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Abstract

We prove that the graph isomorphism problem restricted to trees and to colored
graphs with color multiplicities 2 and 3 is many-one complete for several complexity
classes within NC?. In particular we show that tree isomorphism, when trees are
encoded as strings, is NC'-hard under ACC-reductions. NC'-completeness thus
follows from Buss’s NC! upper bound. By contrast, we prove that testing iso-
morphism of two trees encoded as pointer lists is L-complete. Concerning colored
graphs we show that the isomorphism problem for graphs with color multiplicities 2
and 3 is complete for symmetric logarithmic space SL under many-one reductions.
This result improves the existing upper bounds for the problem. We also show that
the graph automorphism problem for colored graphs with color classes of size 2 is
equivalent to deciding whether a graph has more than a single connected component
and we prove that for color classes of size 3 the graph automorphism problem is
contained in SL.

1 Introduction

The graph isomorphism problem GI consists in deciding whether there is a
bijection between the nodes of two given graphs, G and H, preserving the
edge relation. GI is one of the most intensively studied problems in Theo-
retical Computer Science. Besides its many applications, the main source of
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interest in GI has been the evidence that this problem is probably neither in P
nor NP-complete. Other sources of interest include the sophistication of the
tools developed to attack the problem (for example [3,4]), and the connections
between GI and structural complexity (see [5]).

Understandably, many GI restrictions have been considered. For example, P
upper bounds are known in the cases of planar graphs [6] or graphs of bounded
valence [4]. In some cases, like trees [7,8] or graphs with colored vertices and
bounded color classes [9], even NC algorithms for isomorphism exist (NCF is
defined to be the class of problems solvable by a uniform family of bounded in-
degree Boolean circuits with O(log" n) depth and polynomial size, and NC =
Up NCP).

However, until recently none of these GI restrictions were known to be com-
plete for a natural complexity class, and it seemed that these problems lack
the structure needed for a hardness result. Toran proved against this intuition
in [10] that GI for general graphs is hard for NL (nondeterministic logarithmic
space) and for every logarithmic space class based on counting. We consider
here GI restricted to trees and colored graphs, presenting the first complete-
ness results for the isomorphism problem restricted to a family of graphs. We
obtain completeness results for the complexity classes NC', L and SL.

In the case of trees, a linear sequential time algorithm for tree isomorphism
TI was already known in 1974 to Aho, Hopcroft and Ullman [11]. In 1991, an
NC algorithm was developed by Miller and Reif [12]. One year later, Lindell
[7] obtained an L upper bound. Finally, in 1997, a subtle algorithm able to
test two trees for isomorphism in NC' was devised by Buss [8].

Buss in [8] asks whether tree isomorphism is NC'-hard. Here we answer this
question affirmatively showing the hardness of the problem under AC® many-
one reducibility. Hence tree isomorphism is NC'-complete. Trees thus provide
the first class of graphs for which the isomorphism problem captures a natural
complexity class. Moreover, so far, the problem of evaluating a Boolean for-
mula [13] and the problem of multiplying permutations on five points [14] (and
some of their variations) were the only two NC'-complete problems known.
Tree isomorphism is a third such problem.

As noted by Buss, choosing a graph representation is critical when working at
the level of NC'. Buss uses Miller and Reif’s string representation for trees on
the grounds that, when the pointer representation is used, the “deterministic
transitive closure problem can be reduced to the descendant predicate, and
the former is known to be complete for logspace” [8, Section 2].

We prove here that the tree isomorphism problem is L-hard under many-
one AC’-reducibility when the pointer representation is used. Hence, tree
isomorphism in the pointer representation is L-complete by Lindell [7] or by



Buss [8]. Tree isomorphism thus captures in this way another very natural
complexity class.

The other graph family we consider is the class of colored graphs. We will
denote by b-GI the isomorphism problem for colored graphs with color mul-
tiplicities bounded by b. Isomorphisms between colored graphs are color pre-
serving and this reduces the number of possible isomorphisms, but observe
that even for the case b = 2 the number of color-preserving maps between
n-vertex graphs could be as large as 22. This problem also has a fairly long
tradition in the area of algorithms. Babai gave in [15] a random polynomial-
time algorithm for testing isomorphism when the color multiplicities are less
than a constant b. The algorithm was improved to be deterministic in [16] and
using sophisticated algebraic tools, Luks proved in [9] that b-GI lies in fact in
NC.

We focus here on the family of colored graphs with color multiplicities bounded
by the constants 2 and 3 proving that 2-GI and 3-GI are many-one complete
for symmetric logarithmic space SL under AC? reductions. The complexity
class SL introduced in [17] has different characterizations, but the easiest way
to define it is precisely as the class of problems logarithmic space reducible to
the reachability problem for undirected graphs, UGAP. Our results improve
on the one hand the upper bound for the problem given by Luks from NC
to SL (SL is included in NL which in turn is included in NC?). On the
other hand the results provide new natural examples for complete problems
in SL showing that reachability questions can be expressed in a natural way
as isomorphisms in a class of graphs.

Closely related to graph isomorphism is the graph automorphism problem
GA that consists in deciding whether a given graph has a non-trivial auto-
morphism, or in other words, whether there is a permutation of the nodes,
different from the identity, preserving the adjacency relation. The relationship
between GA and GI is not completely clear. It is known that GA is many-one
reducible to GI [18] but a reduction in the other direction is not known and
GA seems to be an easier problem. We observe that this situation also occurs
within the restricted graph families considered in this paper. We show that
testing whether a tree in the pointer representation has a non-trivial automor-
phism is complete for L, while for the string representation the automorphism
problem does not seem to have enough structure to be complete for NC'. We
also prove that 2-GA and 3-GA belong to SL and moreover 2-GA is equivalent
to the problem UCC of deciding whether a given graph has more than one
connected component. UCC belongs to SL but it seems easier than UGAP
and it is not known to be complete for SL [19].



2 Preliminaries

We assume familiarity with basic notions of complexity theory such as can be
found in the standard books in the area. In particular, we simply recall that

AC’C NC!'C L CSLCNLCNC?

where ACP is the class of languages recognized by DLOGTIME-uniform
families of constant depth, polynomial size, Boolean circuits of unbounded
fan-in over the basis {A,V, -}, NC* is the class of languages recognized by
DLOGTIME-uniform families of polynomial size and depth O(log*), Boolean
circuits of bounded fan-in over the basis {A,V, =}, L is the set of languages
accepted by deterministic Turing machines using logarithmic space, SL is
the set of languages accepted by nondeterministic symmetric Turing machines
logarithmic space and INL is the set of languages accepted by nondeterministic
Turing machines using logarithmic space.

2.1 Isomorphism and Automorphism

Given two graphs G = (Vi, Ey) and H = (13, Ey) an isomorphism between G
and H is a bijection ¢ : V; — V5 satistying for every pair of nodes u,v € V;

(u,v) € By <= (p(u), p(v)) € Ey.

We will denote by Iso(G, H) the set of isomorphisms between both graphs.
The Graph Isomorphism problem, GI, consist in deciding whether there exists
some isomorphism between two given graphs.

We denote by Aut(G) the set of automorphisms in G, that is the set of bijec-
tions from V) onto itself satisfying

(u,v) € By <= (p(u), ¢(v)) € Ey.

GA is the problem of deciding whether a given graph has a non-trivial (dif-
ferent from the identity) automorphism.

2.2  Reducibilities

We state our results using DLOGTIME-uniform many-one AC? reducibility
[20]. For languages A, B C ¥*, we say that A is many-one AC® reducible to
B if there is a function f computed by a DLOGTIME-uniform family of AC°
circuits having the property that, for all x € X* 2 € A iff f(x) € B. We write
in this case A<AC’B,



2.3  Graphs and representations

For simplicity in the case of general graphs our isomorphism and automor-
phism results are stated for undirected graphs. It is a well known fact (see e.g.
[5]) that deciding isomorphism for directed or undirected graphs are equiva-
lent problems. For the case of trees however the situation is not so clear since
the standard transformation of an undirected graph into a directed one (con-
sidering two directed edges, one in each direction, for each undirected one)
introduces cycles. A consequence of our results is that the equivalence under
many-one AC reductions holds also for undirected and directed tree isomor-
phism. Except when the contrary is explicitly stated, we will consider that
the trees discussed in this paper are rooted (hence implicitly directed) and
unordered (i.e. the ordering of the descendants of a node does not matter). As
mentioned, we will argue that the results also hold for unrooted trees, or for
rooted trees in which the direction of the edges is explicitly given.

In some of our constructions we use colored graphs. A graph with n nodes is
said to be colored if each node in the graph is labeled with a positive integer
not greater than n. An isomorphism between two colored graphs preserves the
colors and preserves the edges.

We consider two different representations for encoding trees: the string rep-
resentation and the pointer representation. As we will see, in the small com-
plexity classes we are dealing with, the representation used might change the
complexity of the problem.

In the string representation [12], trees are represented over an alphabet con-
taining opening and closing parentheses. A string representation of a tree 7' is
defined recursively in the following way: The tree with a single node is repre-
sented by the string “()”, and if T' is a tree consisting of a root and subtrees
Ti,..., T} (in any order), with string representations «, ..., aj, a representa-
tion of T is given by “(ay,...,ax)”. Observe that a tree might have different
string representations, depending on the order of the descendants of any of
its nodes. Colored trees can be encoded in the same way using colored paren-
theses. Let C' be the set of colors. An opening parenthesis in a colored tree is
represented by “(” followed by log(|C|) bits encoding the color. Note that we
only need to color the opening parentheses.

The pointer representation is a more standard way to encode graphs. In this
case we consider the trees given by a list of pairs of nodes representing di-
rected edges. As in the previous case, if we deal with colored trees, with the
representation of a node we include log(|C|) bits to encode its color.

For many tree problems in NC' and L, completeness results seem to depend
on the representation used. For example, the reachability problem on forests,



which is L-complete in the pointer representation [21], can be solved in NC*
(and even TC") in the string representation [13]. Analogously, the Boolean
formula value problem, which is complete for NC' in the string representa-
tion [8], becomes L-complete when described using trees given in the pointer
representation [22]. In fact, changing from pointer to string representation is
FL-complete [22].

Another important observation is that it is possible to test within the classes
NC' and L whether a given input is a correct encoding of a tree in the string
representation, and respectively, in the pointer form.

3 Tree Isomorphism for Trees Given by Strings

We show first that deciding whether two trees given in string representation
are isomorphic is NC'-complete. We first consider colored trees for which the
hardness proof is simpler. We denote by CTI the isomorphism problem for
colored trees.

Lemma 3.1 In the string representation, CTI is NC'-hard under g;;‘;CO-
reducibility.

Proof. Barrington, Immerman and Straubing show in [20] that an NC' cir-
cuit can be simulated by a balanced DLOGTIME-uniform family of Boolean
expressions made up of alternating layers of ANDs and ORs. Because of this
fact, it suffices to reduce the evaluation problem for these expressions to CTI.
The core of the reduction is the simple construction from [18,23] described in
[5] (page 45), for the purpose of simulating ANDs and ORs using graph iso-
morphism questions. We adapt this construction as follows. Consider four trees
trees G, Gy, Hy, and H; colored with two colors black and white (represented
by black and white dots in the figures).

Gy H,

Tree G5 Tree H,

Fig. 1. Colored Trees for simulating AND



Tree G, Tree H,

Fig. 2. Colored Trees for simulating OR
The colored trees in Figure 1 have the property that

G/\ ~ H/\ <~ [(Gl ~ Hl) A\ (GQ ~ HQ)]
and the colored trees in Figure 2 have the property that
G\/ ~ H\/ <~ [(Gl ~ Hl) V (GQ ~ HQ)]

Observe that the OR-construction doubles the size of the initial trees for
G, ~ G5 and H; ~ H,, that is, from 4 trees each having the same size, s, the
OR-construction would produce 2 trees each having size 4s + 7.

Now pick two single-node trees T} and 7, and assign them different colors.
Starting from the CTI instance (7}, 7T7) to represent a TRUE input and the
CTI instance (77,T3) to represent a FALSE input, it is trivial to construct,
from a depth-d Boolean expression f with no negation gates, two colored trees
G and H having O(4%) nodes (this is a rough upper bound) with the property
that G ~ H iff f evaluates to TRUE.

To see that this yields an AC" reduction, note it is possible to add dummy
nodes in order to modify the constructs above in such a way that, if Gy, G,
H, and G5 are full binary (colored) trees, then so are G, H,, G\ and H,, and
moreover, the color occurrences in these respective constructs are the same.
Because the Boolean expression is balanced, its depth is O(logn). And because
the expression is built from alternating levels of ANDs and ORs, the structure
of the resulting CTT instance is very regular (in a non technical sense). This
makes it easy to translate the encoding of the source DLOGTIME-uniform
formula into an encoding of the CTI instance having the property that the
information relevant to a node can be deduced from the node encoding (just as
properties of a subformula were trivially deduced from its encoding). Details
of a similar construction can be found in the proof of [20, Lemma 6.2]. n

Remark 1. The complete simulation used in the proof of Lemma 3.1 in fact
requires only two distinct colors. A similar construction could be devised in
the absence of colors as well.



Remark 2. 1t is easy to make an OR-construction for the tree automorphism
problem. However no AND-construction for this problem is known. Because
of this fact it is not known whether tree automorphism under the string rep-
resentation is hard for NC'.

Lemma 3.2 In the string representation, CTI Sﬁco TI.

Proof. The obvious idea is to simulate the colors by attaching color-dependent
gadgets at each node. Suppose that the trees in the CTI instance have n nodes.
Then it suffices to attach at each c-colored node, 1 < ¢ < n, a new node which
is root to a height-one subtree having n + ¢ leaves. In detail, at the string
encoding level, the color binary number ¢ occurring after the opening bracket
which specifies the occurrence of the c-colored node is simply replaced with
the encoding of the c-color gadget. To ensure AC-computability, the color
gadgets are modified to contain an identical number of nodes: it is easy to
implement the idea with n non-isomorphic gadgets each having 2n 4 1 nodes.
]

Theorem 3.3 In the string representation, CTI and TI are NC'-complete
under <AC’.

Proof. CTI is NC!-hard (Lemma 3.1) and CTI <AC" TT (Lemma 3.2). Buss
8] shows in a delicate argument that TT € NC'. (Buss in fact points out that
his NC" algorithm applies directly, as well, to the case of labeled trees.) Hence
CTI is NC'-complete.

NC'-hardness of TI follows by the transitivity of the AC -reducibility. |

4 Tree Isomorphism for Trees Given by Pointers

Recall Lemma 3.2, which states that in the string representation, colored tree
isomorphism reduces to tree isomorphism by the introduction of appropri-
ate gadgets for the colors. These gadgets are clearly AC’-computable in the
pointer representation, proving the following:

Lemma 4.1 In the pointer representation, CTI S;ﬁlco TI. ]

In the pointer representation not only the isomorphism, but also the auto-
morphism problem is complete for L. Let us denote by TA the automorphism
problem restricted to trees, and by CTA the colored version of the problem.
A variation of the above Lemma shows that CTA and TA are AC° equivalent
problems.



Theorem 4.2 In the pointer representation, T1 and TA are L-complete under
<Ac?
—=m

Proof. The containment for TI follows from Lindell [7], who shows that a
canonical form ¢(T") of a (rooted) tree T' can be computed in logspace. Hence,
for two given trees, we determine isomorphism by computing and comparing
their canonical forms symbol by symbol. (Alternatively, the string represen-
tation of the trees could be computed in L, and then Buss’s NC' algorithm
could be used.) TA is AC® reducible to TI. This result was shown in [18§]
for general graphs and can be adapted to trees using the constructions from
the previous section. From this observation it follows that TA belongs to L.
We prove hardness for L of TA and TI. Using the mentioned reduction from
TA to TI it would suffice to show hardness for TA. We give however a direct
argument showing the hardness for L of TT in a simple way.

We prove first hardness of TA by reducing the L-complete problem ORD [24]
to Colored Tree Automorphism, and appealing to a variation of Lemma 4.1
for tree automorphism:

Order between Vertices (ORD)

Given: A digraph G = (V. E) that is a line, and two nodes v;,v; € V.
Problem: Decide whether v; < v; in the total order induced on V.

Let a line graph G = (V = {vy,...,v,}, E) and two designated nodes v; and
vj € V be given. We assume without loss of generality that v, is the out-degree
zero node and that v;, v; and v,, are three different nodes. Let 7" be the colored
tree that results from G by coloring the node v; with color 1, v; with color 2,
v, with color 3, and the rest of the nodes with color 0. For 1 < k£ <[ < n, the
colored tree Ty is defined as (V, {(vm, vm+1)|1 < m < n}), with the nodes vy,
v; and v, colored with colors 1,2 and 3 respectively, and the rest of the nodes
colored by 0.

It is not hard to see that v; < v; in the order induced on V' by G if and only
if 3k,1 with 1 < k <[ < n such that 7" ~ T} ;. This is equivalent to saying
that the graph G = T"UU;<p<;<p Tk, has a nontrivial automorphism. We can
transform G to a tree by considering a new root node r and joining r with the
vy nodes of all the T} ; subgraphs. This shows that ORD is AC" reducible to
CTA.

We reduce now ORD to CTI. Let again a line graph G = (V = {vy, ..., v, }, F)
and two designated nodes v; and v; € V' be given. W.l.o.g. consider v;1; to be
the successor of v; in G. Let T' be the tree that results by making two copies
vy, vy of each node vy in G, and including the edges (u/,v") (u”,v") for each



edge (u,v) € E with u # v; and the edges (v}, v, ) (vj,v},,). We also add a
new root node r and the edges (r,v}), (r,v}).

Fig. 3. The tree T"

Clearly v; < v; in the order induced on V' by G if and only if there is an
automorphism in 7" mapping v; to v7. This question can be reduced to CTI
by making two copies T} and T, of 7" and marking with a special color node
v; in 77 and node v;’ in T5. It follows that v; < v, in the order induced on V
by G if and only if T} is isomorphic to T5. [ ]

Remark. The completeness results have been stated in terms of rooted trees
with the edges only implicitly directed. It is not hard to adapt the above proofs
to show that TT and TA are also hard for L for the cases of unrooted trees or
rooted trees with explicitly directed edges. The completeness of the problems
follows by the fact that Lindell’s algorithm [7] can be adapted to unrooted
trees just by considering all possible roots.

5 Upper bound for 2-GA

We show in this section that 2-GA is reducible to the problem UCC of deciding
whether a given graph has more than a single connected component.

The next lemma shows that we can restrict ourselves to graphs with at most
two edges between any two colors. The proof of this result is straightforward.

Lemma 5.1 Let G = (V, E) be a graph with colored vertices, and C; and C}
two color classes in G. Then Aut(G) = Aut(G"), where G' = (V, E') is a copy
of G but with the dual set of edges between vertices of C; and C; (for every
pair (u,v) with u € C; and v € C}, it holds (u,v) € E & (u,v) € E').

Theorem 5.2 The Graph Automorphism problem restricted to graphs with
color classes of size at most2 is many-one AC"-reducible to UCC.

Proof. Let G be a graph with color classes of size at most 2. By the above
lemma we can consider that for every pair of colors, there are at most two
edges connecting the nodes of these colors. Also, w.l.o.g. we can consider that

10



there is no edge between the nodes of the same color in G (these edges do not
change the automorphism group). The possible connections that have to be
considered between the nodes of two different colors are shown in Figure 4.

Fig. 4. Possible connections between two color classes

We reduce the question of whether G has a nontrivial automorphism to a
reachability question in an undirected graph f(G) = (V', E'). V' contains one
special node plus one node for each color:

V' = {w;g} U {v' | iis a color in G}.

The idea of the reduction is to place the edges in such a way that for every color
i, node v;4 is reachable from node v’ in f(G) if and only if every automorphism
in Aut(QG) fixes the nodes of color i. For every pair of colors i, j, the edges
between two color classes induce edges in E' in the following way:

Type of connection between ¢ and j Edges in E'

a) None

b) (v, via), (V7 viq)
c) (v*, v7)

d) (v', viq).

Also, if there is only one node of color i, the edge (v%,v;4) is included in E'.

Lemma 5.3 For each color i, one can reach node viq from v® in f(G) if and
only if every automorphism in Aut(G) fizes the nodes of color i.

Proof. The proof from left to right is by induction on the number of edges in
a path between v’ and v;g. If the path has length one, then the connections

11



between the nodes of color ¢ and some other color class in G must be like in
cases b) or d). In any of these cases the nodes of color i must be fixed under any
automorphism in G. If the path of minimal length has £ + 1 edges then there
must be a color j and a path with k edges from v’ to v;g in f(G). Also there
must be an edge (v',v’) in f(G) which means that the connections between
color classes 7 and j in G must be like in case ¢). By induction hypothesis
every automorphism in Aut(G) fixes the nodes of color j, and the connection
c) forces the nodes of color i to be fixed also.

For the other direction, suppose that for some color 7 node v;4 is not reachable
from v in f(G). We will show that in this case there is some non-trivial
automorphism in G. W.Lo.g. let {1,...,k} be the set of colors j such that v’
is connected to v* in f(G). Since v;q is not reachable from v’, in case there are
edges between two classes with colors in {1,...,k} in G, these edges form a
connection of type c), and the only possible edges between classes of colors [
and m, with { ¢ {1,...,k} and m € {1,...,k} are connections of type d). We
claim that the color fixing permutation ¢ interchanging the two nodes of the
classes of colors j € {1,...,k} and fixing the rest of the nodes is a non-trivial
automorphism in G. Let u, v be two nodes in V. If neither u nor v have colors
in the set {1,...,k} then ¢ acts like the identity on (u,v). If both u and v
have colors [, m in the set {1,...,k} then either there is no connection or the
connections between the color classes | and m must be of type c¢). It follows
that (u,v) € F if and only if (v/,v") € FE, where u’ and v’ are the other nodes
with colors I and m respectively. By the definition of ¢, (u',v") = (p(u), ¢(v)).
Finally, if u has color I ¢ {1,...,k} and v has color m € {1,...,k} and there
is a connection between nodes of color [ and m then it must be of type d) (a
connection of type c¢) would force color [ to be in {1,...,k}). By definition
(p(u), p(v)) = (u,v'). As in the previous two cases we have (u,v) € E if and

only if (¢(u), p(v)) € E. n

Observe that Lemma 5.3 implies that the graph G has a nontrivial automor-
phism if and only if f(G) has more than one connected component. u

6 Upper bounds for 3-GI and 3-GA

We deal in this section with graphs having up to 3 different nodes of each
color. We denote by Bj the set of 6 bijections defined over a domain set of 3
elements. An isomorphism between graphs with color classes of size 3 can be
decomposed in a product of bijections from Bs.

Theorem 6.1 The Graph Isomorphism problem restricted to graphs with
color classes of size at most 3 is in the class SL.

12



Proof. Let G and H be the input graphs. By Lemma 5.1 we can consider that
for any pair of colors 7,7 there are at most 4 edges in each one of the input
graphs having as endpoints nodes of colors ¢ and j. If there are more than 4
edges we consider the dual connections. The three nodes of a color ¢ in GG are
labeled iy, 75 and i3, and in H by ), and 7.

We will reduce graphs G and H to a single undirected graph f(G, H) and
translate the isomorphism question to a reachability question in f(G, H). For
each color i we will consider 6 nodes in f(G) corresponding to the possible
bijections in Bs3. Additionally there is one extra node w that will be used

to indicate that some isomorphisms between subgraphs of G and H are not
possible. The set of nodes in f(G, H) is:

{v,, | ¢ € By and i is a color in G} U {w}.

The set of edges in f(G, H) is constructed according to the following 2 rules.
Observe that both rules can be applied in logarithmic space since the color
classes have constant size 3 and there can only be at most 6 potential isomor-
phisms between the nodes of a given color.

Let C; (resp. C!) denote the set of nodes of color i in G (resp. in H). For each
color i the edges with both endpoints in C; or C! might imply that some of
the bijections from C; to C] cannot be extended to an isomorphism between
G and H. The restrictions in the set of possible bijections can also be induced
by the connections with a different color class. In these cases we include some
edges in the graph f(G, H) as in rule 1, indicating that a bijection between
the nodes of a color cannot be extended to an isomorphism:

Rule 1: For every pair of colors i, j and every bijection ¢ € Bjs, we include
in f(G,H) the edge (v,,w) if the edges between C; and C; in G and the
edges between O} and C} in H imply that no isomorphism in Iso(G, H) can
map the nodes of C; into C! like ¢, that is, if for every ¢ € Bs, ¢ X 9 ¢
Iso(C; UCy, CUCY), where (C;UC)) is the graph made by the set of nodes C;
and C; and the edges between them. For the trivial case in which there is only
one color i in G, the edge (v}, w) is included in f(G, H) when ¢ & Iso(C;, Cj).

We also include in f(G, H) some edges between nodes corresponding to differ-
ent color classes indicating that a partial isomorphism between the nodes of
some color forces a partial isomorphism between the nodes of another color.

Rule 2: For every pair of colors 4,5, and ¢ € Bjs. If for a pair of nodes
a,b € {iy,is,73} and a pair of nodes a',b' € {i,d}, 4} and two bijections
n,m € Bs the edges between the sets of nodes {a,b} and {n(a),n(b)} are
exactly the two edges {(a,n(a)), (b,n(b))} and the edges between the sets of
nodes {a',b'} and {7 (a’), 7(b')} are exactly {(a',7(a")), (b',w(0'))} and p x ¢ €
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Iso(C; U C;, Cj U CY) (for ¢ = men~!') then we include in E' the edge (v}, vfp)
(see Figure 5).

Fig. 5. A situation in which rule 2 is applied. (The dotted lines indicate that these
edges do not exist.)

We show with the following lemmas that a reachability question in f(G, H)
can be used to decide whether G and H are isomorphic.

Lemma 6.2 For a pair of colors i,j and ¢, € Bs, if (vfo,w) ¢ f(G,H) and
(vi,w) ¢ f(G,H) and (vi,vl) & f(G,H) for any = € Bz, then ¢ x v is an

¢r U
isomorphism between the subgraphs C; U Cj and C7U C}.

Proof. Let G = (V, E) and H = (W, E) be the input graphs and let us denote
by a,b and ¢ the nodes of color 7 in G, by d,e and f the color j nodes. We
denote by the same symbols with ’ the nodes of these colors in H. W.l.o.g we
can suppose that for [ € {a,b,c} ¢(l) =" and for m € {d,e, f} ¥(m) = m'.
Let us suppose by contradiction that ¢ x ¢ & Iso(C; U C;, C; U C}). It follows
that for a pair of nodes a,d,

(a,d) € E & (¢(a), ¢(d)) ¢ F.

We consider that (a,d) € E, the other case is analogous. Since v, and vle)
are not connected to w, it follows by rule 1 that there are two bijections n
and 7 € By such that ¢ x n and 7 x ¢ € Iso(C; U Cy, C7 U Cf). Because of
these facts we have that n(d) # d' and 7w(a) # (a'). Again w.l.o.g. we can
suppose n(d) = €' and w(a) = . It follows (p(a),n(d)) = (a',€¢') € F and
(m(a),(d)) = (V',d') € F. The rest of the proof consists in considering the
different possibilities for the bijections 7 and 7 showing that in each case we

reach a contradiction.

Case 1: Suppose n(d) = €',n(e) = d and n(f) = f'. (d',d') ¢ F implies
(7' (a"),n~"(d") = (a,e) € E and therefore (7(a),(e)) = (V/,€') ¢ F and
also (o='(0)),n7 (/) = (b,d) & E. If w(b) = a' then from (d’,¢') € F follows
(m=1(a’),v"1(e")) = (b,e) € E. But then we have that the edges between the
nodes a, b, d, e in G and between their counterparts in H are exactly as is rule
2, and there should be an edge in f(G, H) from v}, to some node of color j
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contradicting the hypothesis. The other possible situation in when 7 (b) = ¢
and 7(c) = a' but then from (b,d) € F follows (o 7 (b),n '¢(d)) = (c,e) &
E, and from (d,€') € F follows (77 '(a’),""'(¢')) = (c,e) € E which is a
contradiction.

Case 2: Suppose 7(d) = €', n(e) = f' and n(f) = d'. By the same arguments
as in Case 1, we have (b, f) € E, (a,f) ¢ E (U, f') ¢ F and (V',€') ¢ E. If
7(b) = a' and 7(c) = ¢ then from (b,e) ¢ FE follows (n(b), ¥ (e)) = (', €') & F
which is a contradiction. Finally, if 7(b) = ¢ and 7(¢) = o' then it follows
(a,d), (b, f),(c,e) € E, (a, f),(be),(c,d) & E, (a',e),(,d),(d, f') € F and
(a',d"), (', f),(c,€¢') ¢ F. Consider the pair of nodes a and e. If (a,e) € E
then (d', f'), (0, ¢') € F contradicting the fact that there are at most 4 edges
in H connecting the ¢ and j nodes. On the other hand, if (a,e) ¢ E then
the set of edges between the i and j color nodes are exactly (a, d), (b, f), (¢, e)
in E and (a',€), (0, d'), (¢, f') in F. By rule 2 there should be some edge in
f(G, H) from v, to some node of color j, contradicting the hypothesis. [

Lemma 6.3 For each pair of colors i,7, and @, € Bs, if there is a path
from vfp in f(G,H) to Uz]/‘) not having w as an intermediate node then every
isomorphism in Iso(G, H) that maps the nodes of color i like @, is forced to
map the nodes of color j like 1.

Proof. We use induction on the length of a minimal path from vfp to vle) in
f(G, H). If this path has length 1 then the colors i and j are different and the
edge (vfp, vy,) in f(G, H) has been placed by rule 2. This implies that for some
a,b € {1,2,3} and some ¢, d € {1,2,3} the edges (i4. jin(a))s (6, Jner)) (for some
1 € Bs) are the only edges between the sets of nodes {i,, i} and {Jjy(a), jn)}
in G' and the edges (i4, jx(a)), (%, jrs)) (for some 7 € Bj) are the only edges
between the sets of nodes {1, i} and {jx(c), j=(a)} in H. Moreover, because of
rule 2, ¢ = men~'. If an isomorphism in Iso(G, H) maps the i nodes to the
i" nodes like ¢, then for [ € {n(a),n(b)} ji must be mapped to a node j' in
H connected to ifpn_l(l), and this node is jr,p-10) = Jy@)- It follows also for

c & {a,b}, jo is mapped to jr,p-1(c)-

For the induction step, if the number of edges in the path from vfp and vfp in
f(G,H) is k + 1, let m be the first color after i in the path. There has to be
some bijection ¢ € B3 and an edge (vfp,vgl) between the ¢ nodes and the j
nodes in f(G, H) and this edge must be introduced by rule 2. By induction
hypothesis, every isomorphism in Iso(G, H) mapping the ¢ nodes like ¢ must
map the m nodes like ¢, and every isomorphism in Iso(G, H) mapping the m
nodes like ¢ must map the j nodes like ?/. Both conditions together imply the
result. [ ]

Observe that Lemma 6.3 implies that for any color 7, and ¢, € Bs, if ¢ #

i, and v}, is reachable from v}, in f(G, H) then there is no isomorphism in
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Iso(G, H) mapping the nodes of color i like ¢. Another consequence of the
lemma (together with the definition of rule 1), is that for any color 7 and ¢ €
Bs;. if node w can be reached from vfp in f(G, H) then there is no isomorphism
in Iso(G, H) mapping the nodes of color i like .

Lemma 6.4 Suppose that there are k different colors in G and H. If there
is a set of nodes in f(G,H), v}pl,...,vf,k one of each color, and such that
no other node in f(G, H) is reachable from this set then @1 X ... X @ is an

isomorphism between G and H.

Proof. The proof is by induction on the number of color classes k£ in G and
H. If there is only one color the result is trivial. For the case of two colors i
and j, consider that from the set of nodes vfp and vfp one cannot reach any
other node in f(G, H). This implies that the only possible edge in f(G, H)
with an endpoint in this set is the one connecting both nodes. If this edge does
not exist the result follows by Lemma 6.2. On the other hand, if (v}, v},) is an
edge in f(G, H) then the edge was placed by rule 2 and ¢ x ¢ € Iso(G, H).

For the induction step, consider that there are k colors in G and H and there

is a set of nodes one of each color v}pl, . ’”ka in f(G, H). Consider the graphs

G' and H' obtained by deleting the nodes of color £ in G and H and all
the edges having an endpoint of this color. Since eliminating one color can
only reduce the set of local restrictions for isomorphisms, there is no new
edge in f(G', H') that was not already present in f(G, H) and therefore from
v}pl, . ,vf,k_l no other node is reachable in f(G’, H'). By induction hypothesis
01 X ... X1 € Iso(G', H"). We claim that this isomorphism between G' and
H' can be extended to an isomorphism in Iso(G, H) by mapping the nodes in

Ck to C}, as in gy.

To see that this is an isomorphism we will show that for every j < k it holds
o X @; € Iso(Cy U Cy,Ch U CY)). If the edge (v} vl ) belongs to f(G, H)

Pr’ TP
then the edge was placed by rule 2 and ¢ x ¢; € Iso(é’,C Uy, CLuCy)). On

the other hand if this edge does not exist, there is no other edge in f(G, H)

between k and j nodes having v} or véj as endpoint (from the set v}, ,..., v}k
no other node can be reached). The result follows then by Lemma 6.2, |

It follows from Lemmas 6.3 and 6.4 that there is an isomorphism from G to H
if and only if there is a set of nodes in f(G, H), one of each color and such that
from this set no other node in f(G, H) can be reached. In order to transform
this into a question in SL we need the following lemma:

Lemma 6.5 Let A and B be two connected components in f(G, H) satisfying

i) The nodes in A have different colors and the nodes in B have different
colors
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i) w¢ AU B and

i11) the intersection of colors in A and B is not empty

then the set of colors present in A is the same as the set of colors present in
B.

Proof. We show that for any pair of colors 7 and j, and for two bijections ¢
and £ € B, if the node w in f(G, H) can neither be reached from vfp nor from
v¢ and if v, has a neighbor of color j in f(G, H), then so does v{. The result
follows from this fact.

Suppose that (vfp,vj) is an edge in f(G, H). This edge was set by rule 2
and therefore there is a pair of nodes a,b € {iy,is,i3} and a pair of nodes
a', b € {i, i, i} and two bijections n, m € Bj satisfying the conditions of rule
2 and such that ¢ = mgn~". Since v is not connected to w, there must be
a bijection v € Bs satisfying £ x v € Iso(C; U Cj, C; U CY). 1 and 7 describe
the connections between i and j nodes in G and H and therefore we have
v = w&n~'. We are again in the conditions of rule 2, and the edge (vf,v!)
belongs to f(G, H) u

We know that there is an isomorphism from G to H if and only if there is a
set of nodes in f(G, H), one of each color and such that from this set no other
node in f(G, H) can be reached. By Lemma 6.5 in order to test this it suffices
to check for each color ¢ that there is one node v}, in f(G,H) from which
neither w nor two nodes of the same color can be reached (this question can
be solved within the class SL). In order to see this observe that if G and H
are isomorphic, such a set must exist. By Lemma 6.5 if such a set exists then
there is a set of color disjoint connected components in f(G, H) containing all
colors. |

We show now that the graph automorphism problem for colored graphs with
color classes of size 3 also lies in the class SL. Although a direct proof similar
to the one in Theorem 6.1 is possible, it is easier to give a reduction from
3-GA to UGAP based on the fact that 3-GI € SL.

Theorem 6.6 The Graph Automorphism problem restricted to graphs with
color classes of size at most 3 is in the class SL.

Proof. We will show that 3-GA is logarithmic space many-one reducible to
UGAP. This implies that 3-GA lies in SL. Let G = (V, E) be a graph with
its nodes partitioned into color classes of size at most three. We denote by
G| a copy of G but with node 7 marked with a new special color. There is
a non-trivial automorphism in G if and only if for a pair of distinct nodes
of the same color 2 and 7 in V, there is an automorphism mapping 7 to j, if
and only if for such a pair of nodes G/; is isomorphic to Gi;. Since the color
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classes in G;; have size 3 at most, this means that 3-GA is reducible to a set
of disjunctive queries to 3-GI. By Theorem 6.1, 3-GI lies in SL and can be
reduced to UGAP. The list of queries to 3-GI can then be reduced to a list
of reachability queries in undirected graphs. The disjunctive list of queries to
UGAP can be reduced to a single one by connecting the graphs in parallel.
This provides a many-one reduction from 3-GA to UGAP. |

7 Lower bounds for 2-GI and 2-GA

We prove now the hardness results for 2-GI and 2-GA.
Theorem 7.1 2-GI is hard for SL under <AC".

Proof. We show that the graph accessibility problem for undirected graphs,
UGAP, is reducible to the complement of 2-GI. The result follows since UGAP
is AC" complete for SL, and this class is closed under complementation [25].

Let G = (V, E) be an undirected graph with two designated nodes s,t € V.
Consider the new graph G' = G; U G, where G; and G5 are two copies of
G, and for a node v € V let us call v; and vy the copies of v in G; and G,
respectively. Furthermore, we color each pair of nodes vy, v, with color 7,, and
color ¢; with a special color 1 and #, with another color 2. We claim that
there is no path from s to ¢ in G if and only if there is automorphism ¢ in G’
mapping s; to sg. Clearly if there is no path between s and ¢ in GG, these two
nodes belong to different connected components. The desired automorphism
can be obtained by mapping the nodes of the connected component of s; in
(G, to the corresponding nodes in (G5 and mapping the rest of the nodes in G’
(and in particular #;) to themselves.

Conversely, if there is a path between s and ¢ in GG, the mentioned automor-
phism ¢ does not exist since the nodes sy (¢(s1)) and ¢; (¢(t1)) should be in
the same connected component, but there are no edges between GGy and G, in
G'.

The question of whether there is an automorphism in G’ with the mentioned
properties, can in turn be reduced to 2-GI. Let H; be a copy of G' with node
s1 having a special color 3, and Hs be another copy with s, having color 3.
There is an automorphism mapping s; to s, in G’ if and only if H; and H,
are isomorphic. The size of the color classes in each of the graphs H; and H,
is at most 2. m

Now the hardness result for 2-GA follows easily.
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Corollary 7.2 TCC <AC” 2-GA.

Proof. The reduction for this result is the same as in the proof of the previous
theorem. Observe that in G’ the color classes are of size at most 2 and there
is a nontrivial automorphism in G’ if and only if there is more than a single
connected component in G. ]

8 Concluding remarks

Together with the upper bounds given by Buss and Lindell our results imply:

e TI in the string representation is NC'-complete under AC® reducibility.

e TI and TA in the pointer representation are NC'-complete under AC°
reducibility.

e 2-GA is equivalent to UCC under AC" reducibility.

e 2-GI and 3-GI are complete for SL under AC® reducibility.

e 3-GA belongs to SL.

The level of sophistication of Buss’s NC* algorithm for TI [8] is comparable to
that of his simplified NC! algorithm for the Boolean expression value problem
FVP [13]. Are these two upper bounds independent? In other words, is there a
reduction from TT to FVP or vice versa which is simpler than either of Buss’s
two upper bounds?

It is interesting to consider FVP <AC® TI. Proving that FVP <AC’ TT has
required three ingredients: (1) the NC' upper bound for FVP, (2) the char-
acterization of NC' in terms of balanced Boolean expressions, and (3) our
simple Lemma 3.1. Lemma 3.1 directly constructs trees from Boolean formu-
las, but the ensuing direct reduction is from Balanced-F'VP to TI. How can
Lemma 3.1 be strengthened?

The bottleneck to a strengthening of Lemma 3.1 is the handling of a Boolean
OR. Lemma 3.1 can only handle balanced Boolean expressions because the
trees G\, and H, depicted in its proof each require a copy of Gy, Gs, Hy,
and H,. Hence an open question is whether Lemma 3.1 can be proved using
simpler constructs G, and H,, still simulating the Boolean OR, but only
adding a small number of additional nodes. If so, the NC' upper bound for
FVP is redundant, i.e., the NC' upper bound for FVP follows from the NC'
upper bound for TT.

A natural way to continue this research is to study the situation for other
bounds b > 4 for the size of the color classes trying to obtain completeness
results for other complexity classes. ;jFrom the results in [10] it can easily
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be derived that for b > 2, b2-GI is hard for the modular class ModL, and
2b2-GA is also hard for Mod,L. It follows from this that 4-GI is hard for ®L
and therefore a proof of the fact that 4-GI belongs to SL would imply that
@L is included in SL which is something we do not expect. Obtaining better
upper bounds than the ones given in [9] for b-GI and b-GA for special cases
of k (k > 4) is an interesting open problem.

We observe that the blow-up in the complexity of the problem when going
from color classes of size 3 to size 4 also happens in the related area of graph
identification using first-order formulas with counting. Immerman and Lander
show in [26] that 3 variables suffice to identify all colored graphs of color size
3, while 2(n) variables are needed to identify all graphs of color size 4 using
first order formulas with counting, as proved in [27].
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