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tA polynomial time 
omputable fun
tion h : �� ! �� whose range isa set L is 
alled a proof system for L. In this setting, an h-proof forx 2 L is just a string w with h(w) = x. Cook and Re
khow de�ned this
on
ept in [11℄ and in order to 
ompare the relative strength of di�erentproof systems for the set TAUT of tautologies in propositional logi
, they
onsidered the notion of p-simulation. Intuitively, a proof system h0 p-simulates h if any h-proof w 
an be translated in polynomial time intoan h0-proof w0 for h(w). Kraj���
ek and Pudl�ak [18℄ 
onsidered the relatednotion of simulation between proof systems where it is only required thatfor any h-proof w there exists an h0-proof w0 whose size is polynomiallybounded in the size of w.A proof system is 
alled (p-)optimal for a set L if it (p-)simulates everyother proof system for L. The question whether p-optimal or optimal proofsystems for TAUT exist is an important one in the �eld. In this paper weshow a 
lose 
onne
tion between the existen
e of (p-)optimal proof systemsand the existen
e of 
omplete problems for 
ertain promise 
omplexity
lasses like UP , NP \ Sparse, RP or BPP . For this we introdu
e thenotion of a test set for a promise 
lass C and prove that C has a many-one
omplete set if and only if C has a test set T with a p-optimal proof system.If in addition the ma
hines de�ning a promise 
lass have a 
ertain abilityto guess proofs, then the existen
e of a p-optimal proof system for T 
anbe repla
ed by the presumably weaker assumption that T has an optimalproof system.Strengthening a result from Kraj���
ek and Pudl�ak [18℄, we also give suf-�
ient 
onditions for the existen
e of optimal and p-optimal proof systems.�Results in
luded in this paper have appeared in the 
onferen
es STACS'98 [19℄ and CCC'98[14℄. 1



1 Introdu
tionA systemati
 study of the (proof length) 
omplexity of di�erent proof systemsfor Propositional Logi
 was started some time ago by Cook and Re
khow in [11℄.There they de�ned the abstra
t notion of a proof system in the following way.De�nition 1 Let L � ��. A proof system for L is a (possibly partial) polynomialtime 
omputable fun
tion h : �� ! �� whose range is L1. A string w withh(w) = x is 
alled an h-proof for x.Observe that a proof system h need not be polynomially honest sin
e theshortest proof for x 2 L might be mu
h longer than x.Example 2 The fun
tion h de�ned ash(w) = � ' if w = h'; vi and v is a resolution refutation of ';undef. otherwiseis a proof system for the 
o-NP 
omplete set TAUT of all propositional tautologiesin disjun
tive normal form.Following [11℄, a polynomially bounded proof system h for TAUT is a proofsystem in whi
h every tautology has a short proof. More formally, there is apolynomial q su
h that for every ' 2 TAUT, there is a string w of length boundedby q(j'j) with h(w) = '. Many 
on
rete proof systems for TAUT have beenshown not to be polynomially bounded (see for example [25℄). Besides the interestthat 
on
rete proof systems like, for example, resolution or Frege systems have intheir own, a main motivation for the study of proof systems 
omes in fa
t fromthe following relation between the NP versus 
o-NP question and the existen
eof polynomially bounded systems.Theorem 3 [11℄ NP = 
o-NP if and only if a polynomially bounded proof sys-tem for TAUT exists.This result was the motivation for the so 
alled Cook-Re
khow Program: away to prove that NP is di�erent from 
o-NP might be to study more and morepowerful proof systems, showing that they are not polynomially bounded, untilhopefully we have gained enough knowledge to be able to separate NP from
o-NP (see [8℄).In order to 
ompare the relative power of di�erent proof systems, the notionof p-simulation was introdu
ed in [11℄. We also 
onsider the presumably weakernotion of simulation studied in [18℄.1The original de�nition allows in fa
t the use of di�erent alphabets for the domain and rangeof h, but for the purposes of this paper the given de�nition suÆ
es.2



De�nition 4 Let h and h0 be proof systems for a language L. We say thath simulates h0 if there is a polynomial p and a fun
tion 
 : �� ! �� withj
(x)j � p(jxj) for every x 2 �� su
h that 
 translates h0-proofs into h-proofs. Inother words, for every x 2 L and every h0-proof w of x, 
(w) is an h-proof of x.If additionally 
 2 FP, we say h p-simulates h0.It is easy to see that simulation and p-simulation are preorders, i.e. re
ex-ive and transitive relations. It is also 
lear that if a proof system h whi
h isnot polynomially bounded simulates another proof system h0, then h0 
annot bepolynomially bounded. Cook and Re
khow used p-simulation in order to 
lassifydi�erent proof systems for TAUT a

ording to their derivation strength.The notion of (p-)simulation between proof systems is 
losely related to thenotion of redu
ibility between de
ision problems. Continuing with this analogy,the notion of a 
omplete problem 
orresponds to the notion of an optimal proofsystem.De�nition 5 (
f. [18, 17, 8℄) A proof system for a language L is optimal (p-optimal) if it simulates (p-simulates) every proof system for L.An important open problem (posed in [18, 8℄) is whether an optimal or evenp-optimal proof system for TAUT exists. Observe that if this were the 
ase, thenin order to separate NP from 
o-NP it would suÆ
e to prove that some spe
i�
proof system is not polynomially bounded.We show that the assumption that there is a (p-)optimal proof system for
ertain languages is 
losely related to the existen
e of 
omplete problems for 
er-tain promise 
lasses. The 
onne
tion between the existen
e of (p-)optimal proofsystems and the existen
e of many-one 
omplete sets is formalized by introdu
ingthe 
on
ept of test sets. Roughly speaking, a test set allows us to verify that agiven nondeterministi
 polynomial-time ma
hine behaves well (i.e., in a

ordan
ewith the promise) on a given input x. Hen
e, in some sense, the 
omplexity ofa promise is represented by the 
omplexity of its test sets. We then obtain in amaster theorem that a promise 
lass C has a many-one 
omplete set if and onlyif C has a test set with a p-optimal proof system.As the 
lasses UP , FewP, Few , and NP\Sparse have test sets in 
o-NP thisin turn implies that a p-optimal proof system for TAUT suÆ
es to obtain many-one 
omplete sets for these 
lasses. We also show that the probabilisti
 
lassesBPP , RP , ZPP , and MA have test sets in �p2 as well as in �p2, and that AMhas test sets in �p3 and in �p3. Hen
e, a many-one 
omplete set for BPP , RP ,ZPP , and MA (resp. AM) is implied by a p-optimal proof system for TAUT2or for SAT2 (resp. for TAUT3 or for SAT3). We also show that NP \ 
o-NPhas a test set redu
ible to SAT � TAUT whi
h allows us to improve the mainresult of [22℄ by showing that already the existen
e of p-optimal proof systemsfor TAUT and for SAT suÆ
es to obtain a 
omplete problem for NP \ 
o-NP.If in addition the ma
hines de�ning a promise 
lass have a 
ertain ability to3



guess proofs (see the de�nition of NP-assertions in De�niton 14), then it suÆ
esto assume that the C has a test set with an optimal proof system. Under thementioned 
lasses this holds for NP \ Sparse, for MA, and for AM.These results strengthen the intuitive 
onne
tion between the notions of opti-mal proof systems and 
omplete sets. At the same time, they give some eviden
ethat (p-)optimal proof systems might not exist for the 
onsidered logi
al lan-guages sin
e many-one 
omplete problems for these 
lasses have been sear
hedfor without su

ess.In [21℄ it was observed that the 
lass of disjoint NP-pairs has a 
ompletepair if TAUT has an optimal proof system. A pair (A;B) of NP-languages A;Bbelongs to this 
lass when A\B = ;. However, in [21℄ a somewhat weak form ofmany-one redu
ibility is used whi
h is only 
on
erned with inputs from A [ B.Formally, in [21℄ a pair (A;B) is said to many-one redu
e to a pair (C;D) iffor some f 2 FP, f(A) � C and f(B) � D. By generalizing our approa
hto fun
tion 
lasses we 
an use the assumption that TAUT has an optimal proofsystem to 
on
lude that the 
lass of disjoint NP-pairs has a 
omplete pair withrespe
t to the following stronger notion of many-one redu
ibility: (A;B) stronglymany-one redu
es to (C;D) if for some f 2 FP, f�1(C) = A and f�1(D) = B.The before-mentioned set of results 
an be interpreted as the study of ne
-essary 
onditions for the existen
e of (p-)optimal proof systems. We 
onsider inSe
tion 6 also suÆ
ient 
onditions for the existen
e of this kind of proof systems.The following suÆ
ient 
onditions have been proved by Kraj���
ek and Pudl�ak.Theorem 6 [18℄If NE = 
o-NE then optimal proof systems for TAUT exist.If E = NE then p-optimal proof systems for TAUT exist.We improve this result by weakening the 
onditions that are suÆ
ient forthe existen
e of optimal and p-optimal proof systems for TAUT. We show thatif the deterministi
 and nondeterministi
 double exponential time 
omplexity
lasses 
oin
ide (EE = NEE) then p-optimal proof systems for TAUT exist, andthat NEE = 
o-NEE is suÆ
ient for the existen
e of optimal proof systems forTAUT. In fa
t we give a probably weaker suÆ
ient 
ondition showing that a
ollapse of the 
lass of tally sets in nondeterministi
 double exponential time tothe deteterministi
 
ounterpart suÆ
es for the existen
e of optimal proof systemsfor TAUT.By the relationships between optimal proof systems and 
omplete sets, onewould expe
t that optimal proof systems for sets like TAUT do not exist. ThesuÆ
ient 
onditions show however that it would be very hard to prove that opti-mal proof systems do not exist, sin
e this would imply a separation of 
omplexity
lasses. 4



The rest of this arti
le is stru
tured as follows. In the next se
tion we givesome preliminaries and study some 
losure properties of the 
lass of languagesthat have a (p-)optimal proof system. These results are interesting on their ownbut mainly serve as a te
hni
al tool for the following se
tions. In Se
tion 3we provide the setting needed to formalize the informal notion of a promise
lass. Further, we present two master theorems that are applied in Se
tion 4 toobtain the 
ompleteness 
onsequen
es mentioned above (where we also 
onsidernonuniform redu
ibilities). In Se
tion 5 we brie
y dis
uss how these ideas 
an beadjusted for the 
ase of promise fun
tion 
lasses. As an appli
ation, we obtainthe already mentioned 
ompleteness 
onsequen
e for the 
lass of disjoint NP-pairs. Finally, in Se
tion 6 we 
onsider suÆ
ient 
onditions for the existen
e of(p)-optimal proof systems.2 PreliminariesLet QBF be the set of all valid quanti�ed Boolean formulas(Q1x1) � � � (Qnxn)F (x1; : : : ; xn);where F (x1; : : : ; xn) is a Boolean formula over the variables x1; : : : ; xn and ea
hQi is either 9 or 8. By TAUTk we denote the set of all QBF formulas with atmost k � 1 quanti�er alternations (9 followed by 8, or 8 followed by 9) startingwith 8. Similarly, SATk denotes the set of all QBF formulas with at most k � 1quanti�er alternations starting with 9. As usual, in the 
ase of k = 1 we omitthe index and simply write SAT for SAT1 and TAUT for TAUT1.We assume some familiarity with 
omplexity theory and refer the reader to [2,3℄ for standard notions and for the de�nition of 
omplexity 
lasses. A language Amany-one redu
es to a language B (in symbols: A �pm B) if there is a polynomial-time 
omputable fun
tion f (in symbols: f 2 FP) su
h that for all strings x,x 2 A if and only if f(x) 2 B.We use Turing ma
hines as our basi
 
omputational model. In parti
ular,we 
onsider 
lo
ked deterministi
 and nondeterministi
 polynomial-time Turingma
hines (PTM and NPTM for short). To represent these ma
hines we use anen
oding whi
h allows us to obtain from the ma
hine 
ode N easily a polynomialpN that bounds the running time of the ma
hine (in Se
tion 3 we will 
onsidersome further restri
tions on the en
odings of NPTMs and PTMs). In the sequel,we will not distinguish between a ma
hine and its 
ode.We 
onsider only languages over the alphabet � = f0; 1g (this means thatproblem instan
es as, e.g., Boolean formulas have to be suitably en
oded). By�� we denote the set of all binary strings, and by ��n the set of strings oflength at most n. Sometimes we identify a string w 2 �� with the positiveinteger that has 1w as binary representation. A set T is 
alled tally (in symbols:T 2 Tally) if T is a subset of f0n j n � 0g; a set S is 
alled sparse (in symbols:5



T 2 Sparse) if there is a polynomial p(n) that bounds the 
ardinality of S \��n.A tupling fun
tion maps tuples of words to single words. It is inje
tive and 
an be
omputed and inverted in polynomial time. If not spe
i�ed otherwise, we assumesome standard tupling fun
tion denoted by h�; � � � ; �i. We use the spe
ial valueundef. to indi
ate that a partial fun
tion is unde�ned on x (
learly if g(x) =undef. then also f(g(x)) = undef.).In the rest of this se
tion we investigate 
losure properties of the 
lass of alllanguages whi
h have a (p-)optimal proof system. Sin
e, as we show, this 
lassis 
losed under �pm and under join, it follows [6℄ that it is a promise 
lass in the
lassi
al sense of the tree-stru
ture or of the leaf-language approa
h (in fa
t, in [6℄it is shown that both approa
hes are equivalent and that any 
lass 
losed under�pm and under join is a promise 
lass in that sense).All observations made in this se
tion refer to the notions of optimality and p-optimality inter
hangeably. We only give the proofs for the p-optimal 
ase sin
ethey 
an easily be adapted to the 
ase of optimality.Lemma 7 If A has a (p-)optimal proof system and if B �pm A, then B has a(p-)optimal proof system, too.Proof: Let h be a p-optimal proof system for A and let B many-one redu
e toA via f 2 FP. Then h0 de�ned byh0(hx; wi) = � x h(w) = f(x);undef. otherwiseis 
ertainly a proof system for B. To show that h0 is p-optimal, let g0 be a proofsystem for B. By setting g(0w) = h(w) and g(1w) = f(g0(w)) we obtain a proofsystem g for A. Sin
e h is p-optimal, there is a fun
tion t 2 FP translatingg-proofs to h-proofs implying thath(t(1w)) = g(1w) = f(g0(w)):This implies h0(hg0(w); t(1w)i) = g0(w):Hen
e, h0 p-simulates g0.The join A�B of two languages is given by 0A[1B. It is a least upper boundfor A and B with respe
t to the ordering indu
ed by �pm. The dire
t produ
t ofA and B is given by A�B = fha; bi j a 2 A, b 2 Bg. Clearly, if a 
lass is 
losedunder �pm, then 
losure under interse
tion implies 
losure under dire
t produ
t,as follows from the equality A�B = (A� ��) \ (�� �B). Closure under dire
tprodu
t in turn implies 
losure under join, as A�B �pm A�B for nonempty Aand B. 6



Lemma 8 If A and B have (p-)optimal proof systems, then so have A � B,A� B, and A \ B.Proof: As observed above it suÆ
es to 
onsider A \ B. Let h1 and h2 be p-optimal proof systems for A and B, respe
tively. A p-optimal proof system forA \ B is given by the FP fun
tionh : w 7! � x if w = hu; vi; and x = h1(u) = h2(v);undef. otherwise:Clearly, h is a proof system for A\B. To show that h is p-optimal, let f be someproof system for A\B. By setting fi(1w) = f(w) and fi(0w) = hi(w) (i = 1; 2),f 
an be extended to proof systems f1 and f2 for A and B, respe
tively. Letti 2 FP be a fun
tion translating fi-proofs to hi-proofs. Then the fun
tiont(w) = ht1(1w); t2(1w)i translates f -proofs to h-proofs, i.e., h(t(w)) = f(w), asf(w) = fi(1w) = hi(ti(1w)), for i = 1; 2.The proof of the next lemma is straightforward and is therefore omitted.Lemma 9Any set in P has a p-optimal proof system.Any set in NP has an optimal proof system.It is an open question whether sets with a (p-)optimal proof system exist outsideof NP (respe
tively P).3 Complete sets for promise 
lassesIn this se
tion we provide a quite general approa
h to promise 
lasses. In the 
las-si
al leaf-language or tree-stru
ture approa
h [7, 27, 6℄, promises are restri
ted tobe predi
ates on 
omputation trees (respe
tively leaf strings) of nondeterministi
polynomial-time Turing ma
hines. However it does not seem to be an easy taskto de�ne a natural promise for the �pm-
losure of NP\Sparse (in spite of the fa
tthat results in [6℄ show that it is a
tually a promise 
lass, as it is 
losed under�pm and under join).In order to state our results as general as possible, we allow promises to beformulated in a quite unrestri
ted way. In this paper, a promise R is des
ribedby a predi
ate on the set of all pairs 
onsisting of an NPTM N and an inputstring x, i.e., R(N; x) means that N obeys promise R on input x. We 
all N anR-ma
hine if N obeys R on any input x 2 ��. In the sequel, we will only allowpromises R for whi
h at least one R-ma
hine exists. The a

eptan
e 
riterion is7



also a binary predi
ate Q on NPTMs and strings. The language a

epted by theNPTM N (when applying the a

eptan
e 
riterion Q) is given byLQ(N) = fx 2 �� j Q(N; x)g:Finally, for a promise predi
ate R and an a

eptan
e 
riterion Q, we de�ne thepromise 
lass CQ;R = fLQ(N) j N is an R-ma
hinegand 
all (Q;R) a de�ning pair for CQ;R.De�nition 10 A 
lass of languages C is 
alled a promise 
lass if C = CQ;R forsome promise predi
ate R and a

eptan
e 
riterion Q.Noti
e that a promise 
lass CQ;R 
annot be empty as we assume that someR-ma
hine exists. In order to obtain 
ompleteness results, this setting is still toounrestri
ted. In fa
t, for any nonempty 
ountable 
lass L of languages one 
ande�ne Q and R su
h that L = CQ;R. Therefore we often restri
t our 
onsiderationto pairs (Q;R) that ful�ll the following two 
onditions A1 and A2. Basi
ally, A1demands the existen
e of a universal NPTM (with respe
t to Q and R) and A2requires that CQ;R is 
losed under many-one redu
ibility (in a 
onstru
tive way).A1: There is an NPTM U , and a tupling fun
tion h�; �; �i su
h that the followingtwo 
onditions hold for all NPTMs N , all x 2 ��, and all s � pN(jxj).1. Q(N; x)() Q(U; hN; x; 0si).2. R(N; x) =) R(U; hN; x; 0si).A2: There is a binary operation Æ mapping an NPTM N and a polynomial-timetransdu
er M to an NPTM N ÆM su
h that the following three 
onditionshold for all NPTMs N , all PTMs M , and all x 2 �� (fM denotes thefun
tion 
omputed by M).1. Q(N; fM (x))() Q(N ÆM;x).2. R(N; fM(x)) =) R(N ÆM;x).3. The set fN ÆM 0 jM 0 is a polynomial-time transdu
er g is re
ursivelyenumerable.It is easy to verify that the 
onditions A1 and A2 hold in the leaf-languageas well as in the tree-stru
ture approa
h.A natural de�ning pair for UP is (Q;R) where R(N; x) holds if N is a NPTMwith at most one a

epting path on input x and Q(N; x) is true if N has at leastone a

epting path on input x. To show that A1 holds, let U be a nondeterministi
universal Turing ma
hine that on input hN; x; 0si simulates s steps of ma
hine N8



on input x. Then it is 
lear that for a standard en
oding of NPTMs, U works inpolynomial time and ful�lls A1. Further, A2 also holds by de�ning N ÆM to bethe ma
hine that on input x 
omputes M(x) and then simulates N on M(x) (of
ourse, the atta
hed polynomial time-bounds have to be adjusted appropriately).Proposition 11 The 
lass UP has a de�ning pair whi
h ful�lls A1 and A2.We will see in Se
tion 4 how other promise 
lasses like NP \ 
o-NP, Few ,FewP, BPP , RP , ZPP , AM and MA 
an be 
hara
terized in a natural wayby de�ning 
orresponding pairs (Q;R) whi
h ful�ll A1 and A2.Next we introdu
e the 
on
ept of a test set whi
h is 
entral to our approa
h.The 
omplexity of a test set serves to some extend as a measure for the 
omplexityinherent to a de�ning pair.De�nition 12 Let C be a promise 
lass, and let (Q;R) be a de�ning pair for C.Then a set T � �� is 
alled a (Q;R)-test set for C if the following two 
onditionsare ful�lled.� If hN; x; 0si 2 T , then s � pN(jxj) and R(N; x) holds.� For any L 2 C there is an NPTM N that a

epts L, i.e., LQ(N) = L,and that passes test T , i.e., there is a polynomial p su
h that for all inputsx 2 ��, hN; x; 0p(jxj)i 2 T .Thus, any element hN; x; 0si belonging to a (Q;R)-test set T serves as an assertionthat N behaves well (a

ording to R) on input x. For example, we 
an use thegeneri
 test set T(Q;R) = fhN; x; 0si j R(N; x) and s � pN(jxj)gfor a de�ning pair (Q;R). In the 
ase of UP , for example, one just has to verifythat there is at most one a

epting path; a simple task in 
o-NP.Proposition 13 UP has a test set in 
o-NP.Very informally, the intuitive idea behind the notion of a test set T is thatwe 
an obtain a 
omplete language for CQ;R, provided that we 
an enable an R-ma
hine to de
ide T (see the proofs of Theorems 16 and 19 for details). In orderto make this intuition pre
ise we need the following notion.De�nition 14 Let A be a 
lass of languages and (Q;R) be a de�ning pair fora promise 
lass C. We say that A-assertions are useful for (Q;R), if for anylanguage B 2 A and any NPTM N the following holds: if N obeys R for anyx 2 B then there is a language C 2 C su
h thatC \ B = LQ(N) \B:9



O

asionally, when it is 
lear from the 
ontext whi
h de�ning pair (Q;R) weasso
iate with a promise 
lass C then we just say that A-assertions are useful forC; similarly, we sometimes 
all a (Q;R)-test set simply a test set for C.The next lemma is needed in the proof of the main result of this se
tion(Theorem 16).Lemma 15 P-assertions are useful for de�ning pair (Q;R) that ful�lls A2.Proof: Let B 2 P and let N be an NPTM su
h that R(N; x) holds for allx 2 B. We 
an assume that B is nonempty (otherwise the statement is true aswe assume that CQ;R is nonempty). Let M be a PTM that 
omputes the FPfun
tion f de�ned as f(x) = x, if x 2 B, and f(x) = y otherwise, where y is a�xed string in B. Sin
e R(N; f(x)) holds for all x, we 
on
lude by assumptionA2.2 that N 0 = N ÆM is an R-ma
hine, implying that C = LQ(N 0) 2 CQ;R. Bythe de�nition of f and by A2.1 it follows that for all x 2 B, Q(N; x)() Q(N 0; x).Hen
e, C \ B = LQ(N) \B.Now we are ready to prove our main result, namely the equivalen
e 1 () 2of the next theorem. The equivalen
e 2 () 3 has been observed already in [16℄for C = NP \ 
o-NP and in [13℄ for C = UP and for C = BPP .Theorem 16 Let C be a promise 
lass and let (Q;R) be a de�ning pair for Cwhi
h ful�lls A1 and A2. Then the following 
onditions are equivalent.1. C has a (Q;R)-test set with a p-optimal proof system.2. C has a many-one 
omplete set.3. There is a re
ursive enumeration N1; N2; : : : of R-ma
hines su
h that C =fLQ(Ni) j i � 1g.4. C has a (Q;R)-test set in P.Proof: 1 =) 2. Let T be a (Q;R)-test set for C whi
h has a p-optimal proofsystem h. Remember that for every �xed NPTM N that passes test T , there isa polynomial p su
h that the languageTN = fhN; x; 0p(jxj)i j x 2 ��gis a subset of T . Hen
e it follows that there is a proof system g for T with theproperty that for all x 2 ��, g(1x) = hN; x; 0p(jxj)i:Sin
e h is a p-optimal proof system for T , there is a fun
tion t 2 FP su
h thatfor every x 2 ��, h(t(1x)) = hN; x; 0p(jxj)i. Thus, LQ(N) is easily seen to redu
eto the set A = fhN 0; x; 0s; wi j x 2 LQ(N 0) ^ h(w) = hN 0; x; 0sig10



via the redu
tion fN : x 7! hN; x; 0p(jxj); t(1x)i:Now, let B = fhN 0; x; 0s; wi j h(w) = hN 0; x; 0sig. Noti
e that the redu
tionsfN de�ned above map only to elements in B. Therefore, any language C withthe property that A = C \ B is hard for C. We show that su
h a languageC exists in the 
lass C. Let U be a universal NPTM a

ording to A1 and letU 0 = U Æ M , where M is a transdu
er 
omputing the proje
tion that mapsha; b; 
; di to ha; b; 
i where for the latter en
oding the tupling fun
tion due toA1 is used. Observe that (by A1 and A2) U 0 obeys R for all y 2 B and thatQ(U 0; hN; x; 0s; wi) () Q(N; x). Sin
e by Lemma 15, P-assertions are usefulfor (Q;R), and sin
e B 2 P, it follows that there is a language C 2 C with theproperty that C \B = A \ B = A.2 =) 3. Let C be a many-one 
omplete set for C and let NC be an R-ma
hinewith C = LQ(NC). Sin
e C is 
omplete for C, any language L in C 
an be de
idedby an R-ma
hine of the form NC ÆM , where M is a polynomial-time transdu
er
omputing the redu
tion from L to C. (Noti
e that A2.2 implies that NC ÆM isan R-ma
hine and that A2.1 implies that LQ(NC ÆM) = L). Thus, due to A2,the re
ursively enumerable setS = fNC ÆM jM is a PTMghas the properties required for 
ondition 3.3 =) 4. Let M be a Turing ma
hine that a

epts the set S = fNi j i � 1ggiven by the re
ursive enumeration of 3. It now suÆ
es to observe that the setT = fhN; x; 0si j pN(jxj) � s and M a

epts N in � s steps gis a (Q;R)-test set in P.4 =) 1. This impli
ation follows immediately from Lemma 9.By 
ombining Theorem 16 with Proposition 13 we get the following 
orollary.Corollary 17 If TAUT has a p-optimal proof system then UP has a many-one
omplete set.We noti
e that if a promise 
lass ful�lls A1 and A2 and has a 
omplete setunder polynomial time many-one redu
ibility, then it also has 
omplete sets underless 
omplex many-one redu
tions (like e.g. logspa
e-redu
tions). To see this,
onsider a dire
t proof of impli
ation 4 =) 2: If T is a test set ful�lling 4, then
learly the universal ma
hine given by A1 obeys R on any y 2 T . Hen
e, asP-assertions are useful for C, there is a set C 2 C su
h that C \ T = LQ(U) \ T .Now let L 2 C and let N be an NPTM with LQ(N) = L that passes test T withpolynomial q. Then the mapping x 7! hN; x; 0q(jxj)i redu
es L to C. Hen
e, the
omplexity of the redu
tion is basi
ally that of 
omputing the tupling fun
tion.11



But the latter 
an be 
hosen to be very simple: if A1 holds with a universalma
hine U and a 
ertain tupling fun
tion then we 
an use a polynomial timema
hine M that translates a very simple tuple-representation into this one andobtain a ma
hine U 0 = U ÆM that (using A2) ful�lls the 
onditions of A1 withrespe
t to the simple tuple-representation. In fa
t, all 
ompleteness 
onsequen
esin this arti
le 
arry over to many-one redu
ibilities that are simple to 
omputeas, e.g., logspa
e-redu
ibility.Next we derive 
ompleteness 
onsequen
es from the assumption that thepromise 
lass under 
onsideration has a test set with an optimal proof system. Weobtain similar impli
ations if the promise 
lass 
an even use NP-assertions (seeTheorem 19). However, the following equivalen
e holds without this assumption.Theorem 18 Let C be a promise 
lass and (Q;R) be a de�ning pair for C. Thenthe following two 
onditions are equivalent.1. C has a (Q;R)-test set with an optimal proof system.2. C has a (Q;R)-test set in NP.Proof: By Lemma 9, 2 implies 1. For the opposite impli
ation assume that wehave a (Q;R)-test set T for C and an optimal proof system h for T . LetT 0 = fhN; x; 0s+ti j 9w 2 ��s : h(w) = hN; x; 0ti g :Clearly, T 0 2 NP. To show that T 0 is a (Q;R)-test set for C, we prove thatea
h ma
hine N whi
h passes T also passes T 0. If N passes T , then there issome polynomial p bounding the running time of N and having the propertythat for all x 2 ��, hN; x; 0p(jxj)i 2 T . It is easy to de�ne a proof system g forTN = fhN; x; 0p(jxj)i j x 2 ��g su
h that for any x 2 ��, g(1x) = hN; x; 0p(jxj)i:As h simulates g, there is a polynomial q su
h that for all x, hN; x; 0p(jxj)i has anh-proof of size q(jxj). Thus for any x, hN; x; 0p(jxj)+q(jxj)i 2 T 0. But this meansthat N passes test T 0.Theorem 19 Let C be a promise 
lass and let (Q;R) be a de�ning pair for Cwhi
h ful�lls A1. If NP-assertions are useful for (Q;R), then 1 implies 2.1. C has a (Q;R)-test set with an optimal proof system.2. C has a many-one 
omplete set.Proof: Let T 0 be a (Q;R)-test set for C whi
h has an optimal proof system.By Theorem 18, there is a (Q;R)-test set T for C whi
h is in NP (noti
e thatT 2 NP holds independently of the spe
i�
 tupling fun
tion used to en
ode the12



tuples in T , hen
e we may assume that the tupling fun
tion due to A1 is used).Consider the set A = fhN; x; 0si 2 T j x 2 LQ(N)g:Noti
e that A = LQ(U) \ T where U is a universal NPTM given by A1. Noti
ealso that by A1.2, U obeys R on any y 2 T . As NP-assertions are useful for(Q;R), there is a language C 2 C su
h that C \ T = LQ(U) \ T = A. We nowshow that C is 
omplete for C. Let L be a set in C and let N be an NPTMwith L = LQ(N) whi
h passes test T with respe
t to a polynomial p. Then themapping x 7! hN; x; 0p(jxji redu
es L to C (as well as to A).Noti
e that 
onditions 1 and 2 of Theorem 19 are equivalent if we additionallyrequire that (Q;R) ful�lls A2. This follows from the fa
t stated in Theorem 16that the existen
e of a 
omplete language implies the existen
e of a test set in P.Even if the promise 
lass under 
onsideration 
annot use NP-assertions we
an still derive 
ompleteness 
onsequen
es with respe
t to nonuniform redu
ibil-ities. In order to do so we de�ne the 
on
ept of a length dependent test set.De�nition 20 A test set T is 
alled length dependent if hN; x; 0si 2 T implieshN; y; 0si 2 T for all inputs y of length jyj = jxj.It is 
lear that from any test set T for (Q;R) we 
an generi
ally obtain alength dependent test setT 0 = fhN; x; 0si j 8y 2 �jxj; hN; y; 0si 2 T(Q;R)gfor (Q;R). A
tually, in [22, 19℄ only length dependent test sets were (impli
itly)used to derive 
ompleteness 
onsequen
es. However noti
e that in order to obtaina length dependent test set an additional 8-quanti�er may be needed. However,if we apply this 
onstru
tion to a test set T 2 
o-NP, then also T 0 belongs tothis 
lass.Proposition 21 UP has a length dependent test set in 
o-NP.A fun
tion f 2 FP=poly with f(x) 2 B () x 2 A is 
alled a nonuniformmany-one redu
tion from A to B.Theorem 22 Let C be a promise 
lass and let (Q;R) be a de�ning pair for Cthat ful�lls A1 and A2. Then 1 implies 2.1. C has a length dependent (Q;R)-test set with an optimal proof system.2. C has a 
omplete set under nonuniform many-one redu
ibility.13



Proof: The proof follows the lines of the proof of 1 =) 2 of Theorem 16. Let Tbe a length dependent (Q;R)-test set for C that has an optimal proof system h.Then for every �xed NPTM N that passes test T , there is a polynomial p su
hthat the language TN = fhN; 0n; 0p(n)i j n � 0gis a subset of T . Hen
e, as TN is easy to re
ognize, it follows that h-proofs forhN; 0n; 0p(n)i are short (i.e., their length is polynomially bounded in n). Thus,LQ(N) is easily seen to redu
e to the setA = fhN 0; x; 0s; wi j x 2 LQ(N 0) ^ h(w) = hN 0; 0jxj; 0sigvia the redu
tion fN : x 7! hN; x; 0p(jxj); wi;where the h-proof w of hN; 0jxj; 0p(jxj)i is given as advi
e by fN . Now, let B =fhN 0; x; 0s; wi j h(w) = hN 0; 0jxj; 0sig and follow the rest of the proof of impli
a-tion 1 =) 2 of Theorem 16 that shows that there is a set C 2 C with C \B = Athat is hard for C (here under nonuniform redu
ibility).By 
ombining Theorem 22 with Proposition 21 we get the following 
orollary.Corollary 23 If TAUT has an optimal proof system then UP has a 
omplete setunder nonuniform many-one redu
ibility.4 Appli
ations to other promise 
lassesWhereas in the last se
tion UP served as our standard example for a promise
lass, we use in this se
tion the assumption that 
ertain languages have (p-)optimal proof systems to derive further 
ompleteness 
onsequen
es for variousother promise 
lasses. We start by sket
hing how de�ning pairs (Q;R) (i.e. ma-
hine models) for promise 
lasses like NP \ 
o-NP, �pk \�pk, k � 2, Few , FewP,and NP \ Sparse 
an be obtained.A ma
hine model for NP \ 
o-NP 
an be obtained by 
ombining two NP-ma
hines N1 and N2 whi
h a

ept 
omplementary languages into a ma
hine Nthat in the �rst (nondeterministi
) step, bran
hes left to N1 and right to N2. So,for NP \ 
o-NP the promise R(N; x) states that on input x, either N1 or N2a

epts but not both. Q(N; x) holds if N1 has an a

epting path on input x.Ma
hine models for �pk \ �pk for ea
h k � 2 
an be obtained in a similarway by 
ombining two �pk-ma
hines whi
h a

ept 
omplementary languages (�pk-ma
hines may be de�ned synta
ti
ally or by the tree-stru
ture of an NPTM).So the promise R(N; x) holds when N bran
hes in the �rst step to two �pk-
omputations, where the left one is a

epting if and only if the right one isreje
ting. Here Q(N; x) holds if N1 a

epts x in a �pk-way.14



The 
lasses Few and FewP were de�ned in [1℄ and [9℄ as generalizations ofthe 
lass UP. In the 
ase of FewP the promise R(N; x) states that on inputx there are at most pN(jxj) a

epting paths. The a

eptan
e 
riterion Q(N; x)states that there is an a

epting path of N on input x. In the 
ase of Few thereis atta
hed to ea
h NPTM N a polynomial time ma
hineMN with the same timebound as N atta
hed as a shut of 
lo
k. Note that by �xing a default ma
hine,we 
an 
onsider to any NPTM an atta
hed PTM. The promise is the same asfor Few . Q(N; x) holds if MN a

epts hx; ii where i is the number of a

eptingpaths of N on input x.Noti
e that in all these 
ases the de�ning pairs ful�ll A1 and A2. The mostdiÆ
ult 
ase to verify is probably that the de�ning pair (Q;R) for Few ful�lls A1.However, a universal ma
hine U is given by a ma
hine that on input hN; x; 0sisimulates N on x for s steps, where MU is a ma
hine that on input hhN; x; 0si; iisimulates MN on hx; ii for at most s steps.For the 
ase of NP\Sparse the situation is not as straightforward. We de�neR(N; x) to be true if N = 0N 0 for some NPTM N 0 with atta
hed polynomial time-bound pN 0 su
h that N 0 a

epts at most pN 0(jxj) strings of length jxj. De�neQ(N; x) to be true if N = 0N 0 for some NPTM N 0 that has at least one a

eptingpath on input x. Clearly CQ;R is the 
lass of sparse sets in NP. To obtain auniversal ma
hine U = 0U 0 we use as tupling fun
tion h0N 0; x; 0si = 0t(N 0;s;jxj)�jxj1xwhere t : N 3 ! N is some standard tupling fun
tion with the additional propertythat t(n; s; l) � l; s for all n; s; l � 0 (using the standard pairing fun
tion p(i; j) =�i+j2 � + j one may de�ne t(n; s; l) = p(p(n; s); l)). Now, on input w, U 0 veri�esthat w = 0m1x and that there are N 0, s su
h that m + jxj = t(N 0; s; jxj) ands � pN 0(jxj). If this is not the 
ase, then U 0 reje
ts. Otherwise U 0 simulates N 0 onx for at most pN 0(jxj) steps. One 
an 
onstru
t U 0 to be linearly time-bounded,so let the time bound 2n+ 1 be en
oded in its des
ription. To see that A1 holdsit remains to verify that R(N; x) implies R(U; h0N 0 ; x; 0si), i.e. that U 0 a

eptsat most 2l + 1 strings of length l = jh0N 0; x; 0sij = t(N 0; s; jxj) + 1 if N 0 a

eptsat most pN 0(jxj) strings of length jxj. Now as t is inje
tive all strings of length la

epted by U 0 are of the form 0t(N 0;s;m)�jx0j1x0 where N 0; s;m are �xed for �xedl, and jx0j = m where x0 is a

epted by N 0 in at most pN 0(m) � s steps. So weare �nished by observing that there are at most pN 0(m) � s � l di�erent x0 oflength m that are a

epted by N 0.Lemma 24(i) Few, FewP, and NP \ Sparse have test sets in 
o-NP.(ii) For every k � 1, �pk \ �pk has a test set whi
h is �pm-redu
ible to SATk �TAUTk.Proof: All the test sets 
onsidered here are of the generi
 formT(Q;R) = fhN; x; 0si j R(N; x) and s � pN(jxj)g:15



For Few and FewP one has to verify on input hN; x; 0si that N has at mostpN(jxj) a

epting paths on input x. But this 
an be easily done in 
o-NP. ForNP \ Sparse one has to verify on input hN; x; 0si that there are at most pN(jxj)strings y of length jxj su
h that N has an a

epting path on y. Again, this 
anbe easily de
ided in 
o-NP.In the se
ond result, for the 
ase k = 1 observe that for NP \ 
o-NP thepredi
ate R(N; x) holds if there exists an a

epting path � of N on input x, andif there is no pair �1; �2 of a

epting paths of N on input x su
h that in the �rstnondeterministi
 step �1 bran
hes left and �2 bran
hes right. This shows thatthis test set is redu
ible to SAT� TAUT. The result for k � 2 is obtained in ananalogous way.We now observe that NP-assertions are useful for NP \ Sparse, and for�pk \�pk, k � 2 (
onsidering the ma
hine models de�ned above). Hen
e, in orderto get a many-one 
omplete set for NP \ Sparse, and for �pk \ �pk, it suÆ
es to�nd a test set with an optimal proof system.Proposition 25 NP-assertions are useful for NP \ Sparse, and for �pk \ �pk,k � 2.Proof: For NP \ Sparse observe that if N obeys the promise R on any x 2 Bfor some set B 2 NP then setting C = LQ(N) \ B yields C 2 NP \ Sparse.Basi
ally the same argument holds for �pk \ �pk. Let N obey the �pk \ �pk-promise on B 2 NP. Then N 
onsists of two �pk-ma
hines N1 and N2 that arerea
hed in the �rst nondeterministi
 bran
h. Let Li 2 �pk denote the set a

eptedby Ni in a �pk-way (note that LQ(N) = L1). As N obeys the promise on B itfollows that BnL1 = L2\B. Now let C = L1\B (and hen
e, C\B = LQ(N)\B).Clearly, C 2 �pk, and further also C = L2[B 2 �pk. This shows C 2 �pk \�pk.We 
an use Theorems 16 and 19 to get the following impli
ations.Corollary 26� If TAUT has a p-optimal proof system then Few and FewP have many-one
omplete sets.� If TAUT has an optimal proof system then NP \ Sparse has a many-one
omplete set.� If TAUT and SAT have p-optimal proof systems, then NP \ 
o-NP has amany-one 
omplete set.� For k � 2, if TAUTk and SATk have optimal proof systems, then �pk \�pkhas a many-one 
omplete set. 16



Using the above test sets one generi
ally obtains length dependent test setsfor Few and for FewP in 
o-NP. Also for NP \ 
o-NP one obtains a lengthdependent test set in �p2. Hen
e, by applying Theorem 22 we get the following
orollary.Corollary 27� If TAUT has an optimal proof system then Few and FewP have 
ompletesets under nonuniform many-one redu
ibility.� If TAUT2 has an optimal proof systems, then NP \ 
o-NP has a 
ompleteset under nonuniform many-one redu
ibility.Test sets for probabilisti
 
lassesWe show now that the probabilisti
 
omplexity 
lasses BPP , RP , and ZPPhave test sets in �p2 as well as in �p2. We start by des
ribing de�ning pairs(Q;R) for these promise 
lasses that satisfy A1 and A2. Re
all that for anyNPTM N , pN is the polynomial time bound asso
iated with N . Let A

(N; l; x)(resp., Rej(N; l; x)) be the set of all paths r 2 f0; 1gl on whi
h N(x) a
-
epts (reje
ts, respe
tively) after at most l steps. Noti
e that the two setsA

(N; x) = A

(N; pN (jxj); x) and Rej(N; x) = Rej(N; pN(jxj); x) form a parti-tion of f0; 1gpN(jxj).� For the 
ase of BPP , de�ne R(N; x) to be true if N is a NPTM su
h thatkA

(N; x)k � 2pN (jxj) � 2=3 or kA

(N; x)k � 2pN (jxj)=3 and let Q(N; x) betrue if kA

(N; x)k > 2pN (jxj)=3.� For the 
ase of RP , de�ne R(N; x) to be true if N is a NPTM su
h thatkA

(N; x)k � 2pN (jxj)=2 or kA

(N; x)k = 0 and let Q(N; x) be true ifkA

(N; x)k > 0.� Sin
e ZPP = RP \ 
o-RP , a ma
hine model for ZPP 
an be obtained by
ombining two RP-ma
hines N1 and N2 whi
h a

ept 
omplementary lan-guages into a ma
hine N that in the �rst (nondeterministi
) step, bran
hesleft to N1 and right to N2. So, the promise R(N; x) states that on input x,N1 and N2 behave like an RP-ma
hine and that either N1 or N2 a

eptsbut not both. Q(N; x) holds if N1 has an a

epting path on input x.Next we re
all the de�nitions and basi
 properties of hashing that we need.Sipser [23℄ used universal hashing, originally invented by Carter and Wegman[10℄, to estimate (probabilisti
ally) the size of a �nite set X of strings.A linear hash fun
tion h from �m to �k is given by a Boolean (k;m)-matrix(aij) and maps any string x = x1 : : : xm to a string y = y1 : : : yk, where yi is theinner produ
t ai � x =Pmj=1 aijxj (mod 2) of the i-th row ai and x.17



Let X � �m and let h be a linear hash fun
tion from �m to �k. Then we saythat h hashes X if for all pairs of di�erent strings x; y 2 X, h(x) 6= h(y). Moregenerally, if H is a family (h1; : : : ; hs) of linear hash fun
tions from �m to �k,then we say that H hashes X if for every x 2 X there is some i, 1 � i � s, su
hthat hi(x) 6= hi(y), for all y 2 X � fxg.Note that the predi
ate \H hashes X" 
an be de
ided in 
o-NP providedthat membership in X 
an be tested in P. We denote the set of all familiesH = (h1; : : : ; hk) of k linear hash fun
tions from �m to �k by H(k;m).As observed by Sipser, the size of a set X � �m 
an be estimated by 
he
kingfor whi
h values of k, X is hashable by some hash family H 2 H(k;m).Lemma 28 [23℄ No hash family H 2 H(k;m) 
an hash a set X � �m of 
ardi-nality jXj > k2k. Furthermore, if jXj � 2k, then some hash family H 2 H(k;m)hashes X.The next two lemmas make use of Sto
kmeyer's re�nement of the hashingte
hnique [24℄. Their proofs are straightforward (see, e.g., [15℄).Lemma 29 Let X � f0; 1gl and let m = 1+72l and k = 1+m(l�2) be integers.Then the following impli
ations hold.� If there exists a hash family H 2 H(k; lm) that hashes Xm, then jXj � 2l=3.� If jXj � 2l=4, then some hash family H 2 H(k; lm) hashes Xm.Lemma 30 Let X � f0; 1gl and let m = 1+512l and k = 1+ dm(l+1� log 3)ebe integers. Then the following impli
ations hold.� If there exists a hash family H 2 H(k; lm) that hashes Xm, then jXj �2l � 3=4.� If jXj � 2l � 2=3, then some hash family H 2 H(k; lm) hashes the set Xm.Proposition 31 BPP , RP, and ZPP have test sets in �p2 as well as in �p2.Proof: For BPP we de�ne the test setB = fhN; x; 0li j l = pN(jxj) and for m = 1 + 72l and k = 1 + m(l � 2)there is a hash family H 2 H(k; lm) that hashes either A

(N; l; x) orRej(N; l; x) g .Clearly, B 2 �p2. Further, for any set A 2 BPP there is an NPTM N su
h thatfor all inputs x and for l = pN(jxj) it holds thatx 2 A , kA

(N; l; x)k � 2l � 3=4;x 62 A , kRej(N; l; x)k � 2l � 3=4:18



Thus by Lemma 29 it follows that N passes test B. On the other hand, italso follows by Lemma 29 that if hN; x; 0li belongs to B then l = pN(jxj) andR(N; x; 0l) holds. This shows that B is a test set for BPP .Next we show that BPP has a test set in �p2. In fa
t, 
onsider the setC = fhN; x; 0li j l = pN(jxj) and form = 1+512l and k = 1+dm(l+1�log 3)ethere is no hash family H 2 H(k; lm) that hashes both A

(N; l; x) andRej(N; l; x) gwhi
h belongs to �p2. By Lemma 30 it is easy to see that C is a test set for BPP .Moreover, it is not hard to adapt the above argument to get suitable test sets forRP and for ZPP .As an immediate 
onsequen
e of Proposition 31 and of Theorem 16 we obtainthe following 
orollary.Corollary 32 If SAT2 or TAUT2 have a p-optimal proof system then BPP,RP, and ZPP have a many-one 
omplete set.It is also not hard to show that MA has test sets �p2 as well as in �p2 andthat AM has test sets �p3 as well as in �p3. Sin
e these 
lasses 
an even useNP-assertions, it follows that MA has a many-one 
omplete set, if TAUT2 orSAT2 has an optimal proof system, whereas AM has a many-one 
omplete set,if TAUT3 or SAT3 has an optimal proof system.5 Completeness results for fun
tion 
lassesThe results in Se
tion 4 
an be translated in a straightforward way to promisefun
tion 
lasses. We just give a brief sket
h. The de�nition of a promise R forfun
tion 
lasses is the same as for languages, whereas the a

eptan
e 
riterion Qis repla
ed by a fun
tion S mapping ea
h pair (N; x) 
onsisting of an NPTM Nand a string x to the string S(N; x). The fun
tion FS(N) : �� ! �� 
omputedby N (when applying S) is given byFS(N)(x) = S(N; x):R and S together de�ne the fun
tion 
lassFS;R = fFS(N) j N is an R-ma
hineg:Conditions A1 and A2 translate to the 
orresponding 
onditions A10 and A20 forfun
tion 
lasses. We just have to repla
e A1.1 and A2.1 byA10.1: S(N; x) = S(U; hN; x; 0si) andA20.1: S(N; fM(x)) = S(N ÆM;x)19



respe
tively. We use the following notion of many-one redu
ibility for fun
tions:g �pm h if there is a fun
tion f 2 FP su
h that h(f(x)) = g(x) for any xin the domain of g. Noti
e that this notion is 
losely related to the notion ofp-simulation (although g and h need not belong to FP).It is also straightforward to translate the de�nition of a test set. The notionof usefulness for a de�ning pair (S;R) for a fun
tion 
lass FS;R reads as follows.A-assertions are 
alled useful for (S;R) if for any language B 2 A and any NPTMN the following holds: if R(N; x) for any x 2 B then there is a fun
tion f 2 FS;Rsu
h that for all x 2 B, f(x) = S(N; x).Theorems 16, 18, and 19 also translate to promise fun
tion 
lasses. We �rstgive the translation of the main equivalen
e of Theorem 16.Theorem 33 Let F be a promise fun
tion 
lass and let (S;R) be a de�ning pairfor F whi
h ful�lls A10 and A20. Then the following 
onditions are equivalent.1. F has a (S;R)-test set with a p-optimal proof system.2. F has a many-one 
omplete set.Translating Theorem 19 to the fun
tional setting yields the following suÆ
ient
ondition for the existen
e of many-one 
omplete fun
tions.Theorem 34 Let F be a promise fun
tion 
lass and let (S;R) be a de�ning pairfor F whi
h ful�lls A10. If NP-assertions are useful for (S;R), then 1 implies 2:1. F has a (S;R)-test set with an optimal proof system.2. F has a many-one 
omplete fun
tion.Razborov observes in [21℄ that the existen
e of an optimal proof system forTAUT would imply a the existen
e of a 
omplete pair for the 
lass of disjointNP-pairs. We re
all that a pair (A;B) of NP-languages belongs to this 
lasswhen A \ B = ;. The redu
tion 
onsidered in [21℄ is a weak form of many-oneredu
ibility. Formally, in [21℄ a pair (A;B) is said to many-one redu
e to a pair(C;D) if for some f 2 FP, f(A) � C and f(B) � D. By applying Theorem 33we 
an improve the mentioned result showing that under assumption that TAUThas an optimal proof system, the 
lass of disjoint NP-pairs has a 
omplete pairwith respe
t to the following stronger notion of many-one redu
ibility: (A;B)strongly many-one redu
es to (C;D) if for some f 2 FP, f�1(C) = A andf�1(D) = B. We asso
iate to ea
h disjoint NP-pair (A;B) a fun
tion f(A;B) asfollows. For all x 2 ��, f(A;B)(x) = 8<: 0 x 2 A;1 x 2 B;� otherwise:20



In a sense, the 
lass of disjoint NP-pairs 
orresponds to the fun
tion 
lass of allthese fun
tions. This 
lass 
an be de�ned as a promise 
lass in the following way.An NPTM N is an R-ma
hine if in the �rst nondeterministi
 step it bran
hes totwo NP-ma
hines N1 and N2 whi
h a

ept disjoint languages. Therefore R(N; x)holds if there is no pair �1; �2 of a

epting paths of N on input x su
h that in the�rst nondeterministi
 step �1 bran
hes left and �2 bran
hes right. If there is ana

epting path bran
hing left, the value of S(N; x) is 0. Otherwise, S(N; x) = 1if there is an a

epting path bran
hing right, and S(N; x) = � if there isn't anya

epting path. This de�nes the 
lass FS;R whi
h has a �pm-
omplete fun
tion ifand only if there is a strongly many-one 
omplete disjoint NP-pair. It is easyto see that FS;R has a test set in 
o-NP and that NP-assertions are useful forFS;R. Therefore, Theorem 34 gives us the following 
onsequen
e.Corollary 35 If TAUT has an optimal proof system, then there is a pair thatis strongly many-one 
omplete for the 
lass of all disjoint NP-pairs.6 SuÆ
ient 
onditionsIn this se
tion we investigate 
onditions whi
h imply the existen
e of (p-)optimalproof systems. We �rst make an observation whi
h allows us to infer the existen
eof a p-optimal proof system for a re
ursively enumerable set L, provided thatthere are 
omplete fun
tions for 
ertain promise fun
tion 
lasses. Se
ondly, wewill see that 
ollapses of tally sets at the double exponential-time level imply theexisten
e of (p-)optimal proof systems for TAUTk.For any re
ursively enumerable set L, the fun
tion 
lass PSL = ff 2 FP jf(��) � Lg is the �pm-
losure of the 
lass ff 2 FP j f(��) = Lg that 
onsistsof all proof systems for L. Clearly, PSL has a �pm-
omplete fun
tion if and onlyif there is a p-optimal proof system for L. Furthermore the 
lass PSL is easilydes
ribed as a promise fun
tion 
lass by the following de�ning pair (S;R) whi
hful�lls A10 and A20.1. R(N; x) holds if on input x, N only makes deterministi
 moves, and if Na

epts then the string y written on its tape is in L.2. S(N; x) = y where y is the string produ
ed by N on input x on its leftmosta

epting nondeterministi
 
omputation.It is also possible to des
ribe this 
lass using the tree stru
ture approa
h forpromise 
lasses. Here, the idea is to allow only spe
ial trees (
alled 
ombs in [6℄)whi
h represent polynomial-time 
omputable fun
tions.An (S;R)-test set is given by the setTL = fhN; x; 0si j R(N; x) and s � pN(jxj) g :21



It is easy to see that TL �pm L for L =2 f;;��g via a PTM M whi
h on inputhN; x; 0si simulates N for at most s steps as follows. If N does only performdeterministi
 moves, thenM behaves as N and produ
es N 's output ifN a

epts,if N reje
ts then M outputs a �xed string y 2 L. Otherwise, M outputs a �xedstring y =2 L. Noti
e that also L �pm TL via f : x 7! hNid; x; 0jxji, where Nid is anNPTM 
omputing the identity mapping; implying that TL �pm L.Combining these observations with Theorem 33 we obtain the following the-orem.Theorem 36 Let L � ��. Then the following statements are equivalent.1. There is a p-optimal proof system for L.2. Every promise fun
tion 
lass F whi
h has a de�ning pair (S;R) ful�llingA10 and A20, and further possesses an (S;R)-test set whi
h is �pm-redu
ibleto L has a �pm-
omplete fun
tion.3. PSL has a �pm-
omplete fun
tion.It would be interesting to know whether a similar theorem holds when 
onsideringjust language 
lasses instead of fun
tion 
lasses.We now give a suÆ
ient 
ondition for the existen
e of a (p-)optimal proofsystem for TAUTk. Observe that PSTAUT has a length dependent test set in
o-NP. Hen
e (using Lemma 9 and Theorem 34 (resp. 33)), there is a (p-)optimalproof system for TAUT provided that any tally set in 
o-NP is already in NP(P). Together with observations from [5℄ that relate sets in E , NE to tally setsin P, NP this gives a proof of Theorem 6. A
tually the idea to this proofof Theorem 6 dates ba
k to [20℄ where `�nitisti
 
onsisten
y statements' roughly
orrespond to elements of a length dependent test set for PSTAUT. We 
an weakenthe needed assumption if we 
onsider (intuitively) super-tally sets instead of justtally sets, where we 
all a set T super-tally (in symbols: T 2 Super-Tally) if T isa subset of f022n j n � 0g.Theorem 37 If any super-tally set in NP is already in P, then TAUT has ap-optimal proof system.Proof: We assume some standard enumeration M1, M2, M3, : : : of (en
odingsof) deterministi
 Turing transdu
ers with binary input alphabet su
h that for agiven triple hMi; x; 0ki, up to k steps of the 
omputation of Mi on input x 
an beeÆ
iently simulated. Let i(k) denote the largest exponent i su
h that 2i dividesk and 
onsider the languageT = f 022k j on any input, Mi(k) either stops after at most 22k steps andoutputs some tautology or Mi(k) runs for more than 22k steps g.22



In order to de
ide whether a given string 0n = 022k belongs to T , it suÆ
es tosimulate Mi(k) on any input of length at most n+1 for at most n+1 steps. Thisshows that T \ f 022k j k � 0 g 2 NP and thus, by the assumption that anysuper-tally set in NP is already in P, T 
an be de
ided in P. We 
laim that thefollowing transdu
er 
omputes a p-optimal proof system h for TAUT.input h0n; wiif 0n 2 T thendetermine k su
h that n = 22kif Mi(k) stops on input w in at most n steps thenoutput Mi(k)(w) and halt;(otherwise reje
t).Sin
e, as is not hard to see, h(��) � TAUT and h 2 FP, it only remains to showthat h is p-optimal. Let g be any proof system for TAUT, 
omputed by somedeterministi
 Turing transdu
erMi in time bounded by some polynomial p. Thenany g-proof w 
an be translated into an h-proof by the mapping w 7! h022k ; wi,where k is the smallest integer kj = (2j + 1)2i, j � 0, su
h that p(jwj) � 22kj .Sin
e 22kj+1 = �22kj�
 ;where 
 = 22�2i, it follows that 22k < p(jwj)
, implying that the translationw 7! h022k ; wi is 
omputable in polynomial time.It is interesting to note that the above proof still goes through if we de�nea set T to be super-tally if it is a subset of f0

k j k � 0g where 
 � 2 is anarbitrary integer 
onstant. However, in our proof, we 
annot allow T to be anysparser. To see why, let us just try to repla
e the fun
tion j 7! 22(2j+1)2i by someother fun
tion f(j) (where f as well as the 
onstant 
 below might depend on i).This would guarantee that the new set T is a subset of f0f(j) j j � 0g. On theother hand, a ne
essary 
ondition for the proof to work is that for some 
onstant
, f(j + 1) � f(j)
, implying that f(j) � f(0)
j .A similar proof shows that there is an optimal proof system for TAUT, pro-vided that any super-tally set in NP is also in 
o-NP.Let EE = DTIME(2O(2n)) (
f. [12℄), EEE = DTIME(2O(22n )) and let NEE,NEEE be their nondeterministi
 
ounterparts. Using a te
hnique in the styleof [5℄ it is easy to see that ea
h tally language in EE (NEE) translates to a super-tally language in P (respe
tively NP) and vi
e versa. Thus a 
ollapse of tallysets at the EE-level (as, e.g., NEE\Tally � EE or NEE\Tally � 
o-NEE) 
orre-sponds to a 
ollapse for super-tally sets at the P-level (i.e., NP\Super-Tally � Pand NP \ Super-Tally � 
o-NP, respe
tively). As a 
onsequen
e we 
an statethe following 
orollary. 23



Corollary 38If NEE \ Tally � EE then TAUT has a p-optimal proof system.If NEE \ Tally � 
o-NEE then TAUT has an optimal proof system.Surprisingly, it seems hard to improve the above 
orollary further to the tripleexponential time level. In fa
t, it is stated in [4℄ that there is a relativized worldin whi
h NEEE = EEE but TAUT does not have an optimal proof system.Finally, a generalization of Theorem 37 to any level of the polynomial time hi-erar
hy yields the following suÆ
ient 
onditions for the existen
e of a (p-)optimalproof system for TAUTk.Theorem 39If any super-tally set in �pk is in P then TAUTk has a p-optimal proof system.If any super-tally set in �pk is in NP then TAUTk has an optimal proof system.Referen
es[1℄ E. Allender. Invertible fun
tions. PhD thesis , Georgia Institute of Te
hnology,1985.[2℄ J. L. Bal
�azar, J. D��az, and J. Gabarr�o. Stru
tural Complexity I. EATCS Mono-graphs on Theoreti
al Computer S
ien
e #11. Springer-Verlag, 1988.[3℄ J. L. Bal
�azar, J. D��az, and J. Gabarr�o. Stru
tural Complexity II. EATCS Mono-graphs on Theoreti
al Computer S
ien
e #22. Springer-Verlag, 1990.[4℄ S. Ben-David and A. Gringauze. On the existen
e of optimal proof systems andora
le-relativized propositional logi
. Te
hni
al Report TR98-021, Ele
troni
 Col-loquium on Computational Complexity, 1998.[5℄ R. V. Book. Tally languages and 
omplexity 
lasses. Information and Control26:186{193, 1974.[6℄ B. Bor
hert. Predi
ate Classes, Promise Classes, and the A

eptan
e Power ofRegular Languages. PhD thesis, Rupre
ht-Karls-Universit�at Heidelberg, 1994.[7℄ D. P. Bovet, P. Cres
enzi, and R. Silvestri. A uniform approa
h to de�ne 
om-plexity 
lasses. Theoreti
al Computer S
ien
e, 104:263{283, 1992.[8℄ S. Buss. Le
tures on Proof Theory. Te
hni
al Report No. SOCS-96.1, M
GillUniversity, 1996. (http://www.
s.m
gill.
a/~denis/TR.96.1.ps.gz)[9℄ J. Cai and L. Hema
handra. On the power of parity polynomial time. Mathemati
alSystems Theory 23:95{106, 1990. 24



[10℄ J. L. Carter and M. N. Wegman. Universal 
lasses of hash fun
tions. Journal ofComputer and System S
ien
es, 18:143{154, 1979.[11℄ S. Cook and R. Re
khow. The relative eÆ
ien
y of propositional proof systems.Journal of Symboli
 Logi
 44:36{50, 1979.[12℄ J. Hartmanis, N. Immerman and V. Sewelson. Sparse sets in NP�P: EXPTIMEversus NEXPTIME. Information and Control 65:158{181, 1985.[13℄ J. Hartmanis and L. Hema
handra Complexity 
lasses without ma
hines: On
omplete languages for UP. Theoreti
al Computer S
ien
e, 58:129{142, 1988.[14℄ J. K�obler and J. Messner. Complete Problems for Promise Classes by OptimalProof Systems for Test Sets In Pro
. 13th Annual IEEE Conferen
e on Computa-tional Complexity, CC 98, 132{140, 1998.[15℄ J. K�obler. Lowness-Eigens
haften und Erlernbarkeit von Booles
hen S
haltkreis-klassen. Habilitation Thesis, Universit�at Ulm, 1995.[16℄ W. Kowal
zyk Some 
onne
tions between representability of 
omplexity 
lassesand the power of formal systems of reasoning. In Pro
. 11th Symposium on Math-emati
al Foundations of Computer S
ien
e, Le
ture Notes in Computer S
ien
e#176, 364-369, Springer-Verlag, 1984.[17℄ J. Kraj���
ek. Bounded Arithmeti
, Propositional Logi
, and Complexity Theory.Cambridge University Press, 1995.[18℄ J. Kraj���
ek and P. Pudl�ak. Propositional proof systems, the 
onsisten
y of �rstorder theories and the 
omplexity of 
omputations. Journal of Symboli
 Logi
 54:1063{1079, 1989.[19℄ J. Messner and J. Tor�an. Optimal proof systems for propositional logi
 and 
om-plete sets. In Pro
. 15th Symposium on Theoreti
al Aspe
ts of Computer S
ien
e'98, Le
ture Notes in Computer S
ien
e #1373, 477{487. Springer-Verlag, 1998.[20℄ P. Pudl�ak. On the length of proofs of �nitisti
 
onsisten
y statements in �rstorder theories. Logi
 Colloquium'84 (J. B. Paris et al., editors), North-Holland,Amsterdam, pp. 165{196, 1986[21℄ A. A. Razborov. On provably disjoint NP-pairs. Te
hni
al Report RS-94-36, Basi
Resear
h in Computer S
ien
e Center, Aarhus, 1994.[22℄ Z. Sadowski. On an optimal quanti�ed propositional proof system and a 
ompletelanguage for NP \ 
o-NP. In Pro
. 11th International Symposium on Fundamen-tals of Computing Theory, Le
ture Notes in Computer S
ien
e #1279, 423{428.Springer-Verlag, 1997.[23℄ M. Sipser. A 
omplexity theoreti
 approa
h to randomness. In Pro
. 15th ACMSymposium on Theory of Computing, pp. 330{335. ACM Press, 1983.25



[24℄ L. Sto
kmeyer. On approximation algorithms for #P. SIAM Journal on Comput-ing, 14(4):849{861, 1985.[25℄ A. Urquhart. The 
omplexity of propositional proofs. Bulletin of Symboli
 Logi
1:425-467, 1995.[26℄ L. Valiant. The relative 
omplexity of 
he
king and evaluating. Information Pro-
essing Letters, 5:20{23, 1976.[27℄ N. K. Veresh
hagin. Relativizable and non-relativizable theorems in the polyno-mial theory of algorithms. Izvestija Rossijskoj Akademii Nauk, 57:51{90, 1993. InRussian.

26


