
Optimal proof systems for Propositional Logicand complete setsJochen Me�ner and Jacobo Tor�anUniversit�at UlmTheoretische InformatikD-89069 Ulm, Germanymessner,toran@informatik.uni-ulm.deAugust 6, 1997AbstractA polynomial time computable function h : �� ! �� whose range is the set of tau-tologies in Propositional Logic (TAUT), is called a proof system. Cook and Reckhowde�ned this concept in [6] and in order to compare the relative strength of di�erentproof systems, they considered the notion of p-simulation. Intuitively a proof system hp-simulates a second one h0 if there is a polynomial time computable function 
 trans-lating proofs in h0 into proofs in h. A proof system is called optimal if it p-simulatesevery other proof system. The question of whether p-optimal proof systems exist is animportant one in the �eld. Kraj���cek and Pudl�ak [15, 14] have given a su�cient condi-tion for the existence of such optimal systems, showing that if the deterministic andnondeterministic exponential time classes coincide, then p-optimal proof systems exist.They also give a condition implying the existence of optimal proof systems (a relatedconcept to the one of p-optimal systems). In this paper we improve this result givinga weaker su�cient condition for this fact. We show that if a particular class of setswith low information content in nondeterministic double exponential time is includedin the corresponding deterministic class, then p-optimal proof systems exist. We alsoshow some complexity theoretical consequences that follow from the assumption of theexistence of p-optimal systems. We prove that if p-optimal systems exist then the classUP (an some other related complexity classes) have many-one complete languages, andthat many-one complete sets for NP \ SPARSE follow from the existence of optimalproof systems.1 IntroductionA systematic study of the complexity of proof systems for Propositional Logic, was startedsome time ago by Cook and Reckhow [6]. They were interested in studying the shortestproofs of propositional tautologies in di�erent proof systems, and de�ned the abstract notionof proof system in the following way: 1



De�nition 1.1 Let TAUT be the set of all Boolean tautologies (written in a �xed alphabet�). A propositional proof system (or just proof system) is a polynomial time computablefunction h : �� ! �� whose range is TAUT.1For example the function h de�ned ash(w) = � ' if w = h'; vi and v is a resolution proof of ';x _ x otherwise.is a proof system.If h(w) = ' we say that w is a proof of ' in h. Observe that in the given de�nition aproof system h is not required to be polynomially honest. For a tautology ', the shortestproof of ' in h, can be much longer than '.A polynomially bounded proof system h is a proof system in which every tautology has ashort proof. More formally, there is a polynomial q such that for every ' 2 TAUT, there isa string w of length bounded by q(j'j) with h(w) = '.It is not known whether polynomially bounded proof systems exist, on the other hand,many concrete proof systems have been shown not to be polynomially bounded (see forexample [6],[17]). Besides the interest that concrete proof systems, like for example resolutionor Frege systems have in their own, a main motivation for the study of proof systems comesin fact from the following relation between the NP versus co-NP question and the existenceof polynomially bounded systems.Theorem 1.2 [6] NP = co-NP if and only if polynomially bounded proof systems exist.This result started the so called Cook-Reckhow Program: a way to prove that NP isdi�erent from co-NP might be to study more and more powerful concrete proof systems,showing that they are not polynomially bounded, until hopefully we have gained enoughknowledge to be able to separate NP from co-NP (see [3]).In order to compare the relative powers of two di�erent proof systems, the notion ofpolynomial simulation (or p-simulation) was introduced in [6].De�nition 1.3 Let h and h0 be two propositional proof system. We say that h simulatesh0 if there is a polynomially bounded function 
 translating proofs in h0 into proofs in h. Inother words, for every tautology ' and every proof of ' in h0, 
(w) is a proof of ' in h. If 
is computable in polynomial time, we say that h p-simulates h0.Observe that p-simulation is a stronger notion than simulation. It is easy to see thatsimulation and p-simulation are re
exive and transitive relations. It is also clear that if aproof system h is not polynomially bounded, and h simulates another system h0, then h0cannot be polynomially bounded. Cook and Reckhow used p-simulation in order to classifyproof systems in di�erent classes with polynomially related derivation strength.The notion of simulation between proofs systems is closely related to the notion of re-ducibility between problems. Continuing with this analogy, the notion of complete problemwould correspond to the notion of optimal proof system.1The original de�nition allows in fact the use of di�erent alphabets for the domain and range of h, butfor the purposes of this paper the given de�nition su�ces.2



De�nition 1.4 A proof system is optimal (p-optimal) if it simulates (p-simulates) everyother proof system.An important open problem is whether optimal proof systems exist [3]. Observe that ifthis were the case, then in order to separate NP from co-NP it would su�ce to prove that aconcrete proof system is not polynomially bounded.Kraj���cek and Pudl�ak have given su�cient conditions for the existence of p-optimal andoptimal proof systems.Theorem 1.5 [15, 14]If NE = co-NE then optimal proof systems exist.If E = NE then p-optimal proof systems exist.On the other hand, to our knowledge, no complexity-theoretic consequences of the exis-tence of optimal systems were known.2In the present paper we improve the mentioned result from [14] by weakening the condi-tions that are su�cient for the existence of optimal and p-optimal proof systems. We show inSection 3 that if the deterministic and nondeterministic double exponential time complexityclasses coincide (EE = NEE) then p-optimal proof systems exist, and that NEE = co-NEEis su�cient for the existence of optimal proof systems. In fact we give a probably weakersu�cient condition, using a special kind of sets with small information content. Let us saythat a set is almost tally, if its words belong to the set 0�10�. We show that if the class ofalmost tally sets in NEE is included in EE, then p-optimal proof systems exist, and thatoptimal proof systems exist if almost tally sets in NEE belong also to co-NEE. Observe thatif this result could also be proved for tally sets, instead of almost tally sets, then a su�cientcondition for the existence of p-optimal proof systems would be EEE = NEEE, where EEEdenotes the complexity class DTIME(2O(22n )) (see [7]).On the other side, we also show some consequences from the existence of optimal andp-optimal proof systems, proving completeness results for the complexity classes UP andNP\SPARSE, that follow from the existence of such proof systems. Since complete problemsfor these classes have been unsuccessfully searched for in the past, the results give someevidence of the fact that optimal proof systems might not exist. At the same time theystrengthen the connection between the notions of optimal proof systems and complete sets.In Section 4 we show that if p-optimal proof systems exist, then the class UP (unam-biguous NP) of problems in NP that can be accepted by nondeterministic polynomial timemachines with at most one accepting path for every input [18], has complete problems underthe logarithmic space many-one reductions. The existence of complete problems for UP hasbeen studied in [9], where the authors show the existence of a relativization under which thisis not possible. Considering that p-optimal proof systems exist, we also show the existence ofcomplete sets for related promise classes like FewP. We also consider the weaker hypothesisof the existence of optimal proof systems, and show that the completeness results for thementioned classes still hold for the nonuniform many-one reductions.2Recently R. Implagiazzo and T. Pitassi have proven that if optimal proof systems exist, the class ofdisjoint pairs in NP has a complete pair [12] 3



Finally in Section 5 we prove that optimal proof systems imply the existence of completeproblems for the class NP\ SPARSE for many-one logarithmic space reductions. The ques-tion of the existence of such sets is subtle and has been intensively investigated. Althoughmany-one complete set in NP\ SPARSE are not known, Hartmanis and Yesha prove in [10]that there is a sparse set in NP that is Turing complete for NP\SPARSE, (in fact the givenset is tally) and ask whether the result can be improved to the many-one case. Hartma-nis has also shown that the set of satis�able formulas with small Kolmogorov complexitySAT \K[log; n2] is Turing complete for NP \ SPARSE [8], but the completeness of this setunder many-one reductions would imply unexpected consequences in the exponential timehierarchy. More recently Sch�oning has proven that there are sets that are complete for thisclass under many-one randomized reductions [16].2 Basic NotionsWe assume some familiarity with the standard results and notions about deterministic andnondeterministic complexity classes. For unde�ned complexity theory notions, and the de�n-ition of standard complexity clases, we refer the reader to the standard books in the area like[2]. We will use a pairing function h ; i that is polynomial time computable and invertible.For a set A, P(A) = fL j L � Ag represents the power set of A.E and EE, denote the time complexity classes DTIME(2O(n)) and DTIME(2O(2n)), re-spectively, and NE, NEE their nondeterministic counterparts. For a language L � f0; 1g�let Tally(L) = f0n(x) j x 2 Lg denote the tally version of L, where n(x) for each x 2 f0; 1g�denotes the number with binary representation 1x. The languages in E (NE) correspond tothe tally languages in P (resp. NP), see [4]. Similarly the languages in EE (NEE) correspondto the tally languages in E (resp. NE).Lemma 2.1 Let L � f0; 1g�, L1 = Tally(L), L2 = Tally(L1). The following statements areequivalent1. L 2 EE (resp. L 2 NEE, L 2 co-NEE)2. L1 2 E (resp. L1 2 NE, L1 2 co-NE)3. L2 2 P (resp. L2 2 NP, L2 2 co-NP)We have de�ned in the introduction the notion of proof system. The next lemma showsthat for every set of tautologies that is polynomial time computable, there is a proof systemin which the tautologies of the set have short proofs, and moreover, the proof can be foundeasyly.Lemma 2.2 If T � TAUT and T 2 P, then there exists a proof system h and a functiont 2 FP that produces proofs in h for every tautology in T . That is, for every ' 2 T ,h(t(')) = '.
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Proof: Let h0 2 FP be a proof system. We can de�ne a new proof system h as follows:h(w) = 8<: h0(v) if w = 0v;v if w = 1v and v 2 T;x _ x otherwise.Clearly, h is a proof system. The function t producing proofs in h for the elements of T isjust t(v) = 1v.In the de�nitions of proof systems and p-optimality we allowed both functions, the proofsystem h and the translation function, to be computable in polynomial time. The followinglemma shows that the most part of the computational complexity of both functions can beconcentrated in one of them, whereas the other function may be computed, for example, inlogarithmic space. To formulate the lemma, let us say that a proof system h is logspace-optimal if it simulates in logarithmic space every other proof system h0, which means thatthere is logspace computable function 
 such that h(
(w)) = h0(w) for every word w.Lemma 2.3 The following statements are equivalent1. A p-optimal polynomial time computable proof system exists.2. A logspace-optimal polynomial time computable proof system exists.3. A p-optimal logspace computable proof system exists.Proof: Clearly, 2 and 3 imply 1.To obtain 2 from 1 let h be a p-optimal polynomial time computable proof system, andlet g be de�ned byg(w) = 8<: h(w0) if w = hM; 0l; vi, and M is a deterministic Turing transducerwhich on input v outputs w0 in at most l steps,x _ :x else:Clearly, g is polynomial time computable. We show that g is logspace-optimal. Let h0 be aproof system. By assumption, there is a polynomial time computable translation function 
such that h(
(w)) = h0(w) for any w. LetM be a deterministic Turing transducer computing
 with time bounded by a polynomial p(n). It's easy to see that the logspace computablefunction 
0 with 
0(w) = hM; 0p(jwj); wi translates proofs in h0 into proofs in g.We now show that the existence of h implies a logspace computable p-optimal proofsystem f . Let M be a polynomial time machine computing h. Let f(w) = ' if w encodesa complete computation of M (given by the sequence of con�gurations) with output ', letf(w) = x _ :x otherwise. Choosing a suitable encoding f is logspace computable. Also fp-simulates h. Therefore f p-simulates every proof system.
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3 Su�cient conditionsWe give now a su�cient condition for the existence of optimal proof systems, based onalmost tally sets in double exponential time. We will later see that these conditions can betranslated into analogous ones for tally sets with very low density in the polynomial timesetting.Theorem 3.1If co-NEE \P(0�10�) � EE then there exists a p-optimal proof system.If co-NEE \P(0�10�) � NEE then there exists an optimal proof system.Proof: Let M1, M2, M3, : : : be some standard enumeration of deterministic Turing trans-ducers with binary input alphabet such that there is an universal Turing machine which isable to simulate k steps of Mi in (ik)2 time for any k � 0 (clearly, such enumerations exist).Now de�ne the languageT = f0j10i j for any word w of length at most 22n , where n = i+ j + 1:if Mi stops on input w in at most 22n steps, Mi outputs a tautology g:It is easy to see that T 2 co-NEE. Assuming co-NEE\P(0�10�) � EE we have T 2 EE.Therefore there is a deterministic Turing machine MT which decides T in time 2c�2n for somec > 0.We describe a p-optimal proof system h:On input h0j10i; 0s; wi examine if s � 22l and jwj � 22l, where l = i + j + 1,and test whether MT accepts 0j10i in at most s steps. If this is the case, outputMi(w) if Mi stops after at most 22l steps on input w. (If some other case applies,output some �xed tautology).Clearly, 0j10i 2 T implies that the Turing machine Mi on input w outputs a tautology ifthe computation needs at most 22l steps. Therefore h(��) � TAUT. Also, h is computablein polynomial time. We have to show that h p-simulates every other proof system. Let gbe a proof system computed by the deterministic Turing transducer Mi with time boundnk + k. A proof w for g is translated into the proof w0 = h0j10i; 0s; wi where s = 2c�2i+j+1,and j = max(0; dlog log jwjk + ke � i� 1). By the construction of h, we have h(w0) = g(w).We just have to show that the translation w 7! w0 is computable in polynomial time.Clearly, this is the case if the length of 0s is polynomially bounded by jwj. Now observe thats = 2c�2i+j+1 � 2c�2i+2�2log log jwjk+k = (jwjk + k)c�2i+2 which is polynomial in jwj.For the second part of the theorem, assume that co-NEE \P(0�10�) is included in NEEwhich implies T 2 NEE. Let NT be a nondeterministic Turing machine accepting T withtime bound 2c�2n. An optimal proof system is given by the following algorithm:On input h0j10i; 0s; �; wi examine if s � 22l and jwj � 22l, where l = i + j + 1,and test whether � encodes an accepting computation of NT on input 0j10i. Ifthis is the case, output Mi(w) if Mi stops after at most 22l steps on input w. (Ifsome other case applies, output some �xed tautology).6



A similar argument as the one above shows that this proof system simulates every otherproof system.If in the previous proof we replace each occurence of the number 2 by some arbi-trary constant d (and log by logd) we obtain that already co-NTIME(2O(dn)) \ P(0�10�) �DTIME(2O(dn)) for some d > 0 implies the existence of a p-optimal proof system (a similarresult follows for optimal proof systems).3Corollary 3.2If NEE \P(0�10�) � EE then there exists a p-optimal proof system.If NEE \P(0�10�) � co-NEE then there exists an optimal proof system.Proof: The corollary follows from the observation that co-NEE \P(0�10�) = f0�10� n L jL 2 NEE \P(0�10�)g.We translate now these results to the polynomial time setting. A tally language L � f0g�is called f(n)-tally for some function f : N ! N if L \ f0g�n � f(n) for all n.Theorem 3.3P-optimal proof systems exist if every (log logn)2-tally language in NP is already in P.Optimal proof systems exist if every (log logn)2-tally language in NP is in co-NP.Proof: Let L � 0�10� be an arbitrary language in NEE, and let L2 = Tally(Tally(L)). ByLemma 2.1 L2 2 NP. Observe L2 � f022l+2j j 0 � j < lg andjjf022l+2j j 0 � j < lg \ ��njj � jjf(l; j) j 2l + 2j � logngjj� (log logn)2:Therefore L2 is a (log logn)2-tally language in NP. By Lemma 2.1, L2 2 P implies L 2 EE.Similarly L2 2 co-NP implies L 2 co-NEE.4 Complete problems for UPIn this and the next sections we prove that the existence of optimal proof systems imply theexistence of complete sets in certain promise complexity classes. The machines computingthe sets in these classes can not be guaranteed to keep the condition of the class for allpossible inputs, and because of this, complete problems for these classes are not known.We will �rst prove the existence of complete sets for UP under many-one polynomial timereductions, considering the existence of p-optimal proof systems. Later we will strengthenthis result to logarithmic space reductions.3This improvement (notice DTIME(2O(2n)) ( DTIME(2O(dn)) by the classical hierarchy theorems ifd > 2) emerged from an email discussion with S. Ben-David.7



De�ne the set CAT containing descriptions of machines that are categorical, i.e. have atmost one accepting path for all inputs up to a given length.CAT = fhM; 0l; 0ni j M is a nondeterministic Turing machine and for every input x;jxj � n; M(x) has at most one accepting path of length � lg:Clearly, CAT 2 co-NP and since TAUT is co-NP complete for polynomial time many-onelength-increasing reductions, there is such a function f 2 FP reducing CAT to TAUT.For every �xed nondeterministic Turing machineM and every �xed monotone polynomialq, the set CATM;q = fhM; 0q(n); 0ni j n � 1g \ CAT;is in P. Also the image of CATM;q under f , is in P; in order to test whether a given formula� belongs to f(CATM;q) it su�ces to generate the words of CATM;q up to a given length,and check whether the image of one of these words after applying f coincides with �.Let 'M;l;n denote the formula f(hM; 0l; 0ni). Clearly, if machine M is categorical and itsrunning time is bounded by q, then for every n, 'M;q(n);n is a tautology.The following lemma intuitively says that under the hypothesis of the existence of p-optimal proof systems, for every categorical machine M there is a polynomial time com-putable function producing proofs of the categoricity of M .Lemma 4.1 Let h 2 FP be a p-optimal proof system. For every categorical machine M withrunning time bounded by a polynomial q, there is a function gM;q 2 FP such that for everyl 2 N , gM;q(0l) produces an output w and h(w) = 'M;q(l);l.Proof: Let M be a categorical machine polynomially time bounded by a polynomial q.Every formula in the set f(CATM;q) is a tautology. As we have seen this set is in P, andby Lemma 2.2, there is a proof system h0 and a function t 2 FP that produces short proofsin h0 for the tautologies in f(CATM;q). Formally, for every tautology 'M;q(l);l 2 f(CATM;q),h0(t('M;q(l);l)) = 'M;q(l);l.Since h is p-optimal, it p-simulates h0. This means that there is a function 
 2 FP,translating proofs in h0 into proofs in h, and for every tautology 'M;q(l);l 2 f(CATM;q) wehave h(
(t('M;q(l);l))) = 'M;q(l);l.The claimed function gM;q on input 0l computes the formula 'M;q(l);l = f(hM; 0q(l); 0li),and applies functions t and 
 to it. Clearly gM;q 2 FP.We can now prove that p-optimal proof systems imply the existence of complete sets forUP.Theorem 4.2 If p-optimal proof systems exist then there are sets that are complete for UPunder polynomial time many-one reductions.Proof: Let h be a p-optimal proof system and consider the setA = fhM; 0l; w; xi j M is the description of a NDTM and h(w) = 'M;l;jxjand M accepts x in l steps or lessg:8



Set A is clearly in UP since h(w) = 'M;l;jxj means that this formula is a tautology, andtherefore for every input of length smaller or equal than jxj (and in particular for x), M hasat most one accepting path of length l.For the hardness part, let B be a set in UP, accepted by a machine M in time boundedby a polynomial q. W.l.o.g. we can suppose that for every n, q(n) � q(n + 1), and thaton any input x, every computation path of M halts after exactly q(jxj) steps. Consider thefunction gM;q 2 FP whose existence was proved in the above lemma. The function � 2 FPde�ned for every x 2 �� as �(x) = hM; 0q(jxj); gM;q(0jxj); ximany-one reduces B to A since h(gM;q(0jxj)) = 'M;q(jxj);jxj.To see that p-optimal proof systems also imply the existence of logspace many-one com-plete problem for UP, we show that the construction in the proof of Lemma 4.1 can bemodi�ed so that gM;q is logspace computable. In fact, by the same observations it can beseen that even weaker reductions are possible. Remember gM;q(0l) = 
(t(f(hM; 0q(l); 0li)))where f is a length-increasing reduction from CAT to TAUT, t(x) = 1x is the function fromthe proof of Lemma 2.2, and 
 is a function translating proofs in a proof system h0 into proofsin h, whose existence is guaranteed by the p-optimality of system h. Clearly, hM; 0q(l); 0li canbe computed in logarithmic space from 0l, and the function t is logspace computable. Also fcan be chosen to be a logspace computable (and length-increasing) many-one reduction fromCAT to TAUT. By Lemma 2.3 we can assume h to be logspace-optimal, and therefore wecan also assume 
 to be logspace computable. As the composition of logspace computablefunctions is again logspace computable we obtain:Theorem 4.3 If p-optimal proof systems exist then there are sets that are complete for UPunder logarithmic space many-one reductions.The completeness result for UP can be extended to the related complexity classes FewPand Few as stated in the next theorem. The classes FewP and Few were de�ned in [1] and[5] as a generalizations of the class UP. For space reasons we omit the de�nition of theseclasses and the proof of the next theorem.Theorem 4.4 If p-optimal proof systems exist then there are sets that are complete underpolynomial logspace many-one reductions for the classes FewP and Few.Let us mention at this point that in [9] an oracle is constructed under which the classUP does not have many-one complete sets. In [11] this result is improved from many-oneto Turing reducibility, and it is also shown that under certain relativizations the class FewPdoes not have Turing complete sets. Since the proofs in this paper relativize, we can statethe following corollary:Corollary 4.5 There exists a relativization under which p-optimal proof systems do notexist. 9



If we only consider the existence of optimal proof systems (instead of p-optimal systems),then we can prove a version of the above result for nonuniform reductions. Intuitively a set ispolynomial time nonuniformly many-one reducible to a second one, if the reduction functionis not necessarily in FP, as in the usual polynomial time reductions, but it is computed bya family of polynomial size circuits [13].Due to space reasons we omit the formal de�nition of non-uniform reductions as well asthe proof of the next theorem.Theorem 4.6 If optimal proof systems exist then there are sets that are complete for UPunder nonuniform polynomial time many-one reductions.As expected, the many-one completeness results for Few and FewP from Theorem 4.4become completeness results for nonuniform many-one reductions if only the existence ofoptimal proof systems is considered.5 Complete sets for NP \ SPARSEWe prove now that there are many-one complete sets for NP\SPARSE under the hypothesisof the existence of optimal proof systems. The proof follows the same lines as the previousone for complete sets in UP, but in this case we do not need p-optimality, and the existenceof optimal proof systems su�ces.Let us de�ne the set SP containing descriptions of nondeterministic machines that donot accept too many strings up to a given length:SP = fhM; 0l; 0ni j M is a nondeterministic Turing machine and there are at most lpairs (xi; yi); jxij � n; jyij � l; such that xi 6= xj for i 6= j; andyi is an accepting path of M on input xig:It is not hard to see that SP 2 co-NP, and therefore SP is polynomial-time many-onereducible to TAUT. Let f 2 FP be a length increasing function that reduces SP to TAUT.Let M be a �xed nondeterministic Turing machine with running time bounded by apolynomial q, that for every length l accepts at most q(l) words of length l. The setSPM;q = fhM; 0q(n); 0ni j n � 1g \ SP;is in P, and the image of SPM;q under f , is also in P;Let �M;l;n denote the formula f(hM; 0l; 0ni). Clearly if machine M runs in time boundedby q and accepts a q-sparse set of inputs, then for every n, 'M;q(n);n is a tautology.The following lemma is analogous to Lemma 4.7, and says that in an optimal proofsystem, a proof of the fact that a machine accepts a sparse language up to a given length,can be polynomially bounded. The proof follows the same lines as the one for Lemma 4.7and it is omitted. 10



Lemma 5.1 Let h 2 FP be a p-optimal proof system. For every nondeterministic Turingmachine M with running time bounded by a polynomial q, and such that for every n 2 N ,M accepts at most q(n) words of length n, there is a polynomial r such that for every l 2 N ,there is a string w 2 ��, with jwj � r(l) and h(w) = �M;q(l);l.We can now prove that optimal proof systems imply the existence of complete sets forNP \ SPARSE.Theorem 5.2 If optimal proof systems exist then there are sets that are complete for NP \SPARSE under logarithmic space many-one reductions.Proof: Let h be an optimal proof system, and let S be the setS = fh0M ; 0l; 0j; xi j M is the description of a NDTM and there is a string w of lengthjwj � j and h(w) = �M;l;jxj and M accepts x in l steps or lessg:S belongs clearly to NP. Also, the number of string x such that h0M ; 0l; 0j; xi 2 S is boundedby l, since h0M ; 0l; 0j; xi 2 S implies that �M;l;jxj is a tautology. Therefore for every length nthere are at most n words of this length in S. This proves that S is sparse.In order to see that S is hard for the class, let S 0 be a set in NP \ SPARSE, acceptedby a nondeterministic Turing machine M with time bounded by a polynomial q, and withdensity also bounded by q. By Lemma 5.1 there is a polynomial r such that for every l 2 N ,there is a string w with jwj � r(l) and h(w) = �M;q(l);l. The reduction from S 0 to S is givenby the function �(x) = h0M ; 0q(jxj); 0r(jxj); xi:Observe that this function is computable in logarithmic space, one-to-one, length increasingand also invertible in logarithmic space.Let us mention at this point that contrary to the UP case, there is no known relativizationunder which the class NP\SPARSE does not have many-one complete sets. For this reason,and considering the existing results on sparse sets mentioned in the introduction, we feel thatTheorem 5.2 only provides a weak consequence of the existence of optimal proof systems.References[1] E. Allender. Invertible functions. Ph.D. dissertation, Georgia Institute of Technology, 1985.[2] J. L. Balc�azar, J. D��az, and J. Gabarr�o. Structural Complexity I, volume 11 of EATCSMonographs on Theoretical Computer Science. Springer-Verlag, 1988.[3] S. Buss. Lectures on Proof Theory. Tech Report No. SOCS-96.1, McGill University, 1996.(http://www.cs.mcgill.ca/~denis/TR.96.1.ps.gz)[4] R. V. Book. Tally languages and complexity classes. Information and Control 26, pp. 186{193,1974. 11



[5] J. Cai and L. Hemachandra. On the power of parity polynomial time. Mathematical SystemsTheory 23, pp. 95{106, 1990.[6] S. Cook and R. Reckhow. The relative e�ciency of propositional proof systems. Journal ofSymbolic Logic 44, pp. 36{50, 1979.[7] J. Hartmanis, N. Immerman and V. Sewelson. Sparse sets in NP � P: EXPTIME versusNEXPTIME. Information and Control 65, pp. 158{181, 1985.[8] J. Hartmanis. Generalized Kolmogorov complexity and the structure of feasible computations.In Proceedings of the 24th IEEE Symposium on Foundations of Computer Science (FOCS'83),pp. 439{445, 1983[9] J. Hartmanis and L. Hemachandra Complexity classes without machines: On complete lan-guages for UP. Theoretical Computer Science, 58, pp. 129{142, 1988.[10] J. Hartmanis and J. Yesha. Computaton times of NP sets of di�erent densities. TheoreticalComputer Science, 34, pp. 17{32, 1984.[11] L. Hemaspaandra, S. Jain and N. Vereshchagin. Banishing robust Turing completeness. Int.Journal of Foundations of Computer Science, 4, pp. 245{265, 1993.[12] R. Implagiazzo and T. Pitassi. Personal communication, DIMACS workshop, July 1997.[13] R. Karp and R. Lipton. Some connections between nonuniform and uniform complexity classes.In Proceedings of the 12th ACM Symposium on Theory of Computing, pp. 302{309, 1980.[14] J. Kraj���cek and P. Pudl�ak. Propositional proof systems, the consistency of �rst order theoriesand the complexity of computations. Journal of Symbolic Logic 54, pp. 1063{1079, 1989.[15] P. Pudl�ak. On the length of proofs of �nitistic consistency statements in �rst order theories.Logic Colloquium'84 (J. B. Paris et al., editors), North-Holland, Amsterdam, pp. 165{196,1986[16] U. Sch�oning. On random reductions from sparse sets to tally sets. Information ProcessingLetters, 46, pp. 239{241, 1993.[17] A. Urquhart. The complexity of propositional proofs. Bulletin of Symbolic Logic 1, pp. 425-467, 1995.[18] L. Valiant. The relative complexity of checking and evaluating. Information Processing Letters,5, pp. 20{23, 1976.

12


