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the complexity of the set is then used to derive information about the complexity of thefunction. This is not entirely satisfactory since many computational problems are \func-tional" in nature, and they are not as interesting when considered as decision problems;for example, in general it seems more useful to �nd a Hamiltonian tour in a graph than todecide whether the graph has such a tour.There have been however some ideas on how to use nondeterminism as a resource inorder to obtain a model to compute functional problems. If we restrict ourselves to thepolynomial-time context, the following three approaches can be distinguished:� The nondeterministic machine is restricted to output only one value for a given input(on possibly many paths).For polynomial time this generates the class of (partial) functions NPSV [36]. However, thisclass does not seem to use the full power of nondeterminism. NPSV does not contain thecharacteristic function of NP complete problems (unless NP = coNP) and there are only afew examples of functions in NPSV that are not known to be deterministically computablein polynomial time.� One can de�ne an operator on the set of possible output values (or accepting paths)of a nondeterministic machine.Important complexity classes have been de�ned considering such operators, for example#P [40], optP [26], and spanP [24] are de�ned in this way using the operators number ofaccepting paths, maximum output value, and number of di�erent output values, respec-tively.� A deterministic transducer with access to an oracle in NP can be considered.Here, the function is computed by a particular reduction to a set in NP. This is for examplethe case of the function class FPNP that is in some sense equivalent to optP [26] and containssearch versions of all the natural problems in NP.The function classes de�ned following the last approach depend heavily on the typeof oracle access that the deterministic transducer has. In FPNP the deterministic machinecan query the oracle in an adaptive way, and this class can be therefore considered as thefunctional analogue to the class �p2 of sets Turing reducible to a set in NP.In this article, we will be interested in a further classi�cation of functions in FPNP byconsidering di�erent kinds of restricted access to the NP oracle. In particular, we investigatefunctions that are computable when the query mechanism is nonadaptive, that is, whenall the oracle queries are made in parallel so that they do not depend on previous oracleanswers. In the language case, this restriction gives rise to the class �p2 [42], the non-adaptiveanalogue to the adaptive class �p2. �p2 is a very robust class that can be characterized in awide variety of ways [2, 8, 19, 42]. In Section 2 we go over the characterizations obtainedfor the language class �p2 observing that in the case of functions they give rise to at mostthree function classes FPNPk , FPNPlog , and FLNPlog , and give some natural examples of functionsin these classes. 2



In contrast to the language case these three function classes seem to be di�erent. InSection 3 we give evidence in support of this fact showing that any of the equalities hasunlikely consequences. We prove that FLNPlog coincides with any of the other two classesthen L = P.The question whether the classes FPNPk and FPNPlog are equal has attracted the atten-tion of di�erent researchers. It is known that the hypothesis FPNPk = FPNPlog implies thatFewP=P, NP=R and coNP=US, [4][39][35]. These three consequences follow in fact from aweaker hypothesis, namely from the existence of a polynomial-time algorithm that decidescorrectly the satis�ability of a formula with at most one satisfying assignment. (If the for-mula has more than one assignment the algorithm may incorrectly decide that the formulais not satis�able). More formally (see [15] for the de�nition of promise problem), if thepromise problem (1SAT;SAT) has a solution in P then FewP=P, NP=R and coNP=US.We present a di�erent consequence of the equality of the function classes FPNPk andFPNPlog that contrary to the previous results does not seem to be related with the promiseproblem (1SAT;SAT). We show that if FPNPk = FPNPlog then there is a reduction by apolylogarithmic factor in the number of nondeterministic bits needed to decide a problemin NP. From this it follows that a polylogarithmic amount of nondeterminism can besimulated in polynomial time, and also that SAT can be decided (for any k) in polynomialtime with only O( nlogk n ) nondeterministic bits. For the deterministic complexity of thesatis�ability problem, we show that in the case FPNPk = FPNPlog there is a deterministic sub-exponential time algorithm deciding SAT that works in time 2nO(1= log log n). This still doesnot show that the hypothesis implies P = NP but in some sense makes the gap betweenthe classes \smaller". The methods used to prove these results are new; they are based ona combinatorial technique that uses a polynomial-time approximation algorithm of ratioO(log n) for the Set Cover Problem given by Johnson in [20].For simplicity all through this article the expression \log n" denotes dlog2 ne and \ab"denotes integer division of a by b.2 Function classes related to �p2As mentioned in the introduction, the closure of NP under polynomial-time Turing re-ducibility de�nes the language class PNP or �p2 (the second level of the Polynomial Hier-archy). Much attention has been devoted to the study of various kinds of restrictions ofpolynomial-time Turing reducibility and their related closure classes such as� PNPk , the closure of NP under polynomial-time truth-table reducibility or, equiva-lently, non-adaptive (parallel) reducibility [29].Here a list with all queries is constructed and queried to the oracle, i.e., the queries aremade in parallel. The oracle provides the answers to the queries as a 0{1 string denotingthe characteristic sequence of the queries.� PNPlog , the closure of NP under polynomial-time Turing reducibility with logarithmi-cally many queries [26]. 3



Here the number of queries for any input of length n is bounded by O(log n).� LNP, the closure of NP under logspace Turing reducibility or, equivalently, LNPk , theclosure of NP under logspace truth-table reducibility or non-adaptive (parallel) re-ducibility [28].Note that for logspace oracle machines, the query tape is not included in the space bound.Due to the (implicit) time bound of the machine, the length of any query is polynomiallybounded. The handling of parallel queries in a logspace computation needs some furtherexplanation. A logspace machine writes a sequence of queries on the oracle tape and receivesthe oracle answers as a sequence of 0-1 answers (on the same tape). The machine may readthese answers in a one-way mode (or, equivalently, two-way mode (see [3])).� LNPlog , the closure of NP under logspace Turing reducibility with logarithmically manyqueries [42].� ACNP0 , the closure of NP under reducibility with logspace-uniform circuits of constantdepth [12, 43].A language L is contained in ACNP0 , if there is a family fCng of unbounded fan-in circuitswith constant depth and size O(nO(1)), where Cn is allowed to have oracle nodes for a setA 2 NP, such that for all x of length n, x 2 L if and only if Cn(x) = 1. We assumethat there is a deterministic logspace bounded transducer which on input 1n computes anencoding of Cn (logspace uniformity).Surprisingly, all of these restrictions turned out to be equivalent in the case of NP andgive rise to the class �p2 coined by Wagner [42] as the non-adaptive analogue of �p2 in thePolynomial Hierarchy.�p2 is an extremely robust class that still can be characterized in many other ways (see[2, 8, 19, 42]). In this section we study the mentioned characterizations of �p2 adaptingthem to compute functions instead of languages. We show that these characterizationsgenerate the three function classes FPNPk , FPNPlog and FLNPlog . We have selected from thebroad list of ways to de�ne �p2 the above ones since they are particularly interesting inorder to illustrate the di�erent concepts involved in the characterizations, like restrictedoracle mechanisms, logspace or circuit complexity. Moreover all the characterizations of �p2given in [2, 8, 19, 42] that can be adapted in a natural way to de�ne functions, generateone of the three mentioned complexity classes.The following theorem summarizes those characterizations of �p2 that we use later tode�ne function classes.Theorem 2.1 [8] [10] [28] [42] The class �p2 of languages truth-table reducible to NPcan be characterized as �p2 = PNPk = LNPk = LNP = ACNP0 = PNPlog = LNPlog .For the proof of Theorem 2.1, the \census technique" is of particular importance. Thistechnique was developed by Hemachandra [18] for the proof of PNPk � PNPlog [18], and wasalso successfully used by Kadin in [21]. For a set L in PNPk and an input x, the \census"refers to the number of parallel queries posed by the base machine computing L that are4



answered positively by the oracle. The idea to decide L with only logarithmically manyqueries to NP is to compute �rst the census k for x (by binary search with logarithmicallymany queries to an oracle in NP), and then make one more query (x; k) to another suitableNP oracle. The last oracle guesses nondeterministically the k queries that are answeredpositively and checks that the selected queries are the correct ones (by guessing acceptingpaths for each of these queries in the nondeterministic machine computing them). With theinformation of the positively answered queries (and therefore also knowing the negativelyanswered queries) the oracle can then simulate correctly the complete computation of thebase machine.We show now that the characterizations of the class �p2 stated in Theorem 2.1 giverise to three function classes. We obtain functions by considering deterministic Turingtransducers instead of (accepting) machines, or, circuit families with an ordered sequenceof output nodes instead of just one output node. We denote the corresponding functionclasses with the pre�x \F".For general functions, the complexity of computing all bits of a function may exceedthe complexity of computing any particular bit. If the characterization allows to iteratebit computations, as in the case of the language classes PNPk , LNPk , LNP, and ACNP0 , theresulting function classes coincide.Theorem 2.2 FLNPlog � FPNPlog � FPNPk = FLNPk = FLNP = FACNP0 .Proof. (from left to right) The inclusion FLNPlog � FPNPlog is trivial, because logspaceis a restriction of polynomial time. The second inclusion is proved in the same way asin the language case: all possible queries that could be asked (polynomially many) areconstructed, and then asked in parallel.We show now the equality of the remaining four classes. De�ne the di�erent bits of afunction f by the set BITf := fhx; i; bi j b 2 f0; 1g; fi(x) = bg;where fi(x) denotes the ith bit of f(x).Claim. For C 2 fPNPk ;LNPk ;LNP;ACNP0 g it holds: f 2 FC if and only if BITf 2 C.By Theorem 2.1 and the Claim it follows that FPNPk = FLNPk = FLNP = FACNP0 .Proof of Claim. The implication from left to right is trivial. For the other implica-tion, let f be such that for any input x of length n, jf(x) j � p(jx j) for a polynomial p.Let T be a device with the computation power of class C that computes BITf . Let T 0 be adevice that checks for all i, 1 � i � p(jx j), hx; i; 0i and hx; i; 1i for containment in BITf bysimulation of T . With this information, T 0 can obtain the length of f(x) easily. It is l � 1for the smallest l, 1 � l � p(jx j), such that hx; l; 0i = 0 and hx; l; 1i = 0. The ith bit fi(x)of f(x) satis�es fi(x) = b if and only if hx; i; bi 2 BITf for 1 � i � l. We have to show thatT 0 remains a device of the same type as device T . This is clear for the case LNP. Here T 0simply computes one bit fi(x) after another by simulating T on hx; i; 0i and hx; i; 1i untilboth subroutines result negatively. For the cases PNPk and LNPk , T 0 �rst computes for all iwith 1 � i � p(jxj) and b 2 f0; 1g the sequence of parallel queries that T produces for5



hx; i; bi and asks all these queries in parallel. Then, with the oracle answers on the querytape T 0 can compute each fi(x) deterministically. For the case FACNP0 , we combine ACNP0circuits for all hx; i; bi, 1 � i � p(n), 0 � b � 1 in parallel to a circuit Cn that computesf(x) for x of length n. Let the output nodes of the circuits for hx; i; 0i and hx; i; 1i becomeoutput nodes 2i � 1 and 2i of Cn, respectively. Then y1y2 : : : y2p(n) yields a codi�cation off(x) in which \10" codi�es 0, \01" codi�es 1, and \00" codi�es a padding symbol. 2All three function classes FPNPk , FPNPlog , and FLNPlog contain important natural functions.In some cases we can show that these examples are complete. To de�ne completeness ina class of functions and to compare the relative complexity of two functions we use thenotion of metric reducibility introduced by Krentel in [26]. A function f is metric reducibleto a function g if there is a pair of polynomial-time computable functions h1 and h2 suchthat for every string x, f(x) = h2(x; g(h1(x))). A more intuitive way to de�ne this notion isto say that f can be computed in polynomial time by a deterministic machine that queriesat most once a functional oracle for g.We start by giving an example of a metric complete function for FPNPk . For a Booleanformula F on n variables consider the set Assign(F ) formed by the strings representingsatisfying assignments for F plus the string 0n. We de�ne the function Sup : fBooleanformulasg �! f0; 1g�. Sup(F ) is the supremum of Assign(F ) under the standard latticepartial order (a string x 2 f0; 1gn is smaller or equal than a string y 2 f0; 1gn if for everyposition i � n, if x has a \1" in this position then so does y). It is not hard to see that thefunction Sup is metric complete for the class FPNPk [23]. More examples of natural completefunctions in FPNPk have been obtained in [13] and [7].Another example of a function in FPNPk is the one computing the number of isomor-phisms between two given graphs [32, 25]. This fact is considered as evidence that theGraph Isomorphism problem is not NP-complete since the counting versions of the knownNP-complete problems cannot even be computed in polynomial time with access to anyclass in the polynomial hierarchy (unless this hierarchy collapses).For a few NP decision problems search functions related to them (functions that forany string in the NP set provide a proof or witness of this fact) can be computed in FPNPk .This is the case for the Primality and Graph Automorphism problems. The �rst one isknown to be in UP [16] and it can be easily seen that all the problems in UP have searchfunctions in FPNPk . For the case of Graph Automorphism the method to obtain solutions(automorphisms) in FPNPk uses some group theoretic arguments particular to this problem[31, 25]. Observe that the two mentioned problems are not believed to be NP-complete,and it remains open whether solutions for the search version of NP-complete problems canbe found in FPNPk .All the given examples are functions in FPNPk that are not known to be in its subclassFPNPlog . Krentel [26] showed that many optimization problems whose solution is polynomiallybounded are metric complete for FPNPlog . Examples of such problems are the function thatcomputes the maximum size of a clique in a graph, and the one obtaining the maximumnumber of simultaneously satis�able clauses in a Boolean formula written in conjunctivenormal form. A function of this kind, related to the function Sup presented above, is thefunction Sup 0 that for a Boolean formula F , computes the number of \1's" in Sup(F ). The6



function Sup 0 is metric complete for the class FPNPlog .All these examples of complete functions in FPNPlog belong also to the class FLNPlog . Itdoes not make sense to talk about polynomial-time metric completeness for this last classsince the closure of FLNPlog under polynomial-time metric reducibility coincides with FPNPlog .However, as we will see in the next section FLNPlog seems to be a much weaker class thanFPNPlog . In particular \hard" functions in FP (like the Circuit Value function [27]) probablydo not belong to FLNPlog .The three function classes FPNPk , FPNPlog , and FLNPlog seem to be all di�erent, since aswe will show in Section 3, any equality between them has unlikely consequences. This(possible) di�erence in behaviour between language classes and function classes is basicallydue to a communication problem between the oracle and the base machine that occurswhen the bound on the length of the function exceeds the bound on the number of bitshanded over by the oracle.Theorem 2.1 can be considered as a result for 0{1 functions. As shown in the followingtheorem, it remains true for functions with values that are logarithmically bounded inlength, i.e., functions f for which jf(x) j 2 O(log jx j). For a function class F, we denoteby F[log n] the subclass of F formed by such functions.Theorem 2.3 FPNPk [log n] = FLNPk [log n] = FLNP[log n] = FACNP0 [log n] = FPNPlog [log n] =FLNPlog [logn].Proof. Because of Theorem 2.2, it su�ces to show FPNPk [log n] � FLNPlog [log n]. Forthis, let f be a function in FPNPk [log n] computed by the transducer T , and apply the censustechnique mentioned above. First compute the number of parallel queries that are answeredpositively by T on input x of length n (the census of x). This uses O(log n) adaptive queriesto an oracle in NP, answering for hx; ii whether more than i queries of T are answeredpositive on input x. Note that the census has size O(log n) and can be stored by T 0. Itis not hard to see that there exists an NP machine that for the correct census correctlysimulates T by guessing the positive queries of T . Thus, with O(log n) further queries tothis oracle any bit of f(x) can be computed. The total number of queries remains O(log n).2 Another way to avoid the communication problem between the oracle and the basemachine is to allow functions that can produce a string instead of just giving a 0-1 answeras oracles. Now the communication problem mentioned above is avoided because the oracleprovides su�cient bits. An approach for this is to use witness oracles [9] or NP multivaluedfunctions [36, 17]. The function classes de�ned with the use of these kinds of functionaloracles and with the di�erent types of oracle access considered above coincide.An interesting subclass of FPNPk is the class NPSV[36] of single-valued NP functions.NPSV is the class of functions for which a single-valued NP transducer computing themexists. Note that this transducer may not produce any output, but if it does, then theoutput must be the same on all paths. 7



We consider NPSV transducers with an oracle in NP to obtain a new characterizationof FPNPk that will be very useful in some of the proofs of Section 3. For this we have torestrict the way in which the transducer can access the oracle set.We say that an NPSV transducer T has restricted access to an oracle A, if all the oraclequeries are performed by T before it makes any nondeterministic move. We denote byNPSVNP the class of functions that are computable by an NPSV transducer with restrictedaccess to an oracle in NP, and for a function f , NPSVNPf denotes the class of functionsde�ned in this way but making at most O(f) queries to the NP oracle.Note that any computation of an NPSV transducer T with restricted access to anoracle consists of two phases. In the �rst phase, T works deterministically but has accessto the oracle. In the second phase, T may guess but is not allowed to pose further queries.Hence, the complexity of such a transducer in a sense is the complexity of FPNP \plus"the complexity of NPSV. Hence, it holds FPNP = NPSVNP. But we furthermore obtain thefollowing characterization of FPNPk .Theorem 2.4 FPNPk = NPSVNPlog .Proof. From left to right, again use the census technique. Let f be a function inFPNPk computed by the transducer T . For input x, compute the number of parallel queriesanswered positively using O(log n) queries. Knowing this number, with an NP computationthe corresponding queries can be guessed and veri�ed. For the unique correct sequence ofquery answers, T is simulated and f(x) is produced as output.For the other inclusion, let T 0 be an NPSV transducer with restricted access to an oracleA 2 NP and query bound O(log n) for input of length n. Divide the computation of T 0 oninput x in two parts, up to the con�guration cx just before the �rst nondeterministic step,and the rest. Computing cx from x and T 0 is a function in FPNPlog , and by Theorem 2.2 itcan be computed in ACNP0 . Given cx, the rest of T 0s computation is a function in NPSVand therefore can also be computed in FACNP0 . The composition of two functions in FACNP0clearly remains in this class and FACNP0 = FPNPk by Theorem 2.2. 2It is not hard to see that Theorem 2.4 can be generalized. It holds for any k � 0,FACk(NP) = NPSVNPlogk+1 , where FACk(NP) denotes the class of functions computable bylogspace uniform unbounded fan-in circuits of depth O(logk) and polynomial size ([43]).3 Consequences of the equality of the function classesIn this section we present evidence that the three function classes FPNPk , FPNPlog and FLNPlogare all di�erent. We compare �rst the two classes that seem to be weaker.Theorem 3.1 FPNPlog = FLNPlog if and only if P = L.Proof. From left to right, let cceval denote a complete circuit evaluation functionthat, for a Boolean circuit C and x, computes the value of each gate of C(x). Clearly,cceval 2 FP, and hence cceval 2 FPNPlog . Now, suppose that cceval 2 FLNPlog , and let T8



be a logspace transducer that computes cceval with O(log n) many queries to SAT, foran input circuit C and x of size n. We will show that then the circuit value problem(which is P-complete [27]) can be computed in logspace as follows. On input of C and x,a logspace transducer T 0 cycles through all possible answer sequences y of length O(log n)and simulates T following the answer sequence y. For each y, T 0 checks that the outputproduced by T is a correct sequence of gates of C and that all values attached to the gatesare correct. To achieve this, for any gate g T 0 repeats the simulation of T to �nd the valuesof the (at most two) inputs of g. When an answer sequence y is tested, for which all thevalues of the circuit are correct, again by resimulation on y, T 0 looks up the value of theoutput gate of C and rejects or accepts accordingly.From right to left, note that P = L if and only if FP = FL. Suppose that FP � FL,and let T be a transducer with oracle A 2 NP that computes a function f 2 FPNPlog . Letc log n be the bound on the number of queries for an input x of length n. First, note thatonly logspace and at most 2c log n queries to the following oracle A00 2 NP are neccessaryto obtain the correct query answer sequence of T on input x.A00 := fhx; pi j p 2 f0; 1g�; the jpj + 1st query in the computation of T on x,with p taken as pre�x of the query answer sequence,is answered positivelyg:Now, de�ne the function f 00 withf 00(hx; yi) := output that T produces on input x, if y 2 f0; 1gc logn is taken asthe sequence of query answersClearly, f 00 2 FP, and by assumption f 00 2 FL. Hence, f can be computed with logspaceand O(log n) queries to A00, i.e., f 2 FLNPlog . 2From the above proof it also follows that even the hypothesis FP � FLNPlog would implyL = P. Also as a consequence of Theorem 3.1, it seems unlikely that parallel queries to NPcan be reduced to logarithmic adaptive queries with logspace.Corollary 3.2 If FLNPk � FLNPlog , then L = P.The equality of the classes FPNPk and FPNPlog would also imply strong consequences; thisquestion has been studied by di�erent reseachers. From the results of Toda in [39] it canbe concluded that if the classes FPNPk and FPNPlog coincide then there is a polynomial-timealgorithm that decides correctly the satis�ability of a formula with at most one satisfyingassignment. (If the formula has more than one assignment the algorithm may incorrectlydecide that the formula is not satis�able). This result is stated formally using the conceptof promise problems (see [15]). A promise problem is a pair of sets (Q;R). A set L is calleda solution to the promise problem (Q;R) if 8x(x 2 Q) (x 2 L, x 2 R)): 1SAT denotesthe set of Boolean formulas with at most one satisfying assignment.Theorem 3.3 [4, 39] If FPNPk � FPNPlog , then the promise problem (1SAT;SAT) has asolution in P. 9



A polynomial-time solution for the promise problem (1SAT;SAT) would imply theunexpected consequences expressed in the next theorem. The complexity classes FewPand R mentioned in the result are well-known and we refer to the standard literature forde�nitions. US is the class of languages computed by a polynomial-time nondeterministicTuring machine that accepts an input if it produces exactly one accepting path [6].Theorem 3.4 If the promise problem (1SAT;SAT) has a solution in P then FewP=P,NP=R and coNP=US.The �rst equality is due to [39], and the second one is due to [41].To our knowledge thethird equality is new (and its proof is left as an easy exercise to the reader). The followingcorollary summarizes these results; with the exception of the observation about co-NP andUS, the result appears in this form in [35].Corollary 3.5 If FPNPk � FPNPlog , then FewP=P, NP=R and coNP=US.We present now a di�erent consequence of the equality of the function classes thatcontrary to the previous results, does not seem to be related with the promise problem(1SAT;SAT). We show that if FPNPk = FPNPlog then a polylogarithmic amount of nondeter-minism can be simulated in polynomial time and also SAT can be decided (for any k) inpolynomial time with the help of only nlogk n nondeterministic bits.To obtain these results we use the fact that the equality of the function classes FPNPk andFPNPlog can be characterized in a very useful way with the concept of polynomial enumerators.Polynomial enumerators for functions have been introduced in [11] as a model of functionapproximation. A function f has a polynomial enumerator if there is a polynomial-timemachine that for an input x outputs a list of (polynomially many) values, one of which isthe correct value f(x). The question FPNPk = FPNPlog is equivalent to whether every functionin FPNPk has a polynomial enumerator. (The implication from left to right is easy; for theother implication, if a function f 2 FPNPk has a polynomial enumerator, the value of f(x)can be identi�ed querying NP to obtain �rst the census k of queries answered positivelyin the computation of f(x), and then doing a binary search over the set of indices of thevalues produced by the enumerator to obtain the unique one that could be computed withk correct positive oracle answers (see [30]).)We show that if FPNPk = FPNPlog then a polylogarithmic amount of nondeterminism canbe simulated in polynomial time and also SAT can be decided (for any k) in polynomialtime with the help of only nlogk n nondeterministic bits.To prove our results we state the following theorem:Theorem 3.6 If FPNPk � FPNPlog then there is a function f 2 NPSVNPlog log that for a sequenceof Boolean formulas F1; : : : ; Fn outputs one satis�able formula from the list in case oneexists. (If all the formulas are unsatis�able then the value of f is some special symbol).Proof. Consider the function g that for a sequence of Boolean formulas F1; : : : ; Fnoutputs its characteristic vector, that is, the string v = a1a2 : : : an with ai = 1 if Fi 2 SAT10



and ai = 0 otherwise. Clearly g 2 FPNPk and using the hypothesis there is a poly-nomial enumerator for g. Running the enumerator on F1; : : : ; Fn one can obtain a listL = (v1; : : : ; vp(n)) of polynomially many potential values for g, one of which is the correctone. We can asume that at least one of the formulas is satis�able (this can be checked withjust one query to NP), and therefore if the string 0n appears in this list, it can be deleted.We explain how to identify the values of the list with the nodes of a directed acyclicgraph (DAG) in such a way that a correct \1" in the characteristic vector of F1; : : : ; Fn canbe identi�ed with just O(log log n) queries to NP. For this we construct a DAG G = (V;E)where V = f1; : : : ; p(n)g and E = f(i; j) j vj � vig (vj � vi means that vj is smaller thanvi in the lattice order, that is, for every position l, if vj has a \1" in position l then so doesvi). For every i � p(n), we say that the string vi is the value of node i.We contract G to obtain a simpler graph G1 using the following contraction rules inthe written order.� Delete the nodes with value 0n.� If i is a node without descendants (a leaf) and its value, vi, has more than one \1"then turn to \0" all the \1's" in vi except the �rst one.� For every node i assign vi to the supremum of the values of the leaves that can bereached from i.� Contract all the nodes that have the same value into a single node.We de�ne the level of a node i as the number of \1's" from its value vi. Also wewill say that a node i is consistent with the characteristic vector of F1; : : : ; Fn (or justthat i is consistent) if vi is smaller than or equal to this value (in the lattice order). Ina consistent node all the \1's" from its value correspond to satis�able formulas in thesequence F1; : : : ; Fn.G1 satis�es the following properties:1: If i is a node of level k in G1 then i reaches exactly k leaves.2: If k is the maximum level in which there is a node of level k consistent with thecharacteristic vector of F1; : : : ; Fn then there is exactly one such node at level k (thevalue of this node is the supremum of the consistent leaves in G1).3: In G1 there is at least one node consistent with the characteristic vector of F1; : : : ; Fn.Property 1 is straightforward since by the way the graph G1 is constructed, the \1's"in the value of a node correspond to the leaves it reaches. 2 follows from the fact that thesupremum of the consistent leaves in G1 is unique, and by construction a node with thisvalue belongs to G1. 3 is true since the value of every node in G1 has at least a \1" and inG at least one of the nodes has a consistent value.Because of properties 2 and 3, it su�ces to obtain the maximum level with a consistentnode in G1. Once the level is known, the unique consistent node on this level can be11



obtained nondeterministically by guessing a node with k \1's" and checking that for anyof the \1's" the corresponding formulas in the sequence F1; : : : ; Fn have some satisfyingassignment.We intend to obtain the maximum level of a consistent node with binary search queryingan oracle in NP. Observe however that the graph G1 can have as many as n levels andtherefore O(log n) queries to NP seem to be needed. In order to make fewer queries wemake use of the following claim.Claim 3.7 Let p be a polynomial and Ap be the set of pairs (n;G) where n 2 IN and G isa DAG formed from a set of strings in f0; 1gn as explained above and contracted followingthe given rules, with at most p(n) nodes. There is a polynomial-time algorithm that (forsu�ciently large n), on input (n;G) 2 Ap, with G having m leaves, selects a set S of atmost m2 leaves of G in such a way that every node in G with at least log4(n) leaf descendantscan reach some leaf in S.The algorithm of the claim can be applied to (n;G1) (observe that since the size ofthe list of values is polynomially bounded by p, G1 has at most p(n) nodes), obtaining aset S of at most n2 leaves. We construct a new graph G2 by turning to \0" the positionsof the nodes in G1 corresponding to the leaves that are not in S, and then applying thecontraction rules to this graph. Intuitively, if we turn some positions to \0" we are throwingaside the formulas in the input sequence that correspond to these positions and keep onlythe remaining formulas.If in G1 there is a node at level k � log4 n consistent with the correct value, then G2satis�es all three properties of G1. (Property 3 is satis�ed since by the claim the node atlevel k has some leaf descendant in S, and this leaf is a consistent node in G2.) AdditionallyG2 has at most n2 leaves and therefore at most n2 levels.The algorithm of the claim is applied successively to G2 to obtain G3 and so on, untila graph Gr (r � log n) with no node at a level k � log4 n, is obtained.Given the collection of graphs G1; : : : ; Gr, in one of the graphs a node consistent withthe correct value of g(F1; : : : ; Fn) can be found with only O(log log n) queries to NP in thefollowing way. First, with O(log log n) queries to an NP set, obtain the largest j for whichthere is a graph Gj with a node consistent with the correct value of the characteristic vectorof F1; : : : ; Fn at a level l � log4 n. Then obtain the largest level k in graph Gj+1 with anode consistent with the correct vector. This can be done again using binary search withonly O(log log n) queries to an NP set since k < log4 n. In level k of graph Gj+1 there isjust one consistent node, and therefore once j and k are known, this node can be uniquelydetermined in a nondeterministic way. Each \1" in the value of the node correspondsto a satis�able formula in the input sequence. One can select for example the formulacorresponding to the �rst \1" in the node value. It follows that the claimed function f isin NPSVNPlog log.We give now the proof of the claim.Proof of the claim. Let p be a polynomial, n 2 IN and let G be a graph with mleaves (m � log4 n) and (n;G) 2 Ap. We show �rst that (for su�ciently large n) there is12



a set S 0 of mlog2 n leaves with the property that every node from level k � log4 n can reachat least one leaf in S 0. Suppose that this were not true. Then for every combination C ofm� mlog2 n leaves there must be a node i at a level k � log4 n such that all the leaves thatcan be reached from i belong to C. We say in this case that i is a bad node for C. Eachnode i can be bad for at most  m� log4 nm� mlog2 n � log4 n!combinations of m� mlog2 n leaves. This is because i has at least log4(n) leaf descendants andall these leaves must be in the combination. There are � mm� mlog2 n� combinations of m� mlog2 nleaves. If b is the number of bad nodes in levels higher than log4 n we have m� log4 nm� mlog2 n � log4 n!� b �  mm� mlog2 n!and from this followsb � m(m� 1) : : : (m� log4 n+ 1)(m� mlog2 n)(m� mlog2 n � 1) : : : (m� mlog2 n � log4 n+ 1) >> 0@ mm� mlog2 n 1Alog4 n >  1 + 1log2 n!log4 n > 2log2 n;which is a contradiction (for su�ciently large n) since b � p(n).We have proven the existence of a set of leaves of size mlog2 n that \covers" each nodeat level k � log4 n. However the problem to �nd such a set of leaves of minimum size, isan instance of the search version of the Set Cover problem which is NP-hard. Fortunately,it has been shown by Johnson [20] that the greedy algorithm obtains an approximatedsolution for the Set Cover problem of size within a logarithmic factor of the optimum.Since we have just shown that there must be a a set of at most mlog2 n leaves covering all thenodes at levels higher than or equal to log4 n, the greedy algorithim obtains in polynomialtime and for some constant c a cover of size cmlogn < m2 (for su�ciently large n). 2An interesting observation is that the satis�able formula selected from a sequenceF1; : : : ; Fn by the function f in the proof is not necessarily the �rst satis�able one inthe sequence, the selection depends on the enumerator for the function g.The following lemma based on the above result shows that from the hypothesis FPNPk �FPNPlog follows that a polylogarithmic number of bits of a satis�able assignment of a formulacan be obtained with parallel queries to NP.Lemma 3.8 If FPNPk � FPNPlog then for any k � 1 there is a function fk 2 FPNPk that for asatis�able Boolean formula F on n variables produces an assignment for the �rst logk n(log logn)k�1variables that can be extended to a satisfying assignment of F .13



Proof. We use the characterization FPNPk = NPSVNPlog . The proof is by induction onk. For k = 1 the result is straightforward. For the induction step, let us suppose that anassignment for the �rst logk n(log logn)k�1 variables of a satis�able formula F can be obtainedby a function in FPNPk , and that this function has a polynomial enumerator. Runningthe enumerator on F we obtain a list of possible values for such a partial assignment.Substituting these values in F and reducing the obtained formulas, we get a list of Booleanformulas F1; : : : ; Fp(n). By the same argument as in Theorem 3.6, a satis�able formulaFi (corresponding to a correct partial assignment of the �rst variables) can be uniquelyselected in a nondeterministic way with the help of O(log log n) many queries to an NPoracle. The log log n queries determine a level in the constructed graph, and the leveluniquely determines the formula Fi. The nondeterministic part of the computation in thealgorithm is just needed to output the formula. However, once Fi is determined, the processcan be repeated to this formula without having to output it, by making a second roundof O(log log n) queries to an NP oracle. The queries in the second round have encodedthe information obtained in the �rst round (log log n many bits encoding a level in thereduced graph) so that the oracle can nondeterministically obtain the formula Fi fromthis information. With the second round of queries an assignment for the next logk n(log logn)k�1variables of the initial formula is obtained. The process can be repeated lognlog logn times untillog n oracle queries are made. Since in each round logk n(log logn)k�1 variables are assigned, thetotal number of assigned variables is logk+1 n(log logn)k . The NP oracle has to be told how oftento iterate, i.e. part of the input to the NP oracle is a �eld j indicating to answer queriesabout the j-th iteration.After all the queries are made, a single valued nondeterministic computation outputsthe obtained partial assignment. 2Based on these results we obtain some consequences that make reference to subclassesof NP with bounded nondeterminism. Introduced in [22], these subclasses have also beenconsidered in [14] and [34]. For a polynomially bounded function f we denote by NP(f)the subclass of NP formed by the languages L 2 f0; 1g� for which there is a set A 2 P anda constant c 2 IN such that for every string xx 2 L() 9y; jyj � cf(jxj) ^ (x; y) 2 A:The next theorem shows that under the hypothesis FPNPk = FPNPlog , a signi�cant reduc-tion in the number of nondeterministic bits in an NP computation can be obtained.Theorem 3.9 If FPNPk = FPNPlog then for any polynomial-time computable and polynomiallybounded function f : IN �! IN and for any k 2 IN, NP(f) � NP( flogk ).Proof. Let f be a polynomially bounded function, k 2 IN and L be a set in NP(f).There is a polynomial-time predicate A and a constant c such that for every string xx 2 L() 9y; jyj � cf(jxj) ^ hx; yi 2 A:Let hx; zi be a pair of strings such that x 2 L and z is the pre�x of some string w withjwj � cf(jxj) and hx;wi 2 A. Then by (the proof of) Lemma 3.8 there is a function14



g 2 FPNPk that on input hx; zi produces a sequence z0 of length logk+1(jxj) such that zz0can be extended to a string y (jyj � cf(jxj)) with hx; yi 2 A. By the hypothesis g 2 FPNPlog ;let M be the machine computing g with the help of log n queries to NP. We can constructa nondeterministic algorithm to compute L using only O( flogk ) nondeterministic bits in thefollowing way. On input x the algorithm simulates M(hx; �i) but instead of querying theoracle, it guesses a possible answer for each query. In this way it produces a string z oflength logk+1(jxj) guessing O(log(jxj)) bits. The algorithm simulates again M this time oninput hx; zi, and repeats the process cf(jxj)logk+1(jxj) times obtaining a string y of length cf(jxj).If for some pre�x y0 of y it holds hx; yi 2 A the algorithm accepts, otherwise it rejects. (Thealgorithm has to check the pre�xes of y since the witness for x can be smaller than cf(jxj).)It should be clear that the algorithm works in polynomial time, decides L correctly, andthe number of nondeterministic bits it needs is in O( flogk ). 2The next two results are straigtforward consequences of Theorem 3.9.Corollary 3.10 If FPNPk = FPNPlog then for any k 2 IN, the class NP(logk) is included inP.Corollary 3.11 If FPNPk = FPNPlog then for any k 2 IN, SAT 2 NP( nlogk n ).The next result shows that if the equality of the function classes FPNPk and FPNPlogholds then every problem in NP can be computed in deterministic subexponential time2nO(1= log log n). This result was pointed out to us by O. Watanabe. Its proof follows the linesof Claim 3 in [38]. For completeness we give a proof of this result.Corollary 3.12 If FPNPk = FPNPlog then NP � DTIME(2nO(1= log log n)).Proof. Consider the universal setUNIV = f hM;x; 0d; 0ti j there is a string w; jwj � d such that the deterministicmachine M accepts input hx;wi in at most t stepsg:We show �rst that there is a deterministic machine M 0 and a polynomial p that for everyinput � = hM;x; 0d; 0ti satis�es� 2 UNIV () hM 0; �; 0d0 ; 0t0i 2 UNIV;where d0 = dlog(jxj) and t0 = p(j� j).The proof of this fact is similar to the one for Theorem 3.9. By (the proof of) Lemma3.8 there is a function f 2 FPNPk that for an input hM;x; 0d; 0ti in UNIV produces a stringw of length log2(jxj) such that w can be extented to a string y of length d and M acceptshx; yi in at most t steps. By the hypothesis f 2 FPNPlog . There is an algorithm N thatsimulates the algorithm computing f but guessing nondeterministically the oracle answers,and repeats the process dlog2(jxj) times as in Theorem 3.9 to obtain all d bits from y. Themachine M 0 we are looking for on input h�; wi, with jwj = d0, just checks that N with the15



sequence w of nondeterministic bits produces a string y such that hx; yi is accepted by Min at most t steps. Observe that the running time of M 0 is bounded by a polynomial thatdepends only on the running time of the algorithm computing the function f .The problem hM;x; 0d; 0ti 2 UNIV has been reduced to the problem hM 0; �; 0d0; 0t0i 2UNIV. The time bound t0 increases, but the amount of nondeterminism decreases by alogarithmic factor.Let L be a set in NP. There is a nondeterministic machine M and a polynomial qsuch that for every string x, x 2 L () hM;x; 0q(jxj); 0q(jxj)i 2 UNIV. De�ne x0 = x,d0 = q(jxj), t0 = q(jxj) and �0 = hM;x; 0d0 ; 0t0i, and de�ne inductively for i > 0 xi = �i�1,di = di�1log(jxj); ti = p(j�i�1j) and �i = hM 0; xi; 0di ; 0tii. Observe that there is a polynomialr such that for each i, j�ij � r(ti). Let m be the �rst integer such that dm � log(jxj).Since d decreases each time by a logarithmic factor, for some constant c, m � c log(jxj)log log(jxj). Italso holds that �0 2 UNIV , �1 2 UNIV , : : : , �m 2 UNIV, and therefore to decidewhether x 2 L it su�ces to show whether �m 2 UNIV. �m is computable deterministicallyin polynomial time with respect to j�mj. Also, deciding whether �m 2 UNIV can be donein polynomial time with respect to its length. Because of these two facts the complexityof deciding whether x 2 L is bounded by a polynomial in j�mj � r(tm). To evaluate tmobserve that ti = p(j�i�1j) � p(r(ti�1)) � : : : � p(r(: : : (r(p(q(jxj)))) : : :)):Therefore for some constant k (depending on the polynomials p, q and r),tm � jxj�k c log(jxj)log log(jxj)�;which gives a bound of order 2nO(1= log log n) for the complexity of L. 2In [38] it is proven that from the hypothesis that every NP set is bounded truth-tablereducible to a P-selective set, follows NP � DTIME(2nO(1=plog n)), which is a better boundfor NP than the one in Corollary 3.12. This result was improved in [1, 5, 33] to show thatunder the same hypothesis P=NP. It is not hard to see that the mentioned hypo thesisimplies FPNPk = FPNPlog [37], although the converse does not seem to be true. Because ofthis, the mentioned results in [38, 1, 5, 33] and Corollary 3.12 seem incomparable.4 ConclusionsWe have shown that the existing characterizations of the language class �p2, when adaptedto compute functions, generate the classes FLNPlog , FPNPlog and FPNPk . We have given evidencethat these classes are all di�erent showing that FLNPlog coincides with any of the othertwo classes then L = P, and that the equality of the two last classes would imply apolylogarithmic reduction in the number of nondeterministic bits needed to compute aproblem in NP. It remains an open question whether the last result can be improved toshow that the question FPNPk = FPNPlog can be completely characterized by the equality oftwo language complexity classes (like for example P = NP).16
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