
Counting the number of solutionsA survey of recent inclusion results in the area of counting classesJacobo Tor�an*Departament L.S.I.U. Polit�ecnica de CatalunyaPau Gargallo 508028 Barcelona, Spain1. IntroductionResearch in the area of counting complexity classes has been very fruitful during the lastyears. These complexity classes are de�ned in terms of nondeterministic machines for whichthe accepting mechanism is a predicate on the number of accepting paths or solutions ofthe machine. Examples of these classes are NP, PP (probabilistic polynomial time) [10], US (unique solutions) [8], C=P (exact counting) [29], �P (parity P) [16], and MODkP(modulo classes) [6] (we include later de�nitions of the classes treated in this survey). Allthese classes have complete problems, and are included in PSPACE. Although the classesare interesting in themselves, an important further reason for studying them, as we willsee, is the fact that they can help to understand properties of some better known classeslike NP, PSPACE or the polynomial time hierarchy (PH).In the last two years many absolute inclusion results and relativized separations ofcounting classes have been obtained, which have clari�ed the relations among these classes.Interesting overviews of the problems solved in the area can be seen in [2] and [21]. In thispaper we will concentrate in the most recent inclusion results. We will look at them undera new point of view and show that many of these results can be uni�ed (and in some casessimpli�ed) under the concept of lowness, a notion �rst de�ned by Sch�oning for the classesin the polynomial time hierarchy [18]. Intuitively a set (or a class) is low for a complexityclass K, if it does not provide K with any additional power when used as oracle.We study in section 2 classes of sets which are low for PP, and show that complexityclasses de�ned by machines with a bounded number of solutions (Few classes) have thisproperty [14]. We prove that the bounded error probability class BPP is also low for PP[14]. In section 3 we give a characterization of the class PNP[log] in terms of \fewness" whichcan be used to show the inclusion PNP[log] � PP [7]. Finally we study in section 4 lowclasses for PPP and obtain that �P and NP fall into this category. A direct consequence ofthis fact is the surprising result by Toda which says that all classes in the PH are includedin PPP [23].* Supported by ESPRIT-II Basic Research Actions Program of the EC under contractNo. 3075 (project ALCOM). 1



Complexity classesWe de�ne now some of the less known complexity classes used in this survey. For de�nitionsof classes like P, NP, PH, PSPACE, FP or concepts like polynomial time reductions werefer the reader to the basic books in the area [3,19,31].De�nition 1: For a nondeterministic machine M and a string x 2 �?, let accM (x)be the number of accepting computation paths of M on input x. Analogously, for anondeterministic oracle machine M , an oracle A, and a string x 2 �?, accAM(x) is thenumber of accepting paths of MA with input x.De�nition 2: [10] A language L is in the class PP (probabilistic polynomial time) if thereis a nondeterministic polynomial time machine M and a function f 2 FP such that forevery x 2 �?, x 2 L() accM (x) � f(x):Originally the acceptance mechanism of this class required the number solutions tobe more than one half of the total number of paths. However, this de�nition is equivalentto the above one [22].De�nition 3: [16] A language L is in the class �P (parity P) if there is a nondeterministicpolynomial time machine M such that for every x 2 �?,x 2 L() accM(x) is odd.De�nition 4: [10] A language L is in the class BPP (bounded error probabilistic poly-nomial time) if there is a nondeterministic machine M with running time bounded by apolynomial p, and such that for every x 2 �?, the ratio between accepting and rejectingpaths is � 34 . x 2 L =) accM (x) � 3 � 2p(jxj)�2x 62 L =) accM (x) � 2p(jxj)�2For each polynomial q, this ratio can be ampli�ed to 1� 2�q(jxj) [20,32].For a complexity class K we will denote by PK the class of sets polynomial time Turingreducible to a set in K. Some straightforward relations among the de�ned classes are BPP� PP, and �P � PPP. It is also known that P�P = �P [16] and that PBPP =BPP[32], i.e., �P and BPP are closed under polynomial time Turing reducibility. There arerelativizations separating all three classes [4,17,26]. Based on the class PP, and in a similarway as it is done with NP in PH, it is possible to de�ne a hierarchy of complexity classes(PP, PPPP : : :), which is called the counting hierarchy [25,29].2



Classes as operatorsBased on the de�nition of certain language classes, it can be useful to consider operatorsacting over predicates, obtaining this way new characterizations of complexity classes. Forexample, based on the class NP, the operator 9p has been de�ned.De�nition 5: Given a complexity class K, 9pK is the class of languages L for which thereis a set A in K and a polynomial q such that for every x 2 �?x 2 L () 9y; jyj 2 �q(jxj) and hx; yi 2 A:It is well known that NP=9pP, and there is an alternative characterization of the classesin PH in terms of the 9p an 8p operators. The classes BPP and PP have also been usedto de�ne operators, [20,29,33], and in fact the original de�nition of the counting hierarchywas in term of the operator version of PP. In section 3 we will de�ne another operatorbased on a counting complexity class.LownessThe idea of lowness as a way to measure the complexity of a set or class of sets, was �rstintroduced in [18] and developed in [12]. Initially this concept was used for classes in PHand was translated to the counting hierarchy in [14,24,25]. A set is low for a complexityclass, if it cannot \help" the class when used as oracle. More formally,De�nition 6: For a language L and a complexity class K (which has a senseful relativizedversion), we will say that L is low for K if KL = K. For a language class C, C is low forK if for every language L in C, KL = K.As we will see, many results about counting complexity classes can be interpreted interms of lowness.2. A small number of solutions, lowness for PPThe de�nitions of complexity classes given in the previous section are based on the numberof accepting paths of nondeterministic Turing machines. If such machines have polynomialrunning times, the number of accepting paths for a given input can range over a set whichis exponential in the size of the input. The question of whether the intractability of thelanguages in these complexity classes could be caused by the large variation in the numberof possible solutions, has provoked important research [28]. It is therefore natural to de�necomplexity classes by bounding the number of accepting paths of nondeterministic Turingmachines, and study whether the problems in these classes are feasible to compute.The �rst complexity class de�ned following this idea was Valiant's class UP (unam-biguous NP) [27] of languages accepted by nondeterministic Turing machines with at mostone accepting path for every input. This class plays an important role in the areas ofone-way functions and cryptography. UP was generalized in a natural way by allowinga polynomial number of accepting paths. This gives rise to the class FewP de�ned byAllender [1] in connection with the notion of P-printable sets.De�nition 7: [1] A language L is in the class FewP if there is a nondeterministic polyno-mial time machine M and a polynomial p such that for every x 2 �?,3



i) accM(x) � p(jxj)ii) x 2 L() accM (x) > 0From the de�nition follows immediately UP � FewP � NP. Although the number ofsolutions in a machine computing a problem in FewP is bounded by a polynomial, theexact number is not �xed beforehand, and it can range over a polynomial space. In [9]the interesting inclusion FewP� �P was obtained. The proof of this result is similar tothe one of the next theorem, which tells us that for languages in FewP we can constructnondeterministic Turing machines having either f or f �1 solutions for some function f inFP. This fact is the key to prove the lowness of FewP for some interesting counting classes.Theorem 8: [14] For every L 2 FewP, there is a nondeterministic polynomial time Turingmachine M 0 and a a function f 2 FP such thatx 2 L =) accM 0(x) = f(x) � 1x 62 L =) accM 0(x) = f(x):Proof: Let M be a nondeterministic machine for L with polynomial time bound p. Letq be a polynomial bounding accM . W.l.o.g we can asume that every computation pathof M(x) has length r(jxj) for some polynomial r. Since fro every x accM (x) is bounded,it is possible to construct dor every integer t � q(jxj) a nondeterministic machine havingexactly �accM(x)t � accepting paths. Such a machine on input x just has to guess t di�erentcomputation paths of M(x) and accept i� all these paths accept. We want to use this factto construct a nondeterministic machine having exactlyq(jxj)Xk=1 (�1)k�accM (x)k �accepting paths on input x. By the binomial theorem, this number is equal to 0 ifaccM (x) = 0 and equal to �1 if accM (x) > 0. There is a problem since in the abovesum there are negative quantities and it is not possible to have machines with a negativenumber of accepting paths. This can be avoided; if we need to construct a machine with�t accepting paths, we can build one with 2s � t accepting paths (for su�cient large s)just by constructing one with t solutions and switching accepting and rejecting paths. Thesum can now be performed and at the end there will be a residue of 2s. The process isdescribed by the following machine M 0:input x;guess k; 0 � k � q(jxj);guess y1 < � � � < yk 2 �r(jxj);if for every i, 1 � i � k yi is an accepting path for x,then test := trueelse test := false;if (test ^ even(k)) _ (:test ^ odd(k))then accept 4



else reject.The number of accepting paths of M 0(x) isq(jxj)Xk>0;even(k)�accM (x)k �+ q(jxj)Xk>0;odd(k) 2k�r(x) ��accM (x)k � =q(jxj)Xk=1 �accM(x)k �(�1)k + f(x)being f a function in FP. ThereforeaccM 0(x) = � f(x) � 1 if x 2 L;f(x) if x 62 L utCorollary 9: [9] FewP is low for �P.Follows from the above theorem and the fact �P�P = �P [16].We will show now that the class FewP is also low for the class PP. In order to dothis we prove a theorem similar to the previous one stating that given a nondeterministicTuring machine with an oracle in FewP, we can construct a new machine without oracle,that has exactly the same number of accepting paths as the �rst one plus some additionalnumber of paths, which can be computed in polynomial time.Theorem 10: For every nondeterministic polynomial time machineM and every set L 2FewP, there is a nondeterministic machine M 0 and a function g 2 FP such thataccM 0(x) = accLM (x) + g(x)Proof: It is divided in two parts. We �rst show that the oracle set L can be substitutedby another one that only needs to be queried once by machineM . We then use theoren 8to obtain the result.Claim: There is a set R 2 FewP and a polynomial p such thataccLM(x) = kfy 2 �p(jxj) j hx; yi 62 RgkProof of claim: Since L 2 FewP, there is a nondeterministic machine ML such that y 2L() accML(y) > 0 Consider the following language R0:hx;wi 2 R0 :() w = hz; hy1; a1; v1i; : : : ; hyk; ak; vkii and M on input xfollowing the computation path z;making the queriesy1; : : : ; yk in this order and continuing with answer \yes" for yjif aj = 1 and with answer \no" if aj = 0; accepts,and for every j = 1; : : : ; k : either aj = 0; vj = � and yj 62 Lor aj = 1; yj 2 L and vj is the lex. �rst accepting path of ML(yj )5



Observe that R0 is the complement of a set in FewP. Also, since for every input x andevery accepting path z ofM(x), there is exactly one string w = hz; vi such that hx;wi 2 R0,we obtain accLM(x) = kfw 2 �� j hx;wi 2 R0gk:The claim easily follows by taking the complement of R0 and padding the w's.Using theorem 8, we can now construct a nondeterministic machineM 0 for the FewPlanguage R ful�lling accM 0hx;wi = � f(hx;wi); hx;wi 2 Rf(hx; yi) + 1; hx;wi 62 Rbeing f a function in FP. Consider the nondeterministic polynomial time machine M 00which on input x, guesses a string w 2 �p(jxj) and simulates machine M 0 on input hx;wi,accepting i� M 0 accepts. The number of accepting paths of M 00 on input x is2p(jxj)f(hx;wi)| {z }:= g(x) + kfy 2 �p(jxj) j hx;wi 62 Rgk| {z }accLM(x) utCorollary 11: [14] FewP is low for PP.Proof: Let A be a language in PPL, with L 2 FewP. By the de�nition of PP there is anondeterministic machine M and a function f 2 FP such that for every input x 2 �?,x 2 L () accLM(x) � f(x):By theorem 10 there is a machine M 0 and a function g 2 FP with accM 0(x) = accLM (x) +g(x), and therefore x 2 L () accM 0(x) � f(x) + g(x);which implies L 2 PP. utCai and Hemachandra introduce in [9] the new complexity class Few de�ned alsoin terms of nondeterministic machines with a bounded number of accepting paths. Thisclass is a generalization of FewP but with a more 
exible acceptance mechanism. We willprove that this generalization is also low for PP. In order to avoid confusion with the classFewP and some other classes de�ned in the next section, we will denote the class Few byFewpaths.De�nition 12: [9] A language L is in the class Fewpaths if there is a nondeterministicpolynomial time machineM , a polynomial time predicate Q, and a polynomial p such thatfor every x 2 �?,i) accM(x) � p(jxj)ii) x 2 L() Q(x; accM (x))Fewpaths does not seem to be a subclass of NP. It is obvious that FewP � Fewpaths,and it was shown in [9] that this class is closed under bounded truth-table reductions.6



K�obler shows in [13] that Fewpaths is included in PFewP. To prove this result, one hasto count the number of accepting paths of a machine with a bounded number of solutions;the naive idea of doing binary search in the set fhx; ki j there are at least k acceptingpaths for xg cannot be used since although k cannot be too large, this set is in NP butnot neccessarily in FewP. There is however a more subtle way to obtain the result usinga pre�x search technique and constructing all the possible accepting paths. From the factFewpaths � PFewP, the lowness properties of Fewpaths follow directly from the ones ofFewP, since sets which are Turing reducible to low sets for a certain class, are also low forthat class.Corollary 13: [9,14] Fewpaths is low for �P and for PP.In the next theorem the idea behind the lowness properties of the Few classes can bebest observed. Languages computed by machines with a small number of solutions canbe recognized by other machines in which the exact number of accepting paths is �xed tobe an arbitrary function in FP of the original number of accepting paths. The theorem isquite strong since function g in the statement can be any function in FP.Theorem 14: [14] For every machineM with a polynomially bounded number of acceptingpaths, and every function g in FP from�?�IN to IN, there is a nondeterministic polynomialtime machine M 0 and a polynomial r such that for every x 2 �?,accM 0(x) = g(x; accM (x)) + 2r(jxj):Lowness of Fewpaths for other counting classes has been proved in [6].Another class that is also low for PP, is the probabilistic complexity class BPP, a classwith a very di�erent \
avour" as the Few classes.
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Theorem 15: [14] BPP is low for PP.Proof: Let L be in PPA for a set A 2 BPP . There is a nondeterministic polynomial timemachine M and a polynomial p such that (jxj = n)x 2 L() accAM (x) � 2p(n)�1+ 1:Since PBPP = BPP, [32], in every computation path of M only one question needs to beasked to a BPP oracle, and there is a predicate Q in BPP satisfyingx 2 L() kfy 2 �p(n) j Q(x; y)gk � 2p(n)�1 + 1:It is well know that the probability of correctness in BPP can be ampli�ed. We can �nda predicate R in P and a polynomial q such thatQ(x; y) =) kfz 2 �q(n) j R(x; y; z)gk � (1 � 2�2p(n))2q(n)Q(x; y) =) kfz 2 �q(n) j R(x; y; z)gk � 2�2p(n)2q(n)We now havex 2 L =) kfyz 2 �p(n)+q(n) j P (x; y; z)gk � (2p(n)�1 + 1)(1� 2�2p(n))2q(n)x 62 L =) kfyz 2 �p(n)+q(n) j P (x; y; z)gk � (2p(n)�1 + 2p(n)�1�2p(n))2q(n)and thereforeL is in PP, since 2p(n)2�2p(n) < 1�2�2p(n) (the sum over all error probabilitiesis less than the probability gained by one accepting path of M). utAlthough BPP is low for PP, it does not seem to be low for �P since there are rel-ativizations under which this is not true [24]. The class of sparse sets in NP is anotherexample of a low class for PP that does not seem to be low for �P either [14]. A char-acterization of all the sets which are low for PP is an interesting open question. Such acharacterization is known for the low sets for NP, [18], and for the low sets for �P [16].These classes are NP\co-NP and �P, respectively.3. Fewpaths as operator, �p2 � PPThe class PNP[log] of languages accepted by polynomial time machines allowed to query anNP oracle at most O(log n) times has received a great deal of atention in recent years. Theclass has natural complete languages and many surprising characterizations, for example,it can be characterized as the class of sets truth-table reducible to NP, or as the class of setslog space Turing reducible to NP. Due to its many natural properties Wagner proposed toinclude this class in a re�ned version of the polynomial time hierarchy, denoting it by �p2[30]. The inclusions NP� �p2 � �p2 are straightforward. We will show in this section thatthe class �p2 is included in PP. This result was proved in an elegant way in [7] by showingthat PP is closed under parity reductions. We present a di�erent proof which can be seenas a generalization of theorem 14. This proof uses a new characterization of �p2 in termsof \fewness". 8



We mentioned in the introduction that it can be fruitful to consider complexity classesacting as operators over classes of predicates. We use here the class Fewpaths to de�ne anoperator. A close look at this class shows that its languages can be decided computing the(bounded) number of strings of a set in P, and checking a polynomial time predicate. Thiscan be naturally generalized to computing the number of strings of sets in other complexityclasses.De�nition 16: Let K be a complexity class. A language L is in the class FewpathsK ifthere is a set A in K, a polynomial time predicate Q and two polynomials p; q such thatfor every x 2 �?, the function f(x) = kfhx; yi j y 2 �q(jxj); hx; yi 2 Agk satis�esi) f(x) � p(jxj)ii) x 2 L() Q(x; f(x))Clearly, Fewpaths=FewpathsP. We see what happens if we apply the operator overthe complexity class NP.Theorem 17: FewpathsNP=�p2.Proof: From left to right, let L 2 FewpathsNP and A be the set in NP for L. The functionf(x) = kfhx; yi j y 2 �q(jxj); hx; yi 2 Agk can be computed doing binary search with justO(log n) queries in the NP set fhx; ki j there are at least k strings hx; yi 2 Ag. The resultin the other direction follows from a similar argument as the one from [15], used there toprove that the functions computable in �p2 are reducible to optimization functions. Let Lbe a set in �p2, computed by a polynomial time machine M that for a constant c queriesc log(n) many times the NP oracle B. Consider the setA = fhx; yi jjyj = c log(jxj) and there is a string z = z1 : : : zjyj; z � y;which considered as a string of oracle answers for M(x) satis�esfor every i = 1 : : : jyj the condition that zi = 1 if the i-th stringqueried following the answers of z is in Bg:Set A belongs to NP and for every string x the number of strings hx; yi in A is equal tothe value of the greatest string (in lex. order) of oracle answers in M(x) for which the\yes" answers are correct, which is exactly the string of correct answers. Observe that thenumber of strings hx; yi in A is bounded by jxjc. Once the oracle answers are known therest of the computation of M can be simulated by a polynomial time predicate. utUsing the new characterization of �p2 we show now that this class in included in PP.For this result we need the following lemma which is not hard to prove.Lemma 18: Let L be a language. L 2 PP i� there are two nondeterministic polynomialtime machines M and M 0 such thatL = fx 2 �� j accM (x) � accM 0(x)g:Theorem 19: [7] �p2 � PPProof: Let L be a set in �p2, by the above characterization there is a set A in NP, apredicate Q and two polynomials p; q such that for every x 2 �?, f(x) = kfhx; yi j y 29



�q(jxj); hx; yi 2 Agk � p(jxj) and x 2 L i� Q(x; f(x)). Let MA be the nondeterministicTuring machine computing A. We construct machinesM1;M2 such thatx 2 L =) accM1(hx; f(x)i) > accM2(hx; f(x)i)x 62 L =) accM1(hx; f(x)i) < accM2(hx; f(x)i)By the lemma, this inequalities imply the result.Mk: input hx; ii;if i > p(jxj) then reject;(�) guess i strings hx; yi in A;k = 1: accept i� Q(x; i)k = 2: accept i� :Q(x; i)Step (�) is implemented byguess y1 < � � � < yi 2 �q(jxj);guess v1 : : : vi;if : 8j : vj is an accepting path of MA(hx; yj i)then continueelse reject;Observe that machine Mk on input hx; ii does not have any accepting paths if eitherf(x) < i or (k = 1 and :Q(x; i)) or (k = 2 and Q(x; i)). The number of accepting pathsof these machines is at most exponential and there is a polynomial t such thataccMk(hx; ii) < 2t(jxj)We can de�ne nondeterministic machinesM 01;M 02 such thataccM 0k(x) = p(jxj)Xi=0 accMk(hx; ii)2it(jxj):Since 2t is greater than the number of possible accepting paths of M1 andM2, the relationbetween the accepting paths of M 01 and M 02 depends only on Q(x; f(x)). We then havex 2 L =) accM1(x; f(x)) > accM2(x;mx) =) accM 01(x) > accM 02(x)x 62 L =) accM1(x; f(x)) < accM2(x;mx) =) accM 01(x) < accM 02(x) : utObserve that this last result is not a lowness result. Showing that �p2 is low for PPwould be equivalent to showing that NP is low for PP, and would imply PH � PP. Thisresult would be hard to prove since recently Beigel [5] has obtained a relativization inwhich PNP, a slightly stronger class than �p2 is not included in PP.10



4. An unbounded number of solutions, lowness for PPPIn section 2 we have seen that certain complexity classes computed by nondeterministicmachines with a restricted number of accepting paths are low for PP. We will consider nowclasses in which the number of paths is unbounded, like NP or �P. We will observe thatthe proof of Toda's result stating that the polynomial time hierarchy is Turing reducible toPP [23] shows in fact lowness of these classes for PPP. The class PPP, of sets polynomialtime Turing reducible to PP, can be considered as the counting hierarchy analogon of theclass �p2 in the polynomial time hierarchy.In order to prove the lowness of �P the following theorem is needed.Theorem 20: [23] For every L 2 �P, there is a polynomial p such that for every polyno-mial q � p there is a nondeterministic polynomial time Turing machine M satisfyingx 2 L =) accM(x) = �x � 2q(jxj) � 1 for some integer �x > 0x 62 L =) accM(x) = �x � 2q(jxj) for some integer �x � 0Observe that the statement of this theorem is similar to the one of theorem 8 for theclass FewP. The di�erence is that here the exact number of accepting paths for machineMon an input x is not known, but it depends on integer �x. There are relativizations underwhich a result like theorem 8 cannot be achieved for the case of classes with an unboundednumber of accepting paths [26]. However the above result is strong enough for proving thelowness of �P for PPP.Theorem 21: [23] �P is low for PPP.Proof: We show that PP�P is included in PPP. The result follows taking the Turingreducibility closure of both classes.Let L be a language in PP�P. Since P�P = �P [16], a probabilistic machine with anoracle in �P just needs to query the oracle once. Therefore, there is a language A 2 �Pand polynomial p such that for every x 2 �?x 2 L () kfhx; yi j y 2 �p(jxj); hx; yi 2 Agk > 2p(jxj)�1:By the theorem above, there is a suitable polynomial q > p and a nondeterministic machineM satisfyinghx; yi 2 A =) accM(hx; yi) = � � 2q(jhx;yij) � 1 for some integer � > 0hx; yi 62 A =) accM(hx; yi) = � � 2q(jhx;yij) for some integer � � 0:Consider the nondeterministic machine M 0 which on input x guesses a string y 2 �p(jxj)and simulates M(hx; yi). The number of accepting paths of M 0 isaccM 0(x) = � � 2q0(jxj) � f(x);for some integer �. f(x) is the number of strings hx; yi in A and therefore f(x) > 2p(jxj)�1i� x 2 L. 11



In order to decide whether x is in L, one can compute accM 0(x), which can be done bya deterministic polynomial time machine with an oracle in PP, making then one modulo2q0(jxj) operation and obtaining f(x). utWe can now prove the lowness of NP and the whole polynomial time hierarchy for theclass PPP.Theorem 22: [23] NP is low for PPP.Proof: The inclussion NP � BPP�P was shown in [28]. Since all the inclusion results wementioned relativize, we havePPPNP � PPPBPP�P = PPP�P = PPPThe second and third equalities follow from the lowness of BPP and �P for PP andPPP respectively. utCorollary 23: [23] PH is low for PPP.Proof: We show by induction on the level of the hierarchy, k, the lowness of every class�pk in PH. For k = 1, �p1=NP, and the lowness of NP is shown in the previous theorem.For the induction step, let us suppose that �pk is low for PPP. We havePPP�pk+1 = PPPNP�pk = PPP�pk = PPPthe second equality holds since theorem 22 relativizes. utCorollary 24: [23] PH � PPP.We believe that it must be possible to make a direct proof of the lowness of NP forPPP, without having to go through BPP and �P, but to our knowledge such a proofhas not been obtained yet. The last results show the power of the class PPP, and it isnatural to ask what other classes are low for it. It could be the case that PP is low forPPP; such a result would imply the collapse of the counting hierarchy. It can be even thecase PPP=PSPACE, a statement which not too many people would have believed beforeToda's result. Relativized separations of the contrary results (the separations) are notknown either, and further research in the area seems promising.AknowledgementsI would like to thank Johannes K�obler for providing me with short proofs for the resultsin section 2, and Jos�e Balcazar, Josep D��az and Birgit Jenner for helpful comments on thepaper.References[1] E. Allender: The complexity of sparse sets in P. Proc. 1st Structure in Complexity Theory Confer-ence, Lect. Notes in Comp. Sci., (1986) 1{11.[2] E. Allender and K. Wagner: Counting hierarchies: polynomial time and constant depth circuits.Bulletin of the EATCS 40, (1990) 49{57.[3] J.L. Balc�azar, J. Diaz, and J. Gabarr�o: Structural Complexity (vol. I). Springer-Verlag (1987).12
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