Optimal proof systems
imply complete sets for promise classes®

JOHANNES KOBLER, JOCHEN MESSNER, JACOBO TORAN

Institut fiir Informatik Abt. Theoretische Informatik
Humboldt-Universitat zu Berlin Universitat Ulm
10099 Berlin, Germany 89069 Ulm, Germany
koebler@informatik.hu-berlin.de messner,toran@informatik.uni-ulm.de
July 4, 2001
Abstract

A polynomial time computable function h : 3* — 3* whose range is
a set L is called a proof system for L. In this setting, an h-proof for
x € L is just a string w with A(w) = 2. Cook and Reckhow defined this
concept in [11] and in order to compare the relative strength of different
proof systems for the set TAUT of tautologies in propositional logic, they
considered the notion of p-simulation. Intuitively, a proof system h' p-
simulates h if any h-proof w can be translated in polynomial time into
an h'-proof w' for h(w). Krajicek and Pudldk [18] considered the related
notion of simulation between proof systems where it is only required that
for any h-proof w there exists an h'-proof w' whose size is polynomially
bounded in the size of w.

A proof system is called (p-)optimal for a set L if it (p-)simulates every
other proof system for L. The question whether p-optimal or optimal proof
systems for TAUT exist is an important one in the field. In this paper we
show a close connection between the existence of (p-)optimal proof systems
and the existence of complete problems for certain promise complexity
classes like UP, NP N Sparse, RP or BPP. For this we introduce the
notion of a test set for a promise class C and prove that C has a many-one
complete set if and only if C has a test set T with a p-optimal proof system.
If in addition the machines defining a promise class have a certain ability
to guess proofs, then the existence of a p-optimal proof system for T' can
be replaced by the presumably weaker assumption that 7" has an optimal
proof system.

Strengthening a result from Krajicek and Pudldk [18], we also give suf-
ficient conditions for the existence of optimal and p-optimal proof systems.

*Results included in this paper have appeared in the conferences STACS’98 [19] and CCC’98
[14].

1 Introduction

A systematic study of the (proof length) complexity of different proof systems
for Propositional Logic was started some time ago by Cook and Reckhow in [11].
There they defined the abstract notion of a proof system in the following way.

Definition 1 Let L C ¥*. A proof system for L is a (possibly partial) polynomial
time computable function h : ¥* — X* whose range is L'. A string w with
h(w) = x is called an h-proof for z.

Observe that a proof system A need not be polynomially honest since the
shortest proof for x € L might be much longer than z.

Example 2 The function h defined as

h(w) = © if w=(p,v) and v is a resolution refutation of B,
undef. otherwise

is a proof system for the co-N'P complete set TAUT of all propositional tautologies
in disjunctive normal form.

Following [11], a polynomially bounded proof system h for TAUT is a proof
system in which every tautology has a short proof. More formally, there is a
polynomial g such that for every ¢ € TAUT, there is a string w of length bounded
by q(|¢|) with h(w) = ¢. Many concrete proof systems for TAUT have been
shown not to be polynomially bounded (see for example [25]). Besides the interest
that concrete proof systems like, for example, resolution or Frege systems have in
their own, a main motivation for the study of proof systems comes in fact from
the following relation between the AP versus co-NP question and the existence
of polynomially bounded systems.

Theorem 3 [11] NP = co-N'P if and only if a polynomially bounded proof sys-
tem for TAUT exists.

This result was the motivation for the so called Cook-Reckhow Program: a
way to prove that NP is different from co-AP might be to study more and more
powerful proof systems, showing that they are not polynomially bounded, until
hopefully we have gained enough knowledge to be able to separate NP from
co-N"P (see [8]).

In order to compare the relative power of different proof systems, the notion
of p-simulation was introduced in [11]. We also consider the presumably weaker
notion of simulation studied in [18].

!The original definition allows in fact the use of different alphabets for the domain and range
of h, but for the purposes of this paper the given definition suffices.

Definition 4 Let h and h' be proof systems for a language L. We say that
h simulates h' if there is a polynomial p and a function ~v : X* — X* with
|v(z)| < p(|z]) for every x € * such that «y translates h'-proofs into h-proofs. In
other words, for every x € L and every h'-proof w of x, v(w) is an h-proof of x.
If additionally v € FP, we say h p-simulates h'.

It is easy to see that simulation and p-simulation are preorders, i.e. reflex-
ive and transitive relations. It is also clear that if a proof system A which is
not polynomially bounded simulates another proof system A', then A’ cannot be
polynomially bounded. Cook and Reckhow used p-simulation in order to classify
different proof systems for TAUT according to their derivation strength.

The notion of (p-)simulation between proof systems is closely related to the
notion of reducibility between decision problems. Continuing with this analogy,
the notion of a complete problem corresponds to the notion of an optimal proof
system.

Definition 5 (cf.[18, 17, 8]) A proof system for a language L is optimal (p-
optimal) if it simulates (p-simulates) every proof system for L.

An important open problem (posed in [18, 8]) is whether an optimal or even
p-optimal proof system for TAUT exists. Observe that if this were the case, then
in order to separate NP from co-NP it would suffice to prove that some specific
proof system is not polynomially bounded.

We show that the assumption that there is a (p-)optimal proof system for
certain languages is closely related to the existence of complete problems for cer-
tain promise classes. The connection between the existence of (p-)optimal proof
systems and the existence of many-one complete sets is formalized by introducing
the concept of test sets. Roughly speaking, a test set allows us to verify that a
given nondeterministic polynomial-time machine behaves well (i.e., in accordance
with the promise) on a given input z. Hence, in some sense, the complexity of
a promise is represented by the complexity of its test sets. We then obtain in a
master theorem that a promise class C has a many-one complete set if and only
if C has a test set with a p-optimal proof system.

As the classes UP, FewP, Few, and NP Sparse have test sets in co-NP this
in turn implies that a p-optimal proof system for TAUT suffices to obtain many-
one complete sets for these classes. We also show that the probabilistic classes
BPP, RP, ZPP, and MA have test sets in IT as well as in X!, and that AM
has test sets in IT§ and in 2. Hence, a many-one complete set for BPP, RP,
ZPP, and MA (resp. AM) is implied by a p-optimal proof system for TAUT,
or for SAT, (resp. for TAUT; or for SAT3). We also show that NP N co-N'P
has a test set reducible to SAT x TAUT which allows us to improve the main
result of [22] by showing that already the existence of p-optimal proof systems
for TAUT and for SAT suffices to obtain a complete problem for AP N co-N"P.
If in addition the machines defining a promise class have a certain ability to

guess proofs (see the definition of AN'P-assertions in Definiton 14), then it suffices
to assume that the C has a test set with an optimal proof system. Under the
mentioned classes this holds for NP N Sparse, for MA, and for AM.

These results strengthen the intuitive connection between the notions of opti-
mal proof systems and complete sets. At the same time, they give some evidence
that (p-)optimal proof systems might not exist for the considered logical lan-
guages since many-one complete problems for these classes have been searched
for without success.

In [21] it was observed that the class of disjoint NP-pairs has a complete
pair if TAUT has an optimal proof system. A pair (A, B) of N'P-languages A, B
belongs to this class when AN B = (). However, in [21] a somewhat weak form of
many-one reducibility is used which is only concerned with inputs from A U B.
Formally, in [21] a pair (A, B) is said to many-one reduce to a pair (C, D) if
for some f € FP, f(A) C C and f(B) C D. By generalizing our approach
to function classes we can use the assumption that TAUT has an optimal proof
system to conclude that the class of disjoint N P-pairs has a complete pair with
respect to the following stronger notion of many-one reducibility: (A, B) strongly
many-one reduces to (C, D) if for some f € FP, f~'(C) = A and f~(D) = B.

The before-mentioned set of results can be interpreted as the study of nec-
essary conditions for the existence of (p-)optimal proof systems. We consider in
Section 6 also sufficient conditions for the existence of this kind of proof systems.
The following sufficient conditions have been proved by Krajicek and Pudlak.

Theorem 6 [18]
If NE = co-NE then optimal proof systems for TAUT exist.

If &= NE then p-optimal proof systems for TAUT eist.

We improve this result by weakening the conditions that are sufficient for
the existence of optimal and p-optimal proof systems for TAUT. We show that
if the deterministic and nondeterministic double exponential time complexity
classes coincide (£€ = NEE) then p-optimal proof systems for TAUT exist, and
that NEE = co-NEE is sufficient for the existence of optimal proof systems for
TAUT. In fact we give a probably weaker sufficient condition showing that a
collapse of the class of tally sets in nondeterministic double exponential time to
the deteterministic counterpart suffices for the existence of optimal proof systems
for TAUT.

By the relationships between optimal proof systems and complete sets, one
would expect that optimal proof systems for sets like TAUT do not exist. The
sufficient conditions show however that it would be very hard to prove that opti-
mal proof systems do not exist, since this would imply a separation of complexity
classes.

The rest of this article is structured as follows. In the next section we give
some preliminaries and study some closure properties of the class of languages
that have a (p-)optimal proof system. These results are interesting on their own
but mainly serve as a technical tool for the following sections. In Section 3
we provide the setting needed to formalize the informal notion of a promise
class. Further, we present two master theorems that are applied in Section 4 to
obtain the completeness consequences mentioned above (where we also consider
nonuniform reducibilities). In Section 5 we briefly discuss how these ideas can be
adjusted for the case of promise function classes. As an application, we obtain
the already mentioned completeness consequence for the class of disjoint N P-
pairs. Finally, in Section 6 we consider sufficient conditions for the existence of
(p)-optimal proof systems.

2 Preliminaries
Let QBF be the set of all valid quantified Boolean formulas

(lel) e (ann) F(l‘la ce 7mn)7

where F(zy,...,2,) is a Boolean formula over the variables z1, ..., z, and each
Q; is either 3 or V. By TAUT} we denote the set of all QBF formulas with at
most k — 1 quantifier alternations (3 followed by V, or V followed by 3) starting
with V. Similarly, SAT}, denotes the set of all QBF formulas with at most k£ — 1
quantifier alternations starting with 3. As usual, in the case of £ = 1 we omit
the index and simply write SAT for SAT; and TAUT for TAUT;.

We assume some familiarity with complexity theory and refer the reader to [2,
3] for standard notions and for the definition of complexity classes. A language A
many-one reduces to a language B (in symbols: A < B) if there is a polynomial-
time computable function f (in symbols: f € FP) such that for all strings z,
x € Aif and only if f(z) € B.

We use Turing machines as our basic computational model. In particular,
we consider clocked deterministic and nondeterministic polynomial-time Turing
machines (PTM and NPTM for short). To represent these machines we use an
encoding which allows us to obtain from the machine code N easily a polynomial
pn that bounds the running time of the machine (in Section 3 we will consider
some further restrictions on the encodings of NPTMs and PTMs). In the sequel,
we will not distinguish between a machine and its code.

We consider only languages over the alphabet ¥ = {0,1} (this means that
problem instances as, e.g., Boolean formulas have to be suitably encoded). By
¥* we denote the set of all binary strings, and by =" the set of strings of
length at most n. Sometimes we identify a string w € ¥* with the positive
integer that has 1w as binary representation. A set 7T is called tally (in symbols:
T € Tally) if T is a subset of {0™ | n > 0}; a set S is called sparse (in symbols:

5

T € Sparse) if there is a polynomial p(n) that bounds the cardinality of SN X<
A tupling function maps tuples of words to single words. It is injective and can be
computed and inverted in polynomial time. If not specified otherwise, we assume
some standard tupling function denoted by (-,---,-). We use the special value
undef. to indicate that a partial function is undefined on z (clearly if g(z) =
undef. then also f(g(z)) = undef.).

In the rest of this section we investigate closure properties of the class of all
languages which have a (p-)optimal proof system. Since, as we show, this class
is closed under <P and under join, it follows [6] that it is a promise class in the
classical sense of the tree-structure or of the leaf-language approach (in fact, in [6]
it is shown that both approaches are equivalent and that any class closed under
<P and under join is a promise class in that sense).

All observations made in this section refer to the notions of optimality and p-
optimality interchangeably. We only give the proofs for the p-optimal case since
they can easily be adapted to the case of optimality.

Lemma 7 If A has a (p-)optimal proof system and if B <P A, then B has a
(p-)optimal proof system, too.

Proof: Let h be a p-optimal proof system for A and let B many-one reduce to
A via f € FP. Then h' defined by

o) = { Ty 1T

undef. otherwise

is certainly a proof system for B. To show that A’ is p-optimal, let ¢’ be a proof
system for B. By setting g(0w) = h(w) and g(1lw) = f(¢'(w)) we obtain a proof
system g for A. Since h is p-optimal, there is a function ¢ € FP translating
g-proofs to h-proofs implying that

h(t(1w)) = g(1w) = f(g'(w)).

This implies
h'({g'(w), t(1w))) = ¢'(w).

Hence, h' p-simulates ¢'. |

The join A® B of two languages is given by 0AU1B. Tt is a least upper bound
for A and B with respect to the ordering induced by <P . The direct product of
A and B is given by A x B = {{a,b) | a € A, b € B}. Clearly, if a class is closed
under <P . then closure under intersection implies closure under direct product,
as follows from the equality A x B = (A x ¥*) N (X* x B). Closure under direct
product in turn implies closure under join, as A@ B <P A x B for nonempty A
and B.

Lemma 8 If A and B have (p-)optimal proof systems, then so have A x B,
A® B, and AN B.

Proof: As observed above it suffices to consider A N B. Let hy and hy be p-
optimal proof systems for A and B, respectively. A p-optimal proof system for
AN B is given by the FP function

_ x if w=(u,v), and x = hy(u) = hy(v),
hiwe { undef. otherwise.

Clearly, h is a proof system for AN B. To show that A is p-optimal, let f be some
proof system for AN B. By setting f;(1w) = f(w) and f;(0w) = h;(w) (i = 1,2),
f can be extended to proof systems f; and f, for A and B, respectively. Let
t; € FP be a function translating f;-proofs to h;-proofs. Then the function
t(w) = (t;(1w), to(1w)) translates f-proofs to h-proofs, i.e., h(t(w)) = f(w), as
f(w) = fz(lw) = hl(tz(lw)), for i = 1, 2. I

The proof of the next lemma is straightforward and is therefore omitted.

Lemma 9
Any set in P has a p-optimal proof system.

Any set in NP has an optimal proof system.

It is an open question whether sets with a (p-)optimal proof system exist outside
of NP (respectively P).

3 Complete sets for promise classes

In this section we provide a quite general approach to promise classes. In the clas-
sical leaf-language or tree-structure approach [7, 27, 6], promises are restricted to
be predicates on computation trees (respectively leaf strings) of nondeterministic
polynomial-time Turing machines. However it does not seem to be an easy task
to define a natural promise for the <? -closure of NP N Sparse (in spite of the fact
that results in [6] show that it is actually a promise class, as it is closed under
<P and under join).

In order to state our results as general as possible, we allow promises to be
formulated in a quite unrestricted way. In this paper, a promise R is described
by a predicate on the set of all pairs consisting of an NPTM N and an input
string z, i.e., R(N, z) means that N obeys promise R on input x. We call N an
R-machine if N obeys R on any input x € ¥*. In the sequel, we will only allow
promises R for which at least one R-machine exists. The acceptance criterion is

also a binary predicate () on NPTMs and strings. The language accepted by the
NPTM N (when applying the acceptance criterion @) is given by

Lo(N) ={z e X" | Q(N,z)},

Finally, for a promise predicate R and an acceptance criterion (), we define the

promise class
Co.r = {Lg(N) | N is an R-machine}

and call (Q, R) a defining pair for Cg g.

Definition 10 A class of languages C is called a promise class if C = Cq g for
some promise predicate R and acceptance criterion Q).

Notice that a promise class Cg r cannot be empty as we assume that some
R-machine exists. In order to obtain completeness results, this setting is still too
unrestricted. In fact, for any nonempty countable class £ of languages one can
define) and R such that £ = Cg . Therefore we often restrict our consideration
to pairs (@, R) that fulfill the following two conditions A1 and A2. Basically, A1l
demands the existence of a universal NPTM (with respect to @ and R) and A2
requires that Cg g is closed under many-one reducibility (in a constructive way).

Al: There is an NPTM U, and a tupling function (-, -, -) such that the following
two conditions hold for all NPTMs N, all z € £*, and all s > py(|z]).

1. Q(N,z) <= Q(U, (N, z,0%)).
2. R(N,z) = R(U,(N,z,0%)).

A2: There is a binary operation o mapping an NPTM N and a polynomial-time
transducer M to an NPTM N o M such that the following three conditions

hold for all NPTMs N, all PTMs M, and all x € ¥* (fy denotes the
function computed by M).

1. Q(N, fu(x)) < Q(N o M, z).
2. R(N, fu(z)) = R(N o M,z).

3. The set {N o M' | M’ is a polynomial-time transducer } is recursively
enumerable.

It is easy to verify that the conditions A1 and A2 hold in the leaf-language
as well as in the tree-structure approach.

A natural defining pair for UP is (Q, R) where R(N, z) holds if N is a NPTM
with at most one accepting path on input z and Q(N,) is true if N has at least
one accepting path on input z. To show that A1 holds, let U be a nondeterministic
universal Turing machine that on input (N, x, 0%) simulates s steps of machine N

on input z. Then it is clear that for a standard encoding of NPTMs, U works in
polynomial time and fulfills A1. Further, A2 also holds by defining N o M to be
the machine that on input x computes M (z) and then simulates N on M (x) (of
course, the attached polynomial time-bounds have to be adjusted appropriately).

Proposition 11 The class UP has a defining pair which fulfills A1 and A2.

We will see in Section 4 how other promise classes like NP N co-N'P, Few,
FewP, BPP, RP, ZPP, AM and MA can be characterized in a natural way
by defining corresponding pairs (@, R) which fulfill A1 and A2.

Next we introduce the concept of a test set which is central to our approach.
The complexity of a test set serves to some extend as a measure for the complexity
inherent to a defining pair.

Definition 12 Let C be a promise class, and let (Q, R) be a defining pair for C.
Then a set T C X* is called a (Q, R)-test set for C if the following two conditions
are fulfilled.

e If(N,z,0°) € T, then s > py(|z|) and R(N,x) holds.

e For any L € C there is an NPTM N that accepts L, i.e., Lo(N) = L,
and that passes test T, i.e., there is a polynomial p such that for all inputs
€ X*, (N, z, 002Dy € T,

Thus, any element (N, z, 0°) belonging to a (Q), R)-test set T" serves as an assertion
that N behaves well (according to R) on input z. For example, we can use the
generic test set

Tiq.my = {(N,2,0°) | R(N, z) and s > pn(|z])}

for a defining pair (Q, R). In the case of UP, for example, one just has to verify
that there is at most one accepting path; a simple task in co-NP.

Proposition 13 UP has a test set in co-NP.

Very informally, the intuitive idea behind the notion of a test set T is that
we can obtain a complete language for Cg g, provided that we can enable an R-
machine to decide T (see the proofs of Theorems 16 and 19 for details). In order
to make this intuition precise we need the following notion.

Definition 14 Let A be a class of languages and (Q, R) be a defining pair for
a promise class C. We say that A-assertions are useful for (Q, R), if for any
language B € A and any NPTM N the following holds: if N obeys R for any
x € B then there is a language C' € C such that

CNB=LyN)NB.

Occasionally, when it is clear from the context which defining pair (Q, R) we
associate with a promise class C then we just say that A-assertions are useful for
C; similarly, we sometimes call a (Q, R)-test set simply a test set for C.

The next lemma is needed in the proof of the main result of this section
(Theorem 16).

Lemma 15 P-assertions are useful for defining pair (Q, R) that fulfills A2.

Proof: Let B € P and let N be an NPTM such that R(N,x) holds for all
x € B. We can assume that B is nonempty (otherwise the statement is true as
we assume that Cq g is nonempty). Let A be a PTM that computes the FP
function f defined as f(z) = z, if z € B, and f(x) = y otherwise, where y is a
fixed string in B. Since R(N, f(z)) holds for all z, we conclude by assumption
A2.2 that N' = N o M is an R-machine, implying that C' = Lg(N’') € Cg . By
the definition of f and by A2.1 it follows that for allz € B, Q(N,z) <= Q(N', z).
Hence, CNB = Lo(N)NnB. 1

Now we are ready to prove our main result, namely the equivalence 1 <= 2
of the next theorem. The equivalence 2 <= 3 has been observed already in [16]
for C = NP N co-N'P and in [13] for C = UP and for C = BPP.

Theorem 16 Let C be a promise class and let (Q, R) be a defining pair for C
which fulfills A1 and A2. Then the following conditions are equivalent.

1. C has a (Q, R)-test set with a p-optimal proof system.
2. C has a many-one complete set.

3. There is a recursive enumeration Ny, No, ... of R-machines such that C =

{Lo(N;) | i =1}
4. C has a (Q, R)-test set in P.

Proof: 1 = 2. Let T be a (Q, R)-test set for C which has a p-optimal proof
system h. Remember that for every fixed NPTM N that passes test T', there is
a polynomial p such that the language

Ty = {(N,a,0") | 2 € ©7}

is a subset of T'. Hence it follows that there is a proof system ¢ for 7" with the
property that for all x € ¥*,

g(1z) = (N, z,0p(2D),

Since h is a p-optimal proof system for T, there is a function ¢t € FP such that
for every x € X*, h(t(1x)) = (N, z,0P02D). Thus, Ly (N) is easily seen to reduce
to the set

A={(N',2,0°,w) | x € Lo(N") A h(w) = (N',z,0°)}

10

via the reduction
fnvcae (N2, 070D (1)),

Now, let B = {(N',z,0°,w) | h(w) = (N',x,0°)}. Notice that the reductions
fn defined above map only to elements in B. Therefore, any language C' with
the property that A = C'N B is hard for C. We show that such a language
C exists in the class C. Let U be a universal NPTM according to Al and let
U = Uo M, where M is a transducer computing the projection that maps
{(a,b,c,dy to (a,b,c) where for the latter encoding the tupling function due to
Al is used. Observe that (by Al and A2) U’ obeys R for all y € B and that
QU (N,z,0%, w)) <= Q(N,z). Since by Lemma 15, P-assertions are useful
for (Q, R), and since B € P, it follows that there is a language C' € C with the
property that CN B = AN B = A.

2 — 3. Let C be a many-one complete set for C and let N be an R-machine
with C = Lg(N¢). Since C' is complete for C, any language L in C can be decided
by an R-machine of the form Ng o M, where M is a polynomial-time transducer
computing the reduction from L to C. (Notice that A2.2 implies that Ng o M is
an R-machine and that A2.1 implies that Lg(Ng o M) = L). Thus, due to A2,
the recursively enumerable set

S={NcoM| M isaPTM}

has the properties required for condition 3.
3 = 4. Let M be a Turing machine that accepts the set S = {N; | i > 1}
given by the recursive enumeration of 3. It now suffices to observe that the set

T ={(N.,z,0° | pn(Jz|) < s and M accepts N in < s steps }

is a (@, R)-test set in P.
4 = 1. This implication follows immediately from Lemma 9. |

By combining Theorem 16 with Proposition 13 we get the following corollary.

Corollary 17 If TAUT has a p-optimal proof system then UP has a many-one
complete set.

We notice that if a promise class fulfills A1 and A2 and has a complete set
under polynomial time many-one reducibility, then it also has complete sets under
less complex many-one reductions (like e.g. logspace-reductions). To see this,
consider a direct proof of implication 4/ = 2: If T is a test set fulfilling 4, then
clearly the universal machine given by Al obeys R on any y € T. Hence, as
P-assertions are useful for C, there is a set C' € C such that CNT = Lo(U) NT.
Now let L € C and let N be an NPTM with Lg(N) = L that passes test T with
polynomial ¢. Then the mapping z ~ (N, z, 090D} reduces L to C. Hence, the
complexity of the reduction is basically that of computing the tupling function.

11

But the latter can be chosen to be very simple: if Al holds with a universal
machine U and a certain tupling function then we can use a polynomial time
machine M that translates a very simple tuple-representation into this one and
obtain a machine U" = U o M that (using A2) fulfills the conditions of A1 with
respect to the simple tuple-representation. In fact, all completeness consequences
in this article carry over to many-one reducibilities that are simple to compute
as, e.g., logspace-reducibility.

Next we derive completeness consequences from the assumption that the
promise class under consideration has a test set with an optimal proof system. We
obtain similar implications if the promise class can even use N P-assertions (see
Theorem 19). However, the following equivalence holds without this assumption.

Theorem 18 Let C be a promise class and (Q, R) be a defining pair for C. Then
the following two conditions are equivalent.

1. C has a (Q, R)-test set with an optimal proof system.
2. C has a (Q, R)-test set in N'P.

Proof: By Lemma 9, 2 implies 1. For the opposite implication assume that we
have a (@, R)-test set T for C and an optimal proof system h for T. Let

T = {(N,z,0°"") | 3w € £=%: h(w) = (N,z,0) }.

Clearly, 7" € N'P. To show that T" is a (Q, R)-test set for C, we prove that
each machine N which passes T also passes T'. If N passes T, then there is
some polynomial p bounding the running time of N and having the property
that for all z € ©*, (N,z,0°02D) € T. Tt is easy to define a proof system g for
Ty = {(N,z,0°02D) | € ¥*} such that for any z € ¥*, g(1z) = (N, z, 0r(2D),
As h simulates g, there is a polynomial ¢ such that for all , (N, z, 0°(]) has an
h-proof of size q(|z|). Thus for any x, (N, z,07(z0+a(2D)y ¢ T’ But this means
that N passes test 77. 1

Theorem 19 Let C be a promise class and let (Q, R) be a defining pair for C
which fulfills A1. If N'P-assertions are useful for (Q, R), then 1 implies 2.

1. C has a (Q, R)-test set with an optimal proof system.

2. C has a many-one complete set.
Proof: Let 7' be a (Q, R)-test set for C which has an optimal proof system.

By Theorem 18, there is a (Q, R)-test set T' for C which is in NP (notice that
T € NP holds independently of the specific tupling function used to encode the

12

tuples in T, hence we may assume that the tupling function due to Al is used).
Consider the set

A = {(N,2,0° €T |z € Lo(N)}.

Notice that A = Lo(U) N'T where U is a universal NPTM given by Al. Notice
also that by A1.2, U obeys R on any y € T. As N'P-assertions are useful for
(@, R), there is a language C' € C such that CNT = Lo(U)NT = A. We now
show that C' is complete for C. Let L be a set in C and let N be an NPTM
with L = Lg(N) which passes test 7' with respect to a polynomial p. Then the
mapping x — (N, z, 0P171) reduces L to C (as well as to A). 1

Notice that conditions 1 and 2 of Theorem 19 are equivalent if we additionally
require that (@, R) fulfills A2. This follows from the fact stated in Theorem 16
that the existence of a complete language implies the existence of a test set in P.

Even if the promise class under consideration cannot use N P-assertions we
can still derive completeness consequences with respect to nonuniform reducibil-
ities. In order to do so we define the concept of a length dependent test set.

Definition 20 A test set T is called length dependent if (N,x,0%) € T implies
(N,y,0% €T for all inputs y of length |y| = |z|.

It is clear that from any test set T for (), R) we can generically obtain a
length dependent test set

T' = {(N,z,0°) | Vy € S (N,y,0°) € Tio.r)}

for (Q, R). Actually, in [22, 19] only length dependent test sets were (implicitly)
used to derive completeness consequences. However notice that in order to obtain
a length dependent test set an additional V-quantifier may be needed. However,
if we apply this construction to a test set T' € co-N'P, then also T" belongs to
this class.

Proposition 21 UP has a length dependent test set in co-N'P.

A function f € FP/poly with f(z) € B <= x € A is called a nonuniform
many-one reduction from A to B.

Theorem 22 Let C be a promise class and let (Q, R) be a defining pair for C
that fulfills A1 and A2. Then 1 implies 2.

1. C has a length dependent (Q, R)-test set with an optimal proof system.

2. C has a complete set under nonuniform many-one reducibility.

13

Proof: The proof follows the lines of the proof of 1 = 2 of Theorem 16. Let T’
be a length dependent (@, R)-test set for C that has an optimal proof system h.
Then for every fixed NPTM N that passes test T, there is a polynomial p such
that the language

Ty = {(N,0",0°™) | n, > 0}

is a subset of T'. Hence, as T is easy to recognize, it follows that h-proofs for
(N,0™,0°(™) are short (i.e., their length is polynomially bounded in n). Thus,
Lg(N) is easily seen to reduce to the set

A={(N',2,0°,w) | # € Lo(N') A h(w) = (N, 0%, 0°)}

via the reduction
fvrx e (N2, 07070),

where the h-proof w of (N,0% 07(2)) is given as advice by fy. Now, let B =
{(N",z,0°,w) | h(w) = (N’,0%/,0°)} and follow the rest of the proof of implica-
tion I = 2 of Theorem 16 that shows that there is a set C € C withCNB = A
that is hard for C (here under nonuniform reducibility). |

By combining Theorem 22 with Proposition 21 we get the following corollary.

Corollary 23 If TAUT has an optimal proof system then UP has a complete set
under nonuniform many-one reducibility.

4 Applications to other promise classes

Whereas in the last section UP served as our standard example for a promise
class, we use in this section the assumption that certain languages have (p-
Joptimal proof systems to derive further completeness consequences for various
other promise classes. We start by sketching how defining pairs (@), R) (i.e. ma-
chine models) for promise classes like NP N co-NP, SV NIIY, k > 2, Few, FewP,
and NP N Sparse can be obtained.

A machine model for NP N co-NP can be obtained by combining two N P-
machines N; and N, which accept complementary languages into a machine N
that in the first (nondeterministic) step, branches left to N; and right to Ny. So,
for NP N co-N'P the promise R(N,z) states that on input z, either Ny or N
accepts but not both. Q(N, z) holds if Ny has an accepting path on input x.

Machine models for 3§ N II7 for each & > 2 can be obtained in a similar
way by combining two ¥}-machines which accept complementary languages (3}-
machines may be defined syntactically or by the tree-structure of an NPTM).
So the promise R(N,z) holds when N branches in the first step to two XF-
computations, where the left one is accepting if and only if the right one is
rejecting. Here Q(N,x) holds if Ny accepts z in a ¥} -way.

14

The classes Few and FewP were defined in [1] and [9] as generalizations of
the class UP. In the case of FewP the promise R(N,z) states that on input
x there are at most py(|z|) accepting paths. The acceptance criterion Q(N,x)
states that there is an accepting path of N on input x. In the case of Few there
is attached to each NPTM N a polynomial time machine My with the same time
bound as N attached as a shut of clock. Note that by fixing a default machine,
we can consider to any NPTM an attached PTM. The promise is the same as
for Few. Q(N,z) holds if My accepts (x,i) where i is the number of accepting
paths of N on input z.

Notice that in all these cases the defining pairs fulfill A1 and A2. The most
difficult case to verify is probably that the defining pair (Q, R) for Few fulfills A1.
However, a universal machine U is given by a machine that on input (N, z, 0*)
simulates NV on z for s steps, where M is a machine that on input ((N, z,0%),)
simulates My on (x,) for at most s steps.

For the case of NP N Sparse the situation is not as straightforward. We define
R(N, z) to be true if N = 0" for some NPTM N’ with attached polynomial time-
bound pys such that N’ accepts at most py(|z|) strings of length |z|. Define
Q(N, z) to be true if N = 0 for some NPTM N’ that has at least one accepting
path on input z. Clearly Cq g is the class of sparse sets in NP. To obtain a
universal machine U = 0" we use as tupling function (0N, z, 05) = 0{N"slzh=lel1y
where ¢ : N> — N is some standard tupling function with the additional property
that t(n, s,1) > 1, s for all n, s,1 > 0 (using the standard pairing function p(i, j) =
(”2”) + j one may define t(n,s,l) = p(p(n,s),l)). Now, on input w, U’ verifies
that w = 0™1z and that there are N’, s such that m + |z| = ¢(N', s, |z|) and
s > pn(|x|). If this is not the case, then U’ rejects. Otherwise U’ simulates N on
x for at most py(|z|) steps. One can construct U’ to be linearly time-bounded,
so let the time bound 2n + 1 be encoded in its description. To see that A1l holds
it remains to verify that R(N,z) implies R(U, (0Y', z,0%)), i.e. that U’ accepts
at most 2/ + 1 strings of length I = [(0V', 2,0%)| = t(N', s,|2|) + 1 if N accepts
at most py(|x|) strings of length |z|. Now as ¢ is injective all strings of length [
accepted by U’ are of the form 0/N'sm)=l#112" where N, s, m are fixed for fixed
[, and |2'| = m where 2’ is accepted by N’ in at most py/(m) < s steps. So we
are finished by observing that there are at most py/(m) < s < [different 2’ of
length m that are accepted by N’.

Lemma 24

(i) Few, FewP, and NP N Sparse have test sets in co-NP.

1) For every k > 1, XP N1IY has a test set which is <P -reducible to SAT), x
k k m

Proof: All the test sets considered here are of the generic form

Tiq.ry = {(N,2,0°) | R(N,z) and s > pn(|z])}.

15

For Few and FewP one has to verify on input (N,x,0%) that N has at most
pn(|z]) accepting paths on input x. But this can be easily done in co-N'P. For
NP N Sparse one has to verify on input (N, x, 0%) that there are at most py(|z|)
strings y of length |z| such that N has an accepting path on y. Again, this can
be easily decided in co-N"P.

In the second result, for the case & = 1 observe that for NP N co-N"P the
predicate R(N,x) holds if there exists an accepting path « of N on input z, and
if there is no pair 3y, 8, of accepting paths of N on input x such that in the first
nondeterministic step [branches left and ([, branches right. This shows that
this test set is reducible to SAT x TAUT. The result for £ > 2 is obtained in an
analogous way. |

We now observe that A/P-assertions are useful for NP N Sparse, and for
YhNIIE, k> 2 (considering the machine models defined above). Hence, in order
to get a many-one complete set for NP N Sparse, and for 3§ NIIY, it suffices to
find a test set with an optimal proof system.

Proposition 25 N'P-assertions are useful for N'P N Sparse, and for ¥ N1IY,
k> 2.

Proof: For NP N Sparse observe that if N obeys the promise R on any x € B
for some set B € NP then setting C = Lg(N) N B yields C € NP N Sparse.
Basically the same argument holds for ¥f NII¥. Let N obey the ¢ N II}-
promise on B € N'P. Then N consists of two Zz—machines N; and N, that are
reached in the first nondeterministic branch. Let L; € 3} denote the set accepted
by N; in a ¥P-way (note that Lo(N) = L;). As N obeys the promise on B it
follows that B\ L, = LyNB. Now let C' = L;NB (and hence, CNB = Lo(N)NB).
Clearly, C € XF, and further also C = LyUB € 7. This shows C € P NII7. |

We can use Theorems 16 and 19 to get the following implications.
Corollary 26

o If TAUT has a p-optimal proof system then Few and FewP have many-one
complete sets.

e If TAUT has an optimal proof system then NP N Sparse has a many-one
complete set.

e If TAUT and SAT have p-optimal proof systems, then NP N co-N'P has a
many-one complete set.

e Fork > 2, if TAUT, and SATy have optimal proof systems, then X NI}
has a many-one complete set.

16

Using the above test sets one generically obtains length dependent test sets
for Few and for FewP in co-N'P. Also for NP N co-N"P one obtains a length
dependent test set in TT5. Hence, by applying Theorem 22 we get the following
corollary.

Corollary 27

o If TAUT has an optimal proof system then Few and FewP have complete
sets under nonuniform many-one reducibility.

e If TAUT, has an optimal proof systems, then NP Nco-N'P has a complete
set under nonuniform many-one reducibility.

Test sets for probabilistic classes

We show now that the probabilistic complexity classes BPP, RP, and ZPP
have test sets in X5 as well as in IT5. We start by describing defining pairs
(@, R) for these promise classes that satisfy A1 and A2. Recall that for any
NPTM N, py is the polynomial time bound associated with N. Let Acc(N,,)
(resp., Rej(N,l,z)) be the set of all paths r € {0,1}} on which N(z) ac-
cepts (rejects, respectively) after at most [steps. Notice that the two sets
Acc(N,z) = Acc(N, pn(|z]), z) and Rej(N, z) = Rej(N, pn(|z]), z) form a parti-
tion of {0, 1}P~ (=D,

e For the case of BPP, define R(N, x) to be true if N is a NPTM such that
|Acc(N, z)|| > 2v~(=D) . 2/3 or [[Acc(N, z)|| < 2P~(2D) /3 and let Q(N, x) be
true if ||Acc(N, z)|| > 2v~ (2D /3.

e For the case of RP, define R(N,x) to be true if N is a NPTM such that
|Ace(N,z)|| > 2°¥02D/2 or ||Acc(N,z)|| = 0 and let Q(N,z) be true if
||Acc(N, z)|| > 0.

e Since ZPP = RP Nco-RP, a machine model for ZPP can be obtained by
combining two RP-machines N; and N, which accept complementary lan-
guages into a machine N that in the first (nondeterministic) step, branches
left to N; and right to Ns. So, the promise R(N, x) states that on input z,
N; and Ny behave like an RP-machine and that either N; or N, accepts
but not both. Q(N, x) holds if Ny has an accepting path on input z.

Next we recall the definitions and basic properties of hashing that we need.
Sipser [23] used universal hashing, originally invented by Carter and Wegman
[10], to estimate (probabilistically) the size of a finite set X of strings.

A linear hash function h from ¥™ to X* is given by a Boolean (k, m)-matrix
(a;;) and maps any string © = x;...2,, to a string y = y; ...y, where y; is the
inner product a; - v = Y77, a;;z; (mod 2) of the i-th row a; and z.

17

Let X C ¥™ and let h be a linear hash function from ™ to ¥*. Then we say
that h hashes X if for all pairs of different strings =,y € X, h(z) # h(y). More
generally, if H is a family (hq,...,h,) of linear hash functions from ¥™ to %,
then we say that H hashes X if for every x € X there is some i, 1 < i < s, such
that h;(z) # hi(y), for all y € X — {x}.

Note that the predicate “H hashes X” can be decided in co-NP provided
that membership in X can be tested in P. We denote the set of all families
H = (hy,..., ht) of k linear hash functions from X™ to ¥* by H(k, m).

As observed by Sipser, the size of a set X C ™ can be estimated by checking
for which values of k, X is hashable by some hash family H € H(k, m).

Lemma 28 [23] No hash family H € H(k,m) can hash a set X C X™ of cardi-
nality | X | > k2. Furthermore, if | X| < 2% then some hash family H € H(k, m)
hashes X .

The next two lemmas make use of Stockmeyer’s refinement of the hashing
technique [24]. Their proofs are straightforward (see, e.g., [15]).

Lemma 29 Let X C {0,1} and let m = 1+ 72l and k = 1+m(l—2) be integers.
Then the following implications hold.

e Ifthere exists a hash family H € H(k,Im) that hashes X™, then | X| < 2!/3.
o If|X| < 2'/4, then some hash family H € H(k,Im) hashes X™.

Lemma 30 Let X C {0,1} and let m = 1+5121 and k =1+ [m(l+1—1log3)]
be integers. Then the following implications hold.

o [f there exists a hash family H € H(k,Im) that hashes X™, then |X| <
2l . 3/4.,

o If|X|<2'-2/3, then some hash family H € H(k,Im) hashes the set X™.
Proposition 31 BPP, RP, and ZPP have test sets in ¥ as well as in TT5.

Proof: For BPP we define the test set

B={(N,z,0") | I = py(|z]) and for m = 1+ 72l and k = 1 + m(l — 2)
there is a hash family H € H(k,lm) that hashes either Acc(N, [, z) or
Rej(N.1,z) }.

Clearly, B € 8. Further, for any set A € BPP there is an NPTM N such that
for all inputs = and for | = py(|x|) it holds that

€A & ||Acc(N,1,)] > 2" 3/4,
¢ A & ||Rej(N,l,2)|| > 2" 3/4.

18

Thus by Lemma 29 it follows that N passes test B. On the other hand, it
also follows by Lemma 29 that if (N, z,0") belongs to B then | = py(|z|) and
R(N, z,0") holds. This shows that B is a test set for BPP.

Next we show that BPP has a test set in TT5. In fact, consider the set

C = {(N,z,0" |l = py(|z]) and for m = 14512l and k = 1+[m(l+1—log 3)]
there is no hash family H € #H(k,lm) that hashes both Acc(N, [, z) and
Rej(N, 1, z) }

which belongs to TT5. By Lemma 30 it is easy to see that C'is a test set for BPP.
Moreover, it is not hard to adapt the above argument to get suitable test sets for
RP and for ZPP. 1

As an immediate consequence of Proposition 31 and of Theorem 16 we obtain
the following corollary.

Corollary 32 If SAT, or TAUT, have a p-optimal proof system then BPP,
RP, and ZPP have a many-one complete set.

It is also not hard to show that M.A has test sets ¥ as well as in I} and
that AM has test sets X% as well as in II5. Since these classes can even use
NP-assertions, it follows that M. has a many-one complete set, if TAUT, or
SAT, has an optimal proof system, whereas AM has a many-one complete set,
if TAUT; or SAT3 has an optimal proof system.

5 Completeness results for function classes

The results in Section 4 can be translated in a straightforward way to promise
function classes. We just give a brief sketch. The definition of a promise R for
function classes is the same as for languages, whereas the acceptance criterion @)
is replaced by a function S mapping each pair (NN, z) consisting of an NPTM N
and a string z to the string S(N, z). The function Fg(N) : ¥* — ¥* computed
by N (when applying S) is given by

Fs(N)(z) = S(N, z).
R and S together define the function class
Fsr={Fs(N) | N is an R-machine}.

Conditions A1 and A2 translate to the corresponding conditions A1’ and A2’ for
function classes. We just have to replace Al1.1 and A2.1 by

Al'.1: S(N,z) = S(U,(N,x,0%)) and
A2'.1: S(N, fu(z)) = S(NoM,z)

19

respectively. We use the following notion of many-one reducibility for functions:
g <P h if there is a function f € FP such that h(f(z)) = g(x) for any =
in the domain of g. Notice that this notion is closely related to the notion of
p-simulation (although g and h need not belong to FP).

It is also straightforward to translate the definition of a test set. The notion
of usefulness for a defining pair (S, R) for a function class Fg g reads as follows.
A-assertions are called useful for (S, R) if for any language B € A and any NPTM
N the following holds: if R(N,z) for any = € B then there is a function f € Fsp
such that for all z € B, f(z) = S(N, z).

Theorems 16, 18, and 19 also translate to promise function classes. We first
give the translation of the main equivalence of Theorem 16.

Theorem 33 Let F be a promise function class and let (S, R) be a defining pair
for F which fulfills A1' and A2. Then the following conditions are equivalent.

1. F has a (S, R)-test set with a p-optimal proof system.

2. F has a many-one complete set.

Translating Theorem 19 to the functional setting yields the following sufficient
condition for the existence of many-one complete functions.

Theorem 34 Let F be a promise function class and let (S, R) be a defining pair
for F which fulfills A1'. If N'P-assertions are useful for (S, R), then 1 implies 2:

1. F has a (S, R)-test set with an optimal proof system.
2. F has a many-one complete function.

Razborov observes in [21] that the existence of an optimal proof system for
TAUT would imply a the existence of a complete pair for the class of disjoint
NP-pairs. We recall that a pair (A4, B) of N'P-languages belongs to this class
when AN B = (). The reduction considered in [21] is a weak form of many-one
reducibility. Formally, in [21] a pair (A, B) is said to many-one reduce to a pair
(C, D) if for some f € FP, f(A) C C and f(B) C D. By applying Theorem 33
we can improve the mentioned result showing that under assumption that TAUT
has an optimal proof system, the class of disjoint N P-pairs has a complete pair
with respect to the following stronger notion of many-one reducibility: (A, B)
strongly many-one reduces to (C, D) if for some f € FP, f~'(C) = A and
(D) = B. We associate to each disjoint N'P-pair (A, B) a function f(4 p) as
follows. For all x € ¥*,

0 ze€A,

f(A,B)(a:): 1 xEB,
A otherwise.

20

In a sense, the class of disjoint A/P-pairs corresponds to the function class of all
these functions. This class can be defined as a promise class in the following way.
An NPTM N is an R-machine if in the first nondeterministic step it branches to
two N'P-machines Ny and Ny which accept disjoint languages. Therefore R(N, x)
holds if there is no pair a;, as of accepting paths of N on input x such that in the
first nondeterministic step a; branches left and as branches right. If there is an
accepting path branching left, the value of S(N,) is 0. Otherwise, S(N,z) =1
if there is an accepting path branching right, and S(V,z) = A if there isn’t any
accepting path. This defines the class Fg r which has a <P -complete function if
and only if there is a strongly many-one complete disjoint N'P-pair. It is easy
to see that Fg r has a test set in co-N'P and that N 'P-assertions are useful for
Fs,r. Therefore, Theorem 34 gives us the following consequence.

Corollary 35 If TAUT has an optimal proof system, then there is a pair that
is strongly many-one complete for the class of all disjoint N'P-pairs.

6 Sufficient conditions

In this section we investigate conditions which imply the existence of (p-)optimal
proof systems. We first make an observation which allows us to infer the existence
of a p-optimal proof system for a recursively enumerable set L, provided that
there are complete functions for certain promise function classes. Secondly, we
will see that collapses of tally sets at the double exponential-time level imply the
existence of (p-)optimal proof systems for TAUT}.

For any recursively enumerable set L, the function class PS;, = {f € FP |
f(X*) C L} is the <P -closure of the class {f € FP | f(¥*) = L} that consists
of all proof systems for L. Clearly, PS has a <P -complete function if and only
if there is a p-optimal proof system for L. Furthermore the class PSy is easily
described as a promise function class by the following defining pair (S, R) which
fulfills A1’ and A2’

1. R(N,x) holds if on input z, N only makes deterministic moves, and if N
accepts then the string y written on its tape is in L.

2. S(N,z) = y where y is the string produced by N on input z on its leftmost
accepting nondeterministic computation.

It is also possible to describe this class using the tree structure approach for
promise classes. Here, the idea is to allow only special trees (called combs in [6])
which represent polynomial-time computable functions.

An (S, R)-test set is given by the set

Tr, = {(N,z,0°) | R(N,z) and s > py(|z]|) }.

21

It is easy to see that Ty, <P L for L ¢ {0, X*} via a PTM M which on input
(N, z,0°) simulates N for at most s steps as follows. If N does only perform
deterministic moves, then M behaves as N and produces N’s output if N accepts,
if N rejects then M outputs a fixed string y € L. Otherwise, M outputs a fixed
string yy ¢ L. Notice that also I <P Ty via f : 2 = (Nig, 2,02!), where Ny is an
NPTM computing the identity mapping; implying that 77, =P L.

Combining these observations with Theorem 33 we obtain the following the-
orem.

Theorem 36 Let L C X*. Then the following statements are equivalent.
1. There is a p-optimal proof system for L.

2. Fvery promise function class F which has a defining pair (S, R) fulfilling
Al and A2, and further possesses an (S, R)-test set which is <P -reducible
to L has a <P -complete function.

3. PSyp has a <P -complete function.

It would be interesting to know whether a similar theorem holds when considering
just language classes instead of function classes.

We now give a sufficient condition for the existence of a (p-)optimal proof
system for TAUT,. Observe that PStayt has a length dependent test set in
co-N'P. Hence (using Lemma 9 and Theorem 34 (resp. 33)), there is a (p-)optimal
proof system for TAUT provided that any tally set in co-NP is already in NP
(P). Together with observations from [5] that relate sets in £, N'E to tally sets
in P, NP this gives a proof of Theorem 6. Actually the idea to this proof
of Theorem 6 dates back to [20] where ‘finitistic consistency statements’ roughly
correspond to elements of a length dependent test set for PStaur. We can weaken
the needed assumption if we consider (intuitively) super-tally sets instead of just
tally sets, where we call a set T super-tally (in symbols: T € Super-Tally) if T is

a subset of {02° | n > 0}.

Theorem 37 If any super-tally set in N'P is already in P, then TAUT has a
p-optimal proof system.

Proof: We assume some standard enumeration My, My, Ms, ... of (encodings
of) deterministic Turing transducers with binary input alphabet such that for a
given triple (M;, z,0%), up to k steps of the computation of M; on input = can be
efficiently simulated. Let i(k) denote the largest exponent i such that 2¢ divides
k and consider the language

k
T = {022 | on any input, M, either stops after at most 22 steps and
outputs some tautology or M;() runs for more than 92" steps }.

22

ok
In order to decide whether a given string 0" = 02* belongs to 7', it suffices to
simulate M;) on any input of length at most n+ 1 for at most n + 1 steps. This

shows that T N {022k | k> 0} € NP and thus, by the assumption that any
super-tally set in AP is already in P, T can be decided in P. We claim that the
following transducer computes a p-optimal proof system h for TAUT.

input (0", w)
if 0" € T then
determine k such that n = 22"
if M;) stops on input w in at most n steps then
output M;g,) (w) and halt;
(otherwise reject).

Since, as is not hard to see, h(X*) C TAUT and h € FP, it only remains to show
that A is p-optimal. Let g be any proof system for TAUT, computed by some
deterministic Turing transducer M; in time bounded by some polynomial p. Then

k
any g-proof w can be translated into an h-proof by the mapping w — (022 , W),
where k is the smallest integer k; = (27 + 1)2°, j > 0, such that p(jw|) < 92
Since

22kj+1 _ (22kj>c

where ¢ = 222 it follows that 22° < p(Jw|)¢, implying that the translation

ok
w — (0°,w) is computable in polynomial time. 1

It is interesting to note that the above proof still goes through if we define

a set T to be super-tally if it is a subset of {Occk | k > 0} where ¢ > 2 is an
arbitrary integer constant. However, in our proof, we cannot allow T' to be any
sparser. To see why, let us just try to replace the function j — 92+ by some
other function f(j) (where f as well as the constant ¢ below might depend on 7).
This would guarantee that the new set 7' is a subset of {0/¢) | j > 0}. On the
other hand, a necessary condition for the proof to work is that for some constant
¢, f(j+1) < f(j)°, implying that f(j) < f(0).

A similar proof shows that there is an optimal proof system for TAUT, pro-
vided that any super-tally set in AP is also in co-NP.

Let £& = DTIME(20C®") (cf. [12]), EE€ = DTIME(20")) and let NEE,
NEEE be their nondeterministic counterparts. Using a technique in the style
of [5] it is easy to see that each tally language in £ (NEE) translates to a super-
tally language in P (respectively N'P) and vice versa. Thus a collapse of tally
sets at the E&E-level (as, e.g., NEEN Tally C EE or NEEN Tally C co-NEE) corre-
sponds to a collapse for super-tally sets at the P-level (i.e., N'PNSuper-Tally C P
and NP N Super-Tally C co-N"P, respectively). As a consequence we can state
the following corollary.

23

Corollary 38
If NEE N Tally C EE then TAUT has a p-optimal proof system.

If NEE N Tally C co-NEE then TAUT has an optimal proof system.

Surprisingly, it seems hard to improve the above corollary further to the triple
exponential time level. In fact, it is stated in [4] that there is a relativized world
in which NEEE = £EEE but TAUT does not have an optimal proof system.

Finally, a generalization of Theorem 37 to any level of the polynomial time hi-
erarchy yields the following sufficient conditions for the existence of a (p-)optimal
proof system for TAUT,.

Theorem 39
If any super-tally set in T}, is in P then TAUTy has a p-optimal proof system.

If any super-tally set in 115 is in N'P then TAUT), has an optimal proof system.

References

[1] E. Allender. Invertible functions. PhD thesis , Georgia Institute of Technology,
1985.

[2] J.L. Balcdzar, J. Diaz, and J. Gabarré. Structural Complezity I. EATCS Mono-
graphs on Theoretical Computer Science #11. Springer-Verlag, 1988.

[3] J.L. Balcazar, J. Diaz, and J. Gabarré. Structural Complexity II. EATCS Mono-
graphs on Theoretical Computer Science #22. Springer-Verlag, 1990.

[4] S. Ben-David and A. Gringauze. On the existence of optimal proof systems and
oracle-relativized propositional logic. Technical Report TR98-021, Electronic Col-
loquium on Computational Complexity, 1998.

[5] R. V. Book. Tally languages and complexity classes. Information and Control
26:186-193, 1974.

[6] B. Borchert. Predicate Classes, Promise Classes, and the Acceptance Power of
Regular Languages. PhD thesis, Ruprecht-Karls-Universitat Heidelberg, 1994.

[7] D. P. Bovet, P. Crescenzi, and R. Silvestri. A uniform approach to define com-
plexity classes. Theoretical Computer Science, 104:263-283, 1992.

[8] S. Buss. Lectures on Proof Theory. Technical Report No. SOCS-96.1, McGill
University, 1996. (http://www.cs.mcgill.ca/ denis/TR.96.1.ps.gz)

[9] J. Caiand L. Hemachandra. On the power of parity polynomial time. Mathematical
Systems Theory 23:95-106, 1990.

24

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[20]

[21]

22]

J. L. Carter and M. N. Wegman. Universal classes of hash functions. Journal of
Computer and System Sciences, 18:143-154, 1979.

S. Cook and R. Reckhow. The relative efficiency of propositional proof systems.
Journal of Symbolic Logic 44:36-50, 1979.

J. Hartmanis, N. Immerman and V. Sewelson. Sparse sets in NP —P: EXPTIME
versus NEXPTIME. Information and Control 65:158-181, 1985.

J. Hartmanis and L. Hemachandra Complexity classes without machines: On
complete languages for UP. Theoretical Computer Science, 58:129-142, 1988.

J. Kobler and J. Messner. Complete Problems for Promise Classes by Optimal
Proof Systems for Test Sets In Proc. 13th Annual IEEE Conference on Computa-
tional Complexity, CC 98, 132-140, 1998.

J. Kobler. Lowness-FEigenschaften und Erlernbarkeit von Booleschen Schaltkreis-
klassen. Habilitation Thesis, Universitat Ulm, 1995.

W. Kowalczyk Some connections between representability of complexity classes
and the power of formal systems of reasoning. In Proc. 11th Symposium on Math-
ematical Foundations of Computer Science, Lecture Notes in Computer Science
#176, 364-369, Springer-Verlag, 1984.

J. Krajicek. Bounded Arithmetic, Propositional Logic, and Complexity Theory.
Cambridge University Press, 1995.

J. Krajitek and P. Pudldk. Propositional proof systems, the consistency of first
order theories and the complexity of computations. Journal of Symbolic Logic 54:
1063-1079, 1989.

J. Messner and J. Tordn. Optimal proof systems for propositional logic and com-
plete sets. In Proc. 15th Symposium on Theoretical Aspects of Computer Science
’98, Lecture Notes in Computer Science #1373, 477-487. Springer-Verlag, 1998.

P. Pudldk. On the length of proofs of finitistic consistency statements in first
order theories. Logic Colloquium’84 (J. B. Paris et al., editors), North-Holland,
Amsterdam, pp. 165-196, 1986

A. A. Razborov. On provably disjoint NP-pairs. Technical Report RS-94-36, Basic
Research in Computer Science Center, Aarhus, 1994.

Z. Sadowski. On an optimal quantified propositional proof system and a complete
language for NP N co-NP. In Proc. 11th International Symposium on Fundamen-
tals of Computing Theory, Lecture Notes in Computer Science #1279, 423-428.
Springer-Verlag, 1997.

M. Sipser. A complexity theoretic approach to randomness. In Proc. 15th ACM
Symposium on Theory of Computing, pp. 330-335. ACM Press, 1983.

25

[24] L. Stockmeyer. On approximation algorithms for #P. SIAM Journal on Comput-
ing, 14(4):849-861, 1985.

[25] A. Urquhart. The complexity of propositional proofs. Bulletin of Symbolic Logic
1:425-467, 1995.

[26] L. Valiant. The relative complexity of checking and evaluating. Information Pro-
cessing Letters, 5:20-23, 1976.

[27] N. K. Vereshchagin. Relativizable and non-relativizable theorems in the polyno-
mial theory of algorithms. Izvestija Rossijskoj Akademii Nauk, 57:51-90, 1993. In
Russian.

26

