically
for certain groups to which these negative results apply. Indeed, using a
representation sieve idea pioneered by Kuperberg [14] for the HSP on di-
hedral groups, a subexponential-time sieve algorithm of Alagic, Moore and
Russell [2] resolves the HSP on direct product groups. These are groups of
the form G = Kn where K is nonabelian and of constant size. We now
discuss, in brief, the central idea behind algorithms based on Kuperberg's
representation sieve.

Recall that the result of weak Fourier sampling is essentially a �state
vector� lying in an irreducible representation of our group G. Now, if we
perform weak sampling twice, we will have two state vectors lying in irre-
ducibles which we will label ρ and σ. The representations ρ and σ naturally
de�ne another representation ρ ⊗ σ on the tensor product Vρ ⊗ Vσ of their
respective spaces. This is done by the �diagonal action�:

[ρ⊗ σ](g) , ρ(g)⊗ σ(g) .

In general, this new representation is not irreducible; it does, however, have
an irreducible decomposition

ρ⊗ σ ∼=
⊕

j

τj .

The essential ingredient of the aforementioned sieve algorithms is this: given
state vectors in ρ and σ, we can use a modi�ed form of weak sampling to
produce a state vector in one of the constituents τj of ρ⊗ σ. Moreover, our
knowledge of the representation theory of the underlying group gives us a
nice picture of which τj our new state vector may lie in; for instance, if the
hidden subgroup is actually trivial, then the resultant state will lie in τj with
probability dτj

/dρ⊗σ = dτj
/(dρdσ). A sieve algorithm may thus proceed as

follows:

1. use weak Fourier sampling to generate a large (but still subexponential)
collection of states, each lying in some irreducible representation;

2. cleverly pair up the states generated above, and sample new states
from the tensor products of these pairs, now lying in representations of
smaller dimension (on average);
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3. repeat (2) until you generate states lying in one-dimensional represen-
tations.

Once we have generated su�ciently many states in one-dimensional repre-
sentations, we can then reconstruct the hidden subgroup; this is roughly
analogous to the abelian case, where all irreducibles are one-dimensional.
We remark that the repeated applications of step (2) constitute a (rather
complicated) multiregister measurement over all of the registers containing
the coset states initially sampled in step (1).

5.3 The pretty-good measurement

Recall from the discussion preceding Equation (5) that typical approaches to
the hidden subgroup problem involve production of coset states of the form

1√
|H|

∑
h∈H

|ch〉 ,

where c is an independently chosen element in G. This �state� is really a
classical probability distribution over the sorts of quantum states we have
described in the article thus far. Such objects arise anytime a measure-
ment takes place, and are called mixed states. (The quantum states we have
discussed previously, unit length vectors, are the special case with a triv-
ial probability distribution and are called pure states when it is useful to
emphasize the distinction.)

It turns out that there are group/subgroup combinations where this state
contains very little information about H [18]. On the other hand, it is known
that polynomially many (in log |G|) of these states do, at least in principle,
completely determine the subgroup H [9]. The problem, from a quantum
computational perspective, is to discover an e�cient means of extracting
this information from the mixed state.

The problem of �identifying� a given state from a known list of possibilities
has a long history in quantum mechanics, though most previous work was less
concerned with computational e�ciency than it was with the information-
theoretic aspects of the problem: that is, whether or not measurements even
existed to tease apart various families of states.

A remarkable discovery of Bacon, Childs, and van Dam [3] is that a
generic measurement, the �pretty-good measurement,� that one can de�ne
for any �xed family of mixed states can actually be e�ciently implemented
in some cases of interest for the hidden subgroup problem. Furthermore,
they show that these measurements are powerful enough to distinguish the
subgroups, giving rise to e�cient solutions to the hidden subgroup problem
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for specially structured groups. (It was later shown that with su�ciently
many copies of the mixed state above, the pretty good measurement is always
a rich enough measurement to distinguish hidden subgroups [12].)

6 Conclusion

The hidden subgroup problem (and the symmetry �nding problem, in gen-
eral) unite quantum computation, a handful of classical computational prob-
lems, and aspects of the representation theory of �nite groups. We indicated,
in Section 5, the principal algorithmic techniques that have been developed
for attacking this problem in general: Fourier sampling, sieve methods, and
implementation of the pretty good measurement. In all of these cases, the
essential insight on which the algorithm depends illuminates the connection
between coset states and the algebraic structure of the group's representation
theory. Despite this progress, the guiding problem in the area of nonabelian
hidden subgroup problems�Graph Isomorphism�appears to be quite im-
mune to known techniques [17, 19]. Happily, the area has seen rapid de-
velopment in the last 5 years on the algorithmic, information-theoretic, and
representation-theoretic fronts; we can be sure that the area and its hallmark
problem have more secrets to uncover.
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