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Abstract

Representations of Boolean functions by real polynomials play an im-
portant role in complexity theory. Typically, one is interested in the least
degree of a polynomial p(x1, . . . , xn) that approximates or sign-represents a
given Boolean function f (x1, . . . , xn). This article surveys a new and grow-
ing body of work in communication complexity that centers around the dual
objects, i.e., polynomials that certify the difficulty of approximating or sign-
representing a given function. We provide a unified guide to the following
results, complete with all the key proofs:

• Sherstov’s Degree/Discrepancy Theorem, which translates lower
bounds on the threshold degree of a Boolean function into upper
bounds on the discrepancy of a related function;

• Two different methods for proving lower bounds on bounded-error
communication based on the approximate degree: Sherstov’s pattern
matrix method and Shi and Zhu’s block composition method;

• Extension of the pattern matrix method to the multiparty model, ob-
tained by Lee and Shraibman and by Chattopadhyay and Ada, and the
resulting improved lower bounds for ;

• David and Pitassi’s separation of NP and BPP in multiparty commu-
nication complexity for k 6 (1 − ε) log n players.
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1 Introduction
Representations of Boolean functions by real polynomials are of considerable
importance in complexity theory. The ease or difficulty of representing a given
Boolean function by polynomials from a given set often yields valuable insights
into the structural complexity of that function.

We focus on two concrete representation schemes that involve polynomials.
The first of these corresponds to threshold computation. For a Boolean function
f : {0, 1}n → {0, 1}, its threshold degree deg±( f ) is the minimum degree of a
polynomial p(x1, . . . , xn) such that p(x) is positive if f (x) = 1 and negative other-
wise. In other words, the threshold degree of f is the least degree of a polynomial
that represents f in sign. Several authors have analyzed the threshold degree of
common Boolean functions [34, 9, 37]. The results of these investigations have
found numerous applications to circuit complexity [1, 9, 24, 25] and computa-
tional learning theory [28, 23, 30].

The other representation scheme that we consider is approximation in the
uniform norm. For a Boolean function f : {0, 1}n → {0, 1} and a constant
ε ∈ (0, 1/2), the ε-approximate degree of f is the least degree of a polynomial
p(x1, . . . , xn) with | f (x) − p(x)| 6 ε for all x ∈ {0, 1}n. Note that this representa-
tion is strictly stronger than the first: no longer are we content with representing
f in sign, but rather we wish to closely approximate f on every input. There
is a considerable literature on the approximate degree of specific Boolean func-
tions [36, 38, 21, 6, 3, 47, 51]. This classical notion has been crucial to progress on
a variety of questions, including quantum query complexity [6, 5, 3], communica-
tion complexity [11, 41, 10] and computational learning theory [49, 28, 19, 29].

The approximate degree and threshold degree can be conveniently analyzed
by means of a linear program. In particular, whenever a given function f can-
not be approximated or sign-represented by polynomials of low degree, linear-
programming duality implies the existence of a certain dual object to witness that
fact. This dual object, which is a real function or a probability distribution, reveals
useful new information about the structural complexity of f . The purpose of this
article is to survey a very recent and growing body of work in communication
complexity that revolves around the dual formulations of the approximate degree
and threshold degree. Our ambition here is to provide a unified view of these di-
verse results, complete with all the key proofs, and thereby to encourage further
inquiry into the potential of the dual approach.

In the remainder of this section, we give an intuitive overview of our survey.

Degree/Discrepancy Theorem. The first result that we survey, in Section 3,
is the author’s Degree/Discrepancy Theorem [44]. This theorem and its proof
technique are the foundation for much of the subsequent work surveyed in this



article [45, 13, 31, 12, 15]. Fix a Boolean function f : {0, 1}n → {0, 1} and let N
be a given integer, N > n. In [44], we introduced the two-party communication
problem of computing

f (x|V),

where the Boolean string x ∈ {0, 1}N is Alice’s input and the set V ⊂ {1, 2, . . . ,N}
of size |V | = n is Bob’s input. The symbol x|V stands for the projection of x onto
the indices in V, in other words, x|V = (xi1 , xi2 , . . . , xin) ∈ {0, 1}

n, where i1 < i2 <
· · · < in are the elements of V. Intuitively, this problem models a situation when
Alice and Bob’s joint computation depends on only n of the inputs x1, x2, . . . , xN .
Alice knows the values of all the inputs x1, x2, . . . , xN but does not know which n
of them are relevant. Bob, on the other hand, knows which n inputs are relevant
but does not know their values.

We proved in [44] that the threshold degree d of f is a lower bound on
the communication requirements of this problem. More precisely, the De-
gree/Discrepancy Theorem shows that this communication problem has discrep-
ancy exp(−Ω(d)) as soon as N > 11n2/d. This exponentially small discrepancy
immediately gives an Ω(d) lower bound on communication in a variety of models
(deterministic, nondeterministic, randomized, quantum with and without entan-
glement). Moreover, the resulting lower bounds on communication hold even if
the desired error probability is vanishingly close to 1/2.

The proof of the Degree/Discrepancy Theorem introduces a novel technique
based on the dual formulation of the threshold degree. In fact, it appears to be the
first use of the threshold degree (in its primal or dual form) to prove communica-
tion lower bounds. As an application, we exhibit in [44] the first AC0 circuit with
exponentially small discrepancy, thereby separating AC0 from depth-2 majority
circuits and solving an open problem of Krause and Pudlák [24, §6]. Indepen-
dently of the author, Buhrman et al. [10] exhibited another AC0 function with
exponentially small discrepancy, using much different techniques.

Bounded-Error Communication. Next, we present two recent results on
bounded-error communication complexity, due to Sherstov [45] and Shi and
Zhu [48]. These papers use the notion of approximate degree to contribute strong
lower bounds for rather broad classes of functions, subsuming Razborov’s break-
through work on symmetric predicates [41]. The lower bounds are valid not only
in the randomized model, but also in the quantum model with and without prior
entanglement.

The setting in which to view these two works is the generalized discrepancy
method, a simple but very useful principle introduced by Klauck [20] and refor-
mulated in its current form by Razborov [41]. Let f (x, y) be a Boolean function
whose quantum communication complexity is of interest. The method asks for a



Boolean function h(x, y) and a distribution µ on (x, y)-pairs such that:

(1) the functions f and h are highly correlated under µ; and

(2) all low-cost protocols have negligible advantage in computing h under µ.

If such h and µ indeed exist, it follows that no low-cost protocol can compute
f to high accuracy (or else it would be a good predictor for the hard function h
as well!). This method is in no way restricted to the quantum model but, rather,
applies to any model of communication [45, §2.4]. The importance of the gener-
alized discrepancy method is that it makes it possible, in theory, to prove lower
bounds for functions such as , to which the traditional discrepancy
method does not apply. In Section 4, we provide detailed historical background
on the generalized discrepancy method and compile its quantitative versions for
several models.

The hard part, of course, is finding h and µ. Except in rather restricted
cases [20, Thm. 4], it was not known how to do it. As a result, the generalized
discrepancy method was of limited practical use. This difficulty was overcome
independently by Sherstov [45] and Shi and Zhu [48], who used the dual char-
acterization of the approximate degree to obtain h and µ for a broad range of
problems. To our knowledge, the work in [45] and [48] is the first use of the dual
characterization of the approximate degree to prove communication lower bounds.
The specifics of these two works are very different. The construction of h and µ
in [45], which we called the pattern matrix method for lower bounds on bounded-
error communication, is built around a new matrix-analytic technique (the pattern
matrix) inspired by the author’s Degree/Discrepancy Theorem. The construction
in [48], the block-composition method, is based on the idea of hardness amplifica-
tion by composition. These two methods exhibit quite different behavior, e.g., the
pattern matrix method further extends to the multiparty model. We present the two
methods individually in Sections 5.1 and 5.2 and provide a detailed comparison
of their strength and applicability in Section 5.3.

Extensions to the Multiparty Model. Both the Degree/Discrepancy Theo-
rem [44] and the pattern matrix method [45] generalize to the multiparty number-
on-the-forehead model. In the case of [44], this extension was formalized by
Chattopadhyay [13]. As before, let f : {0, 1}n → {0, 1} be a given function. Recall
that in the two-party case, there was a Boolean string x ∈ {0, 1}N and a single set
V ⊂ {1, 2, . . . ,N}. The k-party communication problem features a Boolean string
x ∈ {0, 1}N

k−1
and sets V1, . . . ,Vk−1 ⊂ {1, 2, . . . ,N}. The k inputs x,V1, . . . ,Vk−1 are

distributed among the k parties as usual. The goal is to compute

f (x|V1,...,Vk−1)
def
= f

(
xi11,...,i

k−1
1
, . . . , xi1n,...,ik−1

n

)
, (1.1)



where i j
1 < i j

2 < · · · < i j
n are the elements of V j (for j = 1, 2, . . . , k − 1). This

way, again no party knows at once the Boolean string x and the relevant bits in
it. With this setup in place, it becomes relatively straightforward to bound the
discrepancy by traversing the same line of reasoning as in [44]. The extension of
the pattern matrix method [45] to the multiparty model uses a similar setup and
was done by Lee and Shraibman [31] and independently by Chattopadhyay and
Ada [12]. We present the proofs of these extensions in Section 6, placing them in
close correspondence with the two-party case. These extensions do not subsume
the two-party results, however (see Section 6 for details).

The authors of [31] and [12] gave important applications of their work to the
k-party randomized communication complexity of , improving it from
Ω( 1

k log n) to nΩ(1/k)2−O(2k). As a corollary, they separated the multiparty commu-
nication classes NPcc

k and BPPcc
k for k = (1 − o(1)) log2 log2 n parties. They also

obtained new results for Lovász-Schrijver proof systems, in light of the work due
to Beame, Pitassi, and Segerlind [8].

Separation of NPcc
k and BPPcc

k . The separation of the classes NPcc
k and BPPcc

k
in [31, 12] for k = (1 − o(1)) log2 log2 n parties was followed by another excit-
ing development, due to David and Pitassi [15], who separated these classes for
k 6 (1 − ε) log2 n parties. Here ε > 0 is an arbitrary constant. Since the current
barrier for explicit lower bounds on multiparty communication complexity is pre-
cisely k = log2 n, David and Pitassi’s separation matches the state of the art. We
present this work in Section 7. The powerful idea in this result was to redefine
the projection operator x|V1,...,Vk−1 in (1.1). Specifically, David and Pitassi observed
that it suffices to define the projection operator at random, using the probabilistic
method. This insight removed the key technical obstacle present in [31, 12]. In
a follow-up work by David, Pitassi, and Viola [16], the probabilistic construction
was derandomized to yield an explicit separation.

Other Related Work. For completeness, we will mention several duality-based
results in communication complexity that fall outside the scope of this survey.
Recent work has seen other applications of dual polynomials [46, 42], which are
considerably more complicated and no longer correspond to the approximate de-
gree or threshold degree. More broadly, several recent results feature other forms
of duality [32, 33], such as the duality of norms or semidefinite programming
duality.

2 Preliminaries
This section reviews our notation and provides relevant technical background.



2.1 General Background

A Boolean function is a mapping X → {0, 1}, where X is a finite set such as
X = {0, 1}n or X = {0, 1}n × {0, 1}n. The notation [n] stands for the set {1, 2, . . . , n}.
For integers N, n with N > n, the symbol

(
[N]
n

)
denotes the family of all size-n

subsets of {1, 2, . . . ,N}. For x ∈ {0, 1}n,we write |x| = x1+· · ·+xn. For x, y ∈ {0, 1}n,
the notation x ∧ y refers as usual to the component-wise AND of x and y. In
particular, |x ∧ y| stands for the number of positions where x and y both have a 1.
Throughout this manuscript, “log" refers to the logarithm to base 2.

For tensors A, B : X1 × · · · × Xk → R (where Xi is a finite set, i = 1, 2, . . . , k),
define 〈A, B〉 =

∑
(x1,...,xk)∈X1×···×Xk

A(x1, . . . , xk)B(x1, . . . , xk).When A and B are vec-
tors or matrices, this is the standard definition of inner product. The Hadamard
product of A and B is the tensor A ◦ B : X1 × · · · × Xk → R given by
(A ◦ B)(x1, . . . , xk) = A(x1, . . . , xk)B(x1, . . . , xk).

The symbol Rm×n refers to the family of all m × n matrices with real entries.
The (i, j)th entry of a matrix A is denoted by Ai j. We frequently use “generic-
entry" notation to specify a matrix succinctly: we write A = [F(i, j)]i, j to mean
that the (i, j)th entry of A is given by the expression F(i, j). In most matrices that
arise in this work, the exact ordering of the columns (and rows) is irrelevant. In
such cases we describe a matrix by the notation [F(i, j)]i∈I, j∈J, where I and J are
some index sets.

Let A ∈ Rm×n. We use the following standard notation: ‖A‖∞ = maxi, j |Ai j|

and ‖A‖1 =
∑

i, j |Ai j|. We denote the singular values of A by σ1(A) > σ2(A) >
. . . > σmin{m,n}(A) > 0. Recall that the spectral norm of A is given by ‖A‖ =
maxx∈Rn, ‖x‖=1 ‖Ax‖ = σ1(A). An excellent reference on matrix analysis is [18].

We conclude with a review of the Fourier transform over Zn
2. Consider the

vector space of functions {0, 1}n → R, equipped with the inner product 〈 f , g〉 =
2−n ∑

x∈{0,1}n f (x)g(x). For S ⊆ [n], define χS : {0, 1}n → {−1,+1} by χS (x) =
(−1)

∑
i∈S xi . Then {χS }S⊆[n] is an orthonormal basis for the inner product space in

question. As a result, every function f : {0, 1}n → R has a unique representation
of the form f (x) =

∑
S⊆[n] f̂ (S ) χS (x), where f̂ (S ) = 〈 f , χS 〉. The reals f̂ (S )

are called the Fourier coefficients of f . The following fact is immediate from the
definition of f̂ (S ):

Proposition 2.1. Fix f : {0, 1}n → R. Then

max
S⊆[n]
| f̂ (S )| 6 2−n

∑
x∈{0,1}n

| f (x)|.



2.2 Communication Complexity

This survey features several standard models of communication. In the case of
two communicating parties, one considers a function f : X × Y → {0, 1}, where X
and Y are some finite sets. Alice receives an input x ∈ X, Bob receives y ∈ Y, and
their objective is to predict f (x, y) with good accuracy. To this end, Alice and Bob
share a communication channel (classical or quantum, depending on the model).
Alice and Bob’s communication protocol is said to have error ε if it outputs the
correct answer f (x, y) with probability at least 1 − ε on every input. The cost of
a given protocol is the maximum number of bits exchanged on any input. The
two-party models of interest to us are the randomized model, the quantum model
without prior entanglement, and the quantum model with prior entanglement. The
least cost of an ε-error protocol for f in these models is denoted by Rε( f ), Qε( f ),
and Q∗ε( f ), respectively. It is standard practice to omit the subscript ε when er-
ror parameter is ε = 1/3. Recall that the error probability of a protocol can be
decreased from 1/3 to any other constant ε > 0 at the expense of increasing the
communication cost by a constant factor; we will use this fact in many proofs of
this survey, often without explicitly mentioning it. Excellent references on these
communication models are [22] and [50].

A generalization of two-party communication is number-on-the-forehead mul-
tiparty communication. Here one considers a function f : X1 × · · · × Xk → {0, 1}
for some finite sets X1, . . . , Xk. There are k players. A given input (x1, . . . , xk) ∈
X1×· · ·×Xk is distributed among the players by placing xi on the forehead of player
i (for i = 1, . . . , k). In other words, player i knows x1, . . . , xi−1, xi+1, . . . , xk but not
xi. The players can communicate by writing bits on a shared blackboard, visible
to all. They additionally have access to a shared source of random bits. Their goal
is to devise a communication protocol that will allow them to accurately predict
the value of f on every input. Analogous to the two-party case, the randomized
communication complexity Rk

ε( f ) is the least cost of an ε-error communication
protocol for f in this model. The final section of this paper also considers the
nondeterministic communication complexity Nk( f ), which is the minimum cost
of a protocol for f that always outputs the correct answer on the inputs f −1(0)
and has error probability less than 1 on each of the inputs f −1(1). Analogous to
computational complexity, BPPcc

k (respectively, NPcc
k ) is the class of functions

f : ({0, 1}n)k → {0, 1} with Rk( f ) 6 (log n)O(1) (respectively, Nk( f ) 6 (log n)O(1)).
See [22] for further details.

A crucial tool for proving communication lower bounds is the discrepancy
method. Given a function f : X × Y → {0, 1} and a distribution µ on X × Y, the



discrepancy of f with respect to µ is defined as

discµ( f ) = max
S⊆X,
T⊆Y

∣∣∣∣∣∣∣∑x∈S
∑
y∈T

(−1) f (x,y)µ(x, y)

∣∣∣∣∣∣∣ .
This definition generalizes to the multiparty case as follows. Fix f : X1×· · ·×Xk →

{0, 1} and a distribution µ on X1 × · · · × Xk. The discrepancy of f with respect to µ
is defined as

discµ( f ) = max
φ1,...,φk

∣∣∣∣∣∣∣∣∣∣∣
∑

(x1,...,xk)
∈X1×···×Xk

ψ(x1, . . . , xk)
k∏

i=1

φi(x1, . . . , xi−1, xi+1, . . . , xk)

∣∣∣∣∣∣∣∣∣∣∣ ,
where ψ(x1, . . . , xk) = (−1) f (x1,...,xk)µ(x1, . . . , xk) and the maximum ranges over all
functions φi : X1 × · · · Xi−1 × Xi+1 × · · · Xk → {0, 1}, for i = 1, 2, . . . , k. Note that
for k = 2, this definition is identical to the one given previously for the two-party
model. We put disc( f ) = minµ discµ( f ). We identify a function f : X1×· · ·×Xk →

{0, 1} with its communication tensor M(x1, . . . , xk) = (−1) f (x1,...,xk) and speak of
the discrepancy of M and f interchangeably (and likewise for other complexity
measures, such as Rk( f )).

Discrepancy is difficult to analyze as defined. Typically, one uses the following
well-known estimate, derived by repeated applications of the Cauchy-Schwartz
inequality.

Theorem 2.2 ([7, 14, 40]). Fix f : X1 × · · · × Xk → {0, 1} and a distribution µ on
X1 × · · · × Xk. Put ψ(x1, . . . , xk) = (−1) f (x1,...,xk)µ(x1, . . . , xk). Then

(
discµ( f )
|X1| · · · |Xk|

)2k−1

6 E
x0

1∈X1

x1
1∈X1

· · · E
x0

k−1∈Xk−1

x1
k−1∈Xk−1

∣∣∣∣∣∣∣∣ E
xk∈Xk

∏
z∈{0,1}k−1

ψ(xz1
1 , . . . , x

zk−1
k−1 , xk)

∣∣∣∣∣∣∣∣ .

In the case of k = 2 parties, there are other ways to estimate the discrepancy, e.g.,
using the spectral norm of a matrix.

For a function f : X1 × · · · × Xk → {0, 1} and a distribution µ over X1 ×

· · · × Xk, let Dk,µ
ε ( f ) denote the least cost of a deterministic protocol for f whose

probability of error with respect to µ is at most ε. This quantity is known as the
µ-distributional complexity of f . Since a randomized protocol can be viewed as
a probability distribution over deterministic protocols, we immediately have that
Rk
ε( f ) > maxµ Dk,µ

ε ( f ). We are now ready to state the discrepancy method.



Theorem 2.3 (Discrepancy method; see [22]). For every f : X1 × · · · × Xk →

{0, 1}, every distribution µ on X1 × · · · × Xk, and every γ ∈ (0, 1],

Rk
1/2−γ/2 > Dk,µ

1/2−γ/2( f ) > log2
γ

discµ( f )
.

In other words, a function with small discrepancy is hard to compute to any non-
trivial advantage over random guessing (let alone compute it to high accuracy). In
the case of k = 2 parties, discrepancy yields analogous lower bounds even in the
quantum model, regardless of prior entanglement [26, 20, 32].

3 The Degree/Discrepancy Theorem
This section presents the author’s Degree/Discrepancy Theorem, whose proof
technique is the foundation for much of the subsequent work surveyed in this
article [45, 13, 31, 12, 15].

The original motivation behind this result came from circuit complexity. A
natural and well-studied computational model is that of a polynomial-size circuit
of majority gates. Research has shown that majority circuits of depth 2 and 3
already possess surprising computational power. Indeed, it is a long-standing open
problem [24] to exhibit a Boolean function that cannot be computed by a depth-3
majority circuit of polynomial size.

Another extensively studied model is that of polynomial-size constant-depth
circuits with , ,  gates, denoted by AC0. Allender’s classic result [2]
states that every function in AC0 can be computed by a depth-3 majority circuit
of quasipolynomial size. Krause and Pudlák [24, §6] ask whether this simulation
can be improved, i.e., whether every function in AC0 can be computed by a depth-
2 majority circuit of quasipolynomial size. We recently gave a strong negative
answer to this question:

Theorem 3.1 ([44]). There is a function F : {0, 1}n → {0, 1}, explicitly given and
computable by an AC0 circuit of depth 3, whose computation requires a majority
vote of exp(Ω(n1/5)) threshold gates.

We proved Theorem 3.1 by exhibiting an AC0 function with exponentially small
discrepancy. All previously known functions with exponentially small discrep-
ancy (e.g., [17, 35]) contained  or  as a subfunction and therefore
could not be computed in AC0. Buhrman et al. [10] obtained, independently of the
author and with much different techniques, another AC0 function with exponen-
tially small discrepancy, thereby also answering Krause and Pudlák’s question.



3.1 Bounding the Discrepancy via the Threshold Degree
To construct an AC0 function with small discrepancy, we developed in [44] a novel
technique for generating low-discrepancy functions, which we now describe. This
technique is not specialized in any way to AC0 but, rather, is based on the abstract
notion of threshold degree.

For a Boolean function f : {0, 1}n → {0, 1}, recall from Section 1 that its
threshold degree deg±( f ) is the minimum degree of a polynomial p(x1, . . . , xn)
with p(x) > 0 ⇔ f (x) = 1 and p(x) < 0 ⇔ f (x) = 0. In many cases [34], it
is straightforward to obtain strong lower bounds on the threshold degree. Since
the threshold degree is a measure of the complexity of a given Boolean function,
it is natural to wonder whether it can yield lower bounds on communication in a
suitable setting. As we prove in [44], this intuition turns out to be correct for every
f .

More precisely, fix a Boolean function f : {0, 1}n → {0, 1} with threshold
degree d. Let N be a given integer, N > n. In [44], we introduced the two-party
communication problem of computing

f (x|V),

where the Boolean string x ∈ {0, 1}N is Alice’s input and the set V ⊂ {1, 2, . . . ,N}
of size |V | = n is Bob’s input. The symbol x|V stands for the projection of x onto
the indices in V, in other words, x|V = (xi1 , xi2 , . . . , xin) ∈ {0, 1}

n, where i1 < i2 <
· · · < in are the elements of V. Intuitively, this problem models a situation when
Alice and Bob’s joint computation depends on only n of the inputs x1, x2, . . . , xN .
Alice knows the values of all the inputs x1, x2, . . . , xN but does not know which n
of them are relevant. Bob, on the other hand, knows which n inputs are relevant
but does not know their values. As one would hope, it turns out that d is a lower
bound on the communication requirements of this problem:

Theorem 3.2 (Degree/Discrepancy Theorem [44]). Let f : {0, 1}n → {0, 1} be
given with threshold degree d > 1. Let N be a given integer, N > n. Define F =
[ f (x|V)]x,V , where the rows are indexed by x ∈ {0, 1}N and columns by V ∈

(
[N]
n

)
.

Then

disc(F) 6
(
4en2

Nd

)d/2

.

To our knowledge, Theorem 3.2 is the first use of the threshold degree to prove
communication lower bounds. Given a function f with threshold degree d, The-
orem 3.2 generates a communication problem with discrepancy at most 2−d (by
setting N > 16en2/d). This exponentially small discrepancy immediately gives
an Ω(d) lower bound on communication in a variety of models (deterministic,



nondeterministic, randomized, quantum with and without entanglement; see Sec-
tion 2.2). Moreover, the resulting lower bounds on communication remain valid
when Alice and Bob merely seek to predict the answer with nonnegligible advan-
tage, a critical aspect for lower bounds against threshold circuits.

We will give a detailed proof of the Degree/Discrepancy Theorem in the next
subsection. For now we will briefly sketch how we used it in [44] to prove the
main result of that paper, Theorem 3.1 above, on the existence of an AC0 function
that requires a depth-2 majority circuit of exponential size. Consider the function

f (x) =
m∨

i=1

4m2∧
j=1

xi j,

for which Minsky and Papert [34] showed that deg±( f ) = m. Since f has high
threshold degree, an application of Theorem 3.2 to f yields a communication
problem with low discrepancy. This communication problem itself can be viewed
as an AC0 circuit of depth 3. Recalling that its discrepancy is exponentially small,
we conclude that it cannot be computed by a depth-2 majority circuit of subexpo-
nential size.

3.2 Proof of the Degree/Discrepancy Theorem
A key ingredient in our proof is the following dual characterization of the thresh-
old degree, which is a classical result known in greater generality as Gordan’s
Transposition Theorem [43, §7.8]:

Theorem 3.3. Let f : {0, 1}n → {0, 1} be arbitrary, d a nonnegative integer.
Then exactly one of the following holds: (1) f has threshold degree at most d;
(2) there is a distribution µ over {0, 1}n such that Ex∼µ[(−1) f (x)χS (x)] = 0 for
|S | = 0, 1, . . . , d.

Theorem 3.3 follows from linear-programming duality. We will also make the
following simple observation.

Observation 3.4. Let κ(x) be a probability distribution on {0, 1}r. Fix i1, . . . , ir

∈ {1, 2, . . . , r}. Then
∑

x∈{0,1}r κ(xi1 , . . . , xir ) 6 2r−|{i1,...,ir}|, where |{i1, . . . , ir}| denotes
the number of distinct integers among i1, . . . , ir.

We are now ready for the proof of the Degree/Discrepancy Theorem.

Theorem 3.2 (Restated from p. ). Let f : {0, 1}n → {0, 1} be given with threshold
degree d > 1. Let N be a given integer, N > n. Define F = [ f (x|V)]x,V , where the
rows are indexed by x ∈ {0, 1}N and columns by V ∈

(
[N]
n

)
. Then

disc(F) 6
(
4en2

Nd

)d/2

.



Proof [44]. Let µ be a probability distribution over {0, 1}n with respect to which
Ez∼µ[(−1) f (z) p(z)] = 0 for every real-valued function p of d − 1 or fewer of the
variables z1, . . . , zn. The existence of µ is assured by Theorem 3.3. We will analyze
the discrepancy of F with respect to the distribution

λ(x,V) = 2−N+n

(
N
n

)−1

µ(x|V).

Define ψ : {0, 1}n → R by ψ(z) = (−1) f (z)µ(z). By Theorem 2.2,

discλ(F)2 6 4n E
V,W
|Γ(V,W)|, (3.1)

where we put Γ(V,W) = Ex[ψ(x|V)ψ(x|W)]. To analyze this expression, we prove
two key claims.

Claim 3.5. Assume that |V ∩W | 6 d − 1. Then Γ(V,W) = 0.

Proof. The claim is immediate from the fact that the Fourier transform of ψ is
supported on characters of order d and higher. For completeness, we will now give
a more detailed and elementary explanation. Assume for notational convenience
that V = {1, 2, . . . , n}. Then

Γ(V,W) = E
x
[µ(x1, . . . , xn)(−1) f (x1,...,xn)ψ(x|W)]

=
1

2N

∑
x1,...,xn

µ(x1, . . . , xn)(−1) f (x1,...,xn)
∑

xn+1,...,xN

ψ(x|W)

=
1

2N E
(x1,...,xn)∼µ

 (−1) f (x1,...,xn) ·

 ∑
xn+1,...,xN

ψ(x|W)

︸              ︷︷              ︸
∗

 .
Since |V ∩W | 6 d − 1, the starred expression is a real-valued function of at most
d − 1 variables. The claim follows by the definition of µ. �

Claim 3.6. Assume that |V ∩W | = i. Then |Γ(V,W)| 6 2i−2n.

Proof. The claim is immediate from Observation 3.4. For completeness, we will
give a more detailed explanation. For notational convenience, assume that

V = {1, 2, . . . , n},
W = {1, 2, . . . , i} ∪ {n + 1, n + 2, . . . , n + (n − i)}.



We have:

|Γ(V,W)| 6 E
x
[|ψ(x|V)ψ(x|W)|]

= E
x1,...,x2n−i

[µ(x1, . . . , xn)µ(x1, . . . , xi, xn+1, . . . , x2n−i)]

6 E
x1,...,xn

[µ(x1, . . . , xn)]︸                   ︷︷                   ︸
=2−n

· max
x1,...,xi

E
xn+1,...,x2n−i

[µ(x1, . . . , xk, xn+1, . . . , x2n−i)]︸                                           ︷︷                                           ︸
62−(n−i)

.

The bounds 2−n and 2−(n−i) follow because µ is a probability distribution. �

In view of Claims 3.5 and 3.6, inequality (3.1) simplifies to

discλ(F)2 6
n∑

i=d

2i P[|V ∩W | = i],

which completes the proof of Theorem 3.2 after some routine calculations. �

The discrepancy bound in Theorem 3.2 is not tight. In follow-up work (see
Section 5.1), the author proved a substantially stronger bound using matrix-
analytic techniques. However, that matrix-analytic approach does not seem to
extend to the multiparty model, and as we will see later in Sections 6 and 7, all
multiparty papers in this survey use adaptations of the analysis just presented.

4 The Generalized Discrepancy Method
As we saw in Section 2.2, the discrepancy method is particularly strong in that
it gives communication lower bounds not only for bounded-error protocols but
also for protocols with error vanishingly close to 1

2 . Ironically, this strength of the
discrepancy method is also its weakness. For example, the  function
(x, y) =

∨n
i=1(xi ∧ yi) has a simple low-cost protocol with error 1

2 − Ω
(

1
n

)
. As

a result,  has high discrepancy, and no useful lower bounds can be
obtained for it via the discrepancy method. Yet it is well-known that 
has bounded-error communication complexity Ω(n) in the randomized model [27,
39] and Ω(

√
n) in the quantum model [41].

The remainder of this survey (Sections 5–7) is concerned with bounded-
error communication. Crucial to this development is the generalized discrepancy
method, an ingenious extension of the traditional discrepancy method that avoids
the difficulty just cited. To our knowledge, this idea originated in a paper by
Klauck [20, Thm. 4] and was reformulated in its current form by Razborov [41].
The development in [20] and [41] takes place in the quantum model of communi-
cation. However, the basic mathematical technique is in no way restricted to the



quantum model, and we will focus here on a model-independent version of the
generalized discrepancy method from [45, §2.4].

Specifically, consider an arbitrary communication model and let f : X × Y →
{0, 1} be a given function whose communication complexity we wish to estimate.
Suppose we can find a function h : X × Y → {0, 1} and a distribution µ on X × Y
that satisfy the following two properties.

1. Correlation of f and h. The functions f and h are well correlated under µ:

E
(x,y)∼µ

[
(−1) f (x,y)+h(x,y)

]
> ε, (4.1)

where ε > 0 is typically a constant.

2. Hardness of h. No low-cost protocol Π in the given model of communica-
tion can compute h to a substantial advantage under µ. Formally, if Π is a
protocol in the given model with cost C, then

E
(x,y)∼µ

[
(−1)h(x,y) E

[
(−1)Π(x,y)

]]
6 2O(C)γ, (4.2)

where γ = o(1). The inner expectation in (4.2) is over the internal operation
of the protocol on the fixed input (x, y).

If the above two conditions hold, we claim that any protocol in the given model
that computes f with error at most ε/3 on each input must have cost Ω

(
log ε

γ

)
.

Indeed, let Π be a protocol with P[Π(x, y) , f (x, y)] 6 ε/3 for all x, y. Then
standard manipulations reveal:

E
(x,y)∼µ

[
(−1)h(x,y) E

[
(−1)Π(x,y)

]]
> E

(x,y)∼µ

[
(−1) f (x,y)+h(x,y)

]
− 2 ·

ε

3

(4.1)
>

ε

3
.

In view of (4.2), this shows that Π must have cost Ω
(
log ε

γ

)
.

The above framework from [45] is meant to emphasize the basic mathemat-
ical technique in question, which is independent of the communication model.
Indeed, the communication model enters the picture only in (4.2). It is here that
the analysis must exploit the particularities of the model. To place an upper bound
on the advantage under µ in the quantum model with entanglement, one considers
the quantity ‖K‖

√
|X| |Y |, where K = [(−1)h(x,y)µ(x, y)]x,y. In the randomized model

and the quantum model without entanglement, the quantity to estimate happens to
be discµ(h). (In fact, Linial and Shraibman [32] recently showed that discµ(h) also
works in the quantum model with entanglement.)

For future reference, we now record a quantitative version of the generalized
discrepancy method for the quantum model.



Theorem 4.1 ([45], implicit in [41, 48]). Let X,Y be finite sets and f : X × Y →
{0, 1} a given function. Let K = [Kxy]x∈X, y∈Y be any real matrix with ‖K‖1 = 1.
Then for each ε > 0,

4Qε ( f ) > 4Q∗ε ( f ) >
〈F,K〉 − 2ε

3 ‖K‖
√
|X| |Y |

,

where F =
[
(−1) f (x,y)

]
x∈X, y∈Y

.

Observe that Theorem 4.1 uses slightly more succinct notation (matrix vs. func-
tion; weighted sum vs. expectation) but is equivalent to the abstract formulation
above.

So far, we have focused on two-party communication. This discussion extends
essentially word-for-word to the multiparty model, with discrepancy serving once
again as the natural measure of the advantage attainable by low-cost protocols.
This extension was formalized by Lee and Shraibman [31, Thms. 6, 7] and inde-
pendently by Chattopadhyay and Ada [12, Lem. 3.2], who proved (4.3) and (4.4)
below, respectively:

Theorem 4.2 (cf. [31, 12]). Fix F : X1 × · · · × Xk → {−1,+1} and ε ∈ [0, 1/2).
Then

2Rk
ε (F) > (1 − ε) max

H,P

〈H ◦ P, F〉 − 1
1−ε ε

discP(H)

 (4.3)

and

2Rk
ε (F) > max

H,P

{
〈H ◦ P, F〉 − 2ε

discP(H)

}
, (4.4)

where in both cases H ranges over sign tensors and P ranges over tensors with
P > 0 and ‖P‖1 = 1.

Proof. Fix an optimal ε-error protocol Π for F. Define F̃(x1, . . . , xk) =

E[(−1)Π(x1,...,xk)], where the expectation is over any internal randomization in Π.
Let δ ∈ (0, 1] be a parameter to be fixed later. Then

2Rk
ε (F) discP(H) > 〈H ◦ P, F̃〉

= δ

{
〈H ◦ P, F〉 +

〈
H ◦ P,

1
δ

F̃ − F
〉}

> δ

{
〈H ◦ P, F〉 −

1
δ

max{|1 − δ − 2ε|, 1 − δ}
}
.

where the first inequality restates the original discrepancy method (Theorem 2.3).
Now (4.3) and (4.4) follow by setting δ = 1 − ε and δ = 1, respectively. �



The proof in [12] is similar to the one just given for the special case δ = 1.
The proof in [31] is rather different and works by defining a suitable norm and
passing to its dual. The norm-based approach was employed earlier by Linial
and Shraibman [32] and can be thought of as a purely analytic analogue of the
generalized discrepancy method.

5 Two-Party Bounded-Error Communication
For a function f : {0, 1}n → R, recall from Section 1 that its ε-approximate degree
degε( f ) is the least degree of a polynomial p(x1, . . . , xn) with | f (x) − p(x)| 6 ε for
all x ∈ {0, 1}n. We move on to discuss two recent papers on bounded-error com-
munication that use the notion of approximate degree to contribute strong lower
bounds for rather broad classes of functions, subsuming Razborov’s breakthrough
work on symmetric predicates [41]. These lower bounds are valid not only in the
randomized model, but also in the quantum model (regardless of entanglement).

The setting in which to view these two works is Klauck and Razborov’s gen-
eralized discrepancy method (see Sections 1 and 4). Let F be a sign matrix whose
bounded-error quantum communication complexity is of interest. The quantum
version of this method (Theorem 4.1) states that to prove a communication lower
bound for F, it suffices to exhibit a real matrix K such that 〈F,K〉 is large but ‖K‖
is small. The importance of the generalized discrepancy method is that it makes
it possible, in theory, to prove lower bounds for functions such as , to
which the traditional discrepancy method (Theorem 2.3) does not apply.

The hard part, of course, is finding the matrix K. Except in rather restricted
cases [20, Thm. 4], it was not known how to do it. As a result, the general-
ized discrepancy method was of limited practical use. (In particular, Razborov’s
celebrated work [41] did not use the generalized discrepancy method. Instead,
he introduced a novel alternate technique that was restricted to symmetric func-
tions.) This difficulty was overcome independently by Sherstov [45] and Shi and
Zhu [48], who used the dual characterization of the approximate degree to obtain
the matrix K for a broad range of problems. To our knowledge, the work in [45]
and [48] is the first use of the dual characterization of the approximate degree to
prove communication lower bounds.

The specifics of these two works are very different. The construction of K
in [45], which we called the pattern matrix method for lower bounds on bounded-
error communication, is built around a new matrix-analytic technique (the pattern
matrix) inspired by the author’s Degree/Discrepancy Theorem. The construction
of K in [48], the block-composition method, is based on the idea of hardness
amplification by composition. What unites them is use of the dual characterization
of the approximate degree, given by the following theorem.



Theorem 5.1 ([45, 48]). Fix ε > 0. Let f : {0, 1}n → R be given with d =
degε( f ) > 1. Then there is a function ψ : {0, 1}n → R such that:

ψ̂(S ) = 0 for |S | < d,∑
z∈{0,1}n

|ψ(z)| = 1,∑
z∈{0,1}n

ψ(z) f (z) > ε.

Theorem 5.1 follows from linear-programming duality. We shall first cover the
two papers individually in Sections 5.1 and 5.2 and then compare them in detail
in Section 5.3.

5.1 The Pattern Matrix Method

The setting for this work resembles that of the Degree/Discrepancy Theorem
in [44] (see Section 3). Let N and n be positive integers, where n 6 N/2.
For convenience, we will further assume that n | N. Fix an arbitrary function
f : {0, 1}n → {0, 1}. Consider the communication problem of computing

f (x|V),

where the bit string x ∈ {0, 1}N is Alice’s input and the set V ⊂ {1, 2, . . . ,N} with
|V | = n is Bob’s input. As before, x|V denotes the projection of x onto the indices
in V, i.e., x|V = (xi1 , xi2 , . . . , xin) ∈ {0, 1}

n where i1 < i2 < · · · < in are the elements
of V.

The similarities with [44], however, do not extend beyond this point. Un-
like that earlier work, we will actually study the easier communication problem
in which Bob’s input V is restricted to a rather special form. Namely, we will
only allow those sets V that contain precisely one element from each block in the
following partition of {1, 2, . . . ,N}:{

1, 2, . . . ,
N
n

}
∪

{
N
n
+ 1, . . . ,

2N
n

}
∪ · · · ∪

{
(n − 1)N

n
+ 1, . . . ,N

}
. (5.1)

Even for this easier communication problem, we will prove a much stronger re-
sult than what would have been possible in the original setting with the methods
of [44]. In particular, we will considerably improve the Degree/Discrepancy The-
orem from [44] along the way. The main results of this work are as follows.



Theorem 5.2 ([45]). Any classical or quantum protocol, with or without prior
entanglement, that computes f (x|V) with error probability at most 1/5 on each
input has communication cost at least

1
4

deg1/3( f ) · log
⌊ N
2n

⌋
− 2.

In view of the restricted form of Bob’s inputs, we can restate Theorem 5.2 in
terms of function composition. Setting N = 4n for concreteness, we have:

Corollary 5.3 ([45]). Let f : {0, 1}n → {0, 1} be given. Define F : {0, 1}4n ×

{0, 1}4n → {0, 1} by

F(x, y) = f
(

x1y1 ∨ x2y2 ∨ x3y3 ∨ x4y4 ,

x5y5 ∨ x6y6 ∨ x7y7 ∨ x8y8 ,

...

x4n−3y4n−3 ∨ x4n−2y4n−2 ∨ x4n−1y4n−1 ∨ x4ny4n

)
,

where xiyi = (xi ∧ yi). Any classical or quantum protocol, with or without prior
entanglement, that computes F(x, y) with error probability at most 1/5 on each
input has cost at least 1

4 deg1/3( f ) − 2.

We now turn to the proof. LetV(N, n) denote the set of Bob’s inputs, i.e., the
family of subsets V ⊆ [N] that have exactly one element in each of the blocks
of the partition (5.1). Clearly, |V(N, n)| = (N/n)n. We will be working with the
following family of matrices.

Definition 5.4 (Pattern matrix [45]). For φ : {0, 1}n → R, the (N, n, φ)-pattern
matrix is the real matrix A given by

A =
[
φ(x|V ⊕ w)

]
x∈{0,1}N , (V,w)∈V(N,n)×{0,1}n

.

In words, A is the matrix of size 2N by 2n(N/n)n whose rows are indexed by
strings x ∈ {0, 1}N , whose columns are indexed by pairs (V, w) ∈ V(N, n)× {0, 1}n,
and whose entries are given by Ax,(V,w) = φ(x|V ⊕ w). The logic behind the term
“pattern matrix" is as follows: a mosaic arises from repetitions of a pattern in the
same way that A arises from applications of φ to various subsets of the variables.

Our intermediate goal will be to determine the spectral norm of any given
pattern matrix A. Toward that end, we will actually end up determining every
singular value of A and its multiplicity. Our approach will be to represent A as the
sum of simpler matrices and analyze them instead. For this to work, we need to
be able to reconstruct the singular values of A from those of the simpler matrices.
Just when this can be done is the subject of the following lemma from [45].



Lemma 5.5 (Singular values of a matrix sum [45]). Let A, B be real matrices
with ABT = 0 and ATB = 0. Then the nonzero singular values of A + B, counting
multiplicities, are σ1(A), . . . , σrank A(A), σ1(B), . . . , σrank B(B).

We are ready to analyze the singular values of a pattern matrix.

Theorem 5.6 (Singular values of a pattern matrix [45]). Let φ : {0, 1}n → R be
given. Let A be the (N, n, φ)-pattern matrix. Then the nonzero singular values of
A, counting multiplicities, are:

⋃
S :φ̂(S ),0


√

2N+n
(N

n

)n

· |φ̂(S )|
( n
N

)|S |/2
, repeated

(N
n

)|S |
times

 .
In particular,

‖A‖ =

√
2N+n

(N
n

)n

max
S⊆[n]

{
|φ̂(S )|

( n
N

)|S |/2}
.

Proof [45]. For each S ⊆ [n], let AS be the (N, n, χS )-pattern matrix. Then A =∑
S⊆[n] φ̂(S )AS . For any S ,T ⊆ [n] with S , T, a calculation reveals that AS AT

T = 0
and AT

S AT = 0. By Lemma 5.5, this means that the nonzero singular values of A
are the union of the nonzero singular values of all φ̂(S )AS , counting multiplicities.
Therefore, the proof will be complete once we show that the only nonzero singular
value of AT

S AS is 2N+n(N/n)n−|S |, with multiplicity (N/n)|S |.
For this, it is convenient to write AT

S AS as the Kronecker product

AT
S AS = [χS (w)χS (w′)]w,w′ ⊗

 ∑
x∈{0,1}N

χS (x|V) χS (x|V′)


V,V′

.

The first matrix in this factorization has rank 1 and entries ±1, which means that
its only nonzero singular value is 2n with multiplicity 1. The other matrix, call
it M, is permutation-similar to 2N diag(J, J, . . . , J), where J is the all-ones square
matrix of order (N/n)n−|S |. This means that the only nonzero singular value of M
is 2N(N/n)n−|S | with multiplicity (N/n)|S |. It follows from elementary properties of
the Kronecker product that the spectrum of AT

S AS is as desired. �

We are now prepared to formulate and prove the pattern matrix method for
lower bounds on bounded-error communication, which gives strong lower bounds
for every pattern matrix generated by a Boolean function with high approximate
degree. Theorem 5.2 and its corollary will fall out readily as consequences.



Theorem 5.7 (Pattern matrix method [45]). Let F be the (N, n, f )-pattern ma-
trix, where f : {0, 1}n → {0, 1} is given. Put d = deg1/3( f ). Then

Q1/5(F) > Q∗1/5(F) >
1
4

d log
(N

n

)
− 2.

Proof [45]. Define f ∗ : {0, 1}n → {−1,+1} by f ∗(z) = (−1) f (z). Then it is easy to
verify that deg2/3( f ∗) = d. By Theorem 5.1, there is a function ψ : {0, 1}n → R
such that:

ψ̂(S ) = 0 for |S | < d, (5.2)∑
z∈{0,1}n

|ψ(z)| = 1, (5.3)

∑
z∈{0,1}n

ψ(z) f ∗(z) >
2
3
. (5.4)

Let M be the (N, n, f ∗)-pattern matrix. Let K be the (N, n, 2−N(N/n)−nψ)-pattern
matrix. Immediate consequences of (5.3) and (5.4) are:

‖K‖1 = 1, 〈K,M〉 >
2
3
. (5.5)

Our last task is to calculate ‖K‖. By (5.3) and Proposition 2.1,

max
S⊆[n]
|ψ̂(S )| 6 2−n. (5.6)

Theorem 5.6 yields, in view of (5.2) and (5.6):

‖K‖ 6
( n
N

)d/2
(
2N+n

(N
n

)n)−1/2

. (5.7)

The desired lower bounds on quantum communication now follow directly from
(5.5) and (5.7) by the generalized discrepancy method (Theorem 4.1). �

Remark 5.8. In the proof of Theorem 5.7, we bounded ‖K‖ using the subtle cal-
culations of the spectrum of a pattern matrix. Another possibility would be to
bound ‖K‖ precisely in the same way that we bounded the discrepancy in the
Degree/Discrepancy Theorem (see Section 3). This, however, would result in
polynomially weaker lower bounds on communication.

Theorem 5.7 immediately implies Theorem 5.2 above and its corollary:

Proof of Theorem 5.2 [45]. The
(⌊

N
2n

⌋
n, n, f

)
-pattern matrix occurs as a submatrix

of [ f (x|V)]x∈{0,1}N ,V∈V(N,n). �



Improved Degree/Discrepancy Theorem. We will mention a few more appli-
cations of this work. The first of these is an improved version of the author’s
Degree/Discrepancy Theorem (Theorem 3.2).

Theorem 5.9 ([45]). Let F be the (N, n, f )-pattern matrix, where f : {0, 1}n →
{0, 1} has threshold degree d. Then disc(F) 6 (n/N)d/2.

The proof is similar to the proof of the pattern matrix method. Theorem 5.9 im-
proves considerably on the original Degree/Discrepancy Theorem. To illustrate,
consider f (x) =

∨m
i=1

∧m2

j=1 xi j, a function on n = m3 variables. Applying Theo-
rem 5.9 to f leads to an exp(−Θ(n1/3)) upper bound on the discrepancy of AC0,
improving on the previous bound of exp(−Θ(n1/5)) from [44]. The exp(−Θ(n1/3))
bound is also the bound obtained by Buhrman et al. [10] independently of the
author [44, 45], using a different function and different techniques.

Razborov’s Lower Bounds for Symmetric Functions. As another application,
we are able to give an alternate proof of Razborov’s breakthrough result on the
quantum communication complexity of symmetric functions [41]. Consider a
communication problem in which Alice has a string x ∈ {0, 1}n, Bob has a string
y ∈ {0, 1}n, and their objective is to compute

D(|x ∧ y|)

for some predicate D : {0, 1, . . . , n} → {0, 1} fixed in advance. This general setting
encompasses several familiar functions, such as  (determining if x and
y intersect) and    2 (determining if x and y intersect in an odd
number of positions).

As it turns out, the hardness of this general communication problem depends
on whether D changes value close to the middle of the range {0, 1, . . . , n}. Specifi-
cally, define `0(D) ∈ {0, 1, . . . , bn/2c} and `1(D) ∈ {0, 1, . . . , dn/2e} to be the small-
est integers such that D is constant in the range [`0(D), n−`1(D)]. Razborov estab-
lished optimal lower bounds on the quantum communication complexity of every
function of the form D(|x ∧ y|):

Theorem 5.10 (Razborov [41]). Let D : {0, 1, . . . , n} → {0, 1} be an arbitrary
predicate. Put f (x, y) = D(|x ∧ y|). Then

Q1/3( f ) > Q∗1/3( f ) > Ω
(√

n`0(D) + `1(D)
)
.

In particular,  has quantum communication complexityΩ(
√

n), regard-
less of entanglement. Prior to Razborov’s result, the best lower bound [11, 4] for
 was only Ω(log n).

In [45], we give a new proof of Razborov’s Theorem 5.10 using a straightfor-
ward application of the pattern matrix method.



5.2 The Block Composition Method
Given functions f : {0, 1}n → {0, 1} and g : {0, 1}k × {0, 1}k → {0, 1}, let f ◦ gn

denote the composition of f with n independent copies of g. More formally, the
function f ◦ gn : {0, 1}nk × {0, 1}nk → {0, 1} is given by

( f ◦ gn)(x, y) = f (. . . , g(x(i), y(i)), . . . ),

where x = (. . . , x(i), . . . ) ∈ {0, 1}nk and y = (. . . , y(i), . . . ) ∈ {0, 1}nk.
This section presents Shi and Zhu’s block composition method [48], which

gives a lower bound on the communication complexity of f ◦gn in terms of certain
properties of f and g. The relevant property of f is simply its approximate degree.
The relevant property of g is its spectral discrepancy, formalized next.

Definition 5.11 (Spectral discrepancy [48]). Given g : {0, 1}k × {0, 1}k → {0, 1},
its spectral discrepancy ρ(g) is the least ρ > 0 for which there exist sets A, B ⊆
{0, 1}k and a distribution µ on A × B such that∥∥∥∥∥[µ(x, y)(−1)g(x,y)

]
x∈A,y∈B

∥∥∥∥∥ 6 ρ
√
|A| |B|

, (5.8)

∥∥∥∥∥[µ(x, y)
]

x∈A,y∈B

∥∥∥∥∥ 6 1 + ρ
√
|A| |B|

, (5.9)

and ∑
(x,y)∈A×B

µ(x, y)(−1)g(x,y) = 0. (5.10)

In view of (5.8) alone, the spectral discrepancy ρ(g) is an upper bound on the
discrepancy disc(g). The key additional requirement (5.9) is satisfied, for example,
by doubly stochastic matrices [18, §8.7]: if A = B and all row and column sums
in [µ(x, y)]x∈A,y∈A are 1/|A|, then ‖[µ(x, y)]x∈A,y∈A‖ = 1/|A|.

As an illustration, consider the familiar function    2,
given by k(x, y) =

⊕k
i=1(xi ∧ yi).

Proposition 5.12 ([48]). The function k has ρ(k) 6 1/
√

2k − 1.

Proof [48]. Take µ to be the uniform distribution over A × B, where A = {0, 1}k \
{0k} and B = {0, 1}k. �

We are prepared to state the general method.



Theorem 5.13 (Block composition method [48]). Fix f : {0, 1}n → {0, 1} and
g : {0, 1}k × {0, 1}k → {0, 1}. Put d = deg1/3( f ) and ρ = ρ(g). If ρ 6 d/(2en), then

Q( f ◦ gn) > Q∗( f ◦ gn) = Ω(d).

Proof (adapted from [48]). Fix sets A, B ⊆ {0, 1}k and a distribution µ on A × B
with respect to which ρ = ρ(g) is achieved. Define f ∗ : {0, 1}n → {−1,+1} by
f ∗(z) = (−1) f (z). Then one readily verifies that deg2/3( f ∗) = d. By Theorem 5.1,
there exists ψ : {0, 1}n → R such that

ψ̂(S ) = 0 for |S | < d, (5.11)∑
z∈{0,1}n

|ψ(z)| = 1, (5.12)

∑
z∈{0,1}n

ψ(z) f ∗(z) >
2
3
. (5.13)

Define matrices

F =
[
f ∗(. . . , g(x(i), y(i)), . . . )

]
x,y
,

K =

2nψ(. . . , g(x(i), y(i)), . . . )
n∏

i=1

µ(x(i), y(i))


x,y

,

where in both cases the row index x = (. . . , x(i), . . . ) ranges over An and the column
index y = (. . . , y(i), . . . ) ranges over Bn. In view of (5.10) and (5.13),

〈F,K〉 >
2
3
. (5.14)

We proceed to bound ‖K‖. Put

MS =

∏
i∈S

(−1)g(x(i),y(i)) ·

n∏
i=1

µ(x(i), y(i))


x,y

, S ⊆ [n].

Then (5.8) and (5.9) imply, in view of the tensor structure of MS , that

‖MS ‖ 6 |A|−n/2 |B|−n/2 ρ|S |(1 + ρ)n−|S |. (5.15)



On the other hand,

‖K‖ 6
∑
S⊆[n]

2n|ψ̂(S )| ‖MS ‖

=
∑
|S |>d

2n|ψ̂(S )| ‖MS ‖ by (5.11)

6
∑
|S |>d

‖MS ‖ by (5.12) and Proposition 2.1

6 |A|−n/2 |B|−n/2
n∑

i=d

(
n
i

)
ρi(1 + ρ)n−i by (5.15).

Since ρ 6 d/(2en), we further have

‖K‖ 6 |A|−n/2 |B|−n/2 2−Θ(d). (5.16)

In view of (5.14) and (5.16), the desired lower bound on Q∗(F) now follows by
the generalized discrepancy method (Theorem 4.1). �

Proposition 5.12 and Theorem 5.13 have the following consequence:

Theorem 5.14 ([48]). Fix a function f : {0, 1}n → {0, 1} and an integer k >
2 log2 n + 5. Then Q( f ◦ nk) > Q∗( f ◦ nk) > Ω(deg1/3( f )).

For the  function k(x, y) =
∨k

i=1(xi∧yi), Shi and Zhu prove that
ρ(k) = O(1/k). Unlike Proposition 5.12, this fact requires a nontrivial proof
using Knuth’s calculation of the eigenvalues of certain combinatorial matrices.
In conjunction with Theorem 5.13, this upper bound on ρ(k) leads with some
work to the following implication:

Theorem 5.15 ([48]). Define f : {0, 1}n × {0, 1}n → {0, 1} by f (x, y) = D(|x ∧ y|),
where D : {0, 1, . . . , n} → {0, 1} is given. Then

Q( f ) > Q∗( f ) > Ω
(
n1/3`0(D)2/3 + `1(D)

)
.

The symbols `0(D) and `1(D) have their meaning from Section 5.1. Theorem 5.15
is of course a weaker version of Razborov’s celebrated lower bounds for symmet-
ric functions (Theorem 5.10), obtained with a different proof.



5.3 Pattern Matrix Method vs. Block Composition Method
To restate the block composition method,

Q∗( f ◦ gn) > Ω(deg1/3( f )) provided that ρ(g) 6
deg1/3( f )

2en
.

The key player in this method is the quantity ρ(g), which needs to be small. This
poses two complications. First, the function g will generally need to depend on
many variables, from k = Θ(log n) to k = nΘ(1), which weakens the final lower
bounds on communication (recall that ρ(g) > 2−k always). For example, the lower
bounds obtained in [48] for symmetric functions are polynomially weaker than
Razborov’s optimal lower bounds (see Theorems 5.15 and 5.10, respectively).

A second complication, as Shi and Zhu note, is that “estimating the quantity
ρ(g) is unfortunately difficult in general" [48, §4.1]. For example, re-proving
Razborov’s lower bounds reduces to estimating ρ(g) with g being the 
function. Shi and Zhu accomplish this using Hahn matrices, an advanced tool that
is also the centerpiece of Razborov’s own proof (Razborov’s use of Hahn matrices
is somewhat more demanding).

These complications do not arise in the pattern matrix method. For example,
it implies (by setting N = 2n in Theorem 5.7) that

Q∗( f ◦ gn) > Ω(deg1/3( f ))

for any function g : {0, 1}k × {0, 1}k → {0, 1} such that the matrix [g(x, y)]x,y

contains the following submatrix, up to permutations of rows and columns:
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1

 . (5.17)

To illustrate, one can take g to be

g(x, y) = x1y1 ∨ x2y2 ∨ x3y3 ∨ x4y4,

or
g(x, y) = x1y1y2 ∨ x1 y1y2 ∨ x2 y1 y2 ∨ x2 y1 y2.

(In particular, the pattern matrix method subsumes Theorem 5.14.) To summarize,
there is a simple function g on only k = 2 variables that works universally for all
f . This means no technical conditions to check, such as ρ(g), and no blow-up in
the number of variables. As a result, in [45] we are able to re-prove Razborov’s
optimal lower bounds exactly. Moreover, the technical machinery involved is self-
contained and disjoint from Razborov’s proof.



We have just seen that the pattern matrix method gives strong lower bounds
for many functions to which the block composition method does not apply.
However, this does not settle the exact relationship between the scopes of ap-
plicability of the two methods. Several natural questions arise. If a function
g : {0, 1}k × {0, 1}k → {0, 1} has spectral discrepancy ρ(g) 6 1

2e , does the ma-
trix [g(x, y)]x,y contain (5.17) as a submatrix, up to permutations of rows and
columns? An affirmative answer would mean that the pattern matrix method
has a strictly greater scope of applicability; a negative answer would mean that
the block composition method works in some situations where the pattern matrix
method does not apply. If the answer is negative, what can be said for ρ(g) = o(1)
or ρ(g) = n−Θ(1)?

Another intriguing issue concerns multiparty communication. As we will see
in Section 6, the pattern matrix method extends readily to the multiparty model.
This extension makes heavy use of the fact that the rows of a pattern matrix are
applications of the same function to different subsets of the variables. In the gen-
eral context of block composition (Section 5.2), it is unclear how to carry out this
extension. It is inviting to explore a synthesis of the two methods in the multiparty
model or another suitable context.

6 Extensions to the Multiparty Model
In this section, we present extensions of the Degree/Discrepancy Theorem and of
the pattern matrix method to the multiparty model. We start with some notation.
Fix a function φ : {0, 1}n → R and an integer N with n | N. Define the (k,N, n, φ)-
pattern tensor as the k-argument function A : {0, 1}n(N/n)k−1

×[N/n]n×· · ·×[N/n]n →

R given by A(x,V1, . . . ,Vk−1) = φ(x|V1,...,Vk−1), where

x|V1,...,Vk−1

def
=

(
x1,V1[1],...,Vk−1[1], . . . , xn,V1[n],...,Vk−1[n]

)
∈ {0, 1}n

and V j[i] denotes the ith element of the n-dimensional vector V j. (Note that we
index the string x by viewing it as a k-dimensional array of n×(N/n)×· · ·×(N/n) =
n(N/n)k−1 bits.) This definition generalizes the author’s pattern matrices if one
ignores the ⊕ operator (Section 5.1).

We are ready for the first result of this section, namely, an extension of the
Degree/Discrepancy Theorem (Theorem 3.2) to the multiparty model. This exten-
sion was originally obtained by Chattopadhyay [13, Lem. 2] for slightly different
tensors and has since been revisited in one form or another: [31, Thm. 19], [12,
Lem. 4.2]. The proofs of these several versions are quite similar and are in close
correspondence with the original two-party case.

Theorem 6.1 ([13, 31, 12]). Let f : {0, 1}n → {0, 1} be given with threshold degree



d > 1. Let N be a given integer, n | N. Let F be the (k,N, n, f )-pattern tensor. If
N > 4en2(k − 1)22k−1

/d, then disc(F) 6 2−d/2k−1
.

Proof (adapted from [13, 31, 12]). As in the proof of the Degree/Discrepancy
Theorem, let µ be a probability distribution over {0, 1}n with respect to which
Ez∼µ[(−1) f (z) p(z)] = 0 for every real-valued function p of d − 1 or fewer of the
variables z1, . . . , zn. The existence of µ is assured by Theorem 3.3. We will ana-
lyze the discrepancy of F with respect to the distribution

λ(x,V1, . . . ,Vk−1) = 2−n(N/n)k−1+n
(N

n

)−n(k−1)

µ(x|V1,...,Vk−1).

Define ψ : {0, 1}n → R by ψ(z) = (−1) f (z)µ(z). By Theorem 2.2,

discλ(F)2k−1
6 2n2k−1

E
V
|Γ(V)|, (6.1)

where we put V = (V0
1 ,V

1
1 , . . . ,V

0
k−1,V

1
k−1) and

Γ(V) = E
x

 ψ (
x|V0

1 ,V
0
2 ,...,V

0
k−1

)
︸             ︷︷             ︸

(†)

∏
z∈{0,1}k−1\{0k−1}

ψ
(
x|Vz1

1 ,Vz2
2 ,...,V

zk−1
k−1

)
︸                                ︷︷                                ︸

(‡)

 .

For a fixed choice of V, define sets

A =
{
(i,V0

1 [i], . . . ,V0
k−1[i]) : i = 1, 2, . . . , n

}
,

B =
{
(i,Vz1

1 [i], . . . ,Vzk−1
k−1 [i]) : i = 1, 2, . . . , n; z ∈ {0, 1}k−1 \ {0k−1}

}
.

Clearly, A and B are the sets of variables featured in the expressions (†) and (‡)
above, respectively. To analyze Γ(V), we prove two key claims analogous to those
in the Degree/Discrepancy Theorem.

Claim 6.2. Assume that |A ∩ B| 6 d − 1. Then Γ(V) = 0.

Proof. Immediate from the fact that the Fourier transform of ψ is supported on
characters of order d and higher. �

Claim 6.3. Assume that |A ∩ B| = i. Then |Γ(V)| 6 2i2k−1−n2k−1
.

Proof. Observation 3.4 shows that |Γ(V)| 6 2−n2k−1
2n2k−1−|A∪B|. Furthermore, it is

straightforward to verify that |A ∪ B| > n2k−1 − |A ∩ B| 2k−1. �



In view of Claims 6.2 and 6.3, inequality (6.1) simplifies to

discλ(F)2k−1
6

n∑
i=d

2i2k−1
P[|A ∩ B| = i].

It remains to bound P[|A ∩ B| = i]. For a fixed element a, we have
P[a ∈ B | a ∈ A] 6 (k − 1)n/N by the union bound. Moreover, given two distinct
elements a, a′ ∈ A, the corresponding events a ∈ B and a′ ∈ B are indepen-
dent. Therefore, P[|A ∩ B| = i] 6

(
n
i

) (
(k−1)n

N

)i
, which yields the desired bound on

discλ(F). �

Remark 6.4. Recall from Section 5.1 that the two-party Degree/Discrepancy
Theorem was considerably improved in [45] using matrix-analytic techniques.
Those techniques, however, do not extend to the multiparty model. As a result,
Theorem 6.1 that we have just presented does not subsume the improved De-
gree/Discrepancy Theorem (Theorem 5.9).

We now present an adaptation of the pattern matrix method (Theorem 5.7) to
the multiparty model, obtained by Lee and Shraibman [31] and independently by
Chattopadhyay and Ada [12]. The proof is closely analogous to the two-party
case. However, the spectral calculations for pattern matrices do not extend to
the multiparty model, and one is forced to fall back on the less precise calcula-
tions introduced in the Degree/Discrepancy Theorem (Theorem 3.2). In particular,
the result we are about to present does not subsume the two-party pattern matrix
method.

Theorem 6.5 ([31, 12]). Let f : {0, 1}n → {0, 1} be given with deg1/3( f ) = d > 1.
Let N be a given integer, n | N. Let F be the (k,N, n, f )-pattern tensor. If N >
4en2(k − 1)22k−1

/d, then Rk(F) > Ω(d/2k).

Proof (adapted from [31, 12]). Define f ∗ : {0, 1}n → {−1,+1} by f ∗(z) = (−1) f (z).
Then it is easy to verify that deg2/3( f ∗) = d. By Theorem 5.1, there is a function
ψ : {0, 1}n → R such that:

ψ̂(S ) = 0 for |S | < d,∑
z∈{0,1}n

|ψ(z)| = 1,

∑
z∈{0,1}n

ψ(z) f ∗(z) >
2
3
. (6.2)

Fix a function h : {0, 1}n → {−1,+1} and a distribution µ on {0, 1}n such
that ψ(z) ≡ h(x)µ(x). Let H be the (k,N, n, h)-pattern tensor. Let P be the



(k,N, n, 2−n(N/n)k−1+n(N/n)−n(k−1)µ)-pattern tensor. Then P is a probability distri-
bution. By (6.2),

〈H ◦ P, F∗〉 >
2
3
, (6.3)

where F∗ is the (k,N, n, f ∗)-pattern tensor. As we saw in the proof of Theorem 6.1,

discP(H) 6 2−d/2k−1
. (6.4)

The theorem now follows by the generalized discrepancy method (Theorem 4.2)
in view of (6.3) and (6.4). �

The authors of [31] and [12] gave important applications of their work to the
k-party randomized communication complexity of , improving it from
Ω( 1

k log n) to nΩ(1/k)2−O(2k). As a corollary, they separated the multiparty commu-
nication classes NPcc

k and BPPcc
k for k = (1 − o(1)) log2 log2 n parties. They also

obtained new results for Lovász-Schrijver proof systems, in light of the work due
to Beame, Pitassi, and Segerlind [8].

7 Separation of NPcc
k and BPPcc

k

We conclude this survey with a separation of NPcc
k and BPPcc

k for k = (1−ε) log2 n
parties, due to David and Pitassi [15]. This is an exponential improvement over the
previous separation in [31, 12]. The crucial insight in this new work is to redefine
the projection operator x|V1,...,Vk−1 from Section 6 using the probabilistic method.
This removes the key bottleneck in the previous analyses [31, 12]. Unlike the
previous work, however, this new approach no longer applies to .

We start with some notation. Fix integers n,m with n > m. Let ψ : {0, 1}m → R
be a given function with

∑
z∈{0,1}m |ψ(z)| = 1. Let d denote the least order of a

nonzero Fourier coefficient of ψ. Fix a Boolean function h : {0, 1}m → {−1,+1}
and a distribution µ on {0, 1}m such that ψ(z) ≡ h(z)µ(z). For a mapping α :
({0, 1}n)k →

(
[n]
m

)
, define a (k+1)-party communication problem Hα : ({0, 1}n)k+1 →

{−1,+1} by H(x, y1, . . . , yk) = h(x|α(y1,...,yk)). Analogously, define a distribution λα
on ({0, 1}n)k+1 by λ(x, y1, . . . , yk) = 2−(k+1)n+mµ(x|α(y1,...,yk)).

Theorem 7.1 ([15]). Assume that n > 16em22k. Then for a uniformly random
choice of α : ({0, 1}n)k →

(
[n]
m

)
,

E
α

[
discλα(Hα)2k]

6 2−n/2 + 2−d2k+1.



Proof (adapted from [15]). By Theorem 2.2,

discλα(Hα)2k
6 2m2k

E
Y
|Γ(Y)|, (7.1)

where we put Y = (y0
1, y

1
1, . . . , y

0
k , y

1
k) and

Γ(Y) = E
x

 ∏
z∈{0,1}k

ψ
(
x|α(yz1

1 ,y
z2
2 ,...,y

zk
k )

) .
For a fixed choice of Y, we will use the shorthand S z = α(yz1

1 , . . . , y
zk
k ). To analyze

Γ(Y), we prove two key claims analogous to those in the Degree/Discrepancy
Theorem and in Theorem 6.1.

Claim 7.2. Assume that |
⋃

S z| > m2k − d2k−1. Then Γ(Y) = 0.

Proof. If |
⋃

S z| > m2k − d2k−1, then some S z must feature more than m − d
elements that do not occur in

⋃
u,z S u. But this forces Γ(Y) = 0 since the Fourier

transform of ψ is supported on characters of order d and higher. �

Claim 7.3. For every Y, |Γ(Y)| 6 2−|
⋃

S z |.

Proof. Immediate from Observation 3.4. �

In view of (7.1) and Claims 7.2 and 7.3, we have

E
α

[
discλα(Hα)2k]

6
m2k−m∑
i=d2k−1

2i P
Y,α

[∣∣∣∣⋃ S z

∣∣∣∣ = m2k − i
]
.

It remains to bound the probabilities in the last expression. With probability at
least 1 − k2−n over the choice of Y, the strings y0

1, y
0
1 . . . , y

0
k , y

1
k will all be distinct.

Conditioning on this event, the fact that α is chosen uniformly at random means
that the 2k sets S z are distributed independently and uniformly over

(
[n]
m

)
. A calcu-

lation now reveals that

P
Y,α

[∣∣∣∣⋃ S z

∣∣∣∣ = m2k − i
]
6 k2−n +

(
m2k

i

) (
m2k

n

)i

6 k2−n + 8−i. �

We are ready to present the separation of NPcc
k and BPPcc

k .

Theorem 7.4 (Separation of NPcc
k and BPPcc

k [15]). Let k 6 (1− ε) log2 n, where
ε > 0 is a given constant. Then there exists a function Fα : ({0, 1}n)k+1 → {−1,+1}
with Nk+1(Fα) = O(log n) but Rk+1(Fα) = nΩ(1).



Proof (adapted from [15]). Let m = bnζc for a sufficiently small constant ζ =
ζ(ε) > 0. As usual, define m : {0, 1}m → {−1,+1} by m(z) = 1 ⇔ z = 0m. It
is known [36, 38] that deg1/3(m) = Θ(

√
m). As a result, Theorem 5.1 guarantees

the existence of a function ψ : {0, 1}m → R such that:

ψ̂(S ) = 0 for |S | < Θ(
√

m),∑
z∈{0,1}m

|ψ(z)| = 1,

∑
z∈{0,1}m

ψ(z)m(z) >
1
3
.

Fix a function h : {0, 1}m → {−1,+1} and a distribution µ on {0, 1}m such that
ψ(z) ≡ h(z)µ(z). For a mapping α : ({0, 1}n)k →

(
[n]
m

)
, let Hα and λα be as defined

at the beginning of this section. Then Theorem 7.1 shows the existence of α such
that

discλα(Hα) 6 2−Ω(
√

m).

Using the properties of ψ, one readily verifies that 〈H ◦ λα, Fα〉 > 1/3, where
Fα : ({0, 1}n)k+1 → {−1,+1} is given by Fα(x, y1, . . . , yk) = m(x|α(y1,...,yk)). By the
generalized discrepancy method (Theorem 4.2),

Rk+1(Fα) > Ω(
√

m) = nΩ(1).

On the other hand, Fα has nondeterministic complexity O(log n). Namely,
Player 1 (who knows y1, . . . , yk) nondeterministically selects an element i ∈
α(y1, . . . , yk) and announces i. Player 2 (who knows x) then announces xi as the
output of the protocol. �

A recent follow-up result due to David, Pitassi, and Viola [16] derandomizes the
choice of α in Theorem 7.4, yielding an explicit separation of NPcc

k and BPPcc
k for

k 6 (1 − ε) log2 n.
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