Optimal proof systems for Propositional Logic
and complete sets

Jochen Mefiner and Jacobo Toran
Universitat Ulm
Theoretische Informatik

D-89069 Ulm, Germany
messner,toran@informatik.uni-ulm.de

August 6, 1997

Abstract

A polynomial time computable function h : 3* — ¥* whose range is the set of tau-
tologies in Propositional Logic (TAUT), is called a proof system. Cook and Reckhow
defined this concept in [6] and in order to compare the relative strength of different
proof systems, they considered the notion of p-simulation. Intuitively a proof system h
p-simulates a second one b’ if there is a polynomial time computable function + trans-
lating proofs in A’ into proofs in h. A proof system is called optimal if it p-simulates
every other proof system. The question of whether p-optimal proof systems exist is an
important one in the field. Kraji¢ek and Pudlék [15, 14] have given a sufficient condi-
tion for the existence of such optimal systems, showing that if the deterministic and
nondeterministic exponential time classes coincide, then p-optimal proof systems exist.
They also give a condition implying the existence of optimal proof systems (a related
concept to the one of p-optimal systems). In this paper we improve this result giving
a weaker sufficient condition for this fact. We show that if a particular class of sets
with low information content in nondeterministic double exponential time is included
in the corresponding deterministic class, then p-optimal proof systems exist. We also
show some complexity theoretical consequences that follow from the assumption of the
existence of p-optimal systems. We prove that if p-optimal systems exist then the class
UP (an some other related complexity classes) have many-one complete languages, and
that many-one complete sets for NP N SPARSE follow from the existence of optimal
proof systems.

1 Introduction

A systematic study of the complexity of proof systems for Propositional Logic, was started
some time ago by Cook and Reckhow [6]. They were interested in studying the shortest
proofs of propositional tautologies in different proof systems, and defined the abstract notion
of proof system in the following way:

Definition 1.1 Let TAUT be the set of all Boolean tautologies (written in a fixed alphabet
¥). A propositional proof system (or just proof system) is a polynomial time computable
function h : ©* — * whose range is TAUT.!

For example the function h defined as

h(w) = © if w = (p,v) and v is a resolution proof of ¢,
| VT otherwise.

is a proof system.

If h(w) = ¢ we say that w is a proof of ¢ in h. Observe that in the given definition a
proof system A is not required to be polynomially honest. For a tautology ¢, the shortest
proof of ¢ in h, can be much longer than ¢.

A polynomially bounded proof system h is a proof system in which every tautology has a
short proof. More formally, there is a polynomial ¢ such that for every ¢ € TAUT, there is
a string w of length bounded by q(|¢|) with h(w) = .

It is not known whether polynomially bounded proof systems exist, on the other hand,
many concrete proof systems have been shown not to be polynomially bounded (see for
example [6],[17]). Besides the interest that concrete proof systems, like for example resolution
or Frege systems have in their own, a main motivation for the study of proof systems comes
in fact from the following relation between the NP versus co-NP question and the existence
of polynomially bounded systems.

Theorem 1.2 [6] NP = co-NP if and only if polynomially bounded proof systems exist.

This result started the so called Cook-Reckhow Program: a way to prove that NP is
different from co-NP might be to study more and more powerful concrete proof systems,
showing that they are not polynomially bounded, until hopefully we have gained enough
knowledge to be able to separate NP from co-NP (see [3]).

In order to compare the relative powers of two different proof systems, the notion of
polynomial simulation (or p-simulation) was introduced in [6].

Definition 1.3 Let A and A’ be two propositional proof system. We say that h simulates
h' if there is a polynomially bounded function ~ translating proofs in A’ into proofs in A. In
other words, for every tautology ¢ and every proof of ¢ in h', y(w) is a proof of ¢ in h. If v
is computable in polynomial time, we say that h p-simulates h'.

Observe that p-simulation is a stronger notion than simulation. It is easy to see that
simulation and p-simulation are reflexive and transitive relations. It is also clear that if a
proof system h is not polynomially bounded, and A simulates another system A’, then A’
cannot be polynomially bounded. Cook and Reckhow used p-simulation in order to classify
proof systems in different classes with polynomially related derivation strength.

The notion of simulation between proofs systems is closely related to the notion of re-
ducibility between problems. Continuing with this analogy, the notion of complete problem
would correspond to the notion of optimal proof system.

!The original definition allows in fact the use of different alphabets for the domain and range of h, but
for the purposes of this paper the given definition suffices.

Definition 1.4 A proof system is optimal (p-optimal) if it simulates (p-simulates) every
other proof system.

An important open problem is whether optimal proof systems exist [3]. Observe that if
this were the case, then in order to separate NP from co-NP it would suffice to prove that a
concrete proof system is not polynomially bounded.

Krajicek and Pudlak have given sufficient conditions for the existence of p-optimal and
optimal proof systems.

Theorem 1.5 [15, 14]
If NE = co-NE then optimal proof systems exist.
If E = NE then p-optimal proof systems exist.

On the other hand, to our knowledge, no complexity-theoretic consequences of the exis-
tence of optimal systems were known.?

In the present paper we improve the mentioned result from [14] by weakening the condi-
tions that are sufficient for the existence of optimal and p-optimal proof systems. We show in
Section 3 that if the deterministic and nondeterministic double exponential time complexity
classes coincide (EE = NEE) then p-optimal proof systems exist, and that NEE = co-NEE
is sufficient for the existence of optimal proof systems. In fact we give a probably weaker
sufficient condition, using a special kind of sets with small information content. Let us say
that a set is almost tally, if its words belong to the set 0*10*. We show that if the class of
almost tally sets in NEE is included in EE, then p-optimal proof systems exist, and that
optimal proof systems exist if almost tally sets in NEE belong also to co-NEE. Observe that
if this result could also be proved for tally sets, instead of almost tally sets, then a sufficient
condition for the existence of p-optimal proof systems would be EEE = NEEE, where EEE
denotes the complexity class DTIME(QO(ZQH)) (see [7]).

On the other side, we also show some consequences from the existence of optimal and
p-optimal proof systems, proving completeness results for the complexity classes UP and
NPNSPARSE, that follow from the existence of such proof systems. Since complete problems
for these classes have been unsuccessfully searched for in the past, the results give some
evidence of the fact that optimal proof systems might not exist. At the same time they
strengthen the connection between the notions of optimal proof systems and complete sets.

In Section 4 we show that if p-optimal proof systems exist, then the class UP (unam-
biguous NP) of problems in NP that can be accepted by nondeterministic polynomial time
machines with at most one accepting path for every input [18], has complete problems under
the logarithmic space many-one reductions. The existence of complete problems for UP has
been studied in [9], where the authors show the existence of a relativization under which this
is not possible. Considering that p-optimal proof systems exist, we also show the existence of
complete sets for related promise classes like FewP. We also consider the weaker hypothesis
of the existence of optimal proof systems, and show that the completeness results for the
mentioned classes still hold for the nonuniform many-one reductions.

2Recently R. Implagiazzo and T. Pitassi have proven that if optimal proof systems exist, the class of
disjoint pairs in NP has a complete pair [12]

Finally in Section 5 we prove that optimal proof systems imply the existence of complete
problems for the class NP N SPARSE for many-one logarithmic space reductions. The ques-
tion of the existence of such sets is subtle and has been intensively investigated. Although
many-one complete set in NP N SPARSE are not known, Hartmanis and Yesha prove in [10]
that there is a sparse set in NP that is Turing complete for NP N SPARSE, (in fact the given
set is tally) and ask whether the result can be improved to the many-one case. Hartma-
nis has also shown that the set of satisfiable formulas with small Kolmogorov complexity
SAT N K|[log, n?] is Turing complete for NP N SPARSE [8], but the completeness of this set
under many-one reductions would imply unexpected consequences in the exponential time
hierarchy. More recently Schoning has proven that there are sets that are complete for this
class under many-one randomized reductions [16].

2 Basic Notions

We assume some familiarity with the standard results and notions about deterministic and
nondeterministic complexity classes. For undefined complexity theory notions, and the defin-
ition of standard complexity clases, we refer the reader to the standard books in the area like
[2]. We will use a pairing function (,) that is polynomial time computable and invertible.
For a set A, P(A) = {L | L C A} represents the power set of A.

E and EE, denote the time complexity classes DTIME(2°) and DTIME(2°3"), re-
spectively, and NE, NEE their nondeterministic counterparts. For a language L C {0,1}*
let Tally(L) = {0™®) | x € L} denote the tally version of L, where n(z) for each x € {0,1}*
denotes the number with binary representation 1z. The languages in E (NE) correspond to
the tally languages in P (resp. NP), see [4]. Similarly the languages in EE (NEE) correspond
to the tally languages in E (resp. NE).

Lemma 2.1 Let L C {0,1}*, Ly = Tally(L), Ly = Tally(Ly). The following statements are
equivalent

1. L € EE (resp. L € NEE, L € co-NEE)
2. Ly € E (resp. Ly € NE, Ly € co-NE)
3. Ly € P (resp. Ly € NP, Ly € co-NP)

We have defined in the introduction the notion of proof system. The next lemma shows
that for every set of tautologies that is polynomial time computable, there is a proof system
in which the tautologies of the set have short proofs, and moreover, the proof can be found
easyly.

Lemma 2.2 If T C TAUT and T € P, then there exists a proof system h and a function
t € FP that produces proofs in h for every tautology in T. That is, for every o € T,

h(t(e)) = ¢

Proof: Let h' € FP be a proof system. We can define a new proof system h as follows:

h'(v) if w = Ov,
h(w) =< v ifw=1v and v €T,
xVZT otherwise.

Clearly, h is a proof system. The function ¢ producing proofs in h for the elements of T is
just t(v) = 1v. 1

In the definitions of proof systems and p-optimality we allowed both functions, the proof
system h and the translation function, to be computable in polynomial time. The following
lemma shows that the most part of the computational complexity of both functions can be
concentrated in one of them, whereas the other function may be computed, for example, in
logarithmic space. To formulate the lemma, let us say that a proof system h is logspace-
optimal if it simulates in logarithmic space every other proof system A', which means that
there is logspace computable function 7 such that h(y(w)) = h'(w) for every word w.

Lemma 2.3 The following statements are equivalent
1. A p-optimal polynomial time computable proof system exists.
2. A logspace-optimal polynomial time computable proof system ezists.

3. A p-optimal logspace computable proof system exists.

Proof: Clearly, 2 and 3 imply 1.
To obtain 2 from 1 let h be a p-optimal polynomial time computable proof system, and
let ¢ be defined by

h(w') if w= (M,0",v), and M is a deterministic Turing transducer
g(w) = which on input v outputs w’ in at most [steps,
xV -z else.

Clearly, g is polynomial time computable. We show that ¢ is logspace-optimal. Let A’ be a
proof system. By assumption, there is a polynomial time computable translation function ~y
such that h(y(w)) = h'(w) for any w. Let M be a deterministic Turing transducer computing
v with time bounded by a polynomial p(n). It’s easy to see that the logspace computable
function 4" with o/(w) = (M, 0P1*D w) translates proofs in A’ into proofs in g.

We now show that the existence of h implies a logspace computable p-optimal proof
system f. Let M be a polynomial time machine computing h. Let f(w) = ¢ if w encodes
a complete computation of M (given by the sequence of configurations) with output ¢, let
f(w) = x vV —z otherwise. Choosing a suitable encoding f is logspace computable. Also f
p-simulates h. Therefore f p-simulates every proof system. |

3 Sufficient conditions

We give now a sufficient condition for the existence of optimal proof systems, based on
almost tally sets in double exponential time. We will later see that these conditions can be
translated into analogous ones for tally sets with very low density in the polynomial time
setting.

Theorem 3.1
If co-NEE N‘B(0*10*) C EE then there exists a p-optimal proof system.

If co-NEE N*B(0*10*) C NEE then there exists an optimal proof system.

Proof: Let My, Ms, Ms, ... be some standard enumeration of deterministic Turing trans-
ducers with binary input alphabet such that there is an universal Turing machine which is
able to simulate k steps of M; in (ik)? time for any k& > 0 (clearly, such enumerations exist).
Now define the language

T = {0710" | for any word w of length at most 22", where n =i + j + 1:
if M; stops on input w in at most 22" steps, M, outputs a tautology }.

It is easy to see that T € co-NEE. Assuming co-NEEN3(0*10*) C EE we have T € EE.
Therefore there is a deterministic Turing machine My which decides T in time 2¢2" for some
c> 0.

We describe a p-optimal proof system h:

On input (07107, 0%, w) examine if s > 2% and |w| < 2%, where | = i + j + 1,
and test whether My accepts 0710° in at most s steps. If this is the case, output
M;(w) if M; stops after at most 22 steps on input w. (If some other case applies,
output some fixed tautology).

Clearly, 010" € T implies that the Turing machine M; on input w outputs a tautology if
the computation needs at most 2% steps. Therefore h(X*) C TAUT. Also, h is computable
in polynomial time. We have to show that h p-simulates every other proof system. Let g
be a proof system computed by the deterministic Turing transducer M; with time bound
n* + k. A proof w for ¢ is translated into the proof w’ = (0710%,0%, w) where s = 262",
and j = max(0, [loglog |w|* + k] — i — 1). By the construction of h, we have h(w') = g(w).
We just have to show that the translation w +— w’ is computable in polynomial time.
Clearly, this is the case if the length of 0° is polynomially bounded by |w|. Now observe that
5 = Qo2 o geaitEgloslos itk _ (lw|* + k)2 which is polynomial in |w|.

For the second part of the theorem, assume that co-NEE N 3(0*10*) is included in NEE
which implies T' € NEE. Let Np be a nondeterministic Turing machine accepting T" with

time bound 2¢2". An optimal proof system is given by the following algorithm:

On input (0°10%, 0%, o, w) examine if s > 22" and lw| < 22 where | =i+ j + 1,
and test whether o encodes an accepting computation of Ny on input 0710°. If
this is the case, output M;(w) if M; stops after at most 22 steps on input w. (If
some other case applies, output some fixed tautology).

6

A similar argument as the one above shows that this proof system simulates every other
proof system. 1

If in the previous proof we replace each occurence of the number 2 by some arbi-
trary constant d (and log by log,) we obtain that already co-NTIME(2°(4")) 0 P(0*10*) C
DTIME(2°(@") for some d > 0 implies the existence of a p-optimal proof system (a similar
result follows for optimal proof systems).?

Corollary 3.2
If NEE N*B(0*10*) C EE then there exists a p-optimal proof system.

If NEE N*B(0*10*) C co-NEE then there ezists an optimal proof system.

Proof: The corollary follows from the observation that co-NEE N ‘B(0*10*) = {0*10* \ L |
L € NEEN9(0°10°)}. 1

We translate now these results to the polynomial time setting. A tally language L C {0}*
is called f(n)-tally for some function f: N — Nif LN {0}<" < f(n) for all n.

Theorem 3.3
P-optimal proof systems exist if every (loglogn)?-tally language in NP is already in P.
Optimal proof systems exist if every (loglogn)?-tally language in NP is in co-NP.

Proof: Let L C 0710 be an arbitrary language in NEE, and let L, = Tally(Tally(L)). By

Lemma 2.1 Ly € NP. Observe Ly C {0 |0 < j <} and
ol 4oi .
Ho ™ jo<i<iins=| < [{(L.j)] 2'+2 <logn}]
< (loglogn)®.
Therefore L is a (loglogn)?-tally language in NP. By Lemma 2.1, L, € P implies L € EE.
Similarly Ly € co-NP implies L € co-NEE. |

4 Complete problems for UP

In this and the next sections we prove that the existence of optimal proof systems imply the
existence of complete sets in certain promise complexity classes. The machines computing
the sets in these classes can not be guaranteed to keep the condition of the class for all
possible inputs, and because of this, complete problems for these classes are not known.
We will first prove the existence of complete sets for UP under many-one polynomial time
reductions, considering the existence of p-optimal proof systems. Later we will strengthen
this result to logarithmic space reductions.

3This improvement (notice DTIME(2°(?")) ¢ DTIME(2°(¢")) by the classical hierarchy theorems if
d > 2) emerged from an email discussion with S. Ben-David.

Define the set CAT containing descriptions of machines that are categorical, i.e. have at
most one accepting path for all inputs up to a given length.

CAT = {(M,0',0") | M is a nondeterministic Turing machine and for every input z,
|z| < n, M(zx) has at most one accepting path of length < [}.

Clearly, CAT € co-NP and since TAUT is co-NP complete for polynomial time many-one
length-increasing reductions, there is such a function f € FP reducing CAT to TAUT.
For every fixed nondeterministic Turing machine M and every fixed monotone polynomial
q, the set
CAT g = {(M, 0™ 0™ | n > 1} N CAT,

is in P. Also the image of CAT)y, under f, is in P; in order to test whether a given formula
¢ belongs to f(CAT),,) it suffices to generate the words of CAT)/, up to a given length,
and check whether the image of one of these words after applying f coincides with ¢.

Let a1, denote the formula f((M,0!,0")). Clearly, if machine M is categorical and its
running time is bounded by ¢, then for every n, Qs 4mn).n is a tautology.

The following lemma intuitively says that under the hypothesis of the existence of p-
optimal proof systems, for every categorical machine M there is a polynomial time com-
putable function producing proofs of the categoricity of M.

Lemma 4.1 Let h € FP be a p-optimal proof system. For every categorical machine M with
running time bounded by a polynomial q, there is a function gy g € FP such that for every
1 €N, gu,(0Y) produces an output w and h(w) = Parqu),-

Proof: Let M be a categorical machine polynomially time bounded by a polynomial gq.
Every formula in the set f(CATy,) is a tautology. As we have seen this set is in P, and
by Lemma 2.2, there is a proof system h' and a function ¢ € FP that produces short proofs
in ' for the tautologies in f(CAT;,). Formally, for every tautology ¢arqu); € f(CAT),
W (t(on,90)0)) = Parg.-

Since h is p-optimal, it p-simulates h’. This means that there is a function v € FP,
translating proofs in A’ into proofs in h, and for every tautology ey € f(CAT) we
have h(7y(t(@arqn)1))) = Prran)

The claimed function gy, on input 0' computes the formula @400, = f((M, 070, 0%),
and applies functions ¢ and v to it. Clearly gy, € FP. 1

We can now prove that p-optimal proof systems imply the existence of complete sets for
UP.

Theorem 4.2 If p-optimal proof systems exist then there are sets that are complete for UP
under polynomial time many-one reductions.

Proof: Let h be a p-optimal proof system and consider the set

A= {(M,0"w,z) | M is the description of a NDTM and h(w) = ©ary,s|

and M accepts x in [steps or less}.

8

Set A is clearly in UP since h(w) = ¢, means that this formula is a tautology, and
therefore for every input of length smaller or equal than |z| (and in particular for), M has
at most one accepting path of length [.

For the hardness part, let B be a set in UP, accepted by a machine M in time bounded
by a polynomial q. W.l.o.g. we can suppose that for every n, ¢(n) < g(n + 1), and that
on any input z, every computation path of M halts after exactly ¢(|z|) steps. Consider the
function g5, € FP whose existence was proved in the above lemma. The function A € FP
defined for every x € ¥* as

)\(:1:) — (M, OQ(‘ID,QM’Q(O‘I‘),.];>

many-one reduces B to A since h(garg(0) = oarggap, el B

To see that p-optimal proof systems also imply the existence of logspace many-one com-
plete problem for UP, we show that the construction in the proof of Lemma 4.1 can be
modified so that g, is logspace computable. In fact, by the same observations it can be
seen that even weaker reductions are possible. Remember gy ,(0') = ~(¢(f((M, 07D 04)))
where f is a length-increasing reduction from CAT to TAUT, ¢(x) = 1z is the function from
the proof of Lemma 2.2, and ~ is a function translating proofs in a proof system A’ into proofs
in h, whose existence is guaranteed by the p-optimality of system h. Clearly, (M, 09(), 0') can
be computed in logarithmic space from 0!, and the function ¢ is logspace computable. Also f
can be chosen to be a logspace computable (and length-increasing) many-one reduction from
CAT to TAUT. By Lemma 2.3 we can assume h to be logspace-optimal, and therefore we
can also assume 7 to be logspace computable. As the composition of logspace computable
functions is again logspace computable we obtain:

Theorem 4.3 If p-optimal proof systems exist then there are sets that are complete for UP
under logarithmic space many-one reductions.

The completeness result for UP can be extended to the related complexity classes FewP
and Few as stated in the next theorem. The classes FewP and Few were defined in [1] and
[5] as a generalizations of the class UP. For space reasons we omit the definition of these
classes and the proof of the next theorem.

Theorem 4.4 If p-optimal proof systems exist then there are sets that are complete under
polynomial logspace many-one reductions for the classes FewP and Few.

Let us mention at this point that in [9] an oracle is constructed under which the class
UP does not have many-one complete sets. In [11] this result is improved from many-one
to Turing reducibility, and it is also shown that under certain relativizations the class FewP
does not have Turing complete sets. Since the proofs in this paper relativize, we can state
the following corollary:

Corollary 4.5 There exists a relativization under which p-optimal proof systems do not
exist.

If we only consider the existence of optimal proof systems (instead of p-optimal systems),
then we can prove a version of the above result for nonuniform reductions. Intuitively a set is
polynomial time nonuniformly many-one reducible to a second one, if the reduction function
is not necessarily in FP, as in the usual polynomial time reductions, but it is computed by
a family of polynomial size circuits [13].

Due to space reasons we omit the formal definition of non-uniform reductions as well as
the proof of the next theorem.

Theorem 4.6 If optimal proof systems exist then there are sets that are complete for UP
under nonuniform polynomial time many-one reductions.

As expected, the many-one completeness results for Few and FewP from Theorem 4.4
become completeness results for nonuniform many-one reductions if only the existence of
optimal proof systems is considered.

5 Complete sets for NP N SPARSE

We prove now that there are many-one complete sets for NPNSPARSE under the hypothesis
of the existence of optimal proof systems. The proof follows the same lines as the previous
one for complete sets in UP, but in this case we do not need p-optimality, and the existence
of optimal proof systems suffices.

Let us define the set SP containing descriptions of nondeterministic machines that do
not accept too many strings up to a given length:

SP = {(M,0',0") | M is anondeterministic Turing machine and there are at most |
pairs (z;,y:), |x:| < n, |yl <1, such that z; # z; for i # j, and
y; is an accepting path of M on input z;}.

It is not hard to see that SP € co-NP, and therefore SP is polynomial-time many-one
reducible to TAUT. Let f € FP be a length increasing function that reduces SP to TAUT.

Let M be a fixed nondeterministic Turing machine with running time bounded by a
polynomial ¢, that for every length [accepts at most ¢(I) words of length I. The set

SParg = {(M,07™,0") | n > 1} N SP,

is in P, and the image of SP;;, under f, is also in P;

Let Cyryn denote the formula f((M,0!,0")). Clearly if machine M runs in time bounded
by ¢ and accepts a g-sparse set of inputs, then for every n, ©as4n)n is a tautology.

The following lemma is analogous to Lemma 4.7, and says that in an optimal proof
system, a proof of the fact that a machine accepts a sparse language up to a given length,
can be polynomially bounded. The proof follows the same lines as the one for Lemma 4.7
and it is omitted.

10

Lemma 5.1 Let h € FP be a p-optimal proof system. For every nondeterministic Turing
machine M with running time bounded by a polynomial q, and such that for every n € N,
M accepts at most g(n) words of length n, there is a polynomial v such that for every | € N,
there is a string w € ¥*, with |w| <r(l) and h(w) = Carqu),-

We can now prove that optimal proof systems imply the existence of complete sets for
NP N SPARSE.

Theorem 5.2 If optimal proof systems exist then there are sets that are complete for NP N
SPARSE under logarithmic space many-one reductions.

Proof: Let h be an optimal proof system, and let S be the set

S = {(0M 01,07, 2) | M is the description of a NDTM and there is a string w of length
lw| < j and h(w) = (e and M accepts z in [steps or less}.

S belongs clearly to NP. Also, the number of string z such that (0™,0',0/, z) € S is bounded
by 1, since (0,0',0/, z) € S implies that Carye) is a tautology. Therefore for every length n
there are at most n words of this length in S. This proves that S is sparse.

In order to see that S is hard for the class, let S’ be a set in NP N SPARSE, accepted
by a nondeterministic Turing machine M with time bounded by a polynomial ¢, and with
density also bounded by ¢. By Lemma 5.1 there is a polynomial r such that for every [€ N,
there is a string w with |w| < r(l) and h(w) = Carq0),- The reduction from S’ to S is given
by the function

Az) = (M, 0elzD (=) g,

Observe that this function is computable in logarithmic space, one-to-one, length increasing
and also invertible in logarithmic space. |

Let us mention at this point that contrary to the UP case, there is no known relativization
under which the class NP NSPARSE does not have many-one complete sets. For this reason,
and considering the existing results on sparse sets mentioned in the introduction, we feel that
Theorem 5.2 only provides a weak consequence of the existence of optimal proof systems.

References

[1] E. Allender. Invertible functions. Ph.D. dissertation, Georgia Institute of Technology, 1985.

[2] J. L. Balcdzar, J. Diaz, and J. Gabarrd. Structural Complezity I, volume 11 of EATCS
Monographs on Theoretical Computer Science. Springer-Verlag, 1988.

[3] S. Buss. Lectures on Proof Theory. Tech Report No. SOCS-96.1, McGill University, 1996.
(http://www.cs.mcgill.ca/ denis/TR.96.1.ps.gz)

[4] R. V. Book. Tally languages and complexity classes. Information and Control 26, pp. 186-193,
1974.

11

[5]

[6]

[7]

8]

[11]

[12]

[13]

[16]

[17]

[18]

J. Cai and L. Hemachandra. On the power of parity polynomial time. Mathematical Systems
Theory 23, pp. 95-106, 1990.

S. Cook and R. Reckhow. The relative efficiency of propositional proof systems. Journal of
Symbolic Logic 44, pp. 36-50, 1979.

J. Hartmanis, N. Immerman and V. Sewelson. Sparse sets in NP — P: EXPTIME versus
NEXPTIME. Information and Control 65, pp. 158-181, 1985.

J. Hartmanis. Generalized Kolmogorov complexity and the structure of feasible computations.
In Proceedings of the 24th IEEE Symposium on Foundations of Computer Science (FOCS’83),
pp- 439-445, 1983

J. Hartmanis and L. Hemachandra Complexity classes without machines: On complete lan-
guages for UP. Theoretical Computer Science, 58, pp. 129-142, 1988.

J. Hartmanis and J. Yesha. Computaton times of NP sets of different densities. Theoretical
Computer Science, 34, pp. 17-32, 1984.

L. Hemaspaandra, S. Jain and N. Vereshchagin. Banishing robust Turing completeness. Int.
Journal of Foundations of Computer Science, 4, pp. 245-265, 1993.

R. Implagiazzo and T. Pitassi. Personal communication, DIMACS workshop, July 1997.

R. Karp and R. Lipton. Some connections between nonuniform and uniform complexity classes.
In Proceedings of the 12th ACM Symposium on Theory of Computing, pp. 302-309, 1980.

J. Krajicek and P. Pudlék. Propositional proof systems, the consistency of first order theories
and the complexity of computations. Journal of Symbolic Logic 54, pp. 1063-1079, 1989.

P. Pudldk. On the length of proofs of finitistic consistency statements in first order theories.
Logic Colloquium’84 (J. B. Paris et al., editors), North-Holland, Amsterdam, pp. 165-196,
1986

U. Schoning. On random reductions from sparse sets to tally sets. Information Processing
Letters, 46, pp. 239-241, 1993.

A. Urquhart. The complexity of propositional proofs. Bulletin of Symbolic Logic 1, pp. 425-
467, 1995.

L. Valiant. The relative complexity of checking and evaluating. Information Processing Letters,
5, pp. 20-23, 1976.

12

