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Abstract

In computational complexity theory, a function f is called b(n)-enumerable if there
exists a polynomial-time function which can restrict the output of f(x) to one of b(n)
possible values. This paper investigates #GA, the function which computes the number
of automorphisms of an undirected graph, and GI, the set of pairs of isomorphic graphs.
The results in this paper show the following connections between the enumerability of
#GA and the computational complexity of GI.

1. #GA is exp(O(yv/nlogn))-enumerable.
2. If #GA is polynomially enumerable then GI € R.

3. For € < L if #GA is n-enumerable then GI € P.
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1 Introduction

The Graph Tsomorphism problem has a special place in computational complexity theory.
The set GI consists of all pairs of graphs that are isomorphic to each other. GI is known
to be in NP but not NP-complete unless the Polynomial Hierarchy collapses [13, 26], a
condition which violates the usual intractability assumptions. Nevertheless, there is no
known polynomial-time algorithm to solve the isomorphism problem on general graphs even
though some progress has been made towards polynomial-time algorithms in special cases
(most notably for planar graphs [15, 16] and bounded degree graphs [21]). Thus, the Graph
Isomorphism problem belongs to a short list of problems in NP that are suspected to be
neither decidable in polynomial time nor NP-complete. In fact, the exact complexity of
GI remains an open problem. For example, it is not known whether GI can be solved in
randomized polynomial time or whether GI is contained in the class NP N co-NP.

The current state of knowledge on the complexity of GI depends on the two-round in-
teractive protocol for Graph Non-Tsomorphism [13], a technique which we exploit in this
paper. However, even before this proof was discovered, it was suspected that GI could not
be NP-complete because counting the number of graph isomorphisms has roughly the same
complexity as deciding the existence of an isomorphism [22]. In contrast, the counting ver-
sions of typical NP-complete problems tend to be much harder than the decision versions.
The proof that counting graph isomorphisms is relatively “easy” also demonstrated a close
connection between the structure of graph isomorphisms and graph automorphisms (iso-
morphisms between a graph and itself). The results in this paper add another link to this
connection.

In computational complexity theory, a function is called b(n)-enumerable' if a polynomial-
time function can determine a restricted range for the function. For example, a priori the
#GA function, which computes the number of automorphisms in a graph, may output any
value from 1 to n! for a graph with n vertices. However, we will show that #GA can take
on only one of exp(O(yv/nlogn)) values  i.e., we will show that #GA is exp(O(v/nlogn))-
enumerable. The other main results in this paper show that if #GA is “easy” in the sense
of enumerability then there is a corresponding decrease in the complexity of GI. Namely:

o If #GA is polynomially enumerable then GI can be recognized in randomized polyno-
mial time.

o For e < 1 if #GA is n“-enumerable then GI can be recognized in deterministic poly-
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nomial time.

Currently, GI does not seem to be solvable in polynomial time using either randomized
or deterministic computations. Hence, these results could also be interpreted as results on
the non-enumerability of #GA.

The rest of the paper is organized as follows. In Section 2, we provide some technical
background and formal definitions for the terms used in this paper. In Section 3, we construct
a graph gadget that allows us to combine many instances of GI into one instance of #GA.

'not to be confused with recursive enumerability in recursive function theory or countable (denumerable)
sets in set theory.



In Sections 4 and 5, we present the results connecting the enumerability of #GA and the
complexity of GI. Finally, in Section 6 we give an upper bound on the enumerability of #GA.

2 Preliminaries

In this paper, we will work with many complexity classes. We assume that the reader is famil-
iar with P and NP, the classes of languages recognized by deterministic and nondeterministic
polynomial-time Turing machines. We will use PH to denote the Polynomial Hierarchy and
R to denote the class of languages recognized by probabilistic polynomial-time Turing ma-
chines with bounded one-sided error. We refer the reader to standard textbooks [3, 4] in
complexity theory for explanations on the relationships among these classes.

An instance of the Graph Isomorphism problem (GI) is a pair of undirected graphs
(G, H). Without loss of generality, the vertices of the graphs are labelled 1 through n. The
pair (G, H) is an element of GI if there exists a bijection f from the vertices of G to the
vertices of H that preserves the edge relations  i.e., (u,v) is an edge in the graph G if and
only if (f(u), f(v)) is an edge in H. In this case, f is called an isomorphism between G and
H and we write G ~ H. Note that we may think of f as a permutation of the set {1,...,n}.
Whereas GI is a set, or alternatively a decision problem, #GI is a function, or a counting
problem. The value of the function #GI on input (G, H) is the number of isomorphisms
from G to H.

An instance of the Graph Automorphism problem (GA) is a single graph G. The graph
(7 is an element of GA if G has a non-trivial automorphism  i.e., an isomorphism between
GG and itself other than the identity function. Analogously, the function #GA computes the
number of automorphisms on G. Tt is often more convenient to work with GA instead of GI,
because the set of automorphisms of a graph forms a group under composition.

Clearly, the set GI is an element of NP because an NP machine can guess a permutation
and check that the permutation is indeed an isomorphism between two graphs. As we have
mentioned before, GI is known to be incomplete for NP unless the Polynomial Hierarchy
collapses. The complexities of #GI, GA and #GA can be estimated based upon their
relationship to GI. For example, GA reduces to GI by a many-one polynomial-time reduction.
Therefore, GA is also an element of NP and cannot be complete for NP unless PH collapses.
Clearly, GI reduces to #GI because knowing the number of isomorphisms certainly tells
you whether one exists. In addition, one can compare the complexities of these problems
as oracles. Using the group structure of GA, one can show that PG = PUA = p#GT [99]
[18, Theorem 1.24]. Thus, treated as oracles for P, the problems GI, GA and #GI have
essentially the same complexity.?

The incompleteness of GI also shows that P#GT cannot contain any NP-complete proh-
lems unless PH collapses. This result sets the Graph Isomorphism problem apart from the
NP-complete problems. For example, consider the satisfiability problem SAT and the corre-
sponding counting problem #SAT, which outputs the number of satisfying assignments of

a Boolean formula. SAT is of course NP-complete, so PSAT = PNP However, it also known

that P#5AT contains the entire Polynomial Hierarchy [27]. Thus, the complexity of #SAT is

20f course, PGA C P#SA hut whether P#FEA C PYA remains an open problem.



much higher than the complexity SAT, whereas the complexity of #GI is at the same level
as that of GI.

Returning to graph automorphisms, we note that the value of #GA(G) has several special
properties. First, #GA(G) must range from 1 to n! because the identity function is always
an automorphism and there are at most n! permutations of the n vertices. Second, the set
of automorphisms of GG forms a subgroup of S,,, the set of all permutations of {1,...,n}
under composition. This group structure can be exploited in many ways. For example, from
LaGrange’s Theorem, we know that #GA(G) must divide n!, hence #GA(G) cannot have
factors larger than n. Thus, given #GA(G) as input, it is possible to obtain a complete
prime factorization of #GA(G) in polynomial time. The following observations about #GA
and prime numbers will be needed throughout the paper.

Lemma 2.1 Let G be a graph with n vertices. For 1 > 1, let m; be the ith smallest prime
number larger than n.

1. #GA(G) divides n!.

2. m; does not divide #GA(G).

3. There exists a prime p s.t. m; < p < 2m,.
4. Forn >17, m; <2(nlogn 4 ilogi).

5. m; can be computed in time nC0) 4 ;00)

Proof: Parts 1 and 2 follow from the preceding discussion. Part 3 is just Bertrand’s Postulate
[14] (that there exists a prime number between x and 2x2). Part 4 can be derived easily from
a result of Rosser and Schoenfeld [24] which states that the number of primes less than x is
between x/Inx and 1.25506:/ In 2, for 22 > 17. (These are estimates for the constants in the
Prime Number Theorem.) Part 5 follows from Part 4, because m; is polynomial in n and 1.
Since we can list all the primes below a number # in time polynomial in 2 (not the length
of x), m; can be found in time polynomial in n and 7. |

Thus, #GA cannot take on every value between 1 and n! since some of these numbers
cannot be the order of a subgroup of 5,. This leads us to “enumerability” as a measure
of complexity. The concept of enumerability in computational complexity theory was intro-
duced independently by Beigel [5] and by Cai and Hemachandra [8] then later modified by
Amir, Beigel and Gasarch [1].

Definition 2.2 Let b: N — N be polynomially bounded. A function f is b(n)-enumerable
if there exists a polynomial-time computable function ¢, such that for all :, g(a) outputs a
list of at most b(|x]) values, one of which is f(x). A function f is poly-enumerable if f is
b(n)-enumerable for some polynomial b.

For super-polynomial b : N — N, f is b(n)-enumerable if there exists a polynomial-time
computable function ¢, such that for all =, f(x) is one of the b(]x|) values in the sequence
g(2,0),g(x,1),...,g(x,b(]z]) — 1). (Here we assume that the second input to ¢ is written in
binary.)



Intuitively, we think of the enumerability of functions as a generalization of approxima-
bility. For example, suppose a function f : N — N is approximable within a factor of 2.
Then, there is a polynomial-time computable function which, for all z, outputs a value y
and guarantees that y < f(2) < 2y. Thus, the set of possible values of f(z) is restricted to
the numbers between y and 2y. For enumerability, the set of possible values does not have
to be an interval. Another difference between enumerability and approximability is that in
approximability the number of possible values is “output sensitive” i.e., the number of
possible values of f(2) depends directly on f(x) rather than 2. In addition, approximability
is only meaningful when there is a natural total ordering on the range of the function whereas
enumerability makes sense in a broader setting.

There do exist functions which cannot be polynomially enumerated unless some in-
tractibility assumptions are violated. For example, Cai and Hemachandra showed that unless
P = PP, the function #SAT is not n“-enumerable for € < 1.* This result was improved in-
dependently by Cai and Hemachandra [9] and by Amir, Beigel and Gasarch [1], who showed
that P = PP if and only if #SAT is p(n)-enumerable for some polynomial p. Moreover,
Amir, Beigel and Gasarch [1] proved that unless the Polynomial Hierarchy collapses to its
fourth level, #£SAT is not 2" -enumerable for € < 1. Since #SAT is clearly 2"-enumerable,
these results show tight upper and lower bounds on the enumerability of #SAT assuming
that PH does not collapse.

In the present paper, we investigate the enumerability of #GA. Our motivation for
studying the enumerability of #GA is twofold. First, the results mentioned above, com-
bined with Toda’s theorem that every set in PH reduces to #SAT [27], show that #GA
cannot be #P-complete unless PH collapses to PNY (actually P¢T). Therefore, the enumer-
ability properties of #GA might be very different from those of #SAT. Also, connections
between the enumerability of #GA and the complexity of GI might help us obtain a better
classification of the Graph Isomorphism problem.

Throughout the paper, we use the number of vertices in a graph as the measure of the size
of the input. We do this to simplify the terminology even though the length of the encoding
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of a graph could be as long as n”. In certain cases, this convention does have an effect on

our results. For example, Theorem 4.5 is stated for ¢ < 1/2; without this convention, the
statement would be € < 1/4.

3 Combining Lemma

In this section we show how to combine many instances of GI into one instance of #GA.
This lemma will be used in the proofs of the main theorems of Sections 4 and 5. First, we
need to define the notion of reductions between two functions (as opposed to sets).

Definition 3.1 (Krentel [19]) Let f and ¢ be two functions. We say that f reduces to ¢,
written f <P g, if there exist two polynomial-time computable functions S and T such that

f(x) = S(x, g(T(x))).

3PP is the class of languages recognized by probabhilistic polynomial-time Turing machines with unbounded

two-sided error. Since PP contains NP, the conclusion P = PP is generally considered to be unlikely.



Intuitively, f <P ¢ implies that f is easier than g, because g provides enough informa-
tion for a polynomial-time function to compute f. These reductions are also called metric
reductions in the literature.

To simplify our notation, we will also use the following notational device for generalized
characteristic functions. For a set A and an ordered list ..., 2, of instances of A, the
function y*(x1,...,7,) outputs a sequence of r bits such that the sth bit is 1 if and only if
r; € A. Note that r does not have to be constant here.

Now, we are ready to prove the Combining Lemma. This key lemma allows us to construct
a graph F from ¢ instances of the Graph Isomorphism problem, (Gy, Hy),...,(G,, H,), such
that #GA(F) provides enough information to determine in polynomial time whether G; is
isomorphic to H; for each instance (G;, H;).

Lemma 3.2 (Combining Lemma) There exist polynomial-time functions T and S such
that ' <P #GA via T and S. Furthermore, in the case where the ordered list Q =
((Gh,Hy),...,(Gy, Hy)) consists of pairs of graphs with n vertices, the following hold for the
graph F output by T(Q).

1. The F has O(n*qlogn + nq*log q) vertices.
2. The output of S(Q, #GA(F)) can be computed from (n,q, #GA(F)).

Proof: In the construction below, the running time of 7' will be polynomial in |Q| which is
polynomial in n + ¢. This allows for the possibility that Q has lots of small graphs. In the
first step of the construction, we find my, ..., m,, the ¢ prime numbers immediately following
the number n. Let r; = (m; + 1)/2 (w.lo.g. r; is an integer). For each i, 1 <1 < ¢, we
construct a graph C; as follows. Take r; copies of G;, r; copies of H; and a complete graph
with 2r; new vertices aq,...,ay,,. Connect each vertex in the jth copy of G; to a;. Connect
each vertex in the jth copy of H; to a,,1;. (See Figure 1.) Call the resulting graph C;.

Now, suppose that G, is isomorphic to H;. Then every automorphism of C; can be formed
by a permutation of the vertices in {ay, ..., as,.} followed by an automorphism of each copy
of G; and H;. Hence
Since 2r; = m; 4 1, the prime number m, divides #GA(C;).

On the other hand, if G; is not isomorphic to H; then every automorphism of C; can be
formed by a permutation of the vertices in {ay,...,a,. }, followed by a permutation of the
vertices in {a,,,...,as,} and the automorphisms of each copy of G; and H;. In this case,

#GA(Cy) = (r) () FGA(G))) (#GA(H;))".

Since r; < m; and |G;| = |H;| = n < m;, the prime number m; does not divide #GA(C;).
In summary,

G; ~ H;, < m, divides #GA(C,) (1)
Let F be the disjoint union of all the C;, for 1 <7 < ¢. The output of the function T(Q)
will be F. Since each C; has (m; + 1)(n + 1) vertices, the total number of vertices in F is

q

(n+ 1)) (mi+1) < qln +1)(mg +1).

=1



Figure 1: Combining r; copies of G; and H;.

By Lemma 2.1 part 4, we know that m, < 2(nlogn 4 glogq). Hence, we can bound the
number of vertices in F by O(n’qlogn + ng*log q).
Now, we show how #GA(F) can be used to compute Y“'(Q). By the construction of F,

HGA(F) = H #GA(C)). (2)

We also know that for all 7, 1 <1 <g¢q
G; ~ H;, = m,; divides #GA(F).

However, the converse may not hold because #GA(C;) for some j > i may contain m, as
a factor. Thus, to determine whether G; ~ H; from #GA(F), these extraneous m; factors
(if they exist) must be removed. To do this, we start with the last C;, namely C,. Since
m,; < my, for all 7 < g, we know that

G, ~ H, <= m, divides #GA(F).

Now, if G, ~ H, then C, contributes an (m, + 1)! factor to #GA(F); otherwise, C, con-
tributes an (r;)!(r;)! factor to #GA(F).

To determine whether G,y ~ H, ; we need to remove the prime factors > n from
#GA(F) that came from #GA(C,). Since #GA(G,) and #GA(H,) do not contain prime
factors > n, the prime factors > n in #GA(C,) come from either (m, + 1)! or (r,)!(r,)!



depending on whether G, ~ H, (which we have already determined). So, let

#GA(F) if i =g
N1 . N
N, — (mTj‘U' if m;y 1 divides N,
Nyt

otherwise

(7"17+1 )!(7“17+1 )!

From the preceding discussion, it is clear that G, ~ H; <= m; divides N;. Thus, the
function S can compute Y'((Gy, Hy),...,(Gy, H,)) from #GA(F), n and ¢, by finding

my, My, ..., mg and calculating Ny, Ny, ... N,. |

4 #GA and n‘-enumerability

The main theorem in this section shows that it is unlikely for #GA to be n“-enumerable
because for any e < 1/2, #GA is n“enumerable if and only if GI can be recognized in
polynomial time. We begin with a review of two constructions from the literature. The
first one shows that the Graph Isomorphism problem is “self-computable,” in the sense that
given GI as an oracle, we can construct an isomorphism between two isomorphic graphs in
polynomial time [18, 25]. We reproduce the proof of this well-known theorem because we
need to make references to the construction in the proof and because we need to estimate
the sizes of the graphs queried.

Lemma 4.1 There exists a polynomial-time Turing machine using GI as an oracle which
finds an isomorphism between two graphs, if the graphs are isomorphic.

Proof: We prove that GI is “self-computable” by constructing a mapping between the
vertices of two isomorphic graphs G and H using GI as an oracle. This “self-computable”
property is similar to the self-reducibility of SAT. In the first stage of the construction, we
find a vertex 77 in H such that there is an isomorphism between G and H mapping vertex 1
in GG to vertex 7; in H. This is accomplished by trying all n vertices in H exhaustively and
asking the GI oracle the n questions:

Is there an isomorphism from G to H mapping vertex 1 to vertex ;7

These questions can be transformed into queries to GI by attaching cliques with n+1 vertices
to vertex 1 in G and vertex 7; in H. Thus, any isomorphism between the transformed graphs
must map vertex 1 in G to vertex 17 in H. If such an isomorphism exists, the remaining
n — 1 stages of the construction assign vertices 2,...,n in G to the vertices in H under the
restriction that vertex 1 maps to vertex 77. In stage k of the construction, vertex k in G and
1p in H will be attached to a clique with n + k vertices. |



Remark: Tt is convenient to think of the procedure described in the preceding proof as a
self-reduction tree. The root of the tree, level 0, is labelled with the graphs (G, H). Each
vertex at level & has n — k children which represent the n — k possible assignments of
vertex k in G to the n — k remaining vertices in H. These vertices are labelled with the
corresponding transformed graphs. This tree has n! leaves, so we cannot construct the entire
tree in polynomial time. However, at the leaves of the tree, every vertex of G is assigned
to some vertex of H. Thus, in polynomial time we can determine whether the mapping
represented by a leaf is indeed an isomorphism between G and H.

In the proof of Theorem 4.5 below, our strategy is to traverse the self-reduction tree from
the top down. Since the tree has exponentially many paths, we will need to identify some of
the paths as dead-ends. The following combinatorial lemmas [7, 23] will help us prune the
tree and maintain a polynomial bound on the running time of the tree traversal.

Definition 4.2 For a collection C of sets and a set X, we say X separates C if for all
S, 8€elC, A5 =5NX#5NX.

Lemma 4.3 For a collection C of sets, with |C| = n > 1, there exists a set X that separates
C where | X| <n —1.

The lemma below adapts Lemma 4.3 to show that if we have ¢ vectors in {0,1}¢, then
the vectors can be uniquely identified by their values at £ — 1 coordinates. Thus, one of the
coordinates is not needed to distinguish the vectors from each other. In the following, we
use (g), to denote the ith component of a vector be !

Lemma 4.4 Let m </ and 31, e j;m € {0,1Y. There exists a coordinate k such that for
all b, # b;, there exists t # k such that (b;); # (bj)r. Moreover, k can be found in time

polynomial in 1.

Proof: Tt suffices to prove the case where m = /. Use Lemma 4.3 where C is the collection
of subsets of {1,...,/} represented by the bit vectors g],...,gg. Let k be an element not
contained in the separator X. Since X is a separator, each pair of bit vectors must differ at
coordinates other than k. The coordinate k can be found in time polynomial in ¢ because
we can simply try all possible values for k and check each pair of b; and Z_))7 This takes time

o). 1l

We are now ready to prove the main result of this section. The techniques used in this
proof and in Lemma 4.4 are derived from results on enumerability and self-reducibility by

Amir, Beigel and Gasarch [1].

Theorem 4.5 For e < 1/2, the function #GA is n“-enumerable if and only if G1 € P.*

*Recall that the n in “n“enumerable” is the number of vertices in the graph. If n is the length of the
encoding of the graph, we would need to further restrict e < 1/4.



Proof: If GI € P, then #GA is also computable in polynomial time using group theoretic
arguments [18]. In this case, #GA would be 1-enumerable. Thus, we only need to show that
if #GA is n“-enumerable, then GI € P.

Given two graphs G and H with n vertices, we search the self-reduction tree described
above in stages. We maintain a list Q of pairs of graphs from the self-reduction tree. Initially,
Q contains just the pair (G, H). Throughout the tree-pruning procedure we maintain the
invariant that G ~ H if and only if Q contains a pair of isomorphic graphs (i.e., y“'(Q)
is not all zeroes). Also, the size of the list @ will always be polynomially bounded. In the
beginning of every stage of the tree pruning, we take each pair of graphs in @ and replace
it with its children in the self-reduction tree. We continue the replacement until @ has at
least g(n) pairs (for ¢(n) > n to be determined below).

Let Q" = ((G1,Hy),...,(Gymy, Hymy)) be the first g(n) pairs in Q. Let m be an upper
bound on the size of these graphs. We apply the Combining Lemma to construct the graph
F which has at most r = mgq(n)?log q(n) vertices. Then, we use the enumerator for #GA
on F to obtain a list of r numbers one of which is #GA(F). The function S in the
Combining Lemma converts these numbers into a list of r vectors g], e ,Z_);s in {0,1}9()
one of which is Y“'(Q’). Now, suppose that b; # 090 for all i, 1 < 4 < r°. Then, we
know that y¢1(Q’) # 09" so G must be isomorphic to H. Thus, we can halt the pruning
procedure and accept. In the remaining case, we may assume that 09") is one of the vectors
in g],...jf_);s. We will pick ¢(n) below so that r© < ¢(n). Then, Lemma 4.4 gives us a
coordinate k such that for ?_); + 617 the vectors g,; and gj differ on a coordinate other than k.
Now, it cannot be the case that (G}, H},) is the only isomorphic pair of graphs in @', because
in that case y91(Q’) = 0*71109(") =% 'hence Y¢'(Q') can only be distinguished from 090" using
the kth coordinate. Thus, the pruning process can safely remove the pair (G, Hy) from the
list @ and still gnarantee that if @ contains an isomorphic pair before pruning, then it also
does after pruning.

We continue removing items from Q until it has fewer than g(n) pairs of graphs. Then
we proceed to the next stage. After at most n stages, the pairs in Q are leaves of the self-
reduction tree, so we can compute y“'(Q) in polynomial time. By the invariant we have
maintained, G ~ H if and only if Y¢'(Q) is not all zeroes. Thus, we have shown that GI € P.

Finally, we need to show that by picking ¢(n) to be n® where a > 1/(1 — 2¢), we can
guarantee that r* < ¢(n). (The constant « is positive since € < 1/2.) From the construction
of the self reduction tree in Lemma 4.1, we know that m is O(n?) since the graphs G; and
H; consist of n original vertices and cliques of size n 4+ 1 through 2n. So,

r* < (en®-q(n)® -logq(n)) = (en® - n** - alogn)".
Thus, r© < n2*20+3 for all § > 0. From our choice of a, we know that
2¢e + 206 < 1 4+ 206 < 0.
Therefore, r* < g(n). |

Since it is generally believed that GI € P, the preceding theorem can also be interpreted
as a lower bound on the enumerability of #GA. We can also use the theorem to obtain
a lower bound on the bounded query complexity of #GA. The bounded query classes are
defined as follows.

10



Definition 4.6 Let j(n) be a function and X be a set. A function f is in PF]}?”),T if there
exists a polynomial-time oracle Turing machine which computes f using no more than j(n)
queries to X on inputs of length n.

Counting the number of oracle queries has been established as a useful complexity mea-
sure. For example, the number of queries to an NP oracle can be used to characterize the
complexity of approximating NP-optimization problems [11, 12]. The following fact shows
that there is an intimate connection between the enumerability of a function and the bounded
query complexity of that function.

Fact 4.7 (Beigel [6, Lemma 3.2]) Let f be any function and j(n) be a polynomial-time
computable function. The following are equivalent:

1. There exists X such that f € PF'ﬁn)_T.

2. fis 20 _enumerable.

Using Fact 4.7 we can obtain a lower bound on the number of queries needed to compute

#GA | assuming that GI ¢ P.

Corollary 4.8 Let e < 1/2. If there exists an X such that #GA € PFX then GI € P.

elogn-T

5 #GA and poly-enumerability

Assuming that GI ¢ P, the main result in the previous section is a “non-enumerability”
result. In general, we would like to prove stronger non-enumerability results for #GA. For
example, Amir, Beigel and Gasarch [1] were able to prove that #£SAT is not 2" -enumerable
for € < 1 unless the Polynomial Hierarchy collapses. We cannot use their machinery for
the case of #GA, because it turns out that #GA is actually exp(O(y/nlogn))-enumerable.
Instead, we adapt the techniques of Goldwasser, Micali and Rackoff [13] to show that #GA
cannot be poly-enumerable unless GI € R.?

Goldwasser, Micali and Rackoff showed that Graph Non-Tsomorphism, the complement of
GI, can be recognized by a two-round interactive protocol. We briefly review this protocol in
order to motivate the proof of Theorem 5.2. There are two parties involved in the interactive
protocol: an all-powerful prover and a randomized polynomial-time verifier. The verifier asks
the prover to convince him that the input graphs (G, H) are not isomorphic as follows. In
secret, the verifier randomly picks one of G and H along with a random permutation 7. He
applies 7 to either GG or H, whichever one he picked, and obtains a new graph X. Then, the
verifier asks the prover whether X is a permuted version of G or of H. If G and H are not
isomorphic, the all-powerful prover simply checks if G ~ X or if H ~ X, and provides the
appropriate answer. On the other hand, if G and H are isomorphic, X can be a permuted
version of either graph. In that case, the prover can only provide the correct answer with
probability one half. Thus, if G % H, there exists a prover who can always convince the

"We were motivated in part by TLozano and Toran [20, Theorem 5.1] who also nsed this technique in their
proof.
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verifier to accept. Conversely, if G ~ H, no prover (even one that “lies”) can convince the
verifier to accept with greater than 50 percent probability.

In the proof below, our randomized algorithm for GI will play the role of the verifier and
the enumerator for #GA will play the role of the prover. However, unlike the prover in an
interactive protocol, the enumerator provides several answers at once.® Thus, it is possible
for the enumerator to give two answers at the same time: one that corresponds to G ~ H
and one to G % H. We cope with this situation by emulating the interactive protocol many
times in parallel. Thus, instead of picking one permutation 7= and forming one permuted
graph X, we pick ¢(n) permutations m, ... 7, and form g(n) graphs Xy, ..., X, each of
which is a permutation of either G or H.

Notation 5.1 For each permutation m € S,,, we use 7(G) to denote the graph obtained by
re-labelling the vertices of GG using 7. Given two permutations m, p € S,,, we define mop € 5,
to be the functional composition of 7 and p  i.e., (7°p)(G) = 7 (p(G)).

Theorem 5.2 If #£GA is poly-enumerable then GI € R.

Proof: Assuming that #GA is p(n)-enumerable via an enumeration function ¢, we will
construct a randomized polynomial-time algorithm to decide whether the input graphs G
and H are isomorphic. Let n be the number of vertices in G and H and let ¢(n) > n be a
polynomial to be specified later. As discussed above, we randomly pick ¢(n) permutations
Tiy ..., Tam) from 5, and for each m; permute either G or H. Qur choice of applying m; to

either G or H can be represented by a single bit. So, a bit vector b€ {0,1}9(") and the

permutations my, ..., Ty, fully specify our random choices. Let b; be the ith bit of band X;
be the result of applying the permutation m;; that is:

Xi= :
7T,j(G) lf b,j = 1.

Now, consider the instances of the graph isomorphism problem: (G, Xy),..., (G, X))
Note that if G is not isomorphic to H then

V(G X0 (G X)) = .

since G is isomorphic to X; only when X; = 7;(G). On the other hand, if G is isomorphic
to H, then our choice of applying 7 to G or H does not change whether G is isomorphic to
X;. So, in this case,

UG X)), (G Xggmy)) = 177,

Next, we use the Combining Lemma on (G, Xy),..., (G, Xym)) to construct a graph F
such that #GA(F) provides enough information to compute y“'((G, Xy),.... (G, Xym))). If

we could compute #GA(F) directly, then we can immediately determine whether G ~ H
by checking whether #GA(F) corresponds to the case where y'((G, X1),..., (G, Xym))) is

6 Another difference is that the enumerator cannot “lie” in the same manner as the prover because one of
the answers it provides must be the correct value of #£GA.
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b or 19007 However, we cannot compute #GA(F) directly, so we use the enumerator for
#GA(F) instead. Let T and S be the reduction functions from the Combining Lemma.
(We nsed T on (G, X7),...,(G, X)) to obtain the graph F.) Since we assume that #GA
is p(n)-enumerable, in polynomial time we can compute g(F), a set of polynomially many
values one of which is #GA(F). For each value in g(F), we use the S function from the
Combining Lemma to determine a possible value for y'((G, X1),....(G, X ))). Call the
set of all such values

POSS = { S(n.q(n),N) | N € g(F) }.

If G # H, then b= Y(G X1), ..., (G, Xym))). Thus, b must be an element of POSS, since
Y(G, X1),..., (G, Xym))) is always an element of POSS. On the other hand, if G ~ H,

then b € POSS occurs with very low probability (proven below). Therefore, the strategy
for our randomized algorithm is to accept (G, H) if and only if b ¢ POSS. The following

summarizes the algorithm to determine whether G ~ H.

1. Randomly pick be {0,1}90) and my, . .. s Ta(n) € Sn-

2. Use the Combining Lemma to construct F = T((G, X1), ..., (G, Xym)))-

(O8]

. Use ¢ to generate the possible values of #GA(F).
4. Compute the set POSS = {S(n,q(n),N) | N € g(F)}.

5 Ifh ¢ POSS then output YES, otherwise output NO.

If G # H, then the algorithm above outputs NO with probability 1. Tt remains to
be proven that if G ~ H then the algorithm above outputs YES with high probability.
Intuitively, it is unlikely for b € POSS when G ~ H because POSS is completely determined
by F and the same F can be the result of exponentially many random choices. We prove
this formally by partitioning the set of all random choices of the algorithm into blocks of
24(") random choices. Each random choice within a block has a distinct b but produces the
same graph F. Thus, within each block, the probability that b € POSS is very low. The
blocks are defined as follows.

Assume that G is isomorphic to H. Since permutations are invertible, for every graph Y
isomorphic to G, there exists a permutation p such that p(H) = Y. Now, fix a sequence of
permutations ay,...,04m) € S, and let Y; = 0;(G). Let py, ..., pym) be the corresponding

permutations such that p,(H) = Y;. Let b be any bit vector chosen by our randomized
algorithm. Then, there exists a choice of my, ..., 7 such that the graph X; constructed in
the algorithm is exactly Y;, namely:

™ = .
a; lf b,j = 1.
Furthermore, if we fix an isomorphism 7 from H to G, the permutation m; is completely
determined by b; and o, ie., m; = oot if by = 0 and 7, = o; if b; = 1. Thus, we

"Except for the pathological case where we chose b= 1907 but this occurs with low probability.
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can associate the permutations oy,...,04) with a block of 29(") random choices for the
randomized algorithm (since there are 29" different bit vectors g) To see that every choice
of b and Tiy .-, Te(m) corresponds to some block, simply note that we can set o; = mor ! if
b; = 0 and o; = m; if b; = 1. This will again guarantee that Y; = X, for every 7. Therefore,
the blocks do form a partition of the set of all random choices made by the algorithm.

Finally, observe that for each of the 290" distinct bit vectors bin a block, the same
instances of GI, (G, X1),..., (G, Xyn)), are constructed by the randomized algorithm. Thus,
the same set POSS is generated. Since POSS has p(r(n)) elements and since p(r(n)) is
polynomially bounded, the probability that a randomly chosen b is not an element of POSS
is at least 1 — p(r(n))/290"). Thus, for ¢(n) large enough, the randomized algorithm will
accept with high probability in the case that G ~ H. |

As before, we can translate the non-enumerability of #GA into lower bounds on its
bounded query complexity using Fact 4.7.

Corollary 5.3 If there exists an X such that #GA € PF?)(( _p then GI € R.

logn)

6 Subexponential enumeration

The results of the preceding section can be interpreted as lower bounds on the enumerability
of #GA since it seems unlikely that GI € P or GI € R. In this section we provide an upper
bound on the enumerability of #GA by showing that #GA is exp(O(v/nlog n))-enumerable.
Our enumerator will be oblivious, that is, g(A4,7) will only depend on n and 7. We think of
i as being an encoding of the order of a permutation group A of degree n. We must show
that such an encoding exists such that 7 takes space O(y/nlogn) and the function 7 — |A|

is computable in polynomial time.

Lemma 6.1 Let A be a subgroup of S,,. Let p; be the ith prime. Then |A| must be of the
form T[], Pl where

1. for all 2, d; <n.
2. m<n/lnn+o(n/Inn).

Proof: Let m and dy,...,d,, be such that |A] = [, p*. Since |A4] is a divisor of n!, we
know that for all 7, p;]’ divides n!. However, for any prime p, the highest power of p dividing

) 1 )
d—ZL%J<n _ " < n.

—~ 1>
321 721 P p-1

n!is p?, where

(This formula simply counts the number of positive integers up to n which are divisible by
p, p?, et cetera.) In particular, all the prime factors of |A| are < n. The Prime Number

Theorem states that
. m(n)
lim
nseon/Inn

where 7(n) is the number of primes less than or equal to n. Thus, m <n/Inn 4+ o(n/Inn).
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Theorem 6.2 #GA is exp(O(y/nlogn))-enumerable via an oblivious enumerator.

Proof: Let G be a graph. The set of automorphisms of G is a subgroup of S,,, hence #GA(G)
must be of the form specified in Lemma 6.1. We show how to enumerate all possible sizes
of the subgroups of 5,,. We describe this in the form of a compressed encoding of orders of
subgroups of S, such that the encoding lengths are O(y/nlogn) and given the encoding of
|A|, we can compute |A| in polynomial time. One method would be to simply write down
the binary representations of the d;, for 1 <i < m(n). By Lemma 6.1 the number of bits
used would be O(n), which is too many. However, we will use this technique for “small”
primes.

Let k = v/nlogn. Then m(k) = O(k/logn) = O(y/n/logn). For A < S, the first part
of the encoding of A will consist of the binary representations of the d; for p; < k. This uses
O(m(k)logn) = O(v/nlogn) bits, as desired. To encode the exponents of the larger primes,
we must use detailed knowledge of the possible orders of subgroups of S,,. However, our task
will be greatly simplified by the fact that we can now ignore the small primes.

Let Q denote {1,...,n}. For 2 € Q. 2* denotes the A-orbit of z, i.e., the set of all images
of # under the action of A. We say that an orbit is #rivial if it has one element, and we
say that A is transitive if €1 is an orbit. In any case, the A-orbits partition 2. We describe
two divide-and-conquer techniques based on this partition. Let A = 2# be an A-orbit, and
let A, denote the subgroup {a € A | 2 = 2} of those permutations which fix z. It is well
known that

4] = |4, A,

so if |A| has only prime factors < k, we may replace A by A, for the purposes of the
second part of the encoding. We henceforth assume that all nontrivial orbits of A have
orders divisible by some prime larger than & (so in particular there are at most /n/logn
nontrivial orbits). Actually, we make the more general assumption that for any proper
subgroup B of A, the index |A|/|B| is divisible by a prime larger than k.

Now suppose that |[A| = m, and let B be the subgroup of 5, obtained from A by ignoring
the action outside of A. Let AA denote the subgroup of A which fixes every point of A.
Then |A| = |B| - |Aal, and to encode |A| it suffices to first encode |B| and then recursively
encode |Aa|. The number of orbits A which need to be considered is O(4/n/logn), so we
may use only O(logn) bits to encode |B]. To do this, we make great use of the fact that B
is transitive.

Now suppose that Ay,..., A, is a partition of A with 1 < r < m such that B permutes
the A,;. If several such partitions exist, then choose one that minimizes r. Then the partition
is called a system of imprimitivity for B, and the A; are called blocks of imprimitivity. Since
B acts transitively on the set of blocks, B has a subgroup of index r, from which we conclude
that r is divisible by some prime p > k. Let N be the subgroup of B that fixes the blocks,
i.e. any ¥ € N sends each A; to itself. Let K be the subgroup of S, obtained from B by
considering the action on the blocks. Then |B| = |N|-|K|. In addition, every orbit of N has
order less than k, so |N| is a product of primes at most k. Thus, to encode | B, it suffices
to encode |K|. By minimality of r, K is primitive, i.e., preserves no nontrivial partition of
the permutation domain.

Much is already known about the structure of primitive groups. The O’Nan Scott Lemma
[10, Theorem 4.1] classifies them into several types. Many of these are ruled out by our
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assumption that the index of any proper subgroup of K is divisible by some prime larger
than k (where k? is bigger than r, the size of the permutation domain). In fact, we are left
in the case that K has a simple normal subgroup T. Further, either |T| = r and K is a
subgroup of the automorphism group of T x T, or K is a subgroup of the automorphism
group of T. Following the Classification of Finite Simple groups, much is known about
the permutation representations of finite simple groups [2]. In particular, either T is one
of polynomially many alternating or classical groups (each of which can be described by
a string of length O(logn)), or |K| is polynomially bounded. In the first case |K|/|T| is
polynomially bounded, so in either case O(log n) bits suffice to describe the order of K.

We summarize the encoding of |A|. First, we write down the binary representations of
the exponents of the primes in |A| for all primes p < k. Then, we write down a sequence of
O(n/k) pairs ((T), N), where (T) is an O(logn) length name of a group T which is either
the trivial group or a classical group with a permutation representation of degree < n and N
is a positive integer (written in binary) which is at most n° for some constant ¢. For primes
p > k, the p-part of |A]| is the product of the p-parts of the N’s and the orders of the T’s.
The order of T is given by an explicit formula, so |A| can be computed in polynomial time
from its encoding. The first part of the encoding uses O(w(k)logn) bits; the second part of
the encoding uses O((n/k)logn) bits. Both of these quantities are O(y/nlogn) as desired.

7 Discussion

Several open problems remain on the enumerability of #GA. We have shown that if #GA
is poly-enumerable, then GI € R. For SAT, we know that if #SAT poly-enumerable, then
P = PP [1, 9] which implies that SAT € P. For #GA, it remains open whether #GA being
poly-enumerable could imply that GI € P. It might even be possible to show that if #GA
is 2" -enumerable for some ¢ < 1/2, then GI € P. Such a theorem would not violate our
upper bound that #GA is exp(O(y/nlogn))-enumerable. Note that an analogous result for
HSAT, that #SAT is 2" -enumerable implies SAT € P, is not known.

While no polynomial-time algorithms for GI or #GA have been discovered, algorithms
with subexponential running time do exist. For example, there exists an algorithm with time
complexity exp(Q(y/nlogn)) which computes the automorphism group and its generators [2]
(this is harder than solving GI and #GA). This algorithm combines the techniques of several
authors including Babai, Luks, and Zemlyachenko. The bound on the running time is the
same as the upper bound on the enumerability of #GA that we achieved in Section 6. This
striking observation brings up the possibility of the following time-enumeration trade-off. By
allowing the enumerator to run for longer than polynomial time, say time exp(O((nlogn)® +
logn)), it might be possible to achieve exp(Q((nlogn)”))-enumerability for a + b = 1/2.
Note that the case a = 1/2 is given by the subexponential-time algorithm mentioned ahove
[2], and the case a = 0 is our upper bound. The case ) < a < 1/2 is open.

We remark that for oblivious enumeration, our upper bound is tight up to some log-
arithmic factors in the exponent. To see this, let & = /nlogn as in Section 6. Since
km(k) = O(n), the sum of the primes up to k is O(n). By scaling k by a constant factor, we
may achieve that m(k) = Q(y/n/logn) and the sum of the primes less than & is < n. So, for
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any subset S of the primes p < k, there is a permutation group of degree n whose order is
the product of the primes in S (the group is generated by disjoint cycles of prime lengths).
This gives us exp(Q(4/n/logn)) different orders of permutation groups of degree n. It is
straightforward to obtain the same lower bound for the number of distinct orders of auto-
morphism groups of graphs of degree n. Thus, oblivious enumeration seems to have reached
its limit, but it remains open whether or not a clever use of polynomial-time computable
graph properties would yield a better, non-oblivious enumerator.

Finally, we note that the reduction of Section 5 can be used even if the enumeration is
not polynomial. (It would yield a randomized algorithm for GI which has super-polynomial
running time.) Roughly speaking, the reduction can be used as long as the enumerability
is less than about exp(n'/27¢) (so, not surprisingly, an oblivious enumerator is useless for
this). In order to beat the subexponential running time of the existing algorithm [2], the
enumerability would have to be about exp(n'/4=¢) (however, the enumerator would not have
to be restricted to polynomial time).
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