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1 IntroductionThe Graph Isomorphism problem has a special place in computational complexity theory.The set GI consists of all pairs of graphs that are isomorphic to each other. GI is knownto be in NP but not NP-complete unless the Polynomial Hierarchy collapses [13, 26], acondition which violates the usual intractability assumptions. Nevertheless, there is noknown polynomial-time algorithm to solve the isomorphism problem on general graphs eventhough some progress has been made towards polynomial-time algorithms in special cases(most notably for planar graphs [15, 16] and bounded degree graphs [21]). Thus, the GraphIsomorphism problem belongs to a short list of problems in NP that are suspected to beneither decidable in polynomial time nor NP-complete. In fact, the exact complexity ofGI remains an open problem. For example, it is not known whether GI can be solved inrandomized polynomial time or whether GI is contained in the class NP \ co-NP.The current state of knowledge on the complexity of GI depends on the two-round in-teractive protocol for Graph Non-Isomorphism [13], a technique which we exploit in thispaper. However, even before this proof was discovered, it was suspected that GI could notbe NP-complete because counting the number of graph isomorphisms has roughly the samecomplexity as deciding the existence of an isomorphism [22]. In contrast, the counting ver-sions of typical NP-complete problems tend to be much harder than the decision versions.The proof that counting graph isomorphisms is relatively \easy" also demonstrated a closeconnection between the structure of graph isomorphisms and graph automorphisms (iso-morphisms between a graph and itself). The results in this paper add another link to thisconnection.In computational complexity theory, a function is called b(n)-enumerable1 if a polynomial-time function can determine a restricted range for the function. For example, a priori the#GA function, which computes the number of automorphisms in a graph, may output anyvalue from 1 to n! for a graph with n vertices. However, we will show that #GA can takeon only one of exp(O(pn log n)) values | i.e., we will show that #GA is exp(O(pn log n))-enumerable. The other main results in this paper show that if #GA is \easy" in the senseof enumerability then there is a corresponding decrease in the complexity of GI. Namely:� If #GA is polynomially enumerable then GI can be recognized in randomized polyno-mial time.� For � < 12 , if #GA is n�-enumerable then GI can be recognized in deterministic poly-nomial time.Currently, GI does not seem to be solvable in polynomial time using either randomizedor deterministic computations. Hence, these results could also be interpreted as results onthe non-enumerability of #GA.The rest of the paper is organized as follows. In Section 2, we provide some technicalbackground and formal de�nitions for the terms used in this paper. In Section 3, we constructa graph gadget that allows us to combine many instances of GI into one instance of #GA.1not to be confused with recursive enumerability in recursive function theory or countable (denumerable)sets in set theory. 2



In Sections 4 and 5, we present the results connecting the enumerability of #GA and thecomplexity of GI. Finally, in Section 6 we give an upper bound on the enumerability of #GA.2 PreliminariesIn this paper, we will work with many complexity classes. We assume that the reader is famil-iar with P and NP, the classes of languages recognized by deterministic and nondeterministicpolynomial-time Turing machines. We will use PH to denote the Polynomial Hierarchy andR to denote the class of languages recognized by probabilistic polynomial-time Turing ma-chines with bounded one-sided error. We refer the reader to standard textbooks [3, 4] incomplexity theory for explanations on the relationships among these classes.An instance of the Graph Isomorphism problem (GI) is a pair of undirected graphs(G;H). Without loss of generality, the vertices of the graphs are labelled 1 through n. Thepair (G;H) is an element of GI if there exists a bijection f from the vertices of G to thevertices of H that preserves the edge relations | i.e., (u; v) is an edge in the graph G if andonly if (f(u); f(v)) is an edge in H. In this case, f is called an isomorphism between G andH and we write G ' H. Note that we may think of f as a permutation of the set f1; : : : ; ng.Whereas GI is a set, or alternatively a decision problem, #GI is a function, or a countingproblem. The value of the function #GI on input (G;H) is the number of isomorphismsfrom G to H.An instance of the Graph Automorphism problem (GA) is a single graph G. The graphG is an element of GA if G has a non-trivial automorphism | i.e., an isomorphism betweenG and itself other than the identity function. Analogously, the function #GA computes thenumber of automorphisms on G. It is often more convenient to work with GA instead of GI,because the set of automorphisms of a graph forms a group under composition.Clearly, the set GI is an element of NP because an NP machine can guess a permutationand check that the permutation is indeed an isomorphism between two graphs. As we havementioned before, GI is known to be incomplete for NP unless the Polynomial Hierarchycollapses. The complexities of #GI, GA and #GA can be estimated based upon theirrelationship to GI. For example, GA reduces to GI by a many-one polynomial-time reduction.Therefore, GA is also an element of NP and cannot be complete for NP unless PH collapses.Clearly, GI reduces to #GI because knowing the number of isomorphisms certainly tellsyou whether one exists. In addition, one can compare the complexities of these problemsas oracles. Using the group structure of GA, one can show that PGI = PGA = P#GI [22],[18, Theorem 1.24]. Thus, treated as oracles for P, the problems GI, GA and #GI haveessentially the same complexity.2The incompleteness of GI also shows that P#GI cannot contain any NP-complete prob-lems unless PH collapses. This result sets the Graph Isomorphism problem apart from theNP-complete problems. For example, consider the satis�ability problem SAT and the corre-sponding counting problem #SAT, which outputs the number of satisfying assignments ofa Boolean formula. SAT is of course NP-complete, so PSAT = PNP. However, it also knownthat P#SAT contains the entire Polynomial Hierarchy [27]. Thus, the complexity of #SAT is2Of course, PGA � P#GA, but whether P#GA � PGA remains an open problem.3



much higher than the complexity SAT, whereas the complexity of #GI is at the same levelas that of GI.Returning to graph automorphisms, we note that the value of #GA(G) has several specialproperties. First, #GA(G) must range from 1 to n! because the identity function is alwaysan automorphism and there are at most n! permutations of the n vertices. Second, the setof automorphisms of G forms a subgroup of Sn, the set of all permutations of f1; : : : ; ngunder composition. This group structure can be exploited in many ways. For example, fromLaGrange's Theorem, we know that #GA(G) must divide n!, hence #GA(G) cannot havefactors larger than n. Thus, given #GA(G) as input, it is possible to obtain a completeprime factorization of #GA(G) in polynomial time. The following observations about #GAand prime numbers will be needed throughout the paper.Lemma 2.1 Let G be a graph with n vertices. For i � 1, let mi be the ith smallest primenumber larger than n.1. #GA(G) divides n!.2. mi does not divide #GA(G).3. There exists a prime p s.t. mi < p < 2mi.4. For n � 17, mi � 2(n log n+ i log i).5. mi can be computed in time nO(1) + iO(1).Proof: Parts 1 and 2 follow from the preceding discussion. Part 3 is just Bertrand's Postulate[14] (that there exists a prime number between x and 2x). Part 4 can be derived easily froma result of Rosser and Schoenfeld [24] which states that the number of primes less than x isbetween x= lnx and 1:25506x= ln x, for x � 17. (These are estimates for the constants in thePrime Number Theorem.) Part 5 follows from Part 4, because mi is polynomial in n and i.Since we can list all the primes below a number x in time polynomial in x (not the lengthof x), mi can be found in time polynomial in n and i.Thus, #GA cannot take on every value between 1 and n! since some of these numberscannot be the order of a subgroup of Sn. This leads us to \enumerability" as a measureof complexity. The concept of enumerability in computational complexity theory was intro-duced independently by Beigel [5] and by Cai and Hemachandra [8] then later modi�ed byAmir, Beigel and Gasarch [1].De�nition 2.2 Let b : N ! N be polynomially bounded. A function f is b(n)-enumerableif there exists a polynomial-time computable function g, such that for all x, g(x) outputs alist of at most b(jxj) values, one of which is f(x). A function f is poly-enumerable if f isb(n)-enumerable for some polynomial b.For super-polynomial b : N ! N, f is b(n)-enumerable if there exists a polynomial-timecomputable function g, such that for all x, f(x) is one of the b(jxj) values in the sequenceg(x; 0); g(x; 1); : : : ; g(x; b(jxj)� 1). (Here we assume that the second input to g is written inbinary.) 4



Intuitively, we think of the enumerability of functions as a generalization of approxima-bility. For example, suppose a function f : N ! N is approximable within a factor of 2.Then, there is a polynomial-time computable function which, for all x, outputs a value yand guarantees that y � f(x) � 2y. Thus, the set of possible values of f(x) is restricted tothe numbers between y and 2y. For enumerability, the set of possible values does not haveto be an interval. Another di�erence between enumerability and approximability is that inapproximability the number of possible values is \output sensitive" | i.e., the number ofpossible values of f(x) depends directly on f(x) rather than x. In addition, approximabilityis only meaningful when there is a natural total ordering on the range of the function whereasenumerability makes sense in a broader setting.There do exist functions which cannot be polynomially enumerated unless some in-tractibility assumptions are violated. For example, Cai and Hemachandra showed that unlessP = PP, the function #SAT is not n�-enumerable for � < 1.3 This result was improved in-dependently by Cai and Hemachandra [9] and by Amir, Beigel and Gasarch [1], who showedthat P = PP if and only if #SAT is p(n)-enumerable for some polynomial p. Moreover,Amir, Beigel and Gasarch [1] proved that unless the Polynomial Hierarchy collapses to itsfourth level, #SAT is not 2n� -enumerable for � < 1. Since #SAT is clearly 2n-enumerable,these results show tight upper and lower bounds on the enumerability of #SAT assumingthat PH does not collapse.In the present paper, we investigate the enumerability of #GA. Our motivation forstudying the enumerability of #GA is twofold. First, the results mentioned above, com-bined with Toda's theorem that every set in PH reduces to #SAT [27], show that #GAcannot be #P-complete unless PH collapses to PNP (actually PGI). Therefore, the enumer-ability properties of #GA might be very di�erent from those of #SAT. Also, connectionsbetween the enumerability of #GA and the complexity of GI might help us obtain a betterclassi�cation of the Graph Isomorphism problem.Throughout the paper, we use the number of vertices in a graph as the measure of the sizeof the input. We do this to simplify the terminology even though the length of the encodingof a graph could be as long as n2. In certain cases, this convention does have an e�ect onour results. For example, Theorem 4.5 is stated for � < 1=2; without this convention, thestatement would be � < 1=4.3 Combining LemmaIn this section we show how to combine many instances of GI into one instance of #GA.This lemma will be used in the proofs of the main theorems of Sections 4 and 5. First, weneed to de�ne the notion of reductions between two functions (as opposed to sets).De�nition 3.1 (Krentel [19]) Let f and g be two functions. We say that f reduces to g,written f �pm g, if there exist two polynomial-time computable functions S and T such thatf(x) = S(x; g(T (x))):3PP is the class of languages recognized by probabilistic polynomial-timeTuring machines with unboundedtwo-sided error. Since PP contains NP, the conclusion P = PP is generally considered to be unlikely.5



Intuitively, f �pm g implies that f is easier than g, because g provides enough informa-tion for a polynomial-time function to compute f . These reductions are also called metricreductions in the literature.To simplify our notation, we will also use the following notational device for generalizedcharacteristic functions. For a set A and an ordered list x1; : : : ; xr of instances of A, thefunction �A(x1; : : : ; xr) outputs a sequence of r bits such that the ith bit is 1 if and only ifxi 2 A. Note that r does not have to be constant here.Now, we are ready to prove the Combining Lemma. This key lemmaallows us to constructa graph F from q instances of the Graph Isomorphism problem, (G1;H1); : : : ; (Gq;Hq), suchthat #GA(F) provides enough information to determine in polynomial time whether Gi isisomorphic to Hi for each instance (Gi;Hi).Lemma 3.2 (Combining Lemma) There exist polynomial-time functions T and S suchthat �GI �pm #GA via T and S. Furthermore, in the case where the ordered list Q =h(G1;H1); : : : ; (Gq;Hq)i consists of pairs of graphs with n vertices, the following hold for thegraph F output by T (Q).1. The F has O(n2q log n + nq2 log q) vertices.2. The output of S(Q;#GA(F)) can be computed from (n; q;#GA(F)).Proof: In the construction below, the running time of T will be polynomial in jQj which ispolynomial in n + q. This allows for the possibility that Q has lots of small graphs. In the�rst step of the construction, we �nd m1; : : : ;mq, the q prime numbers immediately followingthe number n. Let ri = (mi + 1)=2 (w.l.o.g. ri is an integer). For each i, 1 � i � q, weconstruct a graph Ci as follows. Take ri copies of Gi, ri copies of Hi and a complete graphwith 2ri new vertices a1; : : : ; a2ri. Connect each vertex in the jth copy of Gi to aj. Connecteach vertex in the jth copy of Hi to ari+j . (See Figure 1.) Call the resulting graph Ci.Now, suppose that Gi is isomorphic to Hi. Then every automorphism of Ci can be formedby a permutation of the vertices in fa1; : : : ; a2rig followed by an automorphism of each copyof Gi and Hi. Hence #GA(Ci) = (2ri)!(#GA(Gi))2ri:Since 2ri = mi + 1, the prime number mi divides #GA(Ci).On the other hand, if Gi is not isomorphic to Hi then every automorphism of Ci can beformed by a permutation of the vertices in fa1; : : : ; arig, followed by a permutation of thevertices in fari+1; : : : ; a2rig and the automorphisms of each copy of Gi and Hi. In this case,#GA(Ci) = (ri)!(ri)!(#GA(Gi))ri(#GA(Hi))ri:Since ri < mi and jGij = jHij = n < mi, the prime number mi does not divide #GA(Ci).In summary, Gi ' Hi () mi divides #GA(Ci): (1)Let F be the disjoint union of all the Ci, for 1 � i � q. The output of the function T (Q)will be F. Since each Ci has (mi + 1)(n+ 1) vertices, the total number of vertices in F is(n + 1) qXi=1 (mi + 1) < q(n+ 1)(mq + 1):6
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Figure 1: Combining ri copies of Gi and Hi.By Lemma 2.1 part 4, we know that mq � 2(n log n + q log q). Hence, we can bound thenumber of vertices in F by O(n2q log n+ nq2 log q).Now, we show how #GA(F) can be used to compute �GI(Q). By the construction of F,#GA(F) = qYi=1#GA(Ci): (2)We also know that for all i, 1 � i � qGi ' Hi ) mi divides #GA(F):However, the converse may not hold because #GA(Cj) for some j > i may contain mi asa factor. Thus, to determine whether Gi ' Hi from #GA(F), these extraneous mi factors(if they exist) must be removed. To do this, we start with the last Ci, namely Cq. Sincemj < mq for all j < q, we know thatGq ' Hq () mq divides #GA(F):Now, if Gq ' Hq then Cq contributes an (mq + 1)! factor to #GA(F); otherwise, Cq con-tributes an (ri)!(ri)! factor to #GA(F).To determine whether Gq�1 ' Hq�1 we need to remove the prime factors > n from#GA(F) that came from #GA(Cq). Since #GA(Gq) and #GA(Hq) do not contain primefactors > n, the prime factors > n in #GA(Cq) come from either (mq + 1)! or (rq)!(rq)!7



depending on whether Gq ' Hq (which we have already determined). So, letNi = 8>>>>>>><>>>>>>>:#GA(F) if i = qNi+1(mi+1 + 1)! if mi+1 divides Ni+1Ni+1(ri+1)!(ri+1)! otherwiseFrom the preceding discussion, it is clear that Gi ' Hi () mi divides Ni. Thus, thefunction S can compute �GI((G1;H1); : : : ; (Gq;Hq)) from #GA(F), n and q, by �ndingm1;m2; : : : ;mq and calculating N1; N2; : : :Nq.4 #GA and n�-enumerabilityThe main theorem in this section shows that it is unlikely for #GA to be n�-enumerablebecause for any � < 1=2, #GA is n�-enumerable if and only if GI can be recognized inpolynomial time. We begin with a review of two constructions from the literature. The�rst one shows that the Graph Isomorphism problem is \self-computable," in the sense thatgiven GI as an oracle, we can construct an isomorphism between two isomorphic graphs inpolynomial time [18, 25]. We reproduce the proof of this well-known theorem because weneed to make references to the construction in the proof and because we need to estimatethe sizes of the graphs queried.Lemma 4.1 There exists a polynomial-time Turing machine using GI as an oracle which�nds an isomorphism between two graphs, if the graphs are isomorphic.Proof: We prove that GI is \self-computable" by constructing a mapping between thevertices of two isomorphic graphs G and H using GI as an oracle. This \self-computable"property is similar to the self-reducibility of SAT. In the �rst stage of the construction, we�nd a vertex i1 in H such that there is an isomorphism between G and H mapping vertex 1in G to vertex i1 in H. This is accomplished by trying all n vertices in H exhaustively andasking the GI oracle the n questions:Is there an isomorphism from G to H mapping vertex 1 to vertex i1?These questions can be transformed into queries to GI by attaching cliques with n+1 verticesto vertex 1 in G and vertex i1 in H. Thus, any isomorphism between the transformed graphsmust map vertex 1 in G to vertex i1 in H. If such an isomorphism exists, the remainingn� 1 stages of the construction assign vertices 2; : : : ; n in G to the vertices in H under therestriction that vertex 1 maps to vertex i1. In stage k of the construction, vertex k in G andik in H will be attached to a clique with n+ k vertices.8



Remark: It is convenient to think of the procedure described in the preceding proof as aself-reduction tree. The root of the tree, level 0, is labelled with the graphs (G;H). Eachvertex at level k has n � k children which represent the n � k possible assignments ofvertex k in G to the n � k remaining vertices in H. These vertices are labelled with thecorresponding transformed graphs. This tree has n! leaves, so we cannot construct the entiretree in polynomial time. However, at the leaves of the tree, every vertex of G is assignedto some vertex of H. Thus, in polynomial time we can determine whether the mappingrepresented by a leaf is indeed an isomorphism between G and H.In the proof of Theorem 4.5 below, our strategy is to traverse the self-reduction tree fromthe top down. Since the tree has exponentially many paths, we will need to identify some ofthe paths as dead-ends. The following combinatorial lemmas [7, 23] will help us prune thetree and maintain a polynomial bound on the running time of the tree traversal.De�nition 4.2 For a collection C of sets and a set X, we say X separates C if for allS; S0 2 C, S 6= S 0 ) S \X 6= S 0 \X.Lemma 4.3 For a collection C of sets, with jCj = n � 1, there exists a set X that separatesC where jXj � n� 1.The lemma below adapts Lemma 4.3 to show that if we have ` vectors in f0; 1g`, thenthe vectors can be uniquely identi�ed by their values at `� 1 coordinates. Thus, one of thecoordinates is not needed to distinguish the vectors from each other. In the following, weuse (~b)i to denote the ith component of a vector ~b 2 �`.Lemma 4.4 Let m � ` and ~b1; : : : ;~bm 2 f0; 1g`. There exists a coordinate k such that forall ~bi 6= ~bj, there exists t 6= k such that (~bi)t 6= (~bj)t. Moreover, k can be found in timepolynomial in `.Proof: It su�ces to prove the case where m = `. Use Lemma 4.3 where C is the collectionof subsets of f1; : : : ; `g represented by the bit vectors ~b1; : : : ;~b`. Let k be an element notcontained in the separator X. Since X is a separator, each pair of bit vectors must di�er atcoordinates other than k. The coordinate k can be found in time polynomial in ` becausewe can simply try all possible values for k and check each pair of ~bi and ~bj. This takes timeO(`4).We are now ready to prove the main result of this section. The techniques used in thisproof and in Lemma 4.4 are derived from results on enumerability and self-reducibility byAmir, Beigel and Gasarch [1].Theorem 4.5 For � < 1=2, the function #GA is n�-enumerable if and only if GI 2 P.44Recall that the n in \n�-enumerable" is the number of vertices in the graph. If n is the length of theencoding of the graph, we would need to further restrict � < 1=4.9



Proof: If GI 2 P, then #GA is also computable in polynomial time using group theoreticarguments [18]. In this case, #GA would be 1-enumerable. Thus, we only need to show thatif #GA is n�-enumerable, then GI 2 P.Given two graphs G and H with n vertices, we search the self-reduction tree describedabove in stages. We maintain a listQ of pairs of graphs from the self-reduction tree. Initially,Q contains just the pair (G;H). Throughout the tree-pruning procedure we maintain theinvariant that G ' H if and only if Q contains a pair of isomorphic graphs (i.e., �GI(Q)is not all zeroes). Also, the size of the list Q will always be polynomially bounded. In thebeginning of every stage of the tree pruning, we take each pair of graphs in Q and replaceit with its children in the self-reduction tree. We continue the replacement until Q has atleast q(n) pairs (for q(n) � n to be determined below).Let Q0 = h(G1;H1); : : : ; (Gq(n);Hq(n))i be the �rst q(n) pairs in Q. Let m be an upperbound on the size of these graphs. We apply the Combining Lemma to construct the graphF which has at most r = mq(n)2 log q(n) vertices. Then, we use the enumerator for #GAon F to obtain a list of r� numbers one of which is #GA(F). The function S in theCombining Lemma converts these numbers into a list of r� vectors ~b1; : : : ;~br� in f0; 1gq(n),one of which is �GI(Q0). Now, suppose that ~bi 6= 0q(n) for all i, 1 � i � r�. Then, weknow that �GI(Q0) 6= 0q(n), so G must be isomorphic to H. Thus, we can halt the pruningprocedure and accept. In the remaining case, we may assume that 0q(n) is one of the vectorsin ~b1; : : : ;~br�. We will pick q(n) below so that r� � q(n). Then, Lemma 4.4 gives us acoordinate k such that for ~bi 6= ~bj, the vectors ~bi and ~bj di�er on a coordinate other than k.Now, it cannot be the case that (Gk;Hk) is the only isomorphic pair of graphs in Q0, becausein that case �GI(Q0) = 0k�110q(n)�k, hence �GI(Q0) can only be distinguished from 0q(n) usingthe kth coordinate. Thus, the pruning process can safely remove the pair (Gk;Hk) from thelist Q and still guarantee that if Q contains an isomorphic pair before pruning, then it alsodoes after pruning.We continue removing items from Q until it has fewer than q(n) pairs of graphs. Thenwe proceed to the next stage. After at most n stages, the pairs in Q are leaves of the self-reduction tree, so we can compute �GI(Q) in polynomial time. By the invariant we havemaintained,G ' H if and only if �GI(Q) is not all zeroes. Thus, we have shown that GI 2 P.Finally, we need to show that by picking q(n) to be n� where � > 1=(1 � 2�), we canguarantee that r� � q(n). (The constant � is positive since � < 1=2.) From the constructionof the self-reduction tree in Lemma 4.1, we know that m is O(n2) since the graphs Gi andHi consist of n original vertices and cliques of size n+ 1 through 2n. So,r� � (cn2 � q(n)2 � log q(n))� = (cn2 � n2� � � log n)�:Thus, r� < n2�+2��+� for all � > 0. From our choice of �, we know that2�+ 2�� < 1 + 2�� < �:Therefore, r� � q(n).Since it is generally believed that GI 62 P, the preceding theorem can also be interpretedas a lower bound on the enumerability of #GA. We can also use the theorem to obtaina lower bound on the bounded query complexity of #GA. The bounded query classes arede�ned as follows. 10



De�nition 4.6 Let j(n) be a function and X be a set. A function f is in PFXj(n)-T if thereexists a polynomial-time oracle Turing machine which computes f using no more than j(n)queries to X on inputs of length n.Counting the number of oracle queries has been established as a useful complexity mea-sure. For example, the number of queries to an NP oracle can be used to characterize thecomplexity of approximating NP-optimization problems [11, 12]. The following fact showsthat there is an intimate connection between the enumerability of a function and the boundedquery complexity of that function.Fact 4.7 (Beigel [6, Lemma 3.2]) Let f be any function and j(n) be a polynomial-timecomputable function. The following are equivalent:1. There exists X such that f 2 PFXj(n)-T.2. f is 2j(n)-enumerable.Using Fact 4.7 we can obtain a lower bound on the number of queries needed to compute#GA, assuming that GI 62 P.Corollary 4.8 Let � < 1=2. If there exists an X such that #GA 2 PFX� logn-T then GI 2 P.5 #GA and poly-enumerabilityAssuming that GI 62 P, the main result in the previous section is a \non-enumerability"result. In general, we would like to prove stronger non-enumerability results for #GA. Forexample, Amir, Beigel and Gasarch [1] were able to prove that #SAT is not 2n� -enumerablefor � < 1 unless the Polynomial Hierarchy collapses. We cannot use their machinery forthe case of #GA, because it turns out that #GA is actually exp(O(pn log n))-enumerable.Instead, we adapt the techniques of Goldwasser, Micali and Racko� [13] to show that #GAcannot be poly-enumerable unless GI 2 R.5Goldwasser, Micali and Racko� showed that Graph Non-Isomorphism, the complement ofGI, can be recognized by a two-round interactive protocol. We brie
y review this protocol inorder to motivate the proof of Theorem 5.2. There are two parties involved in the interactiveprotocol: an all-powerful prover and a randomized polynomial-time veri�er. The veri�er asksthe prover to convince him that the input graphs (G;H) are not isomorphic as follows. Insecret, the veri�er randomly picks one of G and H along with a random permutation �. Heapplies � to either G or H, whichever one he picked, and obtains a new graph X. Then, theveri�er asks the prover whether X is a permuted version of G or of H. If G and H are notisomorphic, the all-powerful prover simply checks if G ' X or if H ' X, and provides theappropriate answer. On the other hand, if G and H are isomorphic, X can be a permutedversion of either graph. In that case, the prover can only provide the correct answer withprobability one half. Thus, if G 6' H, there exists a prover who can always convince the5We were motivated in part by Lozano and Tor�an [20, Theorem 5.1] who also used this technique in theirproof. 11



veri�er to accept. Conversely, if G ' H, no prover (even one that \lies") can convince theveri�er to accept with greater than 50 percent probability.In the proof below, our randomized algorithm for GI will play the role of the veri�er andthe enumerator for #GA will play the role of the prover. However, unlike the prover in aninteractive protocol, the enumerator provides several answers at once.6 Thus, it is possiblefor the enumerator to give two answers at the same time: one that corresponds to G ' Hand one to G 6' H. We cope with this situation by emulating the interactive protocol manytimes in parallel. Thus, instead of picking one permutation � and forming one permutedgraph X, we pick q(n) permutations �1; : : : �q(n) and form q(n) graphs X1; : : : ;Xq(n) each ofwhich is a permutation of either G or H.Notation 5.1 For each permutation � 2 Sn, we use �(G) to denote the graph obtained byre-labelling the vertices of G using �. Given two permutations �; � 2 Sn, we de�ne ��� 2 Snto be the functional composition of � and � | i.e., (���)(G) = �(�(G)).Theorem 5.2 If #GA is poly-enumerable then GI 2 R.Proof: Assuming that #GA is p(n)-enumerable via an enumeration function g, we willconstruct a randomized polynomial-time algorithm to decide whether the input graphs Gand H are isomorphic. Let n be the number of vertices in G and H and let q(n) � n be apolynomial to be speci�ed later. As discussed above, we randomly pick q(n) permutations�1; : : : ; �q(n) from Sn and for each �i permute either G or H. Our choice of applying �i toeither G or H can be represented by a single bit. So, a bit vector ~b 2 f0; 1gq(n) and thepermutations �1; : : : ; �q(n) fully specify our random choices. Let bi be the ith bit of ~b and Xibe the result of applying the permutation �i; that is:Xi = ( �i(H) if bi = 0;�i(G) if bi = 1:Now, consider the instances of the graph isomorphism problem: (G;X1); : : : ; (G;Xq(n)).Note that if G is not isomorphic to H then�GI((G;X1); : : : ; (G;Xq(n))) = ~b;since G is isomorphic to Xi only when Xi = �i(G). On the other hand, if G is isomorphicto H, then our choice of applying � to G or H does not change whether G is isomorphic toXi. So, in this case, �GI((G;X1); : : : ; (G;Xq(n))) = 1q(n):Next, we use the Combining Lemma on (G;X1); : : : ; (G;Xq(n)) to construct a graph Fsuch that #GA(F) provides enough information to compute �GI((G;X1); : : : ; (G;Xq(n))). Ifwe could compute #GA(F) directly, then we can immediately determine whether G ' Hby checking whether #GA(F) corresponds to the case where �GI((G;X1); : : : ; (G;Xq(n))) is6Another di�erence is that the enumerator cannot \lie" in the same manner as the prover because one ofthe answers it provides must be the correct value of #GA.12



~b or 1q(n).7 However, we cannot compute #GA(F) directly, so we use the enumerator for#GA(F) instead. Let T and S be the reduction functions from the Combining Lemma.(We used T on (G;X1); : : : ; (G;Xq(n)) to obtain the graph F.) Since we assume that #GAis p(n)-enumerable, in polynomial time we can compute g(F), a set of polynomially manyvalues one of which is #GA(F). For each value in g(F), we use the S function from theCombining Lemma to determine a possible value for �GI((G;X1); : : : ; (G;Xq(n))). Call theset of all such values POSS = f S(n; q(n); N) j N 2 g(F) g:If G 6' H, then ~b = �GI((G;X1); : : : ; (G;Xq(n))). Thus, ~b must be an element of POSS, since�GI((G;X1); : : : ; (G;Xq(n))) is always an element of POSS. On the other hand, if G ' H,then ~b 2 POSS occurs with very low probability (proven below). Therefore, the strategyfor our randomized algorithm is to accept (G;H) if and only if ~b 62 POSS. The followingsummarizes the algorithm to determine whether G ' H.1. Randomly pick ~b 2 f0; 1gq(n) and �1; : : : ; �q(n) 2 Sn.2. Use the Combining Lemma to construct F = T ((G;X1); : : : ; (G;Xq(n))).3. Use g to generate the possible values of #GA(F).4. Compute the set POSS = fS(n; q(n); N) j N 2 g(F)g.5. If ~b 62 POSS then output YES, otherwise output NO.If G 6' H, then the algorithm above outputs NO with probability 1. It remains tobe proven that if G ' H then the algorithm above outputs YES with high probability.Intuitively, it is unlikely for ~b 2 POSS when G ' H because POSS is completely determinedby F and the same F can be the result of exponentially many random choices. We provethis formally by partitioning the set of all random choices of the algorithm into blocks of2q(n) random choices. Each random choice within a block has a distinct ~b but produces thesame graph F . Thus, within each block, the probability that ~b 2 POSS is very low. Theblocks are de�ned as follows.Assume that G is isomorphic to H. Since permutations are invertible, for every graph Yisomorphic to G, there exists a permutation � such that �(H) = Y . Now, �x a sequence ofpermutations �1; : : : ; �q(n) 2 Sn and let Yi = �i(G). Let �1; : : : ; �q(n) be the correspondingpermutations such that �i(H) = Yi. Let ~b be any bit vector chosen by our randomizedalgorithm. Then, there exists a choice of �1; : : : ; �q(n) such that the graph Xi constructed inthe algorithm is exactly Yi, namely:�i = ( �i if bi = 0;�i if bi = 1:Furthermore, if we �x an isomorphism � from H to G, the permutation �i is completelydetermined by bi and �i | i.e., �i = �i�� if bi = 0 and �i = �i if bi = 1. Thus, we7Except for the pathological case where we chose ~b = 1q(n), but this occurs with low probability.13



can associate the permutations �1; : : : ; �q(n) with a block of 2q(n) random choices for therandomized algorithm (since there are 2q(n) di�erent bit vectors ~b). To see that every choiceof ~b and �1; : : : ; �q(n) corresponds to some block, simply note that we can set �i = �i���1 ifbi = 0 and �i = �i if bi = 1. This will again guarantee that Yi = Xi for every i. Therefore,the blocks do form a partition of the set of all random choices made by the algorithm.Finally, observe that for each of the 2q(n) distinct bit vectors ~b in a block, the sameinstances of GI, (G;X1); : : : ; (G;Xq(n)), are constructed by the randomized algorithm. Thus,the same set POSS is generated. Since POSS has p(r(n)) elements and since p(r(n)) ispolynomially bounded, the probability that a randomly chosen ~b is not an element of POSSis at least 1 � p(r(n))=2q(n). Thus, for q(n) large enough, the randomized algorithm willaccept with high probability in the case that G ' H.As before, we can translate the non-enumerability of #GA into lower bounds on itsbounded query complexity using Fact 4.7.Corollary 5.3 If there exists an X such that #GA 2 PFXO(logn)-T then GI 2 R.6 Subexponential enumerationThe results of the preceding section can be interpreted as lower bounds on the enumerabilityof #GA since it seems unlikely that GI 2 P or GI 2 R. In this section we provide an upperbound on the enumerability of #GA by showing that #GA is exp(O(pn log n))-enumerable.Our enumerator will be oblivious, that is, g(A; i) will only depend on n and i. We think ofi as being an encoding of the order of a permutation group A of degree n. We must showthat such an encoding exists such that i takes space O(pn log n) and the function i 7! jAjis computable in polynomial time.Lemma 6.1 Let A be a subgroup of Sn. Let pi be the ith prime. Then jAj must be of theform Qmi=1 pdii where1. for all i, di � n.2. m � n= ln n+ o(n= ln n).Proof: Let m and d1; : : : ; dm be such that jAj = Qmi=1 pdii . Since jAj is a divisor of n!, weknow that for all i, pdii divides n!. However, for any prime p, the highest power of p dividingn! is pd, where d =Xj�1 � npj � < nXj�1 1pj = np � 1 � n:(This formula simply counts the number of positive integers up to n which are divisible byp, p2, et cetera.) In particular, all the prime factors of jAj are � n. The Prime NumberTheorem states that limn!1 �(n)n= ln n = 1;where �(n) is the number of primes less than or equal to n. Thus, m � n= ln n+ o(n= ln n).14



Theorem 6.2 #GA is exp(O(pn log n))-enumerable via an oblivious enumerator.Proof: LetG be a graph. The set of automorphisms of G is a subgroup of Sn, hence #GA(G)must be of the form speci�ed in Lemma 6.1. We show how to enumerate all possible sizesof the subgroups of Sn. We describe this in the form of a compressed encoding of orders ofsubgroups of Sn, such that the encoding lengths are O(pn log n) and given the encoding ofjAj, we can compute jAj in polynomial time. One method would be to simply write downthe binary representations of the di, for 1 � i � �(n). By Lemma 6.1 the number of bitsused would be O(n), which is too many. However, we will use this technique for \small"primes.Let k = pn log n. Then �(k) = O(k= log n) = O(pn= log n). For A � Sn, the �rst partof the encoding of A will consist of the binary representations of the di for pi � k. This usesO(�(k) log n) = O(pn log n) bits, as desired. To encode the exponents of the larger primes,we must use detailed knowledge of the possible orders of subgroups of Sn. However, our taskwill be greatly simpli�ed by the fact that we can now ignore the small primes.Let 
 denote f1; : : : ; ng. For x 2 
, xA denotes the A-orbit of x, i.e., the set of all imagesof x under the action of A. We say that an orbit is trivial if it has one element, and wesay that A is transitive if 
 is an orbit. In any case, the A-orbits partition 
. We describetwo divide-and-conquer techniques based on this partition. Let � = xA be an A-orbit, andlet Ax denote the subgroup fa 2 A j xa = xg of those permutations which �x x. It is wellknown that jAj = jAxj � j�j;so if j�j has only prime factors � k, we may replace A by Ax for the purposes of thesecond part of the encoding. We henceforth assume that all nontrivial orbits of A haveorders divisible by some prime larger than k (so in particular there are at most pn= log nnontrivial orbits). Actually, we make the more general assumption that for any propersubgroup B of A, the index jAj=jBj is divisible by a prime larger than k.Now suppose that j�j = m, and let B be the subgroup of Sm obtained fromA by ignoringthe action outside of �. Let A� denote the subgroup of A which �xes every point of �.Then jAj = jBj � jA�j, and to encode jAj it su�ces to �rst encode jBj and then recursivelyencode jA�j. The number of orbits � which need to be considered is O(pn= log n), so wemay use only O(log n) bits to encode jBj. To do this, we make great use of the fact that Bis transitive.Now suppose that �1; : : : ;�r is a partition of � with 1 < r < m such that B permutesthe �i. If several such partitions exist, then choose one that minimizes r. Then the partitionis called a system of imprimitivity for B, and the �i are called blocks of imprimitivity. SinceB acts transitively on the set of blocks, B has a subgroup of index r, from which we concludethat r is divisible by some prime p > k. Let N be the subgroup of B that �xes the blocks,i.e. any x 2 N sends each �i to itself. Let K be the subgroup of Sr obtained from B byconsidering the action on the blocks. Then jBj = jN j � jKj. In addition, every orbit of N hasorder less than k, so jN j is a product of primes at most k. Thus, to encode jBj, it su�cesto encode jKj. By minimality of r, K is primitive, i.e., preserves no nontrivial partition ofthe permutation domain.Much is already known about the structure of primitive groups. The O'Nan{Scott Lemma[10, Theorem 4.1] classi�es them into several types. Many of these are ruled out by our15



assumption that the index of any proper subgroup of K is divisible by some prime largerthan k (where k2 is bigger than r, the size of the permutation domain). In fact, we are leftin the case that K has a simple normal subgroup T . Further, either jT j = r and K is asubgroup of the automorphism group of T � T , or K is a subgroup of the automorphismgroup of T . Following the Classi�cation of Finite Simple groups, much is known aboutthe permutation representations of �nite simple groups [2]. In particular, either T is oneof polynomially many alternating or classical groups (each of which can be described bya string of length O(log n)), or jKj is polynomially bounded. In the �rst case jKj=jT j ispolynomially bounded, so in either case O(log n) bits su�ce to describe the order of K.We summarize the encoding of jAj. First, we write down the binary representations ofthe exponents of the primes in jAj for all primes p � k. Then, we write down a sequence ofO(n=k) pairs (hT i; N), where hT i is an O(log n) length name of a group T which is eitherthe trivial group or a classical group with a permutation representation of degree � n and Nis a positive integer (written in binary) which is at most nc for some constant c. For primesp > k, the p-part of jAj is the product of the p-parts of the N 's and the orders of the T 's.The order of T is given by an explicit formula, so jAj can be computed in polynomial timefrom its encoding. The �rst part of the encoding uses O(�(k) log n) bits; the second part ofthe encoding uses O((n=k) log n) bits. Both of these quantities are O(pn log n) as desired.7 DiscussionSeveral open problems remain on the enumerability of #GA. We have shown that if #GAis poly-enumerable, then GI 2 R. For SAT, we know that if #SAT poly-enumerable, thenP = PP [1, 9] which implies that SAT 2 P. For #GA, it remains open whether #GA beingpoly-enumerable could imply that GI 2 P. It might even be possible to show that if #GAis 2n� -enumerable for some � < 1=2, then GI 2 P. Such a theorem would not violate ourupper bound that #GA is exp(O(pn log n))-enumerable. Note that an analogous result for#SAT, that #SAT is 2n� -enumerable implies SAT 2 P, is not known.While no polynomial-time algorithms for GI or #GA have been discovered, algorithmswith subexponential running time do exist. For example, there exists an algorithm with timecomplexity exp(O(pn log n)) which computes the automorphism group and its generators [2](this is harder than solving GI and #GA). This algorithm combines the techniques of severalauthors including Babai, Luks, and Zemlyachenko. The bound on the running time is thesame as the upper bound on the enumerability of #GA that we achieved in Section 6. Thisstriking observation brings up the possibility of the following time-enumeration trade-o�. Byallowing the enumerator to run for longer than polynomial time, say time exp(O((n log n)a+log n)), it might be possible to achieve exp(O((n log n)b))-enumerability for a + b = 1=2.Note that the case a = 1=2 is given by the subexponential-time algorithm mentioned above[2], and the case a = 0 is our upper bound. The case 0 < a < 1=2 is open.We remark that for oblivious enumeration, our upper bound is tight up to some log-arithmic factors in the exponent. To see this, let k = pn log n as in Section 6. Sincek�(k) = O(n), the sum of the primes up to k is O(n). By scaling k by a constant factor, wemay achieve that �(k) = 
(pn= log n) and the sum of the primes less than k is � n. So, for16



any subset S of the primes p � k, there is a permutation group of degree n whose order isthe product of the primes in S (the group is generated by disjoint cycles of prime lengths).This gives us exp(
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