Counting the number of solutions
A survey of recent inclusion results in the area of counting classes

Jacobo Toran*

Departament L.S.1.
U. Politecnica de Catalunya
Pau Gargallo 5
08028 Barcelona, Spain

1. Introduction

Research in the area of counting complexity classes has been very fruitful during the last
years. These complexity classes are defined in terms of nondeterministic machines for which
the accepting mechanism is a predicate on the number of accepting paths or solutions of
the machine. Examples of these classes are NP, PP (probabilistic polynomial time) [10]
, US (unique solutions) [8], GP (exact counting) [29], GP (parity P) [16], and MODP
(modulo classes) [6] (we include later definitions of the classes treated in this survey). All
these classes have complete problems, and are included in PSPACE. Although the classes
are interesting in themselves, an important further reason for studying them, as we will
see, is the fact that they can help to understand properties of some hetter known classes
like NP, PSPACE or the polynomial time hierarchy (PH).

In the last two years many absolute inclusion results and relativized separations of
counting classes have been obtained, which have clarified the relations among these classes.
Interesting overviews of the problems solved in the area can be seen in [2] and [21]. In this
paper we will concentrate in the most recent inclusion results. We will look at them under
a new point of view and show that many of these results can be unified (and in some cases
simplified) under the concept of lowness, a notion first defined by Schoning for the classes
in the polynomial time hierarchy [18]. Intuitively a set (or a class) is low for a complexity
class K, if it does not provide K with any additional power when used as oracle.

We study in section 2 classes of sets which are low for PP, and show that complexity
classes defined by machines with a bounded number of solutions (Few classes) have this
property [14]. We prove that the bounded error probability class BPP is also low for PP
[14]. In section 3 we give a characterization of the class PNPI°8] in terms of “fewness” which
can be used to show the inclusion PNPIsl € PP [7]. Finally we study in section 4 low
classes for PPP and obtain that @GP and NP fall into this category. A direct consequence of

this fact is the surprising result by Toda which says that all classes in the PH are included
in PPP [23].

* Supported by ESPRIT-IT Basic Research Actions Program of the EC under contract
No. 3075 (project ALCOM).

Complexity classes

We define now some of the less known complexity classes used in this survey. For definitions
of classes like P, NP, PH, PSPACE, FP or concepts like polynomial time reductions we
refer the reader to the basic books in the area [3,19,31].

Definition 1: For a nondeterministic machine M and a string @ € ¥*, let accpr(x)
be the number of accepting computation paths of M on input x. Analogously, for a
nondeterministic oracle machine M, an oracle A, and a string € %, acci,(x) is the
number of accepting paths of M4 with input .

Definition 2: [10] A language L is in the class PP (probabilistic polynomial time) if there
is a nondeterministic polynomial time machine M and a function f € FP such that for
every ¥ € 1%,

v € L <= acey(x) > f(x).

Originally the acceptance mechanism of this class required the number solutions to
be more than one half of the total number of paths. However, this definition is equivalent
to the above one [22].

Definition 3: [16] A language L is in the class @GP (parity P) if there is a nondeterministic
polynomial time machine M such that for every x € ¥*,

v € L < accpy(x) is odd.

Definition 4: [10] A language L is in the class BPP (bounded error probabilistic poly-
nomial time) if there is a nondeterministic machine M with running time bounded by a
polynomial p, and such that for every # € ¥*, the ratio between accepting and rejecting
paths is > %.

r €L = accy(z) >3- op(|z])—2

v ¢ L = acey(x) < 2PUrD=2

For each polynomial ¢, this ratio can be amplified to 1 — 279171 [20,32].

For a complexity class K we will denote by P¥ the class of sets polynomial time Turing
reducible to a set in K. Some straightforward relations among the defined classes are BPP
C PP, and &P C PPP. Tt is also known that P®Y = gP [16] and that PBPP —_BPP
[32], i.e., P and BPP are closed under polynomial time Turing reducibility. There are
relativizations separating all three classes [4,17,26]. Based on the class PP, and in a similar
way as it is done with NP in PH, it is possible to define a hierarchy of complexity classes

(PP, PPPP), which is called the counting hierarchy [25,29].

Classes as operators

Based on the definition of certain language classes, it can be useful to consider operators
acting over predicates, obtaining this way new characterizations of complexity classes. For
example, based on the class NP, the operator 47 has been defined.

Definition 5: Given a complexity class K, 97K is the class of languages L for which there
is a set A in £ and a polynomial ¢ such that for every € T*

vel — 3y, |yl e U0 and (2, 4) € A

It 1s well known that NP=3PP, and there is an alternative characterization of the classes
in PH in terms of the 4 an VP operators. The classes BPP and PP have also been used
to define operators, [20,29,33], and in fact the original definition of the counting hierarchy
was in term of the operator version of PP. In section 3 we will define another operator
based on a counting complexity class.

Lowness

The idea of lowness as a way to measure the complexity of a set or class of sets, was first
introduced in [18] and developed in [12]. Initially this concept was used for classes in PH
and was translated to the counting hierarchy in [14,24.25]. A set is low for a complexity
class, if it cannot “help” the class when used as oracle. More formally,

Definition 6: For a language L and a complexity class K (which has a senseful relativized
version), we will say that L is low for K if K’ = K. For a language class C, C' is low for
K if for every langnage L in C, K’ = K.

As we will see, many results about counting complexity classes can be interpreted in
terms of lowness.

2. A small number of solutions, lowness for PP

The definitions of complexity classes given in the previous section are based on the number
of accepting paths of nondeterministic Turing machines. If such machines have polynomial
running times, the number of accepting paths for a given input can range over a set which
is exponential in the size of the input. The question of whether the intractability of the
languages in these complexity classes could be caused by the large variation in the number
of possible solutions, has provoked important research [28]. It is therefore natural to define
complexity classes by bounding the number of accepting paths of nondeterministic Turing
machines, and study whether the problems in these classes are feasible to compute.

The first complexity class defined following this idea was Valiant’s class UP (unam-
biguous NP) [27] of languages accepted by nondeterministic Turing machines with at most
one accepting path for every input. This class plays an important role in the areas of
one-way functions and cryptography. UP was generalized in a natural way by allowing
a polynomial number of accepting paths. This gives rise to the class FewP defined by
Allender [1] in connection with the notion of P-printable sets.

Definition 7: [1] A language L is in the class FewP if there is a nondeterministic polyno-
mial time machine M and a polynomial p such that for every » € ¥*,

3

i) acen(r) < plle)
it) ¥ € L < acey(x) >0

From the definition follows immediately UP C FewP C NP. Although the number of
solutions in a machine computing a problem in FewP is bounded by a polynomial, the
exact number is not fixed beforehand, and it can range over a polynomial space. In [9]
the interesting inclusion FewPC ® P was obtained. The proof of this result is similar to
the one of the next theorem, which tells us that for languages in FewP we can construct
nondeterministic Turing machines having either f or f — 1 solutions for some function f in
FP. This fact is the key to prove the lowness of FewP for some interesting counting classes.

Theorem 8: [14] For every L. € FewP, there is a nondeterministic polynomial time Turing

machine M’ and a a function f € FP such that

v €L = acey(x)
v & L — acey(x)

Proof: Let M be a nondeterministic machine for L with polynomial time bound p. Let
g be a polynomial bounding acepr. W.lo.g we can asume that every computation path
of M(x) has length r(|#|) for some polynomial r. Since fro every = accpr(x) is bounded,
it is possible to construct dor every integer t < ¢(|x|) a nondeterministic machine having
exactly (”’mi‘;’(m)) accepting paths. Such a machine on input x just has to guess ¢ different
computation paths of M () and accept iff all these paths accept. We want to use this fact
to construct a nondeterministic machine having exactly

q%>(1)k (acm:(ﬂ)

k=1

accepting paths on input . By the binomial theorem, this number is equal to 0 if
acepyr(#) = 0 and equal to —1 if acepr(#) > 0. There is a problem since in the above
sum there are negative quantities and it is not possible to have machines with a negative
number of accepting paths. This can be avoided; if we need to construct a machine with
—t accepting paths, we can build one with 2° — ¢ accepting paths (for sufficient large s)
just by constructing one with ¢ solutions and switching accepting and rejecting paths. The
sum can now be performed and at the end there will be a residue of 2°. The process is
described by the following machine M':

input x;

guess k, 0 <k < q(|z|);

guess y; < --- < yp € D,

if for every i, 1 <i <k y; is an accepting path for z,
then test := true
else test := false;

if (test A even(k)) V (—test A odd(k))
then accept

else reject.

The number of accepting paths of M'(#) is

"%) (accn;(-r)>+ q%) Qk-r(m)<acm‘;(m)>—

k>0,even(k) k>0,0dd(k)

"%) (accz\;(’f)>(1)’“ + f(z)

k=1

being f a function in FP. Therefore

f fe) =1 ifx e L;
aceyp () = {f(/

x) ifedlL

Corollary 9: [9] FewP is low for @P.
Follows from the above theorem and the fact GPPF = ¢P [16].

We will show now that the class FewP is also low for the class PP. In order to do
this we prove a theorem similar to the previous one stating that given a nondeterministic
Turing machine with an oracle in FewP, we can construct a new machine without oracle,

that has exactly the same number of accepting paths as the first one plus some additional
number of paths, which can be computed in polynomial time.

Theorem 10: For every nondeterministic polynomial time machine M and every set L €
FewP, there is a nondeterministic machine M’ and a function ¢ € FP such that

aceyp (x) = acc,r\’/,(rn) + g(x)

Proof: Tt 1s divided in two parts. We first show that the oracle set L can be substituted
by another one that only needs to be queried once by machine M. We then use theoren 8
to obtain the result.

Claim: There is a set R € FewP and a polynomial p such that

accly(z) = |{y € ="V | (2, y) ¢ R}|

Proof of claim: Since L € FewP, there is a nondeterministic machine Mj, such that y €
L < accar, (y) > 0 Consider the following langnage R':

(z,w) € R <= w={2,{yi,a1,v1),...,{yr,ar,v))and M on input
following the computation path z, making the queries
Yi,...,yr in this order and continuing with answer “yes” for y;
if a; =1 and with answer “no” if a; = 0, accepts,
and for every j =1,... k:either a; =0, v, =Aand y; ¢ L
ora; =1, y; € L and v; is the lex. first accepting path of My (y;)

)

Observe that R’ is the complement of a set in FewP. Also, since for every input = and
every accepting path z of M(x), there is exactly one string w = (z,v) such that (x,w) € R’,
we obtain

acely(x) = |{w € % | (x,w) € R'}].
The claim easily follows by taking the complement of R’ and padding the w’s.

Using theorem 8, we can now construct a nondeterministic machine M’ for the FewP

language R fulfilling

acepp(x, w) = {f((%w))j (z,w) € R
’ fay)) +1, (v,w) ¢ R

being f a function in FP. Consider the nondeterministic polynomial time machine M”
which on input 2, guesses a string w € P and simulates machine M’ on input (x,w),
accepting iff M’ accepts. The number of accepting paths of M” on input =z is

2D f((r,w)) + [y € S0V | (r,0) ¢ BY|

= g(x) acel ()

Corollary 11: [14] FewP is low for PP.
Proof: Let A be a language in PP”, with L € FewP. By the definition of PP there is a

nondeterministic machine M and a function f € FP such that for every input x € ¥*,
¥ €L <= accl(x) > f(x).

By theorem 10 there is a machine M’ and a function ¢ € FP with acey(2) = accly () +
g(@), and therefore
v €L <= accyp(x) > flz) + g(2),

which implies I € PP. |

Cai and Hemachandra introduce in [9] the new complexity class Few defined also
in terms of nondeterministic machines with a bounded number of accepting paths. This
class 1s a generalization of FewP but with a more flexible acceptance mechanism. We will
prove that this generalization is also low for PP. In order to avoid confusion with the class
FewP and some other classes defined in the next section, we will denote the class Few by
Fewpaths.

Definition 12: [9] A language L is in the class Fewpaths if there is a nondeterministic
polynomial time machine M, a polynomial time predicate (), and a polynomial p such that
for every » € T*,

i) acen(z) < p(lo])

i) » € L < Q(x,accy(x))

Fewpaths does not seem to be a subclass of NP. It is obvious that FewP C Fewpaths,
and it was shown in [9] that this class is closed under bounded truth-table reductions.

6

Kobler shows in [13] that Fewpaths is included in PFe“P . To prove this result, one has
to count the number of accepting paths of a machine with a bounded number of solutions;
the naive idea of doing binary search in the set {(x, k) | there are at least k accepting
paths for #} cannot be used since although k cannot be too large, this set is in NP but
not neccessarily in FewP. There is however a more subtle way to obtain the result using
a prefix search technique and constructing all the possible accepting paths. From the fact
Fewpaths C P"*"P the lowness properties of Fewpaths follow directly from the ones of
FewP, since sets which are Turing reducible to low sets for a certain class, are also low for
that class.

Corollary 13: [9,14] Fewpaths is low for $P and for PP.

In the next theorem the idea behind the lowness properties of the Few classes can be
best observed. Languages computed by machines with a small number of solutions can
be recognized by other machines in which the exact number of accepting paths is fixed to
be an arbitrary function in FP of the original number of accepting paths. The theorem is
quite strong since function ¢ in the statement can be any function in FP.

Theorem 14: [14] For every machine M with a polynomially bounded number of accepting
paths, and every function ¢ in FP from ¥* xIN to IN, there is a nondeterministic polynomial
time machine M’ and a polynomial r such that for every » € ¥*,

(],CCM/(,T) = g(m7(1/(f(f]\/[(.”lf)) + 27’(|T|)

Lowness of Fewpaths for other counting classes has been proved in [6].

Another class that is also low for PP, is the probabilistic complexity class BPP, a class
with a very different “flavour” as the Few classes.

Theorem 15: [14] BPP is low for PP.

Proof: Let L be in PP for a set A € BPP. There is a nondeterministic polynomial time
machine M and a polynomial p such that (2| = n)

rel «— accﬁ/,(m) > gr(n)=1 4 9

Since PBPP — BPP, [32], in every computation path of M only one question needs to be
asked to a BPP oracle, and there is a predicate () in BPP satisfying

re L= |{y € | Qe)} > 27 41

It is well know that the probability of correctness in BPP can be amplified. We can find
a predicate R in P and a polynomial ¢ such that

Qr,y) — Iz € S | Ria,y, =)} > (1 — 2 27()20"
Qr.y) = I{z € S | R(a,y,)} < 2 2(Mn™

We now have

rel — |[{yz € TP | Play 2| > (2700 £ 1)(1 — 27220
v d L — |{yz € yr(m+a(n) | P(x,y,2)}| < (279(")*1 + 279(")*1*279("))2‘7(")

and therefore L is in PP, since 2°("272p(7) ~ 1_9-2p(n) (the sum over all error probabilities

is less than the probability gained by one accepting path of M). |

Although BPP is low for PP, it does not seem to be low for P since there are rel-
ativizations under which this is not true [24]. The class of sparse sets in NP is another
example of a low class for PP that does not seem to be low for &P either [14]. A char-
acterization of all the sets which are low for PP is an interesting open question. Such a
characterization is known for the low sets for NP, [18], and for the low sets for ¢&P [16].
These classes are NPNco-NP and @&P, respectively.

3. Fewpaths as operator, 6} C PP

The class PNPIos] f langnages accepted by polynomial time machines allowed to query an
NP oracle at most O(log n) times has received a great deal of atention in recent years. The
class has natural complete languages and many surprising characterizations, for example,
it can be characterized as the class of sets truth-table reducible to NP, or as the class of sets
log space Turing reducible to NP. Due to its many natural properties Wagner proposed to
include this class in a refined version of the polynomial time hierarchy, denoting it by @}
[30]. The inclusions NPC ©F C A} are straightforward. We will show in this section that
the class ©F is included in PP. This result was proved in an elegant way in [7] by showing
that PP is closed under parity reductions. We present a different proof which can be seen
as a generalization of theorem 14. This proof uses a new characterization of @} in terms
of “fewness”.

We mentioned in the introduction that it can be fruitful to consider complexity classes
acting as operators over classes of predicates. We use here the class Fewpaths to define an
operator. A close look at this class shows that its languages can be decided computing the
(bounded) number of strings of a set in P, and checking a polynomial time predicate. This
can be naturally generalized to computing the number of strings of sets in other complexity
classes.

Definition 16: Let K be a complexity class. A language L is in the class FewpathsK if
there is a set A in K, a polynomial time predicate () and two polynomials p, ¢ such that
for every € ©*, the function f(x) = ||[{(z,y) | y € DD (2 4) € A}|| satisfies

i) fz) < p(|e])
i) v e L+ Q(z, f(x))

Clearly, Fewpaths=FewpathsP. We see what happens if we apply the operator over
the complexity class NP.

Theorem 17: FewpathsNP=0?.

Proof: From left to right, let . € FewpathsNP and A be the set in NP for L. The function
() = [{(x,y) |y € 27D (2 y) € A}| can be computed doing binary search with just
O(logn) queries in the NP set {(x, k) | there are at least k strings (x,y) € A}. The result
in the other direction follows from a similar argument as the one from [15], used there to
prove that the functions computable in A are reducible to optimization functions. Let L
be a set in OF, computed by a polynomial time machine M that for a constant ¢ queries
clog(n) many times the NP oracle B. Consider the set

A= {(x,y) ly| = clog(]x]) and there is a string z = 2 ... 2z),, 2 >y,
which considered as a string of oracle answers for M () satisfies
for every i = 1... |y| the condition that z; = 1 if the i-th string

queried following the answers of z is in B}.

Set A belongs to NP and for every string @ the number of strings (x,y) in A is equal to
the value of the greatest string (in lex. order) of oracle answers in M(«) for which the
“yes” answers are correct, which is exactly the string of correct answers. Observe that the
number of strings (#,y) in A is bounded by |2|°. Once the oracle answers are known the

rest of the computation of M can be simulated by a polynomial time predicate. |

Using the new characterization of ©) we show now that this class in included in PP.
For this result we need the following lemma which is not hard to prove.

Lemma 18: Let L be a language. L € PP iff there are two nondeterministic polynomial
time machines M and M’ such that

L={x e ¥ | acep(x) > acepp (x)}.
Theorem 19: [7] ©) C PP

Proof: Let L be a set in O}, by the above characterization there is a set A in NP, a
predicate @ and two polynomials p,q such that for every @ € ¥* f(x) = |[{(+,y) | y €

9

volleD (x y) € A}Y|| < p(|#|) and 2 € L iff Q(x, f(x)). Let M4 be the nondeterministic
Turing machine computing A. We construct machines My, My such that

v €L = acen, ((x, f(2))) > acear,({x, f(2)))
g I = acew((r. f(2))) < acers (. £(2)))

By the lemma, this inequalities imply the result.
My: input (x,1);
if 7 > p(|x|) then reject;
() guess i strings (x,y) in A;
kE=1: accept iff Q(x,7)
k= 2: accept iff =Q(x,1)

Step () is implemented by
guess < --- <y, € Eq(|7’|)’
guess vy ...v;;
if : Vj: v; is an accepting path of M4((x,y;))
then continue
else reject;

Observe that machine My on input (x,i) does not have any accepting paths if either
f(#) <ior(k=1and -Q(x,7)) or (k =2 and Q(«,7)). The number of accepting paths

of these machines is at most exponential and there is a polynomial ¢ such that
acenr, ((x,1)) < 28U=D

We can define nondeterministic machines M, M} such that

p(lz])
aceyyr () = Y acey, ((x,i))2"07D.

1=0

Since 27 is greater than the number of possible accepting paths of M, and My, the relation
between the accepting paths of M| and M, depends only on Q(x, f(x)). We then have

v € L = acen,(z, f(2)) > acen,(v,my) = aceyp(x) > acepp ()

v ¢ L = accy,(z, f(2)) <acen,(v,my) = acey(x) < a,ché(.r).

1

Observe that this last result is not a lowness result. Showing that ©% is low for PP
would be equivalent to showing that NP is low for PP, and would imply PH C PP. This
result would be hard to prove since recently Beigel [5] has obtained a relativization in
which PNV a slightly stronger class than O} is not included in PP.

10

4. An unbounded number of solutions, lowness for PP?

In section 2 we have seen that certain complexity classes computed by nondeterministic
machines with a restricted number of accepting paths are low for PP. We will consider now
classes in which the number of paths is unbounded, like NP or (oP. We will observe that
the proof of Toda’s result stating that the polynomial time hierarchy is Turing reducible to
PP [23] shows in fact lowness of these classes for PPP. The class PP of sets polynomial
time Turing reducible to PP, can be considered as the counting hierarchy analogon of the
class A} in the polynomial time hierarchy.
In order to prove the lowness of G P the following theorem is needed.

Theorem 20: [23] For every L € &P, there is a polynomial p such that for every polyno-
mial ¢ > p there is a nondeterministic polynomial time Turing machine M satisfying

v €L = acey(x) = ay - 247D 1 for some integer a,. > ()

v ¢ L — acey(x) = ay - 240D for some integer a, > ()

Observe that the statement of this theorem is similar to the one of theorem 8 for the
class FewP. The difference is that here the exact number of accepting paths for machine M
on an input x is not known, but it depends on integer a,.. There are relativizations under
which a result like theorem 8 cannot be achieved for the case of classes with an unbounded
number of accepting paths [26]. However the above result is strong enough for proving the

lowness of @P for PPP.

Theorem 21: [23] ©&P is low for PPP.

Proof: We show that PPPP is included in PPP. The result follows taking the Turing
reducibility closure of both classes.

Let L be a language in PP®P. Since PPF = @©P [16], a probabilistic machine with an
oracle in PP just needs to query the oracle once. Therefore, there is a language A € GP
and polynomial p such that for every » € ¥*

re Ll <= [[{{r,y) |y e SPWD (ry) € A}|| > 20D,

By the theorem above, there is a suitable polynomial ¢ > p and a nondeterministic machine
M satistying

(r,y) € A = acep((2,y) = - 20z D) 1 for some integer a > ()
(r,y) ¢ A = acep({2,y) = - 20z 9D for some integer o > 0.

Consider the nondeterministic machine M’ which on input 2 guesses a string y € $P(D
and simulates M({x,y)). The number of accepting paths of M’ is

aACCppi () = 5 . 2ql(|7’|) _ f(fr)7

for some integer 3. f(x) is the number of strings (x,y) in A and therefore f(z) > 2°(*D—1
iff » € L.

11

In order to decide whether x is in L, one can compute acey:(,), which can be done by
a deterministic polynomial time machine with an oracle in PP, making then one modulo
2¢'(=1) operation and obtaining f(z). O

We can now prove the lowness of NP and the whole polynomial time hierarchy for the
class PPP.

Theorem 22: [23] NP is low for PFP.

Proof: The inclussion NP C BPP®" was shown in [28]. Since all the inclusion results we
mentioned relativize, we have

pPP" - pPPPTTYT _ pPRET _ PP

The second and third equalities follow from the lowness of BPP and &P for PP and

PPP respectively. |

Corollary 23: [23] PH is low for PPP.

Proof: We show by induction on the level of the hierarchy, k, the lowness of every class
Y7 in PH. For k = 1, ©=NP, and the lowness of NP is shown in the previous theorem.
For the induction step, let us suppose that X7 is low for P"P. We have

=P 2]’: =P
pPP #tt _ pPPYT " _ pPPTE _ pPP

the second equality holds since theorem 22 relativizes. |
Corollary 24: [23] PH C PPP.

We believe that it must be possible to make a direct proof of the lowness of NP for
PP without having to go throngh BPP and @P, but to our knowledge such a proof
has not been obtained yet. The last results show the power of the class PP, and it is
natural to ask what other classes are low for it. It could be the case that PP is low for
PPP: such a result would imply the collapse of the counting hierarchy. It can be even the
case PPP=PSPACE, a statement which not too many people would have believed before
Toda’s result. Relativized separations of the contrary results (the separations) are not

known either, and further research in the area seems promising.

Aknowledgements

I would like to thank Johannes Kobler for providing me with short proofs for the results
in section 2, and José Balcazar, Josep Diaz and Birgit Jenner for helpful comments on the

paper.
References

[1] E. Allender: The complexity of sparse sets in P. Proc. 1st Structure in Complexity Theory Confer-
ence, Lect. Notes in Comp. Sci., (1986) 1 11.

[2] E. Allender and K. Wagner: Counting hierarchies: polynomial time and constant depth circuits.

Bulletin of the EATCS 40, (1990) 49 57.
[3] J.L. Balcdzar, J. Diaz, and J. Gabarrd: Structural Complexity (vol. T). Springer-Verlag (1987).

12

[4] R. Beigel: Relativized counting classes: Relations among thresholds, parity and mods. Journal of
Comput. Syst. Sci. To appear.

[5] R. Beigel: Polynomial interpolation, threshold circuits and the polynomial hierarchy. Manuscript,
Jan. 1990.

[6] R. Beigel, J. Gill and U. Hertrampf: Counting classes: thresholds, parity mod and fewness. Proc.
STACS 90, Lect. Notes in Comp. Sci., (1990) 49 57.

[7] R. Beigel, I.. Hemachandra and G. Wechsung: On the power of probabilistic polynomial time. Proc.
4th Structure in Complexity Theory Conference, TEEE (1989) 225 230.

[8] A. Blass and Y. Gurevich. On the unique satisfiability problem. Information and Control 55 (1982),
80 88.

[9] J.Y. Cai, I..A. Hemachandra: On the power of parity polynomial time. Proc. STACS 89, T.ect. Notes
in Comp. Sci., (1989) 229 239.

[10] J. Gill: Computational complexity of probabilistic Turing machines. STAM J. Comput. 6 (1977),
675 695.

[11] A.V. Goldherg, M. Sipser: Compression and ranking. Proc. 17th STOC Conference (1985), 440 448.

[12] K. Ko and U. Schoning: On circuit-size complexity and the low hierarchy in NP. STAM .J. Comput.
14 (1985), 41 51.

[13] J. Kobler: Strukturelle Komplexitat von Anzahlproblemen. Ph.D. Thesis. Universitat Stuttgart,
(1989).

[14] J. Kobler, U. Schoning, S. Toda, J. Toran: Turing machines with few accepting computations and
low sets for PP. Proc. 4th Structure in Complexity Theory Conference, TEEE (1989) 208 216.

[15] M.W. Krentel: The complexity of optimization problems. Proc. 18th STOC Conference, (1986)
69 76.

[16] C.H. Papadimitriou, S. Zachos: Two remarks on the power of counting. 6th GI Conference on
Theoret. Comput. Sci., Lect. Notes in Comp. Sci. (1983), 269 276.

[17] C. Rackoff: Relativized questons involving probabilistic algorithms. .J. Assoc. Comput. Math. 29

(1982) 261 268.
U. Schéning: A low and a high hierarchy within NP. Journal Comput. Syst. Sci. 27 (1983), 14 28.

[

18]
[19] U. Schéning: Complexity and structure. Lect. Notes in Comp. Sci. 211, Springer-Verlag (1985).
20]

[

U. Schoning: Probabilistic complexity classes and lowness. Proc. 2nd Structure in Complexity

Theory Conference, TEEE, (1988), 2 8.

[21] U. Schoning: The power of counting. Proc. 3rd Structure in Complexity Theory Conference, TEEE,
(1988), 1 9.

[22] J. Simon: On some central problems in computational complexity. Ph.D. Thesis, Cornell University

(1975).
[23] S. Toda: On the computational power of PP and BP, Proc. 30th FOCS Conference, (1989) 514 519.

[24] J. Tordn: Structural properties of the counting hierarchies. Ph.D. Thesis. Facultat d’Tnformatica
de Barcelona, (1988).

[25] J. Toran: An oracle characterization of the counting hierarchy. Proc. 3rd Structure in Complexity

Theory Conference, TEEE, (1988), 213 223

[26] J. Toran: A combinatorial technique for separating counting complexity classes. Proc. 16th TCATP
Conference, Lecture notes in Comp. Science, (1989), 733 745.

[27] T.. Valiant: The relative complexity of cheking and evaluating. Inform. Proc. Letters 5 (1976),
20 23.

[28] T.. Valiant and V. Vazirani: NP is as easy as detecting unique solutions. Theoretical Comp. Science

A7 (1986), 85 93.

13

[29] K. Wagner: The complexity of combinatorial problems with succint input representation. Acta

Informatica 23 (1986), 325 356.

[30] K. Wagner: Bounded query computations. Proc. 3rd Structure in Complexity Theory Conference,
TEEE, (1988), 260 277.

[31] K. Wagner and G. Wechsung: Computational complexity. Reidel (1986).

[32] S. Zachos: Robustness of probabilistic complexity classes under definitional perturbations. Infor-
mation an control 54 (1982), 143 154.

[33] S. Zachos and H. Heller: A decisive characterization of BPP. Information an control 69 (1986),
125 135.

14

