The Complexity of Planar Graph
| somor phism

Jacobo Toran and Fabian Wagher

Abstract

The Graph Isomorphism problem restrictedptanar graphs has been
known to be solvable in polynomial time many years ago. Ims&of com-
plexity classes however, the exact complexity of the proldias been estab-
lished only very recently. It was proved ifi][that planar graph isomorphism
can be computed within logarithmic space. Since there istahimay hard-
ness resultq], this shows that the problem is complete forAlthough this
could be considered a result in in algorithmics its proofeselon several
important new developments in the area of logarithmic smgaeplexity
classes and reflects the close connections between atgeréhd complex-
ity theory. In this column we give an overview of this resukmtioning the
developments that led to it.

1 Introduction

The Graph Isomorphism problem asks whether two given graphssomorphic
or in other words whether there is a bijection between thesadthe two graphs,
preserving the adjacency relation. Graph Isomorphismesadthe few problems
in NP that is not know to be if® or NP-complete. On the other hand, for many
restricted graph classes like trees, graphs of bounde@e®egmpartiak-trees, ef-
ficient algorithms for the isomorphism problem are known. &vesider in this
column the class of planar graphs and for simplicity restriorselves to undi-
rected simple graphs. A graph is planar if it can be drawn énglane without
any crossing edges. A special class of planar graphs is tlBatonnected planar
graphs. A graph i&-connected if it remains connected after deletiaybitrary
vertices. It was shown in 1933 that 3-connected planar graplie exactly two
planar embedding®]. This fact was used by Weinberg in 1966 to give@m?)
algorithm for testing isomorphism of 3-connected planapgs P] (nis the num-
ber of vertices of the input graphs). The idea of the algorith simple, the two

*Universitat Ulm, Institut fir Theoretische Informatik,bian.wagner@uni-ulm.de

given graphs are embedded in the plane and it is tested whihembedding
of the first graph is isomorphic to one of the two possible etdb®ys of the
second graph. With this method it is also possiblefticiently assign codes to
3-connected planar graphs as a way to identify them. Thisim#wet there is an
efficiently computable function mapping graphs to strings ates) so that two
graphs are mapped to the same code if and only if they are igimeo Hopcroft
and Tarjan extended Weinberg’s algorithm and gave the falghpmial time al-
gorithm for the isomorphism of planar grapt.[In their algorithm the graphs
are divided first in connected components, these are suledivin biconnected
components and finally these components are partitioneecon8ected compo-
nents. An initial connected component has articulatiomisoseparating its bi-
connected components from each other. These initial coergerare represented
by a tree-like structure containing vertices for articiatpoints and vertices for
biconnected components. In a similar way, the biconneatetponents are rep-
resented by tree structures containing vertices for itsriected components and
vertices for pairs of nodes (called separating pairs) sep@rthese components.
Each vertex representing a 3-connected component is thefethwith the code
of the component and the whole structure can then be testesbimorphism in
a similar way as it is done for tree isomorphism. The orig@lglorithm had a
running time ofO(n?). This was then improved t@(nlogn) in [?] and finally
Hopcroft and Wang] obtained a linear time algorithm for the isomorphism of
planar graphs. Recently Kukluk, Holder, and Co8kdave anO(n?) algorithm
for planar graph isomorphism, which is suitable for praaitapplications.

Regarding the parallel complexity of the problem, MilledaReif [?] gave
the firstNC algorithm for planar graph isomorphism. Their algorithmgin time
O(log n) with polynomial number of processors in the CRCW PRAM mod#iis
corresponds to the complexity claa€* of problems computable by unbounded
fan-in circuits of polynomial size and logarithmic depth.oM recently, using a
completely diferent approach based on descriptive complexity, Grohe and V
bitski [?] provided a new method for testing isomorphism of planaphsaalso
within AC*. They proved that for a class G of graphs, if every graph istass
is definable in first order logic with a finite number of variebdland logarithmic
quantifier depth, then the isomorphism problem for G iA@F. Verbitski [?]
showed that the class of planar 3-connected graphs is diefingth 15 variables
and logarithmic quantifier depth. Together with thé' reduction from planar
isomorphism to 3-connected planar isomorphism fr@ftljis provides a dfer-
ent way to show that planar isomorphism lies\a®.

We describe in this survey some of the results leading tortipgavement of
the upper bound frorAC? to logarithmic space. Located betweerand AC,
the complexity clas$)L played an important part in the development of the re-
sults. UL (unambiguous logarithmic space) is the class of problemspcbable

by a logarithmic space nondeterministic machine having @trone accepting
computation path for each input. The relation between tinsidered complexity
classes is as follows:

L C UL C ACh.

We denote byL the class of functions computable within logarithmic space

All the isomorphism results described in this overview aafact be extended
to graph canonization results. For a class G of graphs we hesyat function
f : G — {0,1}) computes @omplete invariant for the class if for everys,H € G
it holds thatG andH are isomorphic if and only if (G) = f(H). If moreoverf
computes for eacls a graphf(G) isomorphic toG then we callf a canonizing
function and f (G) a canon.

We recall in Sectiofil]2 several facts that were used in thefmfoihe results.
Similarly as in the developments leading to polynomial tiest for planar graph
isomorphism, the first logarithmic space isomorphism atgors worked for trees
and 3-connected graphs. These are overviewed in Seliond[2.aFinally the
logarithmic space algorithm for planar graph isomorphismiplained in Sec-
tion[d.

2 Somepreviousresults

2.1 TreeisomorphisminL

Lindell gave in [?] a logarithmic space algorithm for tree isomorphism and can
onization. Some of the ideas in this algorithm are used aigbe new results.
Lindell defined a canonical ordering between trees. Forelireve represent its
root byt and the out-degree aofby #. The tree isomorphism ordering: from
Lindell is defined in the following way: Given two tre€&sandT, we sayS <t T

if:

i)IS| < |T|or
i) |S| = |T| and # < #t, or

i) |S|=|T|,#s=# =kand S, ..., Sk) < (T4, ..., Ty) lexicographically, were
S1<7Sy,... <7 S,andTy <1 Ty... <7 Ty, are the ordered subtrees ®f
andT rooted at the children of andt.

It is not hard to see that if neith& <t T norT <g S thenS andT are
isomorphic. Obviously the first two tests in the definitiontafe ordering can be
done in logarithmic space. Lindell proved that this is als® tfor the third step.
This is done with the following variant of depth first search:

¢ Find the number of children of andt of minimal size. If these nhumbers do
not coincide then declare the tree with the largest numbeminimal size
children to be smaller. Otherwise check the next child siz@ an equality
is found or all the children have been considered.

e If sandt have the same number of children of each size, we partitien th
children into size classes and compare the children in eaehctass in
increasing order of the sizes recursively as follows: k.be the number of
children in one size class. We can suppkse0.

—If k = 1 then only one recursive call is made and no extra space iedee
for this.

—If k > 1 then for each node in the size clasSiwe compute its order pro-
file. This consists of three counters, c. andc. indicating the num-
ber of children in the corresponding size clas3 dieing respectively
smaller than, larger than or equal to the node under corsidar The
counters are updated by making cross comparisons. We starthe
children with minimal order profile, those witk= 0. They form an
isomorphism class. The size of this class is compared atitessees
by comparing the values of tfee counters. If they match, both trees
have the same number of minimal children. To compare largiér ¢
dren in the same size class, the valueoin the last step works as
a threshold. This is used to search for the next minimal obiafs
andt . The process is then repeated and the threshold is increthent
until reachingk, at which point we proceed to the next size class. If
all the size classed are visited without detecting an inkgube trees
are isomorphic.

2.2 Planarity testing and distance computation

A graph is planar if it can be drawn on the plane so that no edgess. Such a
drawing is a planar embedding. Allender and Mahajgrshowed that the prob-
lem of determining if a given graph is planar, can be computede complexity
classSL (symmetric logarithmic space). Some year later Reinggjlgfoved that
the classedL andL coincide, thus bringing the planarity recognition problem
L.

A rotation scheme for a graphG is a sefp of permutationsp = {p, | v € V},
wherep, is a permutation o, that has only one cycle (which is calledaation).
Let o~* be the set of inverse rotations;! = {p;! | v € V}. A rotation scheme
describes an embedding of gra@hin the plane. If the embedding is planar,
we call p a planar rotation scheme. The pair G, p) is called acombinatorial

embedding for G. The planarity recognition result Allender and Mahajaroals
showed the following useful result:

Theorem 2.1. [?] Thereisa logarithmic space algorithm that on input a planar
graph G produces a planar rotation scheme p for G.

A planar 3-connected graph has exactly two planar rotattbemes?P], some
rotationp and its inverse .

An important tool in one the the isomorphism test for 3-carteé planar
graphs is the computation of the distances in planar grajghgwhe classJL:

Theorem 2.2. [?] The distance between two given verticesin a planar graph can
be computed in UL N coUL.

This theorem builds on a series of results dealing with thehrability problem
in directed planar graphs?]j[?] that lead to an algorithm from Bourke, Tewari
and Vinodchandran?] to compute the reachability problem for planar graphs
within UL N coUL.

2.3 Universal exploration sequences

The celebrated result from Reingol®] khowing that the reachability problem in
undirected graphs can be computed.jrhas an important consequence for the
construction of universal exploration sequences in lalyaric space. This fact is
used in some of the isomorphism algorithms.

For ad-regularG and a numbering of the edges, and an starting egge
sequencer(, 1,...,7) € {0,...,d — 1} defines a walk_1, v, .. ., v in G in the
following way: starting agy = (v_1, vo) for eachi, if (vi_1, v;) is thek-th edge of
then ¢, vi;1) is thek + 7; edge ofy; modulod.

A sequencet(i, 7o, ..., 1) € {0,...,d — 1} is called anf, d) universal explo-
ration sequence n if for every connectedl-regular graph with at most vertices,
any numbering of its edges and any starting edge, the wakkiraat from the
sequence explores all the vertices in the graph.

The result that we use is that such universal explorationessees exist and
can be computed in logarithmic space.

Theorem 2.3. [?] There existsalogarithmic space algorithmthat on input (1", 19)
produces an (n, d)-universal exploration sequence of polynomial size.

3 Planar 3-connected Graph | somor phism

Weinberg's P] O(n?) algorithm for testing isomorphism of planar 3-connected
graphs constructs a code for every edg&adnd both rotation schemes. Of all

these codes, the lexicographical smallest one is used asoaical form forG.
Weinberg's algorithm does not work within logspace, beeati® vertices and
edges have to be stored. Thierauf and Wagner showe® imov to construct

a different code irUL. Some months later, using Reingolds results on logarith-
mic space universal exploration sequencgs Datta, Limaye and Nimbhorkar
improved this to an isomorphism algorithm for planar 3-cected graphs that
works in logarithmic space. We describe both results ingdaiion.

3.1 Anisomorphism algorithm in UL N coUL

Theorem 3.1. [?] The isomorphism problem for planar, 3-connected graphsisin
UL N coUL.

Let (s t) be a desighated edge apde a rotation scheme f@&. The con-
struction has three steps: First, we compute a canonicahgpgatreeT for G.
Second, with help of this spanning tree and the rotationtfang@ we perform a
depth-first traversal on the edges of the graph and constroahonical lisL of
all edges ofG. Finally, we rename the vertices depending on the positidheor
first occurrence in the lidt.

We will see that the spanning tree in step 1 can be computederfnctional
version of)UL N coUL. The list and the renaming in step 2 and step 3 can be
computed irFL.

The overall algorithm has to decide whether two given graplendH are
isomorphic. To do so we fixg(t) andp for G and cycle through all edges éf
as designated edge and the two possible embeddingls afhenG andH are
isomorphic if and only if the canonical forms f&andH match. It is not hard to
see that this outer loop works in logspace.

Step 1: Construction of a canonical spanning tree

We show that the following problem can be solved in unamhbigul@gspace.
Given, an undirected grafih = (V, E), a rotation schemefor G, and a designated
edge 6 t) € E. Output a canonical spanning tréec E of G, which does not
depend on the input representatiorpair G, any representation will result in the
same spanning tree.

The idea to construct the spanning tree is to trav&seith a breadth-first
search starting at node The neighbors of a node are visited in the order given
by the rotation scheme Since the algorithm should work in logspace, we cannot
afford to store all the nodes that we already visited, as in alaranbreadth-first
search. We get around this problem by working with distahet®een nodes.

We start with the nodes at distance 1 frgnThat is, write €, v) on the output
tape, for allv € T'(s). Now letd > 2 and assume that we have already con-
structedT up to nodes at distance d — 1 to s. Then we consider the nodes at
distanced from s. Let w be a node withd(s,w) = d. We conneciv to the tree
constructed so far by computing a shortest path fedmw. Ambiguities are re-
solved by using the first feasible edge according.tdVe start with § t) as the
active edgey, v).

e If d(u,w) > d(v,w), then (,v) is the first edge encountered that is on a
shortest path fronm to w. Therefore we go fronu to v and start searching
the next edge from. As starting edge we take (v, u), the successor of
(v, u). Itis the new active edge.

e If d(u,w) < d(v,w), then (,v) is not on a shortest path fromto w. Then
we proceed withp,(u, v) as the new active edge.

After d — 1 steps in direction ofv, the nodev of the active edgeuv) is a pre-
decessor ofv on a shortest path fromto w. Then we write ¢, w) on the output
tape.

The spanning tre& is canonical, because its construction depends on}y, on
edge 6 1), and edge set. The following figure shows an example of a spanning
treeT for a graphG with rotation functiorp which arranges the edges in clockwise
order around each vertex.

U3
P = {PSapt,pvl’pvz’pvg}

ps =((st)(sv1)(sv2))
pr = ((t9) (tws) (tv1))

t 2 Pu = ((v1,9) (v1,1) (v1,03) (v1,02))
P, = ((02,9) (v2,v1) (v2,v3))

Py = ((vs,t) (vs, v2) (v3,01))

Except for the computation of the distances, the algorithork&in logspace.
We have to store the values df k, u andv, and the position ofv, plus some
extra space for doing calculations. By Theor@/habove, the distances can be
computed inJL NcoUL. SincelY-"°°Yt = UL N coUL the canonical spanning tree
can be computed ibL N coUL.

3 L = (S v3)(vs, v2)(v3, v1)(vs, t)(t, v1)(L, 9)

(s v1)(v1, t)(v1, v3)(v1, v2) (01, S)
(S,v2)(v2, v1)(v2, v3)(v2, 9)

Figure 1: Computation of Lidt for G.

Step 2: Computation of a canonical list of all edges

With G = (V, E), a rotation schemg for G, a spanning tred C E of G, and a
designated edges,t) € T we compute a canonical liktof all edges irE. The list
L then still contains the original vertex names3nit does not depend otherwise
on the input representation pfG or T.

The idea is to traverse the spanning tree in a depth-first aranAt each
vertexu we visit all incident edges af in a cyclic manner according @, until
the next edge of the spanning tree is reached. We go down the tree aa@mgl
recursively do the same at the node reached. At some pointilvengountere
again and come back to Then we continue to output the edges incident.to

More formally, we start the traversal with edget] as the active edgeiv).
We write (U, v) on the output tape and then compute the next active edgé@sso

e If (u,v) € T then we walk depth-first iff from u to v, consider the edge
(v, u) and takep,(v, U) its successor according Q.

e If (u,v) ¢ T then we proceed breadth-first wjh(u, v).

This step is repeated until we entirely traverée@nd the active edge is again
(s,t). Every undirected edge is encountered exactly once in @iagettion.
The following figure shows an example for

Step 3: Renaming the vertices

The last step is to rename the vertices in thellistuch that they become inde-
pendent of the names they haveGn This is achieved as follows: consider the
first occurrence (from left) of nodein L. Letk — 1 be the number of pairwise

different nodes to the left of Then all occurrences ofare replaced bi. Recall,

thatL starts with the edges(t). Hence, all occurrences sfget replaced by 1, all
occurrences dfby 2, and so on. Call the new lisbde(G, p, S, t).

GivenL as input, the listode(G, p, s,t) can be computed in logspace. We
start with the first node (which is s) and a countek, that counts the number of
different nodes we have seen so far. In the beginning, we-sdt.

e If v occurs for the first time, then we outguaind increas& by 1.

e If v occurs already to the left of the current position then weshadeter-
mine the number, thatgot at its first occurrence. To do so, we determine
the first appearance ofand then count the number offidirent nodes to the
left of v at its first appearance.

Then we go to the next node In
Consider the example from above. The code constructed fisirh for G is
as follows.

L= (st) (tvs) (vs,02) (v3,01) (vs,t) (Livr) (t,9)
code(G,p,st)= (L,2) (23) (B4) (B5 (B2 (25 (21)

sequelofl (s,v1) (vi,t) (v1,v3) (v1,02) (v, 9)
sequeloktode (1,5) (52) (GB3) (B4 GB1)

sequel oL (S,vp) (v2,01) (v2,03) (v2,9)
sequel oktode (1,4) (45 43) (41)

It remains to argue that the new names of the nodes are indepeaf their
names inG. Let H be a graph which is isomorphic @, and lety be an isomor-
phism betweers andH. Note thatp o ¢ is a rotation scheme fdd. Consider
the computation of the code for graphwith rotation scheme o ¢ and desig-
nated edgey(s), ¢(t)). The spanning tree computed in step 1 willg@) and
the list computed in step 2 will bg(L). Now the above renaming procedure will
give the same number to noden L and to nodep(v) in ¢(L). For example,
the nodesp(s) and ¢(t) will get number 1 and 2, respectively. It follows that
code(G, p, s, t) = code(H, p o ¢, ¢(9), ¢(t)). We summarize:

Theorem 3.2. [?] Let G and H be connected, undirected graphs, let pg be a
rotation scheme for G and (s, t) be an edge in G. Then G and H are isomor-
phic iff there exists a rotation scheme py for H and an edge (u, v) in H such that
code(G, pg, S, t) = code(H, py, U, v).

With a very diterent approach, Datta, Limaye and Nimbhorkgrifnproved
the previous result fronL N coUL to L. Their method is in some sense much

easier since it avoids the spanning tree construction editimg the distance com-
putations (the part ihL N coUL). It uses however the concept of universal explo-
ration sequence and the non-trivial fact that such seqerere be computed in
L.

Theorem 3.3. [?] Theisomorphism problemfor planar, 3-connected graphsisin
L.

The idea of the algorithm is to use a universal sequefica [order to con-
struct a canonical code for a given planar 3-connected géa@@ince Reingolds’s
construction requires the graph to have constant degrees th a proprocesing
step in whichG is transformed into a 3-regular colored graphwith the prop-
erty that two graphs are isomorphic if and only if their tfamshations are also
iIsomorphic (with a color preserving isomorphism). In a setetep a canonical
code is computed. The code is specific to the choice of a plmaedding for
G, a starting node and a starting edge. Since there are onyypqoilally many
possible choices for these parameters, for two given gra@imiH, a logarithmic
space procedure can cycle through all the possibilitiesdaatte that the graphs
are isomorphic if and only if the canonical codes match for @frthe choices.

Step 1: Making the graph 3-regular

Given a 3-connected planar gra@h= (V, E) and a planar embeddingwe con-
struct a 3-regular planar gragh’ with the edges colored with two colorss’
might not be 3-connected, however the planar embedding Gamll be inher-

ited toG’. Every vertexo of G is replaced i’ by a cycle{vs, ..., vq} (d is the
degree ob). Thed edges,, ..., g incident withv in G are now respectively inci-
dentto{vy,...,vq} iIn G’. The cycles edges are colored with color 1 and the edges
e, ..., € with color 2. The obtained grapg®’ is 3-regular and it is not hard to see
that two graph$ andH are isomorphic if and only if their transformati@i and

H’ are isomorphic with a color preserving isomorphism.

Step 2: Obtaining the canonical code

On input an edge-colored gra@with n vertices, max. degree 3, a planar em-
beddingp a starting vertex and a starting edge = (u,v), a cannon folG is
constructed. For this we compute first in logarithmic spa¢e 8)-universal ex-
ploration sequenc@{. Then, starting at ande we transvers& according toJ
andp giving the listL of the visited vertices as label. We can rename the vertices
according to their first occurrence in as it is done in step 3 from Theoréml3.1.
Finally we can cycle over every possible pairjj checking whether it is an edge

in the renamed list and outputting its color if this is theecabhis output is can be
considered as a canonical colored adjacency matrissfor

The authors prove that this method is correct by showingftraivo graphs
G; andG; with their respective embedding, p, and starting vertices and edges
v1, U2, €1, €&, If the canons coincide then the graph are isomorphic, and:over,
if Gj is isomorphic toG, there is some choice of the parameters that make thir
respective canons equal.

4 Planar GlI

In this section we describe the logarithmic space algorifbinplanar graph iso-
morphism. A previous step towards this result was a logauithspace isomor-
phism test for partial 2-tree8]. Partial 2-trees are a subclass of the planar graphs.
The class of partial 2-trees coincide with that of seriesibal graphs and contain
all outer-planar graphs. For proving this result Arvind slzend Kobler represent
a partial 2-tree as a tree of cycles. Similar to Lindells atgen [?] they compare
two such tree representations up to isomorphism, definingnardcal ordering
procedure, which finally gives a canonization algorithm.

In the isomorphism algorithm for general planar graphs dlarmepresenta-
tion is used, namely a tree of 3-connected components.

We give a log-space algorithm for tigeaph canonization problem, to which
graph isomorphism reduces. The canonization involvegasgj to each graph
an isomorphism invariant string of polynomial length.

The algorithms decomposed first we the planar graph intadtsinected com-
ponents and constructéconnected component treein log-space?]. Then, it fur-
ther decomposes the biconnected planar components int@tbennected com-
ponents to obtain a 3-connected component tree in log-spémecroft and Tar-
jan [?] presented a sequential algorithm for the decompositioa biconnected
planar graph into its 3-connected components. This methodbe adapted to
work in log-space. A biconnected planar graph is decompasé&dconnected
components, cycles or a 3-bonds, i.e. two vertices condéditehree edges. The
algorithm recursively removes separating pairs from tlaglhrand puts a copy of
the separating pair in each of the components so formedheaodes in the sep-
arating pair are connected byaitual edge. The decomposition stops, when the
components become triconnected. Define for each compondrgach separat-
ing pair a node and connect a separating pair node with a coempoode, if the
separating pair is contained in the component. The regudfiaph is a tree, the
triconnected component tree. This decomposition is uniqué]} Datta et. al. P]
prove, that such a decomposition can be computed in logesgagurd®? shows
an example of the decomposition of a biconnected planarg@plts tricon-

nected components a@, . . ., G4 and the corresponding triconnected component
tree isT. In G, the pairs & b) and €, d) are the separating pairs. Since the 3-
connected separating pai; ¢) is connected by an edge® we also gefc, d} as
triple-bondG;. The virtual edges corresponding to the separating pasrdramwn
with dashed lines.

€] o T a—b
a’/f \\\b c c‘
S *‘%a e (e[
g I s (e

Figure 2:Decomposition of a biconnected planar graph into a tricotetecom-
ponent tree.

The triconnected components can be canonized in log-sgacelénce, for
triconnected component trees, compute their canonicatiemt in log-space, i.e.
two biconnected graphs are isomorphic if their trees aradda be equal.

In sectiorlZ.011, we summarize, how to canonize biconngxtetr graphs by
applying tree canonization ideas fror? fo their triconnected component trees.
Note that, pairwise isomorphism of two trees labelled with tanons of their
components does not imply isomorphism of the correspongliaghs. Lindell’s
algorithm and complexity analysis had to be modified in a tromal way for this
step to work in log-space.

In sectiorT4.0R, we describe, how to canonize planar graging their bicon-
nected component trees, again, using the basic structurimaéll's algorithm.
The comparison algorithm refers to the biconnected commuidnee of the planar
graph and when comparing biconnected components, to timnhected com-
ponent trees. This requires a detailed analysis of thefarerces of both tree
structures.

4.0.1 Canonization of biconnected planar graphs

Let S and T be two triconnected component trees for the biconnectedapla
graphsG andH, respectively.S andT are rooted at separating pair nodes, say
s = (a,b) andt = (&, b’). Therefore we also writ&) and T . They have
separating pair nodes at odd levels and triconnected coemporodes at even
levels. Figurél3 shows two trees to be compared.

Sah s

Figure 3: Triconnected component trees.

Similar as in Lindells algorithm, we define the isomorphisrdey of two tri-
connected component tre€&sand T rooted at separating pais = (a, b) and
t= (a’, b') S(a,b) <t T(a’,b’) if:

1. |S(a,b)| < |T(a’,b’)| or
2. |S(a,b)| = |T(a',b’)| but #s < #t or

3. |S(a,b)| = |T(a’,b’)|a #Hs = #t = k, but (SGl, ceey SGk) <t (THl, . ,THk) lexico-
graphically, where we assume tf&, <r ... <y Sg, andTy, <7 ... <1 Ty,
are the ordered subtrees $f,) and T /), respectively. To compute the
order between the subtre8g, and Ty, we compare lexicographically the
canons of5; andH; andrecursively the subtrees rooted at the childrerGyf
andH;. Note that these children are again separating pair nodes.

4. IS@b)l = [Tl #s=# =k, (Sg, <1 ... <1 Sg,) =1 (Th, <1 ... <1 Thy),
but O1,...,0p) < (O’4,...,0’,) lexicographically, whereD; and O’
are the orientation counters of tj#& isomorphism classes andljf of all
theSg,’s and theTy’s.

We say that two triconnected component tr&gsand T are equal accord-
ing to the isomorphism order, denoted byS, =r Tg, if neitherSg <1 T¢ nor
Te <1 Se holds. Two trees arer-equal, precisely when the underlying graphs are
iIsomorphic.

We summarize now, how we can compute the isomorphism ordenwe
compare subtrees rooted at separating pairs, &g and T), and when we
compare subtrees rooted at triconnected components5&.gndTy;.

ComparingS) andTx 1) is similar to the comparison of subtrees in Lindells
algorithm. We make a cross-comparison of the children aok ghe counters
C., C-, C. for their order profile.

Assume, both subtrees are of equal size|$g| = [Ty;| = N, both rooted at
triconnected component nodésandHj, respectively.

First, we compare the types Gf andH;. We say that bonds; cycles and cy-
cles<r 3-connected components. 3-bonds are always equal. If bettyales or
3-connected components then we construct the cand@safdH; and compare
all of them bit-by-bit.

To canonize a cycle, we traverse it starting from the viredde which cor-
responds to its parent (i.e. the parent nod&9f and then traversing the entire
cycle along the edges encountered. There are two possabiersals depending
on which direction of the starting edge is chosen. Thus, &dyas two possible
canons.

To canonize a 3-connected compon&at we use the log-space algorithm
from Datta, Limaye, and Nimbhorka?][The canon depends on the direction of
the starting edge and additionally, on the embedding of dmponeniG;. For
3-connected components, there are two possible embeddiegse, we have up
to four possible canons.

In the bit-by-bit comparison, we have to distinguish selvesses. When we
reach virtual edges in the comparison steps, we go into sesuat the subtrees
rooted at the corresponding separating pairs. If we findandlgursion that one of
the subtrees is smaller than the other, then we have foundeguality between
the current canons we compare. We eliminate the canons wahéchot found to
be minimal. At the end, if there remains a canon &rand forH;, then both
subtreesSg, and Ty, are equal up to step 3.

Orientation counters. However, here it does not ice to stop after step 3. We
need a further comparison step to ensure handH are indeed isomorphic.
To see this we give an example, consider Figure 4. Assumesthatit have
two children eachG,, G, and H,, H, such thatG; = H; andG, = H,. Sitill
we cannot conclude th& andH are isomorphic because it is possible that the
isomorphism betwee®; andH; mapsa to & andb to b’, but the isomorphism
betweerG, andH, mapsatob’ andbtoa’. Then these two isomorphisms cannot
be extended to an isomorphism betw&:andH.

To handle this problem, we introduce the notion ofaientation of a sep-
arating pair. A separating pair gets an orientation from subtrees roateits
children. Also, every subtree rooted at a triconnected @rapt node gives an
orientation to the parent separating pair. If the orieotats consistent, then we
defineSep) =1 T2 p-y and we will show thaG andH are isomorphic in this case.

Stab) [j

Go e Gy

) WJ =
a b a b T

Ho ‘ Hi Hz

[

Figure 4:

) [P (KT

We define theorientation given to the parent separating pair of G; andH; as
the direction in which the minimum canon traverses this edgée minimum
canons are obtained for both choices of directions of theeedg say thaBg,
andTy; aresymmetric about their parent separating pair, and thus do not give an
orientation.

We define theorientation given to the virtual edge in the parent tricon-
nected component of the corresponding separating pair no@debj or (&,b’)
by considering all the orientations given to the separapaiy of their children
Gi, ..., Gy, respectively. We first order the subtrees, Say <r --- <r Sg, and
Th, <t -+ <1 T, and partition them into isomorphism classes, bkay.., |,
andly,...,I;. Letlj be the smallest isomorphism class such that there are more
components that give the orientatian— b to the parent thabb — a (or vice
versa). Then, we defin@ — b to be thereference orientation (b — a other-
Wise) For each isomorphism clalss we compute now the orientation counters

= (¢, ¢") such thatc;” is the number of children it; which give the ref-
erence orientation anef” |s the number of children il WhICh give the reverse
orientation.

Recall the example of Figuid 4. The graghsandH have the same tricon-
nected component trees but are not isomorphicS¢), the 3-bonds form one
isomorphism clask and the other two components form the second isomorphism
classl,, as they all are pairwise isomorphic. The non-isomorphsdetected by
comparing the directions given to the parent separating |2 havep = 2 iso-
morphism classes and for the orientation counters we ave O’; = (0,0),
wherea€), = (2,0) andO’; = (1,1) and henc®’, is lexicographically smaller
thanO,. Therefore we hav&y /) <t S(ap)-

Complexity. We argue now, that we can do the four comparison steps in log-
space. The first and the second step are similar to Lindgjtzigthm. We define

the size of a separating pair node as 2 and the size of a tecteshcomponent as
the number of vertices in the component. For the third andfiostep, we have
the following cases:

e When we compare two triconnected componégtandH;, then we have
up to four canons. Suppose, we construct and compare twas@y@nd
C; and reach separating paies) and @, b’). We store the canons which
are not eliminated, which of the@, andC,, are and the direction of the
virtual edgesd, b) and @,b’). Hence, we nee@®(1) bits.

e When we compare two separating paiesh) and @,b’), then we make
a cross-comparison as in Lindells algorithm. Hence, we remters
C.,C-,C. to store the order profile. This way, we get the isomorphism
classes. We further store the orientation coun@rsnd O’; for I; and
I7. We needO(log l|) bits on the work-tape for all the counters.

However, we cannot guarantee yet, that the algorithm worksg-space. Let
Sc be the subtree rooted at no@en a triconnected component tree. The problem
is, that the subtrees (i.e. the children@fwhere we go into recursion might be
of size> |Sc|/2, we call it alarge child.

To get around this problem, we first check whether the n@lasdC’ have
a large child. If so, then we compare them a priori and stoeeréisult of their
comparison and the orientation given to the parent. Bec&uardC’ have at
most one large child, this needs oi@y1) additional bits. Whenever we would go
into recursion at those large children, we just look at thekwape for the result.

As seen above, while comparing two trees of dizethe algorithm uses no
space for making a recursive call for a subtree of size latgerN/2, and it uses
O(logk;) space if the subtrees are of size at mégk;, wherek; > 2. Hence we
get the same recurrence for the sp&¢H) as Lindell:

N
S(N) < max S(E) + O(logk;),
! j
wherek; > 2 for all j. ThusS(N) = O(logN). Note that the number of nodes
of G is in general smaller thaN, because the separating pair nodes occur in all

components splitfd by this pair. But we certainly have < N < O(n?) [?]. This
proves the following theorem.

Theorem 4.1. Theisomorphismorder between two triconnected component trees
of biconnected planar graphs can be computed in log-space.

The canon. Once we know the ordering among the subtrees, it is stragyht f
ward to output the canon of the triconnected componentliré&/e traversd in
the tree isomorphism order as in Linde} [outputting the canon of each of the
nodes along with virtual edges and delimiters. That is, wipwiLa ‘[' while going
down a subtree, and ‘]’ while going up a subtree.

We need to choose a separating pair as root for the tree. S8ieoe is no
distinguished separating pair, we simply cycle througloaithem and select the
one, which leads to the minimum canon. Latlj) be this separating pair.

The canonization procedure has two steps. In the first stegowgute what
we call acanonical list for Su). This is a list of the edges @, also including
virtual edges. In the second step we compute the final cawom tihe canonical
list.

Canon of separating pair nodes. Consider a subtre$, rooted at § b). We
start with computing the reference orientation aflf) with oracle calls to the
canonical ordering algorithm and output the edge in thisalion. Then we re-
cursively output the canonical lists of the subtrees of n@dk) according to the
increasing isomorphism order. Among isomorphic siblingese which give the
reference orientation to the parent come first. We denoseddunonical list of
edged(S, a, b). If there is no reference orientation for a child, take themtation
of the parentd, b).

Canon of triconnected component nodes. Consider the subtre®g, rooted aG;.
Let (a b) be the parent separating pair & with reference orientatiora(b).
If G; is a 3-bond then outpu{G;,a,b) = (a,b). If G; is a cycle then output
[(Gi,a,b) = (a b)(b,v1)(vy,v2)...(vn, D). If Gjis a 3-connected component then
compute the minimum of two canons with an oracle call, wigpest to the given
reference orientationa(b) and both embeddings f@g;. Output this canon as
[(Gi, a,b). Virtual edges are output in the direction of the referengentation
given to them, if any. Finally, we output the subtrees in theleo we have virtual
edges in the canon.

We give now an example. Consider the canonicall(iSta, b) of edges for
the treeS(,p, of Figure[}. Lets be the edge connecting the vertigwith b;.
We also write for short’(S;, s) which is one ofl(S;, a;, b) or I(S;, b, &). The
direction ofs is as described above. Lgt= 0. Then we have:

I(S, &, b)
I(Sc.a.b)

[(ab)I(Sc,.ab) ... I(Se.ab)], where
[1(Gi.2.b) [1"(S) 1. S pe2)] --. [1'(S15)]1]

4.0.2 Canonization of planar graphs

Consider the decomposition of a connected planar graph.e&adn articulation
point and biconnected component we define nodesargculation point nodes

andbiconnected component nodes. An articulation point node foa is connected
by an edge to the nodes of biconnected components whereontained as a
vertex. The resulting graph is a tree, thieonnected component tree. The main

difference to the triconnected component tree is, that fondation point nodes,
there is no concept of orientation as for separating pairs.

We define the isomorphism order for two biconnected compbtriersS,
and T, rooted at nodes andt corresponding to articulation poinégsanda’, re-
spectively. Also see Figufd 5. L&, be the sum of the sizes of the nodes in
the tree. The size of an articulation point nadés defined as 1 and the size of
a biconnected component no8ds the size of its triconnected component tree
[T(B)|. DefineS, <g Ty if

1. |Sa| < |Ta/| Or
2.]S4 = |To| but#s< #t or

3. |Sal = [Tyl, #s=#t =k, but Sg,,...,Sg,) <g (T, --, I's,) leXicograph-
ically, where we assume th&g, <z --- <z Sg, andTg/, <z -+ <z Tp,
are the ordered subtrees ®f and T, respectively. To compare the order
between the subtre&, andTB/j we compare the triconnected component
treesT(B;) of B; andT(B’;) of B’; and when we reach the first occurrences
of some articulation points then we compaeeursively the corresponding
subtrees rooted at the childrenBfandB’;. Note, that these children are
again articulation point nodes.

Figure 5: Biconnected component trees.

We say that two biconnected component treesqueal, denoted bys, =z T,
if neither of S, <z Ty andTy <z S, holds. The inductive ordering of the subtrees

of S, andT, proceeds exactly as in Lindell’s algorithm, by partitiogthem into
size-classes and comparing the children in the same sass-gtcursively.

We summarize now, how we can compute the isomorphism ordenwe
compare subtrees rooted at articulation points, €g.and T,, and when we
compare subtrees rooted at biconnected componentSSg andTs;,.

ComparingS, andTy is similar to the case when we compare subtrees rooted
at separating pairs in triconnected component trees. We makoss-comparison
of the children and store the countetsc._, c. for their order profile.

When we compare biconnected componditandB’;, then we cannot start
comparing their biconnected canons. We even cannot contipeitecanons be-
cause we do not have a unique root separating pair for the (&) andT(B’;).

The problem occurs when we have only one fixed verteR;in.e. the parent
articulation point. Datta et. al. bound the number of caat#d of root separating
pairs of T(B;) andT(B’;). The detailed case analysis can be found in an elaborate
version and is complex. Basically, except of some specsdxahey show that
the number of edges is bounded kywhen all the isomorphism classes of the
children of B; andB’; (i.e. children in the biconnected component tree of nodes
for B andB’;) are of cardinality> k. Hence, all the isomorphism classes contain
childrenC such thaiSc| < |Sg|/k. If there is one size class of cardinality one,
then we treat this child separately. If there are two or machsize classes, then
we even getO(1) candidates for the root. We will need this in the compiexi
analysis.

Complexity according to the biconnected component tree. First, when we
compare articulation poinsanda’ in the biconnected component tree, then we
have a similar complexity analysis as in Lindells algorittffor the children oa
anda’, we storeO(logKk) bits for isomorphism classes of cardinality 2.

Second, when we compare biconnected comporigrisd B’ in the bicon-
nected component tree then a typical query is of the fagm),(wheres is the
chosen root off(B) andr is the index of the edge in the canon, which is to be re-
trieved. If there ar& choices forT(B) andT(B’), the base machine cycles through
all of them one by one, keeping track of the minimum canons TékeO(log k)
space. In both cases, we also consider large children (iérenC of B such
that|Sc| > |Sg|/2) a priori. We summarize. If we consider recursively how gnan
bits we store for the roots of biconnected components theget¢he recursion
equation for the size function.

S(N) = mjax{ S(kﬂ) + O(log kj)}
i

wherek; > 2. Hence,S(N) = O(logN).

Complexity according to the triconnected component trees. We consider
now the comparison of triconnected component trfe@ and T(B’) of bicon-
nected component® andB’. In the comparison of (B) andT(B’), we still go
into recursion at separating pairs and when we reach viegés in canons for
triconnected components. What is new, we go into recursioarnvwe reach ar-
ticulation points. For an example, see Figlre 6.

T(B)

Figure 6: A biconnected component tré& rooted at biconnected compondt
which has an articulation poiatas child, which occurs in the triconnected com-
ponent treeT(B) of B. In A and the other triconnected components the dashed
edges are separating pairs.

If an articulation pointtbelongs to many separating pairs, then it can occur in
many component nodes (B). Recall, that we have a root for the tree. So, there
exists a unique componeAtthat is closest to the root, wheags contained. Ob-
serve, that the set of component nodes wiagsscontained is always a connected
subtree inT(B). The authors show, that this unique component can be cadput
in log-space and that the first position whareccurs in the canon oA can be
found in log-space. Exactly there, we go #into recursion. For all the other
occurrences of we do not go into recursion. Call this theference copy of ain
T(B).

Assume we store the bits separately, which we need ingiefor all bicon-
nected componenB. Then we can prove for this part also a log-space bound.

Therefore, we refine the size function. L@the a node i (B). The size of
the subtreeSc: rooted at some nod€ is the sum of the size of the triconnected
subtree rooted & in T(B), say|Sc| plus the size of all the biconnected subtrees
|ISal, if ais a reference copy of an articulation points3p. Hence, we get the
same recursion equation as before. This finishes the compémalysis. We get
the following theorem.

Theorem 4.2. The isomorphism order between two planar graphs can be com-
puted in log-space.

The canon. The canonization of planar graphs proceeds exactly as inabe
of biconnected planar graphs. A log-space procedure sasdhe biconnected
component tree, makes oracle queries to the isomorphiser atdorithm and
outputs a canonical list of edges, along with delimitersapasate the lists for
siblings. A log-space transducer then renames the vedimesrding to their first
occurrence in this list, to get the final canon for the bicat@& component tree.
This canon depends upon the choice of the root of the bicékedeomponent tree.
Further log-space transducers cycle through all the daticuin points as roots to
find the minimum canon among them, then rename the vertieesdiog to their
first occurrence in the canon and finally, remove the virtagles and delimiters
to obtain a canon for the planar graph. This proves the maiorém.

Theorem 4.3. A planar graph can be canonized in log-space.

References

	Introduction
	Some previous results
	Tree isomorphism in L
	Planarity testing and distance computation
	Universal exploration sequences

	Planar 3-connected Graph Isomorphism
	An isomorphism algorithm in ULcoUL

	Planar GI
	Canonization of biconnected planar graphs
	Canonization of planar graphs

