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 Centre-Ville, Montr�eal QC H3C 3J7Abstra
tWe prove that the graph isomorphism problem restri
ted to trees and to 
oloredgraphs with 
olor multipli
ities 2 and 3 is many-one 
omplete for several 
omplexity
lasses within NC2. In parti
ular we show that tree isomorphism, when trees areen
oded as strings, is NC1-hard under AC0-redu
tions. NC1-
ompleteness thusfollows from Buss's NC1 upper bound. By 
ontrast, we prove that testing iso-morphism of two trees en
oded as pointer lists is L-
omplete. Con
erning 
oloredgraphs we show that the isomorphism problem for graphs with 
olor multipli
ities 2and 3 is 
omplete for symmetri
 logarithmi
 spa
e SL under many-one redu
tions.This result improves the existing upper bounds for the problem. We also show thatthe graph automorphism problem for 
olored graphs with 
olor 
lasses of size 2 isequivalent to de
iding whether a graph has more than a single 
onne
ted 
omponentand we prove that for 
olor 
lasses of size 3 the graph automorphism problem is
ontained in SL.
1 Introdu
tionThe graph isomorphism problem GI 
onsists in de
iding whether there is abije
tion between the nodes of two given graphs, G and H, preserving theedge relation. GI is one of the most intensively studied problems in Theo-reti
al Computer S
ien
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interest in GI has been the eviden
e that this problem is probably neither in Pnor NP-
omplete. Other sour
es of interest in
lude the sophisti
ation of thetools developed to atta
k the problem (for example [3,4℄), and the 
onne
tionsbetween GI and stru
tural 
omplexity (see [5℄).Understandably, many GI restri
tions have been 
onsidered. For example, Pupper bounds are known in the 
ases of planar graphs [6℄ or graphs of boundedvalen
e [4℄. In some 
ases, like trees [7,8℄ or graphs with 
olored verti
es andbounded 
olor 
lasses [9℄, even NC algorithms for isomorphism exist (NCk isde�ned to be the 
lass of problems solvable by a uniform family of bounded in-degree Boolean 
ir
uits with O(logk n) depth and polynomial size, and NC =[k NCk).However, until re
ently none of these GI restri
tions were known to be 
om-plete for a natural 
omplexity 
lass, and it seemed that these problems la
kthe stru
ture needed for a hardness result. Tor�an proved against this intuitionin [10℄ that GI for general graphs is hard forNL (nondeterministi
 logarithmi
spa
e) and for every logarithmi
 spa
e 
lass based on 
ounting. We 
onsiderhere GI restri
ted to trees and 
olored graphs, presenting the �rst 
omplete-ness results for the isomorphism problem restri
ted to a family of graphs. Weobtain 
ompleteness results for the 
omplexity 
lasses NC1, L and SL.In the 
ase of trees, a linear sequential time algorithm for tree isomorphismTI was already known in 1974 to Aho, Hop
roft and Ullman [11℄. In 1991, anNC algorithm was developed by Miller and Reif [12℄. One year later, Lindell[7℄ obtained an L upper bound. Finally, in 1997, a subtle algorithm able totest two trees for isomorphism in NC1 was devised by Buss [8℄.Buss in [8℄ asks whether tree isomorphism is NC1-hard. Here we answer thisquestion aÆrmatively showing the hardness of the problem under AC0 many-one redu
ibility. Hen
e tree isomorphism is NC1-
omplete. Trees thus providethe �rst 
lass of graphs for whi
h the isomorphism problem 
aptures a natural
omplexity 
lass. Moreover, so far, the problem of evaluating a Boolean for-mula [13℄ and the problem of multiplying permutations on �ve points [14℄ (andsome of their variations) were the only two NC1-
omplete problems known.Tree isomorphism is a third su
h problem.As noted by Buss, 
hoosing a graph representation is 
riti
al when working atthe level of NC1. Buss uses Miller and Reif's string representation for trees onthe grounds that, when the pointer representation is used, the \deterministi
transitive 
losure problem 
an be redu
ed to the des
endant predi
ate, andthe former is known to be 
omplete for logspa
e" [8, Se
tion 2℄.We prove here that the tree isomorphism problem is L-hard under many-one AC0-redu
ibility when the pointer representation is used. Hen
e, treeisomorphism in the pointer representation is L-
omplete by Lindell [7℄ or by2



Buss [8℄. Tree isomorphism thus 
aptures in this way another very natural
omplexity 
lass.The other graph family we 
onsider is the 
lass of 
olored graphs. We willdenote by b-GI the isomorphism problem for 
olored graphs with 
olor mul-tipli
ities bounded by b. Isomorphisms between 
olored graphs are 
olor pre-serving and this redu
es the number of possible isomorphisms, but observethat even for the 
ase b = 2 the number of 
olor-preserving maps betweenn-vertex graphs 
ould be as large as 2n2 . This problem also has a fairly longtradition in the area of algorithms. Babai gave in [15℄ a random polynomial-time algorithm for testing isomorphism when the 
olor multipli
ities are lessthan a 
onstant b. The algorithm was improved to be deterministi
 in [16℄ andusing sophisti
ated algebrai
 tools, Luks proved in [9℄ that b-GI lies in fa
t inNC.We fo
us here on the family of 
olored graphs with 
olor multipli
ities boundedby the 
onstants 2 and 3 proving that 2-GI and 3-GI are many-one 
ompletefor symmetri
 logarithmi
 spa
e SL under AC0 redu
tions. The 
omplexity
lass SL introdu
ed in [17℄ has di�erent 
hara
terizations, but the easiest wayto de�ne it is pre
isely as the 
lass of problems logarithmi
 spa
e redu
ible tothe rea
hability problem for undire
ted graphs, UGAP. Our results improveon the one hand the upper bound for the problem given by Luks from NCto SL (SL is in
luded in NL whi
h in turn is in
luded in NC2). On theother hand the results provide new natural examples for 
omplete problemsin SL showing that rea
hability questions 
an be expressed in a natural wayas isomorphisms in a 
lass of graphs.Closely related to graph isomorphism is the graph automorphism problemGA that 
onsists in de
iding whether a given graph has a non-trivial auto-morphism, or in other words, whether there is a permutation of the nodes,di�erent from the identity, preserving the adja
en
y relation. The relationshipbetween GA and GI is not 
ompletely 
lear. It is known that GA is many-oneredu
ible to GI [18℄ but a redu
tion in the other dire
tion is not known andGA seems to be an easier problem. We observe that this situation also o

urswithin the restri
ted graph families 
onsidered in this paper. We show thattesting whether a tree in the pointer representation has a non-trivial automor-phism is 
omplete for L, while for the string representation the automorphismproblem does not seem to have enough stru
ture to be 
omplete for NC1. Wealso prove that 2-GA and 3-GA belong to SL and moreover 2-GA is equivalentto the problem UCC of de
iding whether a given graph has more than one
onne
ted 
omponent. UCC belongs to SL but it seems easier than UGAPand it is not known to be 
omplete for SL [19℄.3



2 PreliminariesWe assume familiarity with basi
 notions of 
omplexity theory su
h as 
an befound in the standard books in the area. In parti
ular, we simply re
all thatAC0 � NC1 � L � SL � NL � NC2;where AC0 is the 
lass of languages re
ognized by DLOGTIME-uniformfamilies of 
onstant depth, polynomial size, Boolean 
ir
uits of unboundedfan-in over the basis f^;_;:g, NCk is the 
lass of languages re
ognized byDLOGTIME-uniform families of polynomial size and depth O(logk), Boolean
ir
uits of bounded fan-in over the basis f^;_;:g, L is the set of languagesa

epted by deterministi
 Turing ma
hines using logarithmi
 spa
e, SL isthe set of languages a

epted by nondeterministi
 symmetri
 Turing ma
hineslogarithmi
 spa
e andNL is the set of languages a

epted by nondeterministi
Turing ma
hines using logarithmi
 spa
e.2.1 Isomorphism and AutomorphismGiven two graphs G = (V1; E1) and H = (V2; E2) an isomorphism between Gand H is a bije
tion ' : V1 �! V2 satisfying for every pair of nodes u; v 2 V1(u; v) 2 E1 () ('(u); '(v)) 2 E2:We will denote by Iso(G;H) the set of isomorphisms between both graphs.The Graph Isomorphism problem, GI, 
onsist in de
iding whether there existssome isomorphism between two given graphs.We denote by Aut(G) the set of automorphisms in G, that is the set of bije
-tions from V1 onto itself satisfying(u; v) 2 E1 () ('(u); '(v)) 2 E1:GA is the problem of de
iding whether a given graph has a non-trivial (dif-ferent from the identity) automorphism.2.2 Redu
ibilitiesWe state our results using DLOGTIME-uniform many-one AC0 redu
ibility[20℄. For languages A;B � ��, we say that A is many-one AC0 redu
ible toB if there is a fun
tion f 
omputed by a DLOGTIME-uniform family of AC0
ir
uits having the property that, for all x 2 ��, x 2 A i� f(x) 2 B. We writein this 
ase A�AC0m B. 4



2.3 Graphs and representationsFor simpli
ity in the 
ase of general graphs our isomorphism and automor-phism results are stated for undire
ted graphs. It is a well known fa
t (see e.g.[5℄) that de
iding isomorphism for dire
ted or undire
ted graphs are equiva-lent problems. For the 
ase of trees however the situation is not so 
lear sin
ethe standard transformation of an undire
ted graph into a dire
ted one (
on-sidering two dire
ted edges, one in ea
h dire
tion, for ea
h undire
ted one)introdu
es 
y
les. A 
onsequen
e of our results is that the equivalen
e undermany-one AC0 redu
tions holds also for undire
ted and dire
ted tree isomor-phism. Ex
ept when the 
ontrary is expli
itly stated, we will 
onsider thatthe trees dis
ussed in this paper are rooted (hen
e impli
itly dire
ted) andunordered (i.e. the ordering of the des
endants of a node does not matter). Asmentioned, we will argue that the results also hold for unrooted trees, or forrooted trees in whi
h the dire
tion of the edges is expli
itly given.In some of our 
onstru
tions we use 
olored graphs. A graph with n nodes issaid to be 
olored if ea
h node in the graph is labeled with a positive integernot greater than n. An isomorphism between two 
olored graphs preserves the
olors and preserves the edges.We 
onsider two di�erent representations for en
oding trees: the string rep-resentation and the pointer representation. As we will see, in the small 
om-plexity 
lasses we are dealing with, the representation used might 
hange the
omplexity of the problem.In the string representation [12℄, trees are represented over an alphabet 
on-taining opening and 
losing parentheses. A string representation of a tree T isde�ned re
ursively in the following way: The tree with a single node is repre-sented by the string \()", and if T is a tree 
onsisting of a root and subtreesT1; : : : ; Tk (in any order), with string representations �1; : : : ; �k, a representa-tion of T is given by \(�1; : : : ; �k)". Observe that a tree might have di�erentstring representations, depending on the order of the des
endants of any ofits nodes. Colored trees 
an be en
oded in the same way using 
olored paren-theses. Let C be the set of 
olors. An opening parenthesis in a 
olored tree isrepresented by \(" followed by log(jCj) bits en
oding the 
olor. Note that weonly need to 
olor the opening parentheses.The pointer representation is a more standard way to en
ode graphs. In this
ase we 
onsider the trees given by a list of pairs of nodes representing di-re
ted edges. As in the previous 
ase, if we deal with 
olored trees, with therepresentation of a node we in
lude log(jCj) bits to en
ode its 
olor.For many tree problems in NC1 and L, 
ompleteness results seem to dependon the representation used. For example, the rea
hability problem on forests,5



whi
h is L-
omplete in the pointer representation [21℄, 
an be solved in NC1(and even TC0) in the string representation [13℄. Analogously, the Booleanformula value problem, whi
h is 
omplete for NC1 in the string representa-tion [8℄, be
omes L-
omplete when des
ribed using trees given in the pointerrepresentation [22℄. In fa
t, 
hanging from pointer to string representation isFL-
omplete [22℄.Another important observation is that it is possible to test within the 
lassesNC1 and L whether a given input is a 
orre
t en
oding of a tree in the stringrepresentation, and respe
tively, in the pointer form.3 Tree Isomorphism for Trees Given by StringsWe show �rst that de
iding whether two trees given in string representationare isomorphi
 is NC1-
omplete. We �rst 
onsider 
olored trees for whi
h thehardness proof is simpler. We denote by CTI the isomorphism problem for
olored trees.Lemma 3.1 In the string representation, CTI is NC1-hard under �AC0m -redu
ibility.Proof. Barrington, Immerman and Straubing show in [20℄ that an NC1 
ir-
uit 
an be simulated by a balan
ed DLOGTIME-uniform family of Booleanexpressions made up of alternating layers of ANDs and ORs. Be
ause of thisfa
t, it suÆ
es to redu
e the evaluation problem for these expressions to CTI.The 
ore of the redu
tion is the simple 
onstru
tion from [18,23℄ des
ribed in[5℄ (page 45), for the purpose of simulating ANDs and ORs using graph iso-morphism questions. We adapt this 
onstru
tion as follows. Consider four treestrees G1, G2, H1, and H2 
olored with two 
olors bla
k and white (representedby bla
k and white dots in the �gures).
G1 G2 H1 H2Tree G^ Tree H^Fig. 1. Colored Trees for simulating AND

6



G1 H2 H1 G2Tree G_ G1 G2 H1 H2Tree H_Fig. 2. Colored Trees for simulating ORThe 
olored trees in Figure 1 have the property thatG^ ' H^ () [(G1 ' H1) ^ (G2 ' H2)℄and the 
olored trees in Figure 2 have the property thatG_ ' H_ () [(G1 ' H1) _ (G2 ' H2)℄:Observe that the OR-
onstru
tion doubles the size of the initial trees forG1 ' G2 and H1 ' H2, that is, from 4 trees ea
h having the same size, s, theOR-
onstru
tion would produ
e 2 trees ea
h having size 4s+ 7.Now pi
k two single-node trees T1 and T2 and assign them di�erent 
olors.Starting from the CTI instan
e (T1; T1) to represent a TRUE input and theCTI instan
e (T1; T2) to represent a FALSE input, it is trivial to 
onstru
t,from a depth-d Boolean expression f with no negation gates, two 
olored treesG and H having O(4d) nodes (this is a rough upper bound) with the propertythat G ' H i� f evaluates to TRUE.To see that this yields an AC0 redu
tion, note it is possible to add dummynodes in order to modify the 
onstru
ts above in su
h a way that, if G1, G2,H1 and G2 are full binary (
olored) trees, then so are G^, H^, G_ and H_, andmoreover, the 
olor o

urren
es in these respe
tive 
onstru
ts are the same.Be
ause the Boolean expression is balan
ed, its depth is O(logn). And be
ausethe expression is built from alternating levels of ANDs and ORs, the stru
tureof the resulting CTI instan
e is very regular (in a non te
hni
al sense). Thismakes it easy to translate the en
oding of the sour
e DLOGTIME-uniformformula into an en
oding of the CTI instan
e having the property that theinformation relevant to a node 
an be dedu
ed from the node en
oding (just asproperties of a subformula were trivially dedu
ed from its en
oding). Detailsof a similar 
onstru
tion 
an be found in the proof of [20, Lemma 6.2℄.Remark 1. The 
omplete simulation used in the proof of Lemma 3.1 in fa
trequires only two distin
t 
olors. A similar 
onstru
tion 
ould be devised inthe absen
e of 
olors as well. 7



Remark 2. It is easy to make an OR-
onstru
tion for the tree automorphismproblem. However no AND-
onstru
tion for this problem is known. Be
auseof this fa
t it is not known whether tree automorphism under the string rep-resentation is hard for NC1.Lemma 3.2 In the string representation, CTI �AC0m TI.Proof. The obvious idea is to simulate the 
olors by atta
hing 
olor-dependentgadgets at ea
h node. Suppose that the trees in the CTI instan
e have n nodes.Then it suÆ
es to atta
h at ea
h 
-
olored node, 1 � 
 � n, a new node whi
his root to a height-one subtree having n + 
 leaves. In detail, at the stringen
oding level, the 
olor binary number 
 o

urring after the opening bra
ketwhi
h spe
i�es the o

urren
e of the 
-
olored node is simply repla
ed withthe en
oding of the 
-
olor gadget. To ensure AC0-
omputability, the 
olorgadgets are modi�ed to 
ontain an identi
al number of nodes: it is easy toimplement the idea with n non-isomorphi
 gadgets ea
h having 2n+1 nodes.Theorem 3.3 In the string representation, CTI and TI are NC1-
ompleteunder �AC0m .Proof. CTI is NC1-hard (Lemma 3.1) and CTI �AC0m TI (Lemma 3.2). Buss[8℄ shows in a deli
ate argument that TI 2 NC1. (Buss in fa
t points out thathisNC1 algorithm applies dire
tly, as well, to the 
ase of labeled trees.) Hen
eCTI is NC1-
omplete.NC1-hardness of TI follows by the transitivity of the AC0-redu
ibility.
4 Tree Isomorphism for Trees Given by PointersRe
all Lemma 3.2, whi
h states that in the string representation, 
olored treeisomorphism redu
es to tree isomorphism by the introdu
tion of appropri-ate gadgets for the 
olors. These gadgets are 
learly AC0-
omputable in thepointer representation, proving the following:Lemma 4.1 In the pointer representation, CTI �AC0m TI.In the pointer representation not only the isomorphism, but also the auto-morphism problem is 
omplete for L. Let us denote by TA the automorphismproblem restri
ted to trees, and by CTA the 
olored version of the problem.A variation of the above Lemma shows that CTA and TA are AC0 equivalentproblems. 8



Theorem 4.2 In the pointer representation, TI and TA are L-
omplete under�AC0m .Proof. The 
ontainment for TI follows from Lindell [7℄, who shows that a
anoni
al form 
(T ) of a (rooted) tree T 
an be 
omputed in logspa
e. Hen
e,for two given trees, we determine isomorphism by 
omputing and 
omparingtheir 
anoni
al forms symbol by symbol. (Alternatively, the string represen-tation of the trees 
ould be 
omputed in L, and then Buss's NC1 algorithm
ould be used.) TA is AC0 redu
ible to TI. This result was shown in [18℄for general graphs and 
an be adapted to trees using the 
onstru
tions fromthe previous se
tion. From this observation it follows that TA belongs to L.We prove hardness for L of TA and TI. Using the mentioned redu
tion fromTA to TI it would suÆ
e to show hardness for TA. We give however a dire
targument showing the hardness for L of TI in a simple way.We prove �rst hardness of TA by redu
ing the L-
omplete problem ORD [24℄to Colored Tree Automorphism, and appealing to a variation of Lemma 4.1for tree automorphism:Order between Verti
es (ORD)Given: A digraph G = (V;E) that is a line, and two nodes vi; vj 2 V .Problem: De
ide whether vi < vj in the total order indu
ed on V .Let a line graph G = (V = fv1; : : : ; vng; E) and two designated nodes vi andvj 2 V be given. We assume without loss of generality that vn is the out-degreezero node and that vi, vj and vn are three di�erent nodes. Let T 0 be the 
oloredtree that results from G by 
oloring the node vi with 
olor 1, vj with 
olor 2,vn with 
olor 3, and the rest of the nodes with 
olor 0. For 1 � k < l < n, the
olored tree Tk;l is de�ned as (V; f(vm; vm+1)j1 � m < ng), with the nodes vk,vl and vn 
olored with 
olors 1,2 and 3 respe
tively, and the rest of the nodes
olored by 0.It is not hard to see that vi < vj in the order indu
ed on V by G if and onlyif 9k; l with 1 � k < l < n su
h that T 0 ' Tk;l. This is equivalent to sayingthat the graph G = T 0 [S1�k<l<n Tk;l has a nontrivial automorphism. We 
antransform G to a tree by 
onsidering a new root node r and joining r with thev1 nodes of all the Tk;l subgraphs. This shows that ORD is AC0 redu
ible toCTA.We redu
e now ORD to CTI. Let again a line graph G = (V = fv1; : : : ; vng; E)and two designated nodes vi and vj 2 V be given. W.l.o.g. 
onsider vi+1 to bethe su

essor of vi in G. Let T 0 be the tree that results by making two 
opiesv0k; v00k of ea
h node vk in G, and in
luding the edges (u0; v0) (u00; v00) for ea
h9



edge (u; v) 2 E with u 6= vi and the edges (v0i; v0i+1) (v0i; v00i+1). We also add anew root node r and the edges (r; v01); (r; v001).v1 vi vi+1 vnG r v01 v0i v0i+1 v0nT 0v001 v00i v00i+1 v00n
Fig. 3. The tree T 0Clearly vi < vj in the order indu
ed on V by G if and only if there is anautomorphism in T 0 mapping v0j to v00j . This question 
an be redu
ed to CTIby making two 
opies T1 and T2 of T 0 and marking with a spe
ial 
olor nodev0j in T1 and node v00j in T2. It follows that vi < vj in the order indu
ed on Vby G if and only if T1 is isomorphi
 to T2.Remark. The 
ompleteness results have been stated in terms of rooted treeswith the edges only impli
itly dire
ted. It is not hard to adapt the above proofsto show that TI and TA are also hard for L for the 
ases of unrooted trees orrooted trees with expli
itly dire
ted edges. The 
ompleteness of the problemsfollows by the fa
t that Lindell's algorithm [7℄ 
an be adapted to unrootedtrees just by 
onsidering all possible roots.5 Upper bound for 2-GAWe show in this se
tion that 2-GA is redu
ible to the problem UCC of de
idingwhether a given graph has more than a single 
onne
ted 
omponent.The next lemma shows that we 
an restri
t ourselves to graphs with at mosttwo edges between any two 
olors. The proof of this result is straightforward.Lemma 5.1 Let G = (V;E) be a graph with 
olored verti
es, and Ci and Cjtwo 
olor 
lasses in G. Then Aut(G) = Aut(G0), where G0 = (V;E 0) is a 
opyof G but with the dual set of edges between verti
es of Ci and Cj (for everypair (u; v) with u 2 Ci and v 2 Cj, it holds (u; v) 2 E , (u; v) 62 E 0).Theorem 5.2 The Graph Automorphism problem restri
ted to graphs with
olor 
lasses of size at most2 is many-one AC0-redu
ible to UCC.Proof. Let G be a graph with 
olor 
lasses of size at most 2. By the abovelemma we 
an 
onsider that for every pair of 
olors, there are at most twoedges 
onne
ting the nodes of these 
olors. Also, w.l.o.g. we 
an 
onsider that10



there is no edge between the nodes of the same 
olor in G (these edges do not
hange the automorphism group). The possible 
onne
tions that have to be
onsidered between the nodes of two di�erent 
olors are shown in Figure 4.

)
a)

d)
b)

Fig. 4. Possible 
onne
tions between two 
olor 
lassesWe redu
e the question of whether G has a nontrivial automorphism to area
hability question in an undire
ted graph f(G) = (V 0; E 0). V 0 
ontains onespe
ial node plus one node for ea
h 
olor:V 0 = fvidg [ fvi j i is a 
olor in Gg:The idea of the redu
tion is to pla
e the edges in su
h a way that for every 
olori, node vid is rea
hable from node vi in f(G) if and only if every automorphismin Aut(G) �xes the nodes of 
olor i. For every pair of 
olors i; j, the edgesbetween two 
olor 
lasses indu
e edges in E 0 in the following way:Type of 
onne
tion between i and j Edges in E 0a) Noneb) (vi; vid); (vj; vid)
) (vi; vj)d) (vi; vid).Also, if there is only one node of 
olor i, the edge (vi; vid) is in
luded in E 0.Lemma 5.3 For ea
h 
olor i, one 
an rea
h node vid from vi in f(G) if andonly if every automorphism in Aut(G) �xes the nodes of 
olor i.Proof. The proof from left to right is by indu
tion on the number of edges ina path between vi and vid. If the path has length one, then the 
onne
tions11



between the nodes of 
olor i and some other 
olor 
lass in G must be like in
ases b) or d). In any of these 
ases the nodes of 
olor imust be �xed under anyautomorphism in G. If the path of minimal length has k + 1 edges then theremust be a 
olor j and a path with k edges from vj to vid in f(G). Also theremust be an edge (vi; vj) in f(G) whi
h means that the 
onne
tions between
olor 
lasses i and j in G must be like in 
ase 
). By indu
tion hypothesisevery automorphism in Aut(G) �xes the nodes of 
olor j, and the 
onne
tion
) for
es the nodes of 
olor i to be �xed also.For the other dire
tion, suppose that for some 
olor i node vid is not rea
hablefrom vi in f(G). We will show that in this 
ase there is some non-trivialautomorphism in G. W.l.o.g. let f1; : : : ; kg be the set of 
olors j su
h that vjis 
onne
ted to vi in f(G). Sin
e vid is not rea
hable from vi, in 
ase there areedges between two 
lasses with 
olors in f1; : : : ; kg in G, these edges form a
onne
tion of type 
), and the only possible edges between 
lasses of 
olors land m, with l 62 f1; : : : ; kg and m 2 f1; : : : ; kg are 
onne
tions of type d). We
laim that the 
olor �xing permutation ' inter
hanging the two nodes of the
lasses of 
olors j 2 f1; : : : ; kg and �xing the rest of the nodes is a non-trivialautomorphism in G. Let u; v be two nodes in V . If neither u nor v have 
olorsin the set f1; : : : ; kg then ' a
ts like the identity on (u; v). If both u and vhave 
olors l; m in the set f1; : : : ; kg then either there is no 
onne
tion or the
onne
tions between the 
olor 
lasses l and m must be of type 
). It followsthat (u; v) 2 E if and only if (u0; v0) 2 E, where u0 and v0 are the other nodeswith 
olors l and m respe
tively. By the de�nition of ', (u0; v0) = ('(u); '(v)).Finally, if u has 
olor l 62 f1; : : : ; kg and v has 
olor m 2 f1; : : : ; kg and thereis a 
onne
tion between nodes of 
olor l and m then it must be of type d) (a
onne
tion of type 
) would for
e 
olor l to be in f1; : : : ; kg). By de�nition('(u); '(v)) = (u; v0). As in the previous two 
ases we have (u; v) 2 E if andonly if ('(u); '(v)) 2 E.Observe that Lemma 5.3 implies that the graph G has a nontrivial automor-phism if and only if f(G) has more than one 
onne
ted 
omponent.6 Upper bounds for 3-GI and 3-GAWe deal in this se
tion with graphs having up to 3 di�erent nodes of ea
h
olor. We denote by B3 the set of 6 bije
tions de�ned over a domain set of 3elements. An isomorphism between graphs with 
olor 
lasses of size 3 
an bede
omposed in a produ
t of bije
tions from B3.Theorem 6.1 The Graph Isomorphism problem restri
ted to graphs with
olor 
lasses of size at most 3 is in the 
lass SL.12



Proof. Let G and H be the input graphs. By Lemma 5.1 we 
an 
onsider thatfor any pair of 
olors i; j there are at most 4 edges in ea
h one of the inputgraphs having as endpoints nodes of 
olors i and j. If there are more than 4edges we 
onsider the dual 
onne
tions. The three nodes of a 
olor i in G arelabeled i1; i2 and i3, and in H by i01; i02 and i03.We will redu
e graphs G and H to a single undire
ted graph f(G;H) andtranslate the isomorphism question to a rea
hability question in f(G;H). Forea
h 
olor i we will 
onsider 6 nodes in f(G) 
orresponding to the possiblebije
tions in B3. Additionally there is one extra node w that will be usedto indi
ate that some isomorphisms between subgraphs of G and H are notpossible. The set of nodes in f(G;H) is:fvi' j ' 2 B3 and i is a 
olor in Gg [ fwg:The set of edges in f(G;H) is 
onstru
ted a

ording to the following 2 rules.Observe that both rules 
an be applied in logarithmi
 spa
e sin
e the 
olor
lasses have 
onstant size 3 and there 
an only be at most 6 potential isomor-phisms between the nodes of a given 
olor.Let Ci (resp. C 0i) denote the set of nodes of 
olor i in G (resp. in H). For ea
h
olor i the edges with both endpoints in Ci or C 0i might imply that some ofthe bije
tions from Ci to C 0i 
annot be extended to an isomorphism betweenG and H. The restri
tions in the set of possible bije
tions 
an also be indu
edby the 
onne
tions with a di�erent 
olor 
lass. In these 
ases we in
lude someedges in the graph f(G;H) as in rule 1, indi
ating that a bije
tion betweenthe nodes of a 
olor 
annot be extended to an isomorphism:Rule 1: For every pair of 
olors i; j and every bije
tion ' 2 B3, we in
ludein f(G;H) the edge (vi',w) if the edges between Ci and Cj in G and theedges between C 0i and C 0j in H imply that no isomorphism in Iso(G;H) 
anmap the nodes of Ci into C 0i like ', that is, if for every  2 B3, ' �  62Iso(Ci[Cj; C 0i [C 0j), where (Ci[Cj) is the graph made by the set of nodes Ciand Cj and the edges between them. For the trivial 
ase in whi
h there is onlyone 
olor i in G, the edge (vi'; w) is in
luded in f(G;H) when ' 62 Iso(Ci; C 0i).We also in
lude in f(G;H) some edges between nodes 
orresponding to di�er-ent 
olor 
lasses indi
ating that a partial isomorphism between the nodes ofsome 
olor for
es a partial isomorphism between the nodes of another 
olor.Rule 2: For every pair of 
olors i; j, and ' 2 B3. If for a pair of nodesa; b 2 fi1; i2; i3g and a pair of nodes a0; b0 2 fi01; i02; i03g and two bije
tions�; � 2 B3 the edges between the sets of nodes fa; bg and f�(a); �(b)g areexa
tly the two edges f(a; �(a)); (b; �(b))g and the edges between the sets ofnodes fa0; b0g and f�(a0); �(b0)g are exa
tly f(a0; �(a0)); (b0; �(b0))g and '� 213



Iso(Ci [ Cj; C 0i [ C 0j) (for  = �'��1) then we in
lude in E 0 the edge (vi'; vj )(see Figure 5). ab �(a)�(b) a0b0 �(b0)�(a0)Fig. 5. A situation in whi
h rule 2 is applied. (The dotted lines indi
ate that theseedges do not exist.)We show with the following lemmas that a rea
hability question in f(G;H)
an be used to de
ide whether G and H are isomorphi
.Lemma 6.2 For a pair of 
olors i; j and ';  2 B3, if (vi'; w) 62 f(G;H) and(vj ; w) 62 f(G;H) and (vi'; vj�) 62 f(G;H) for any � 2 B3, then ' �  is anisomorphism between the subgraphs Ci [ Cj and C 0i [ C 0j.Proof. Let G = (V;E) and H = (W;E) be the input graphs and let us denoteby a; b and 
 the nodes of 
olor i in G, by d; e and f the 
olor j nodes. Wedenote by the same symbols with ' the nodes of these 
olors in H. W.l.o.g we
an suppose that for l 2 fa; b; 
g '(l) = l0 and for m 2 fd; e; fg  (m) = m0.Let us suppose by 
ontradi
tion that '�  62 Iso(Ci [Cj; C 0i [C 0j). It followsthat for a pair of nodes a; d,(a; d) 2 E , ('(a);  (d)) 62 F:We 
onsider that (a; d) 2 E, the other 
ase is analogous. Sin
e vi' and vj are not 
onne
ted to w, it follows by rule 1 that there are two bije
tions �and � 2 B3 su
h that ' � � and � �  2 Iso(Ci [ Cj; C 0i [ C 0j). Be
ause ofthese fa
ts we have that �(d) 6= d0 and �(a) 6= (a0). Again w.l.o.g. we 
ansuppose �(d) = e0 and �(a) = b0. It follows ('(a); �(d)) = (a0; e0) 2 F and(�(a);  (d)) = (b0; d0) 2 F . The rest of the proof 
onsists in 
onsidering thedi�erent possibilities for the bije
tions � and � showing that in ea
h 
ase werea
h a 
ontradi
tion.Case 1: Suppose �(d) = e0; �(e) = d0 and �(f) = f 0. (a0; d0) 62 F implies('�1(a0); ��1(d0)) = (a; e) 62 E and therefore (�(a);  (e)) = (b0; e0) 62 F andalso ('�1(b0); ��1(e0) = (b; d) 62 E. If �(b) = a0 then from (a0; e0) 2 F follows(��1(a0);  �1(e0)) = (b; e) 2 E. But then we have that the edges between thenodes a; b; d; e in G and between their 
ounterparts in H are exa
tly as is rule2, and there should be an edge in f(G;H) from vi' to some node of 
olor j14




ontradi
ting the hypothesis. The other possible situation in when �(b) = 
0and �(
) = a0 but then from (b; d) 62 F follows ('�1�(b); ��1 (d)) = (
; e) 62E, and from (a0; e0) 2 F follows (��1(a0);  �1(e0)) = (
; e) 2 E whi
h is a
ontradi
tion.Case 2: Suppose �(d) = e0; �(e) = f 0 and �(f) = d0. By the same argumentsas in Case 1, we have (b; f) 2 E, (a; f) 62 E (b0; f 0) 62 F and (b0; e0) 62 E. If�(b) = a0 and �(
) = 
0 then from (b; e) 62 E follows (�(b);  (e)) = (a0; e0) 62 Fwhi
h is a 
ontradi
tion. Finally, if �(b) = 
0 and �(
) = a0 then it follows(a; d); (b; f); (
; e) 2 E, (a; f); (b; e); (
; d) 62 E, (a0; e0); (b0; d0); (
0; f 0) 2 F and(a0; d0); (b0; f 0); (
0; e0) 62 F . Consider the pair of nodes a and e. If (a; e) 2 Ethen (a0; f 0); (b0; e0) 2 F 
ontradi
ting the fa
t that there are at most 4 edgesin H 
onne
ting the i and j nodes. On the other hand, if (a; e) 62 E thenthe set of edges between the i and j 
olor nodes are exa
tly (a; d); (b; f); (
; e)in E and (a0; e0); (b0; d0); (
0; f 0) in F . By rule 2 there should be some edge inf(G;H) from vi' to some node of 
olor j, 
ontradi
ting the hypothesis.Lemma 6.3 For ea
h pair of 
olors i; j, and ';  2 B3, if there is a pathfrom vi' in f(G;H) to vj not having w as an intermediate node then everyisomorphism in Iso(G;H) that maps the nodes of 
olor i like ', is for
ed tomap the nodes of 
olor j like  .Proof. We use indu
tion on the length of a minimal path from vi' to vj inf(G;H). If this path has length 1 then the 
olors i and j are di�erent and theedge (vi'; vj ) in f(G;H) has been pla
ed by rule 2. This implies that for somea; b 2 f1; 2; 3g and some 
; d 2 f1; 2; 3g the edges (ia; j�(a)), (ib; j�(b)) (for some� 2 B3) are the only edges between the sets of nodes fia, ibg and fj�(a); j�(b)gin G and the edges (ia; j�(a)), (ib; j�(b)) (for some � 2 B3) are the only edgesbetween the sets of nodes fi0
, i0dg and fj�(
); j�(d)g in H. Moreover, be
ause ofrule 2,  = �'��1. If an isomorphism in Iso(G;H) maps the i nodes to thei0 nodes like ', then for l 2 f�(a); �(b)g jl must be mapped to a node j 0 inH 
onne
ted to i0'��1(l), and this node is j�'��1(l) = j (l). It follows also for
 62 fa; bg, j
 is mapped to j�'��1(
).For the indu
tion step, if the number of edges in the path from vi' and vj inf(G;H) is k + 1, let m be the �rst 
olor after i in the path. There has to besome bije
tion � 2 B3 and an edge (vi',vm� ) between the i nodes and the jnodes in f(G;H) and this edge must be introdu
ed by rule 2. By indu
tionhypothesis, every isomorphism in Iso(G;H) mapping the i nodes like ' mustmap the m nodes like �, and every isomorphism in Iso(G;H) mapping the mnodes like � must map the j nodes like  . Both 
onditions together imply theresult.Observe that Lemma 6.3 implies that for any 
olor i, and ';  2 B3, if ' 6= , and vi' is rea
hable from vi in f(G;H) then there is no isomorphism in15



Iso(G;H) mapping the nodes of 
olor i like '. Another 
onsequen
e of thelemma (together with the de�nition of rule 1), is that for any 
olor i and ' 2B3, if node w 
an be rea
hed from vi' in f(G;H) then there is no isomorphismin Iso(G;H) mapping the nodes of 
olor i like '.Lemma 6.4 Suppose that there are k di�erent 
olors in G and H. If thereis a set of nodes in f(G;H), v1'1 ; : : : ; vk'k one of ea
h 
olor, and su
h thatno other node in f(G;H) is rea
hable from this set then '1 � : : : � 'k is anisomorphism between G and H.Proof. The proof is by indu
tion on the number of 
olor 
lasses k in G andH. If there is only one 
olor the result is trivial. For the 
ase of two 
olors iand j, 
onsider that from the set of nodes vi' and vj one 
annot rea
h anyother node in f(G;H). This implies that the only possible edge in f(G;H)with an endpoint in this set is the one 
onne
ting both nodes. If this edge doesnot exist the result follows by Lemma 6.2. On the other hand, if (vi'; vj ) is anedge in f(G;H) then the edge was pla
ed by rule 2 and '�  2 Iso(G;H).For the indu
tion step, 
onsider that there are k 
olors in G and H and thereis a set of nodes one of ea
h 
olor v1'1 ; : : : ; vk'k in f(G;H). Consider the graphsG0 and H 0 obtained by deleting the nodes of 
olor k in G and H and allthe edges having an endpoint of this 
olor. Sin
e eliminating one 
olor 
anonly redu
e the set of lo
al restri
tions for isomorphisms, there is no newedge in f(G0; H 0) that was not already present in f(G;H) and therefore fromv1'1 ; : : : ; vk'k�1 no other node is rea
hable in f(G0; H 0). By indu
tion hypothesis'1� : : :�'k�1 2 Iso(G0; H 0). We 
laim that this isomorphism between G0 andH 0 
an be extended to an isomorphism in Iso(G;H) by mapping the nodes inCk to C 0k as in 'k.To see that this is an isomorphism we will show that for every j < k it holds'k � 'j 2 Iso(Ck [ Cj; C 0k [ C 0j)). If the edge (vk'k ; vj'j ) belongs to f(G;H)then the edge was pla
ed by rule 2 and 'k � 'j 2 Iso(Ck [ Cj; C 0k [ C 0j)). Onthe other hand if this edge does not exist, there is no other edge in f(G;H)between k and j nodes having vk'k or vj'j as endpoint (from the set v1'1 ; : : : ; vk'kno other node 
an be rea
hed). The result follows then by Lemma 6.2.It follows from Lemmas 6.3 and 6.4 that there is an isomorphism from G to Hif and only if there is a set of nodes in f(G;H), one of ea
h 
olor and su
h thatfrom this set no other node in f(G;H) 
an be rea
hed. In order to transformthis into a question in SL we need the following lemma:Lemma 6.5 Let A and B be two 
onne
ted 
omponents in f(G;H) satisfyingi) The nodes in A have di�erent 
olors and the nodes in B have di�erent
olors 16



ii) w 62 A [B andiii) the interse
tion of 
olors in A and B is not emptythen the set of 
olors present in A is the same as the set of 
olors present inB.Proof. We show that for any pair of 
olors i and j, and for two bije
tions 'and � 2 B3, if the node w in f(G;H) 
an neither be rea
hed from vi' nor fromvi� and if vi' has a neighbor of 
olor j in f(G;H), then so does vi�. The resultfollows from this fa
t.Suppose that (vi'; vj ) is an edge in f(G;H). This edge was set by rule 2and therefore there is a pair of nodes a; b 2 fi1; i2; i3g and a pair of nodesa0; b0 2 fi01; i02; i03g and two bije
tions �; � 2 B3 satisfying the 
onditions of rule2 and su
h that  = �'��1. Sin
e vi� is not 
onne
ted to w, there must bea bije
tion 
 2 B3 satisfying � � 
 2 Iso(Ci [ Cj; C 0i [ C 0j). � and � des
ribethe 
onne
tions between i and j nodes in G and H and therefore we have
 = ����1. We are again in the 
onditions of rule 2, and the edge (vi�; vj
)belongs to f(G;H)We know that there is an isomorphism from G to H if and only if there is aset of nodes in f(G;H), one of ea
h 
olor and su
h that from this set no othernode in f(G;H) 
an be rea
hed. By Lemma 6.5 in order to test this it suÆ
esto 
he
k for ea
h 
olor i that there is one node vi' in f(G;H) from whi
hneither w nor two nodes of the same 
olor 
an be rea
hed (this question 
anbe solved within the 
lass SL). In order to see this observe that if G and Hare isomorphi
, su
h a set must exist. By Lemma 6.5 if su
h a set exists thenthere is a set of 
olor disjoint 
onne
ted 
omponents in f(G;H) 
ontaining all
olors.We show now that the graph automorphism problem for 
olored graphs with
olor 
lasses of size 3 also lies in the 
lass SL. Although a dire
t proof similarto the one in Theorem 6.1 is possible, it is easier to give a redu
tion from3-GA to UGAP based on the fa
t that 3-GI 2 SL.Theorem 6.6 The Graph Automorphism problem restri
ted to graphs with
olor 
lasses of size at most 3 is in the 
lass SL.Proof. We will show that 3-GA is logarithmi
 spa
e many-one redu
ible toUGAP. This implies that 3-GA lies in SL. Let G = (V;E) be a graph withits nodes partitioned into 
olor 
lasses of size at most three. We denote byG[i℄ a 
opy of G but with node i marked with a new spe
ial 
olor. There isa non-trivial automorphism in G if and only if for a pair of distin
t nodesof the same 
olor i and j in V , there is an automorphism mapping i to j, ifand only if for su
h a pair of nodes G[i℄ is isomorphi
 to G[j℄. Sin
e the 
olor17




lasses in G[i℄ have size 3 at most, this means that 3-GA is redu
ible to a setof disjun
tive queries to 3-GI. By Theorem 6.1, 3-GI lies in SL and 
an beredu
ed to UGAP. The list of queries to 3-GI 
an then be redu
ed to a listof rea
hability queries in undire
ted graphs. The disjun
tive list of queries toUGAP 
an be redu
ed to a single one by 
onne
ting the graphs in parallel.This provides a many-one redu
tion from 3-GA to UGAP.
7 Lower bounds for 2-GI and 2-GAWe prove now the hardness results for 2-GI and 2-GA.Theorem 7.1 2-GI is hard for SL under �AC0m .Proof. We show that the graph a

essibility problem for undire
ted graphs,UGAP, is redu
ible to the 
omplement of 2-GI. The result follows sin
e UGAPis AC0 
omplete for SL, and this 
lass is 
losed under 
omplementation [25℄.Let G = (V;E) be an undire
ted graph with two designated nodes s; t 2 V .Consider the new graph G0 = G1 [ G2 where G1 and G2 are two 
opies ofG, and for a node v 2 V let us 
all v1 and v2 the 
opies of v in G1 and G2respe
tively. Furthermore, we 
olor ea
h pair of nodes v1; v2 with 
olor iv, and
olor t1 with a spe
ial 
olor 1 and t2 with another 
olor 2. We 
laim thatthere is no path from s to t in G if and only if there is automorphism ' in G0mapping s1 to s2. Clearly if there is no path between s and t in G, these twonodes belong to di�erent 
onne
ted 
omponents. The desired automorphism
an be obtained by mapping the nodes of the 
onne
ted 
omponent of s1 inG1 to the 
orresponding nodes in G2 and mapping the rest of the nodes in G0(and in parti
ular t1) to themselves.Conversely, if there is a path between s and t in G, the mentioned automor-phism ' does not exist sin
e the nodes s2 ('(s1)) and t1 ('(t1)) should be inthe same 
onne
ted 
omponent, but there are no edges between G1 and G2 inG0.The question of whether there is an automorphism in G0 with the mentionedproperties, 
an in turn be redu
ed to 2-GI. Let H1 be a 
opy of G0 with nodes1 having a spe
ial 
olor 3, and H2 be another 
opy with s2 having 
olor 3.There is an automorphism mapping s1 to s2 in G0 if and only if H1 and H2are isomorphi
. The size of the 
olor 
lasses in ea
h of the graphs H1 and H2is at most 2.Now the hardness result for 2-GA follows easily.18



Corollary 7.2 UCC �AC0m 2-GA.Proof. The redu
tion for this result is the same as in the proof of the previoustheorem. Observe that in G0 the 
olor 
lasses are of size at most 2 and thereis a nontrivial automorphism in G0 if and only if there is more than a single
onne
ted 
omponent in G.8 Con
luding remarksTogether with the upper bounds given by Buss and Lindell our results imply:� TI in the string representation is NC1-
omplete under AC0 redu
ibility.� TI and TA in the pointer representation are NC1-
omplete under AC0redu
ibility.� 2-GA is equivalent to UCC under AC0 redu
ibility.� 2-GI and 3-GI are 
omplete for SL under AC0 redu
ibility.� 3-GA belongs to SL.The level of sophisti
ation of Buss's NC1 algorithm for TI [8℄ is 
omparable tothat of his simpli�edNC1 algorithm for the Boolean expression value problemFVP [13℄. Are these two upper bounds independent? In other words, is there aredu
tion from TI to FVP or vi
e versa whi
h is simpler than either of Buss'stwo upper bounds?It is interesting to 
onsider FVP �AC0m TI. Proving that FVP �AC0m TI hasrequired three ingredients: (1) the NC1 upper bound for FVP, (2) the 
har-a
terization of NC1 in terms of balan
ed Boolean expressions, and (3) oursimple Lemma 3.1. Lemma 3.1 dire
tly 
onstru
ts trees from Boolean formu-las, but the ensuing dire
t redu
tion is from Balan
ed-FVP to TI. How 
anLemma 3.1 be strengthened?The bottlene
k to a strengthening of Lemma 3.1 is the handling of a BooleanOR. Lemma 3.1 
an only handle balan
ed Boolean expressions be
ause thetrees G_ and H_ depi
ted in its proof ea
h require a 
opy of G1, G2, H1,and H2. Hen
e an open question is whether Lemma 3.1 
an be proved usingsimpler 
onstru
ts G_ and H_, still simulating the Boolean OR, but onlyadding a small number of additional nodes. If so, the NC1 upper bound forFVP is redundant, i.e., the NC1 upper bound for FVP follows from the NC1upper bound for TI.A natural way to 
ontinue this resear
h is to study the situation for otherbounds b � 4 for the size of the 
olor 
lasses trying to obtain 
ompletenessresults for other 
omplexity 
lasses. >From the results in [10℄ it 
an easily19



be derived that for b � 2, b2-GI is hard for the modular 
lass ModbL, and2b2-GA is also hard for ModbL. It follows from this that 4-GI is hard for �Land therefore a proof of the fa
t that 4-GI belongs to SL would imply that�L is in
luded in SL whi
h is something we do not expe
t. Obtaining betterupper bounds than the ones given in [9℄ for b-GI and b-GA for spe
ial 
asesof k (k � 4) is an interesting open problem.We observe that the blow-up in the 
omplexity of the problem when goingfrom 
olor 
lasses of size 3 to size 4 also happens in the related area of graphidenti�
ation using �rst-order formulas with 
ounting. Immerman and Landershow in [26℄ that 3 variables suÆ
e to identify all 
olored graphs of 
olor size3, while 
(n) variables are needed to identify all graphs of 
olor size 4 using�rst order formulas with 
ounting, as proved in [27℄.A
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