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Abstract

The class O} of languages polynomial-time truth-table reducible to sets in NP has a wide

range of different characterizations. We consider several functional versions of ©) based on
NP ppNP

these characterizations. We show that in this way the three function classes FL; ,, FP|,

and FPﬁIP are obtained. In contrast to the language case the function classes seem to all
be different. We give evidence in support of this fact by showing that FL%\J}Z
any of the other classes then L. = P, and that the equality of the classes FP}\(I)Z and FPWP

would imply that the number of nondeterministic bits needed for the computation of any

coincides with

problem in NP can be reduced by a polylogarithmic factor, and that the problem can be
computed deterministically with a sub-exponential time bound of order gn@t/leriogn)

1 Introduction

The study of nondeterministic computation is a central topic in structural complexity the-
ory. The acceptance mechanism of nondeterministic Turing machines captures important
computational problems, and therefore such machines are a good tool to define language
classes. However to define general, i.e., other than (-1 functions, nondeterministic ma-
chines as such are not adequate, and it is not clear how nondeterminism can be exploited
to compute functions. Mainly because of this reason, when studying the complexity of a
computational problem it is common to consider a decision version of it, transforming the
problem into a set and then studying the complexity of the set instead. Information about
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the complexity of the set is then used to derive information about the complexity of the
function. This is not entirely satisfactory since many computational problems are “func-
tional” in nature, and they are not as interesting when considered as decision problems;
for example, in general it seems more useful to find a Hamiltonian tour in a graph than to
decide whether the graph has such a tour.

There have been however some ideas on how to use nondeterminism as a resource in
order to obtain a model to compute functional problems. If we restrict ourselves to the
polynomial-time context, the following three approaches can be distinguished:

e The nondeterministic machine is restricted to output only one value for a given input
(on possibly many paths).

For polynomial time this generates the class of (partial) functions NPSV [36]. However, this
class does not seem to use the full power of nondeterminism. NPSV does not contain the
characteristic function of NP complete problems (unless NP = coNP) and there are only a
few examples of functions in NPSV that are not known to be deterministically computable
in polynomial time.

e One can define an operator on the set of possible output values (or accepting paths)
of a nondeterministic machine.

Important complexity classes have been defined considering such operators, for example
#P [40], optP [26], and spanP [24] are defined in this way using the operators number of
accepting paths, maximum output value, and number of different output values, respec-
tively.

e A deterministic transducer with access to an oracle in NP can be considered.

Here, the function is computed by a particular reduction to a set in NP. This is for example
the case of the function class FPN" that is in some sense equivalent to optP [26] and contains
search versions of all the natural problems in NP.

The function classes defined following the last approach depend heavily on the type
of oracle access that the deterministic transducer has. In FPN' the deterministic machine
can query the oracle in an adaptive way, and this class can be therefore considered as the
functional analogue to the class A} of sets Turing reducible to a set in NP.

In this article, we will be interested in a further classification of functions in FPN' by
considering different kinds of restricted access to the NP oracle. In particular, we investigate
functions that are computable when the query mechanism is nonadaptive, that is, when
all the oracle queries are made in parallel so that they do not depend on previous oracle
answers. In the language case, this restriction gives rise to the class ©% [42], the non-adaptive
analogue to the adaptive class AL. ©F is a very robust class that can be characterized in a
wide variety of ways [2, 8, 19, 42]. In Section 2 we go over the characterizations obtained
for the language class ©F observing that in the case of functions they give rise to at most
three function classes FPWP7 FPNP and FLIY and give some natural examples of functions

log» log
in these classes.



In contrast to the language case these three function classes seem to be different. In
Section 3 we give evidence in support of this fact showing that any of the equalities has
unlikely consequences. We prove that FLEZ coincides with any of the other two classes
then L = P.

The question whether the classes FPNP and FP%\(I)Z are equal has attracted the atten-

tion of different researchers. It is known that the hypothesis FPNP = FP%\(I)Z implies that
FewP=P, NP=R and coNP=US, [4][39][35]. These three consequences follow in fact from a
weaker hypothesis, namely from the existence of a polynomial-time algorithm that decides
correctly the satisfiability of a formula with at most one satisfying assignment. (If the for-
mula has more than one assignment the algorithm may incorrectly decide that the formula
is not satisfiable). More formally (see [15] for the definition of promise problem), if the
promise problem (1SAT,SAT) has a solution in P then FewP=P, NP=R and coNP=US.

We present a different consequence of the equality of the function classes FPWP and

FP%\(I)Z that contrary to the previous results does not seem to be related with the promise

problem (1SAT,SAT). We show that if FPWP — FP" then there is a reduction by a

log
polylogarithmic factor in the number of nondeterministic bits needed to decide a problem

in NP. From this it follows that a polylogarithmic amount of nondeterminism can be
simulated in polynomial time, and also that SAT can be decided (for any k) in polynomial

T

kn) nondeterministic bits. For the deterministic complexity of the

time with only O(]Og

satisfiability problem, we show that in the case FPWP = FP}\(I)Z there is a deterministic sub-

CUMRE™ This still does
not show that the hypothesis implies P = NP but in some sense makes the gap between

exponential time algorithm deciding SAT that works in time 27

the classes “smaller”. The methods used to prove these results are new; they are based on
a combinatorial technique that uses a polynomial-time approximation algorithm of ratio
O(log n) for the Set Cover Problem given by Johnson in [20].

For simplicity all through this article the expression “logn” denotes [log, n] and “%”
denotes integer division of a by b.

2 Function classes related to ©5

As mentioned in the introduction, the closure of NP under polynomial-time Turing re-
ducibility defines the language class PN" or A} (the second level of the Polynomial Hier-
archy). Much attention has been devoted to the study of various kinds of restrictions of
polynomial-time Turing reducibility and their related closure classes such as

° PWP7 the closure of NP under polynomial-time truth-table reducibility or, equiva-
lently, non-adaptive (parallel) reducibility [29].

Here a list with all queries is constructed and queried to the oracle, i.e., the queries are
made in parallel. The oracle provides the answers to the queries as a 0 1 string denoting
the characteristic sequence of the queries.

° Pm]; the closure of NP under polynomial-time Turing reducibility with logarithmi-

cally many queries [26].



Here the number of queries for any input of length n is bounded by O(logn).

o L' the closure of NP under logspace Turing reducibility or, equivalently, LWP7 the
closure of NP under logspace truth-table reducibility or non-adaptive (parallel) re-
ducibility [28].

Note that for logspace oracle machines, the query tape is not included in the space bound.
Due to the (implicit) time bound of the machine, the length of any query is polynomially
bounded. The handling of parallel queries in a logspace computation needs some further
explanation. A logspace machine writes a sequence of queries on the oracle tape and receives
the oracle answers as a sequence of 0-1 answers (on the same tape). The machine may read
these answers in a one-way mode (or, equivalently, two-way mode (see [3])).

° L%Eg7 the closure of NP under logspace Turing reducibility with logarithmically many

queries [42].

e ACNT . the closure of NP under reducibility with logspace-uniform circuits of constant

depth [12, 43].

A language L is contained in ACNT, if there is a family {C,} of unbounded fan-in circuits
with constant depth and size O(n?"), where C,, is allowed to have oracle nodes for a set
A € NP, such that for all x of length n, 2 € L if and only if C,(x) = 1. We assume
that there is a deterministic logspace bounded transducer which on input 1™ computes an
encoding of C,, (logspace uniformity).

Surprisingly, all of these restrictions turned out to be equivalent in the case of NP and
give rise to the class 0 coined by Wagner [42] as the non-adaptive analogue of Af in the
Polynomial Hierarchy.

0% is an extremely robust class that still can be characterized in many other ways (see
[2, 8, 19, 42]). In this section we study the mentioned characterizations of O} adapting
them to compute functions instead of languages. We show that these characterizations
generate the three function classes FPWP7 FP}\(I)Z and FLEZ. We have selected from the
broad list of ways to define @F the above ones since they are particularly interesting in
order to illustrate the different concepts involved in the characterizations, like restricted
oracle mechanisms, logspace or circuit complexity. Moreover all the characterizations of @Y
given in [2, 8, 19, 42] that can be adapted in a natural way to define functions, generate
one of the three mentioned complexity classes.

The following theorem summarizes those characterizations of ©F that we use later to
define function classes.

Theorem 2.1 [8] [10] [28] [42]  The class O of languages truth-table reducible to NP

can be characterized as O = PWP = LWP = LNP = ACONP = Pﬁg = L%\(I)E;-

For the proof of Theorem 2.1, the “census technique” is of particular importance. This

technique was developed by Hemachandra [18] for the proof of PWP C PNP [18], and was

log
PNP

also successfully used by Kadin in [21]. For a set L in and an input x, the “census”

refers to the number of parallel queries posed by the base machine computing L that are
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answered positively by the oracle. The idea to decide L with only logarithmically many
queries to NP is to compute first the census & for = (by binary search with logarithmically
many queries to an oracle in NP), and then make one more query (, k) to another suitable
NP oracle. The last oracle guesses nondeterministically the & queries that are answered
positively and checks that the selected queries are the correct ones (by guessing accepting
paths for each of these queries in the nondeterministic machine computing them). With the
information of the positively answered queries (and therefore also knowing the negatively
answered queries) the oracle can then simulate correctly the complete computation of the
base machine.

We show now that the characterizations of the class @} stated in Theorem 2.1 give
rise to three function classes. We obtain functions by considering deterministic Turing
transducers instead of (accepting) machines, or, circuit families with an ordered sequence
of output nodes instead of just one output node. We denote the corresponding function
classes with the prefix “F”.

For general functions, the complexity of computing all bits of a function may exceed
the complexity of computing any particular bit. If the characterization allows to iterate
bit computations, as in the case of the language classes PWP7 LWP7 NP and AC?P7 the
resulting function classes coincide.

Theorem 2.2 FLIY' C FPP C FP}TP = FL}TP = FLN? = FAC)".

log log

Proof. (from left to right) The inclusion FL%\J}Z - FP%\(I)Z is trivial, because logspace
is a restriction of polynomial time. The second inclusion is proved in the same way as
in the language case: all possible queries that could be asked (polynomially many) are
constructed, and then asked in parallel.

We show now the equality of the remaining four classes. Define the different bits of a

function f by the set
where fi(2) denotes the ith bit of f(x).

Claim. For C € {P)", Li", LN" AC{"} it holds: f € FC if and only if BIT; € C.
By Theorem 2.1 and the Claim it follows that FPWP = FLWP = FLNP = FAC?P.

Proof of Claim. The implication from left to right is trivial. For the other implica-
tion, let f be such that for any input 2 of length n, | f(2)]| < p(|x]) for a polynomial p.
Let T be a device with the computation power of class C that computes BITy. Let 7" be a
device that checks for all i, 1 <7 < p(|2|), (#,7,0) and (2,4, 1) for containment in BITy by
simulation of T'. With this information, 7" can obtain the length of f(x) easily. It is 7 — 1
for the smallest [, 1 <1 < p(|x]|), such that {(x,1,0) = 0 and (x,1,1) = 0. The ith bit f;(x)
of f(x) satisfies f;(x) = b if and only if (x,4,b) € BITy for 1 < i <[. We have to show that
T’ remains a device of the same type as device T. This is clear for the case LNV, Here T
simply computes one bit f;() after another by simulating T on (x,4,0) and {z,7,1) until
both subroutines result negatively. For the cases PWP and LWP7 T’ first computes for all 7
with 1 <7 < p(|z|) and b € {0,1} the sequence of parallel queries that T produces for



(x,1,b) and asks all these queries in parallel. Then, with the oracle answers on the query
tape T” can compute each f;(z) deterministically. For the case FACLT, we combine ACH"
circuits for all (z,7,0), 1 < < p(n), 0 < b < 1 in parallel to a circuit C, that computes
f(x) for = of length n. Let the output nodes of the circuits for (x:,7,0) and {x,7,1) become
output nodes 22 — 1 and 27 of C,,, respectively. Then y,ys ... yapm) yields a codification of
f(2) in which “10” codifies 0, “01” codifies 1, and “00” codifies a padding symbol. O

All three function classes FPWP7 FP%EZ? and FLmZ contain important natural functions.
In some cases we can show that these examples are complete. To define completeness in
a class of functions and to compare the relative complexity of two functions we use the
notion of metric reducibility introduced by Krentel in [26]. A function f is metric reducible
to a function ¢ if there is a pair of polynomial-time computable functions A, and Ay such
that for every string =, f(x) = ha(x, g(h1(2))). A more intuitive way to define this notion is
to say that f can be computed in polynomial time by a deterministic machine that queries
at most once a functional oracle for g.

We start by giving an example of a metric complete function for FPTP. For a Boolean
formula F' on n variables consider the set Assign(F') formed by the strings representing
satisfying assignments for F plus the string 0”. We define the function Sup : {Boolean
formulas} — {0,1}*. Sup(F) is the supremum of Assign(F') under the standard lattice
partial order (a string = € {0,1}" is smaller or equal than a string y € {0,1}" if for every
position ¢« < n, if 2 has a “1” in this position then so does y). It is not hard to see that the

function Sup is metric complete for the class FPNP [23]. More examples of natural complete

functions in FPﬁIP have been obtained in [13] and [7].

Another example of a function in FPWP is the one computing the number of isomor-
phisms between two given graphs [32, 25]. This fact is considered as evidence that the
Graph Isomorphism problem is not NP-complete since the counting versions of the known
NP-complete problems cannot even be computed in polynomial time with access to any
class in the polynomial hierarchy (unless this hierarchy collapses).

For a few NP decision problems search functions related to them (functions that for
any string in the NP set provide a proof or witness of this fact) can be computed in FPNP.
This is the case for the Primality and Graph Automorphism problems. The first one is
known to be in UP [16] and it can be easily seen that all the problems in UP have search

functions in FPﬁIP. For the case of Graph Automorphism the method to obtain solutions

(antomorphisms) in FPNP uses some group theoretic arguments particular to this problem
[31, 25]. Observe that the two mentioned problems are not believed to be NP-complete,
and it remains open whether solutions for the search version of NP-complete problems can

be found in FPNP.

All the given examples are functions in FPNP that are not known to be in its subclass
FP%\J}Z. Krentel [26] showed that many optimization problems whose solution is polynomially
bounded are metric complete for FPﬁZ. Examples of such problems are the function that
computes the maximum size of a clique in a graph, and the one obtaining the maximum
number of simultaneously satisfiable clauses in a Boolean formula written in conjunctive
normal form. A function of this kind, related to the function Sup presented above, is the
function Sup’ that for a Boolean formula F', computes the number of “1’s” in Sup(F'). The



PNP

function Sup’ is metric complete for the class FP| .

All these examples of complete functions in FP%\(I)Z belong also to the class Fng. It
does not make sense to talk about polynomial-time metric completeness for this last class

PNP

since the closure of FLNY under polynomial-time metric reducibility coincides with F log -

log
However, as we will see in the next section FL%\J}Z seems to be a much weaker class than

FP%\J}Z. In particular “hard” functions in FP (like the Circuit Value function [27]) probably
do not belong to Fng.

The three function classes FPWP7 FPE; and FLEZ seem to be all different, since as
we will show in Section 3, any equality between them has unlikely consequences. This
(possible) difference in behaviour between language classes and function classes is basically
due to a communication problem between the oracle and the base machine that occurs
when the bound on the length of the function exceeds the bound on the number of bits
handed over by the oracle.

Theorem 2.1 can be considered as a result for 0 1 functions. As shown in the following
theorem, it remains true for functions with values that are logarithmically bounded in
length, i.e., functions f for which | f(2)]| € O(log|x|). For a function class F, we denote

by Fllogn] the subclass of F formed by such functions.

Theorem 2.3 FPHIP [logn| = FLNP [logn] = FLN"[logn] = FAC) [logn] = FPRI)Z [logn| =
FL\"[logn).

log

Proof. Because of Theorem 2.2, it suffices to show FPWP [logn] C FLIP[logn]. For

log
this, let f be a function in FPNP [log n] computed by the transducer T, and apply the census

technique mentioned above. First compute the number of parallel queries that are answered
positively by T on input 2 of length n (the census of ). This uses O(log n) adaptive queries
to an oracle in NP, answering for (z,7) whether more than i queries of T' are answered
positive on input 2. Note that the census has size O(logn) and can be stored by T". Tt
is not hard to see that there exists an NP machine that for the correct census correctly
simulates T' by guessing the positive queries of T. Thus, with O(logn) further queries to
this oracle any bit of f(x) can be computed. The total number of queries remains O(log n).
O

Another way to avoid the communication problem between the oracle and the base
machine is to allow functions that can produce a string instead of just giving a 0-1 answer
as oracles. Now the communication problem mentioned above is avoided hecause the oracle
provides sufficient bits. An approach for this is to use witness oracles [9] or NP multivalued
functions [36, 17]. The function classes defined with the use of these kinds of functional
oracles and with the different types of oracle access considered above coincide.

An interesting subclass of FPﬁIPiS the class NPSV[36] of single-valued NP functions.
NPSV is the class of functions for which a single-valued NP transducer computing them
exists. Note that this transducer may not produce any output, but if it does, then the
output must be the same on all paths.



We consider NPSV transducers with an oracle in NP to obtain a new characterization
of FPNP that will be very useful in some of the proofs of Section 3. For this we have to
restrict the way in which the transducer can access the oracle set.

We say that an NPSV transducer T has restricted access to an oracle A, if all the oracle
queries are performed by T before it makes any nondeterministic move. We denote by
NPSVN the class of functions that are computable by an NPSV transducer with restricted
access to an oracle in NP, and for a function f, NPSVTPdenotes the class of functions
defined in this way but making at most O(f) queries to the NP oracle.

Note that any computation of an NPSV transducer T with restricted access to an
oracle consists of two phases. In the first phase, T works deterministically but has access
to the oracle. In the second phase, T may guess but is not allowed to pose further queries.

Hence, the complexity of such a transducer in a sense is the complexity of FPNY “plus”

the complexity of NPSV. Hence, it holds FPN" = NPSV™". But we furthermore obtain the

following characterization of FPWP.

Theorem 2.4 FP}TP — NPSVIP

log -

Proof. From left to right, again use the census technique. Let f be a function in
FPNP computed by the transducer T. For input x, compute the number of parallel queries
answered positively using O(log n) queries. Knowing this number, with an NP computation
the corresponding queries can be guessed and verified. For the unique correct sequence of
query answers, T' is simulated and f(x) is produced as output.

For the other inclusion, let T’ be an NPSV transducer with restricted access to an oracle
A € NP and query bound O(log n) for input of length n. Divide the computation of 7" on
input = in two parts, up to the configuration ¢, just before the first nondeterministic step,
and the rest. Computing ¢, from 2z and T’ is a function in FPE; and by Theorem 2.2 it
can be computed in ACYT. Given ¢,, the rest of T's computation is a function in NPSV
and therefore can also be computed in FACYT. The composition of two functions in FACY"
clearly remains in this class and FACY" = FPNP by Theorem 2.2. O

It is not hard to see that Theorem 2.4 can be generalized. It holds for any & > 0,
FACL(NP) = NPSVE}:HH where FACL(NP) denotes the class of functions computable by

logspace uniform unbounded fan-in circnits of depth O(log") and polynomial size ([43]).

3 Consequences of the equality of the function classes

In this section we present evidence that the three function classes FPWP7 FP}\(I)Z and FLEZ

are all different. We compare first the two classes that seem to be weaker.

NP NP :
Theorem 3.1 FP, . =FL,, if and only if P =1L.

Proof. From left to right, let cceval denote a complete circuit evaluation function
that, for a Boolean circuit C and x, computes the value of each gate of C(x). Clearly,

cceval € FP, and hence cceval € FP%\J}Z. Now, suppose that cceval € FL%\(I); and let T



be a logspace transducer that computes cceval with O(logn) many queries to SAT, for
an input circuit C' and = of size n. We will show that then the circuit value problem
(which is P-complete [27]) can be computed in logspace as follows. On input of C and =,
a logspace transducer T cycles through all possible answer sequences y of length O(log n)
and simulates T following the answer sequence y. For each y, T’ checks that the output
produced by T is a correct sequence of gates of C and that all values attached to the gates
are correct. To achieve this, for any gate g T” repeats the simulation of T to find the values
of the (at most two) inputs of g. When an answer sequence y is tested, for which all the
values of the circuit are correct, again by resimulation on y, T’ looks up the value of the
output gate of C and rejects or accepts accordingly.

From right to left, note that P = L if and only if FP = FL. Suppose that FP C FL,
and let T be a transducer with oracle A € NP that computes a function f € FP%EZ. Let
clogn be the bound on the number of queries for an input x of length n. First, note that
only logspace and at most 2clog n queries to the following oracle A” € NP are neccessary
to obtain the correct query answer sequence of T on input .

A" :={{x,p) | pe{0,1}*, the |p| + 1st query in the computation of T on =,
with p taken as prefix of the query answer sequence,

is answered positively}.
Now, define the function f” with

f"({x,y)) = output that T produces on input z, if y € {0,1}°'°8" is taken as

the sequence of query answers

Clearly, f” € FP, and by assumption f” € FL. Hence, f can be computed with logspace
and O(logn) queries to A" ie., f € FL%\({Z. O

From the above proof it also follows that even the hypothesis FP C FL%\J}Z would imply
L = P. Also as a consequence of Theorem 3.1, it seems unlikely that parallel queries to NP
can be reduced to logarithmic adaptive queries with logspace.

Corollary 3.2 If FL|" C FL;7, then L = P.

log ’

The equality of the classes FP)" and FP%\(I)Z would also imply strong consequences; this
question has been studied by different reseachers. From the results of Toda in [39] it can
be concluded that if the classes FPNP and FP%\(I)Z coincide then there is a polynomial-time
algorithm that decides correctly the satisfiability of a formula with at most one satisfying
assignment. (If the formula has more than one assignment the algorithm may incorrectly
decide that the formula is not satisfiable). This result is stated formally using the concept
of promise problems (see [15]). A promise problem is a pair of sets (@, R). A set L is called
a solution to the promise problem (@, R) if Va:(x € Q = (v € L & 2 € R)). 1SAT denotes
the set of Boolean formulas with at most one satisfying assignment.

Theorem 3.3 [4, 39] If FPNP C FP)P, then the promise problem (1SAT,SAT) has a

log »
solution in P.



A polynomial-time solution for the promise problem (1SAT,SAT) would imply the
unexpected consequences expressed in the next theorem. The complexity classes FewP
and R mentioned in the result are well-known and we refer to the standard literature for
definitions. US is the class of languages computed by a polynomial-time nondeterministic
Turing machine that accepts an input if it produces exactly one accepting path [6].

Theorem 3.4 If the promise problem (1SAT,SAT) has a solution in P then FewP=P,
NP=R and coNP=US.

The first equality is due to [39], and the second one is due to [41].To our knowledge the
third equality is new (and its proof is left as an easy exercise to the reader). The following
corollary summarizes these results; with the exception of the observation about co-NP and
US, the result appears in this form in [35].

Corollary 3.5 If FP|" C FP{[", then FewP=P, NP=R and coNP=US.

log’

We present now a different consequence of the equality of the function classes that
contrary to the previous results, does not seem to be related with the promise problem

(ISAT,SAT). We show that if FPWP = FP}\(I)Z then a polylogarithmic amount of nondeter-
minism can be simulated in polynomial time and also SAT can be decided (for any k) in

T

polynomial time with the help of only nondeterministic bits.

logFn

To obtain these results we use the fact that the equality of the function classes FPNP and
FP}\(I)Z can be characterized in a very useful way with the concept of polynomial enumerators.
Polynomial enumerators for functions have been introduced in [11] as a model of function
approximation. A function f has a polynomial enumerator if there is a polynomial-time
machine that for an input 2 outputs a list of (polynomially many) values, one of which is
the correct value f(x). The question FPNP = FP%\(I)Z is equivalent to whether every function

in FPﬁIP has a polynomial enumerator. (The implication from left to right is easy; for the

other implication, if a function f € FPNP has a polynomial enumerator, the value of f(z)
can be identified querying NP to obtain first the census k of queries answered positively
in the computation of f(z), and then doing a binary search over the set of indices of the
values produced by the enumerator to obtain the unique one that could be computed with
k correct positive oracle answers (see [30]).)

We show that if FP)" = FPIT then a polylogarithmic amount of nondeterminism can

log
be simulated in polynomial time and also SAT can be decided (for any k) in polynomial

time with the help of only —5— nondeterministic bits.

log
To prove our results we state the following theorem:

Theorem 3.6 ]fFPﬁIP C FP%\(I)Z then there is a function f € NPSVﬁZIOg that for a sequence
of Boolean formulas Fy, ..., F, outputs one satisfiable formula from the list in case one

exists. (If all the formulas are unsatisfiable then the value of f is some special symbol).

Proof. Consider the function ¢ that for a sequence of Boolean formulas Fy, ..., F,
outputs its characteristic vector, that is, the string v = ayay...a, with a; =1 if F; € SAT

10



and a; = 0 otherwise. Clearly g € FPNP and using the hypothesis there is a poly-
nomial enumerator for g. Running the enumerator on Fy,..., F,, one can obtain a list
L = (v1,...,9(m)) of polynomially many potential values for g, one of which is the correct
one. We can asume that at least one of the formulas is satisfiable (this can be checked with
just one query to NP), and therefore if the string 0" appears in this list, it can be deleted.

We explain how to identify the values of the list with the nodes of a directed acyclic
graph (DAG) in such a way that a correct “17 in the characteristic vector of Fy, ..., F, can
be identified with just O(loglogn) queries to NP. For this we construct a DAG G = (V. F)
where V. ={1,...,p(n)} and E = {(7,7) | v; < v;} (v; < v; means that v, is smaller than
v; in the lattice order, that is, for every position [, if »; has a “1” in position [ then so does
v;). For every i < p(n), we say that the string v; is the value of node i.

We contract G to obtain a simpler graph G4 using the following contraction rules in
the written order.

e Delete the nodes with value 0.

o If 7 is a node without descendants (a leaf) and its value, v;, has more than one “1”
then turn to “0” all the “1’s” in v; except the first one.

e For every node 7 assign v; to the supremum of the values of the leaves that can be
reached from 1.

e Contract all the nodes that have the same value into a single node.

We define the level of a node 7 as the number of “1’s” from its value v;. Also we
will say that a node 7 is consistent with the characteristic vector of Fy,...  F, (or just
that 7 is consistent) if v; is smaller than or equal to this value (in the lattice order). In
a consistent node all the “1’s” from its value correspond to satisfiable formulas in the
sequence Fy, ... F,.

(77 satisfies the following properties:

1. If 7 is a node of level k in Gy then 7 reaches exactly k leaves.

2. If k is the maximum level in which there is a node of level k consistent with the
characteristic vector of Fy,..., F, then there is exactly one such node at level k (the
value of this node is the supremum of the consistent leaves in Gy).

3. In G, there is at least one node consistent with the characteristic vector of Fy, ..., F,.

Property 1 is straightforward since by the way the graph G is constructed, the “1’s”
in the value of a node correspond to the leaves it reaches. 2 follows from the fact that the
supremum of the consistent leaves in G is unique, and by construction a node with this
value belongs to G. 3 is true since the value of every node in (7 has at least a “1” and in
(¢ at least one of the nodes has a consistent value.

Because of properties 2 and 3, it suffices to obtain the maximum level with a consistent
node in Gy. Once the level is known, the unique consistent node on this level can be
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obtained nondeterministically by guessing a node with & “1’s” and checking that for any
of the “1’s” the corresponding formulas in the sequence Fy, ..., F,, have some satisfying
assignment.

We intend to obtain the maximum level of a consistent node with binary search querying
an oracle in NP. Observe however that the graph G can have as many as n levels and
therefore O(logn) queries to NP seem to be needed. In order to make fewer queries we
make use of the following claim.

Claim 3.7 Let p be a polynomial and A, be the set of pairs (n,G) where n € N and G is
a DAG formed from a set of strings in {0,1}" as explained above and contracted following
the given rules, with at most p(n) nodes. There is a polynomial-time algorithm that (for
sufficiently large n), on input (n,G) € A,, with G having m leaves, selects a set S of at
most % leaves of G in such a way that every node in G with at least log*(n) leaf descendants
can reach some leaf in §.

The algorithm of the claim can be applied to (n,Gy) (observe that since the size of
the list of values is polynomially bounded by p, G has at most p(n) nodes), obtaining a
set S of at most 2 leaves. We construct a new graph G by turning to “0” the positions
of the nodes in GGy corresponding to the leaves that are not in S, and then applying the
contraction rules to this graph. Intuitively, if we turn some positions to “0” we are throwing
aside the formulas in the input sequence that correspond to these positions and keep only
the remaining formulas.

If in Gy there is a node at level k& > 10g4 n consistent with the correct value, then Gy
satisfies all three properties of Gy. (Property 3 is satisfied since by the claim the node at
level k has some leaf descendant in S, and this leaf is a consistent node in G.) Additionally
G5 has at most 5 leaves and therefore at most z levels.

The algorithm of the claim is applied successively to G5 to obtain G3 and so on, until
a graph G, (r <logn) with no node at a level k > log* n, is obtained.

Given the collection of graphs G4, ..., G,, in one of the graphs a node consistent with
the correct value of g(Fy, ..., F,) can be found with only O(loglogn) queries to NP in the
following way. First, with O(loglog n) queries to an NP set, obtain the largest j for which
there is a graph G; with a node consistent with the correct value of the characteristic vector
of Fy,...,F, at a level | > log” n. Then obtain the largest level k in graph G,;, with a
node consistent with the correct vector. This can be done again using binary search with
only O(loglogn) queries to an NP set since k < log* n. In level k of graph G,,; there is
just one consistent node, and therefore once 7 and k are known, this node can be uniquely
determined in a nondeterministic way. Each “1”7 in the value of the node corresponds
to a satisfiable formula in the input sequence. One can select for example the formula
corresponding to the first “1”7 in the node value. It follows that the claimed function f is

in NPSVNP

loglog*

We give now the proof of the claim.

Proof of the claim. Let p be a polynomial, n € N and let G be a graph with m
leaves (m > log*n) and (n,G) € A,. We show first that (for sufficiently large n) there is

12



a set S’ of

at leaq’r one leaf in §’. Suppose that this were not true. Then for every combination C of

leaves with the property that every node from level k > log*n can reach

m — leaves there must be a node 7 at a level k& > log" n such that all the leaves that

To
can be. reached from 7 belong to C. We say in this case that 7 is a bad node for C. Each

( m — log'n )
m 4
L log™ n

node 7 can be bad for at most

. . ' .o . 4
combinations of m — ]OgLQn leaves. This is because 7 has at least log”(n) leaf descendants and
all these leaves must be in the combination. There are ( M ) combinations of m — ]0;"2’ -
' ]og2 n )

leaves. If b is the number of bad nodes in levels higher than log® n we have
m — log*n m
m 1 4 X b 2 m
’ log? n g n m = logZ n

m(m — 1)...(m—10g4 n+1)
(m— 3=)(m — 5w — 1) (m — B —log'n+1)

log* n log* n
m 1 log? n
> | — > (14— > oo™,
m — ]Ogg - log®n

which is a contradiction (for sufficiently large n) since b < p(n).

and from this follows

We have proven the existence of a set of leaves of size ;=5— that “covers” each node

log
at level & > log* n. However the problem to find such a set of leaves of minimum size, is
an instance of the search version of the Set Cover problem which is NP-hard. Fortunately,
it has been shown by Johnson [20] that the greedy algorithm obtains an approximated
solution for the Set Cover problem of size within a logarifhmic factor of the optimum.
Since we have just shown that there must be a a set of at most g— leaves covering all the

nodes at levels higher than or equal to log” n, the greedy algorithim obtains in polynomial

7 (for sufficiently large n). O

An interesting observation is that the satisfiable formula selected from a sequence
Fy, ..., F, by the function f in the proof is not necessarily the first satisfiable one in
the sequence, the selection depends on the enumerator for the function g¢.

The following lemma based on the above result shows that from the hypothesis FPNP
FPIOg
can be obtained with parallel queries to NP.

follows that a polylogarithmic number of bits of a satisfiable assignment of a formula

Lemma 3.8 If FPNP C FP%\(I) then for any k > 1 there is a function fi, € FPII that for a

logh n

satisfiable Boolean formula F' on n variables produces an assignment for the first —8—2——
J . ; . . (loglog n)F

variables that can be extended to a satisfying assignment of F.
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Proof. We use the characterization FPNP = NPSV%EZ. The proof is by induction on

k. For k = 1 the result is straightforward. For the induction step, let us suppose that an
k
# variables of a satisfiable formula F' can be obtained

by a function in FPWP7 and that this function has a polynomial enumerator. Running

assignment for the first

the enumerator on F we obtain a list of possible values for such a partial assignment.
Substituting these values in F' and reducing the obtained formulas, we get a list of Boolean

formulas Fy,..., F,

p
F; (corresponding to a correct partial assignment of the first variables) can be uniquely

(n)- By the same argument as in Theorem 3.6, a satisfiable formula

selected in a nondeterministic way with the help of O(loglogn) many queries to an NP
oracle. The loglogn queries determine a level in the constructed graph, and the level
uniquely determines the formula F;. The nondeterministic part of the computation in the
algorithm is just needed to output the formula. However, once F; is determined, the process
can be repeated to this formula without having to output it, by making a second round
of O(loglogn) queries to an NP oracle. The queries in the second round have encoded
the information obtained in the first round (loglogn many bits encoding a level in the
reduced graph) so that the oracle can nondeterministically obtain the formula F; from
logh n

this information. With the second round of queries an assignment for the next Tog o nyF=T
gn

] ), . .
] o times until
oglogn

variables of the initial formula is obtained. The process can be repeated

. . . k . .
log n oracle queries are made. Since in each round —°5-"__ variables are assigned, the
(Toglogn)k—! ?
. . . logkt! 5
total number of assigned variables is —~&——=-. The NP oracle has to be told how often

(loglogn)*
to iterate, i.e. part of the input to the NP oracle is a field j indicating to answer queries

about the j-th iteration.
After all the queries are made, a single valued nondeterministic computation outputs
the obtained partial assignment. O

Based on these results we obtain some consequences that make reference to subclasses
of NP with bounded nondeterminism. Introduced in [22], these subclasses have also been
considered in [14] and [34]. For a polynomially bounded function f we denote by NP(f)
the subclass of NP formed by the languages L € {0,1}* for which there is a set A € P and

a constant ¢ € N such that for every string =
el = Ty, lyl <cf(lz]) A(x,y) € A

The next theorem shows that under the hypothesis FPNP = FP%EZ? a significant reduc-

tion in the number of nondeterministic bits in an NP computation can be obtained.

Theorem 3.9 ]fFPﬁIP = FP}\(I)Z then for any polynomial-time computable and polynomaially
bounded function f: IN — N and for any k € N, NP(f) C NP(#).

Proof. Let f be a polynomially bounded function, & € N and L be a set in NP(f).
There is a polynomial-time predicate A and a constant ¢ such that for every string =

7 € L= Ty, lyl < cf(|z]) Alz,y) € A.

Let (x,z) be a pair of strings such that € L and z is the prefix of some string w with
lw] < ef(]z]) and {(x,w0) € A. Then by (the proof of) Lemma 3.8 there is a function
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g € FPNP that on input (x,z) produces a sequence z’ of length log"™'(|#|) such that z2’

can be extended to a string y (|y| < ¢f(|=])) with (x,y) € A. By the hypothesis g € FP]\";

log?
let M be the machine computing g with the help of log n queries to NP. We can construct

a nondeterministic algorithm to compute L using only O(#) nondeterministic bits in the

following way. On input x the algorithm simulates M ({x, X)) but instead of querying the
oracle, it guesses a possible answer for each query. In this way it produces a string z of

length log"*'(|#]) gnessing O(log(|z|)) bits. The algorithm simulates again M this time on

of(|x])
Tog"* (I=])

If for some prefix ¢’ of y it holds (x,y) € A the algorithm accepts, otherwise it rejects. (The

input (x,z), and repeats the process times obtaining a string y of length ¢f(|z]).

algorithm has to check the prefixes of y since the witness for = can be smaller than ¢f(|z|).)
It should be clear that the algorithm works in polynomial time, decides L correctly, and
the number of nondeterministic bits it needs is in O(#) 0

The next two results are straigtforward consequences of Theorem 3.9.

gorollary 3.10 If FPHIP = FPRI)Z then for any k € N, the class NP(log") is included in

Corollary 3.11 IfFP|" = FP\_ then for any k € N, SAT ¢ NP(-5)-

The next result shows that if the equality of the function classes FPNP and FP%\(I)Z

holds then every problem in NP can be computed in deterministic subexponential time
27,7’0(1 /loglogn

of Claim 3 in [38]. For completeness we give a proof of this result.

' This result was pointed out to us by O. Watanabe. Its proof follows the lines

Corollary 3.12 IfFP\" = FP)\Y then NP C DTIME(2»""/ """ ™).
Proof. Consider the universal set

UNIV = { (M, z,0%,0") | there is a string w, |w| < d such that the deterministic

machine M accepts input (x,w) in at most ¢ steps}.

We show first that there is a deterministic machine M’ and a polynomial p that for every
input 7 = (M, 2,07, 0") satisfies

T € UNIV < (M' .07 0") e UNIV,

where d' = m and ' = p(|7]).

The proof of this fact is similar to the one for Theorem 3.9. By (the proof of) Lemma
3.8 there is a function f € FPWP that for an input (M, z,0%,0') in UNIV produces a string
w of length log®(|z|) such that w can be extented to a string y of length d and M accepts
(r,y) in at most t steps. By the hypothesis f € FPNP There is an algorithm N that

log *
simulates the algorithm computing f but guessing nondeterministically the oracle answers,
and repeats the process W times as in Theorem 3.9 to obtain all d bits from y. The

machine M’ we are looking for on input (7, w), with |w| = d’, just checks that N with the
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sequence w of nondeterministic bits produces a string y such that (z,y) is accepted by M
in at most  steps. Observe that the running time of M’ is bounded by a polynomial that
depends only on the running time of the algorithm computing the function f.

The problem (M, z,0%,0") € UNIV has been reduced to the problem (M’ 7,07, 0") €
UNIV. The time bound # increases, but the amount of nondeterminism decreases by a
logarithmic factor.

Let L be a set in NP. There is a nondeterministic machine M and a polynomial ¢
such that for every string z, » € I <= (M, z, 090D 0oll=Dy ¢ UNIV. Define x4 = =,
do = q(|z|), to = q(|7]) and 7o = (M, z, 0% 0%), and define inductively for i > 0 z; = 7;_1,
d; = G- = p(|mi1]) and 7, = (M, 2;,0% 0"). Observe that there is a polynomial

log(|#])?
r such that for each 7, |7;| < r(#;). Let m be the first integer such that d,, < log(|z|).
Since d decreases each time by a logarithmic factor, for some constant ¢, m < %. It

also holds that 1 € UNIV & 7 € UNIV & ... & 71,, € UNIV, and therefore to decide
whether x € L it suffices to show whether 7,,, € UNIV. 7, is computable deterministically
in polynomial time with respect to |7,|. Also, deciding whether 7, € UNIV can be done
in polynomial time with respect to its length. Because of these two facts the complexity
of deciding whether # € L is bounded by a polynomial in |7,,| < r(t,,). To evaluate ¢,
observe that

ti=p(mial) <p(r(ti) <... <p(r(... (r(p(a([z]))))---))-

Therefore for some constant k (depending on the polynomials p, ¢ and r),

clog(|x])
<k10g10g(lm|)>
tm < |7|

O(1/loglogn

b

which gives a bound of order 27 " for the complexity of L. O

In [38] it is proven that from the hypothesis that every NP set is bounded truth-table

reducible to a P-selective set, follows NP C DTH\/[E(Q"OW\/log n))7 which is a better bound
for NP than the one in Corollary 3.12. This result was improved in [1, 5, 33] to show that
under the same hypothesis P=NP. It is not hard to see that the mentioned hypo thesis
. . NP NP
implies FP|[" = FPy,

this, the mentioned results in [38, 1, 5, 33] and Corollary 3.12 seem incomparable.

[37], although the converse does not seem to be true. Because of

4 Conclusions

We have shown that the existing characterizations of the language class @, when adapted
to compute functions, generate the classes FLm; FP%\(I)Z and FPNP. We have given evidence
that these classes are all different showing that FLEZ coincides with any of the other
two classes then L. = P. and that the equality of the two last classes would imply a
polylogarithmic reduction in the number of nondeterministic bits needed to compute a
problem in NP. It remains an open question whether the last result can be improved to
show that the question FPNP = FP%\(I)Z can be completely characterized by the equality of

two language complexity classes (like for example P = NP).
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