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Abstract

We introduce a new way to measure the space needed in resolution refutations
of CNF formulas in propositional logic. With the former definition [11] the space
required for the resolution of any unsatisfiable formula in CNF is linear in the
number of clauses. The new definition allows a much finer analysis of the space
in the refutation, ranging from constant to linear space. Moreover, the new
definition allows to relate the space needed in a resolution proof of a formula
to other well studied complexity measures. It coincides with the complexity
of a pebble game in the resolution graphs of a formula, and as we show, has
relationships to the size of the refutation. We also give upper and lower bounds
on the space needed for the resolution of unsatisfiable formulas. We show that
Tseitin formulas associated to a certain kind of expander graphs of n nodes need
resolution space n — ¢ for some constant c¢. Measured on the number of clauses,
this result is the best possible. We also show that the formulas expressing the
general Pigeonhole Principle with n holes and more than n pigeons, need space
n + 1 independently of the number of pigeons. Since a matching space upper
bound of n + 1 for these formulas exist, the obtained bound is exact. We also
point to a possible connection between resolution space and resolution width,
another measure for the complexity of resolution refutations.



1 Introduction and Definitions

In this paper we deal exclusively with propositional logic, and the only refutation
system considered is resolution. Due to its simplicity and to its importance in automatic
theorem proving and logic programming systems, resolution is one of the best studied
refutation systems. Resolution contains only one inference rule: If AV x and BV %
are clauses, then the clause AV B may be inferred by the resolution rule resolving the
variable z. A resolution refutation of a conjunctive normal form (CNF) formula ¢ is
a sequence of clauses (] ..., where each C; is either a clause of ¢ or is inferred from
earlier clauses in the refutation by the resolution rule, and Cy is the empty clause,
0. One way to measure the complexity of resolution applied to a specific formula, is
to measure the minimum size of a refutation for it. This is defined as the number of
clauses in the refutation. More than a decade ago, Haken [10] gave the first proof of an
exponential lower bound on the number of clauses needed in any resolution refutation
of a family of formulas expressing the pigeonhole principle. In following years, the
original proof has been greatly simplified and extended to other classes of formulas
[21, 6, 3, 18, 15].

Because of the importance of resolution, other measures for the complexity of res-
olution refutations have been introduced. Recently Ben-Sasson and Wigderson [4],
building on previous work [3, 7], unified all the existing exponential lower bounds for
resolution size using the concept of width. The width of a resolution refutation is the
maximal number of literals in any clause of the refutation. The authors relate in [4]
width and size showing that lower bounds for resolution width imply lower bounds for
resolution size.

A less studied measure for the complexity of a resolution refutation is the amount
of space it needs. This measure was defined in [11] in the following way:

Definition 1 [11] Let k € IN, we say that an unsatisfiable CNF formula ¢ has resolu-
tion refutation bounded by space k if there is a series of CNF formulas ¢, ..., ¢s, such
that ¢ = 1, O € @, in any @, there are at most k clauses, and for each i < s, Y41
is obtained from @; by deleting (if wished) some of its clauses and adding the resolvent
of two clauses of ;.

Intuitively this expresses the idea of keeping a set of active clauses in the refutation,
and producing from this set a new one by copying clauses from the previous set and
resolving one pair of clauses, until the empty clause is included in the set. Initially
the set of active clauses consists of all the clauses of ¢, and the space needed is the
maximum number of clauses that are simultaneously active in the refutation.



In [11] it is proven that any unsatisfiable CNF formula ¢ with n variables and m
clauses can be refuted in space m + n, and in [8] it is observed that the space upper
bound 2m can also be obtained.

The above definition has the important drawback that the space needed in a refu-
tation can never be less than the number of clauses in the formula being refuted. This
is so because this formula is the first one in the sequence used to derive the empty
clause. Making an analogy with a more familiar computation model, like the Turing
machine, this is the same as saying that the space needed cannot be less than the size
of the input being processed. To be able to study problems in which the working space
is smaller than the size of the input, the space needed in the input tape is usually not
taken into consideration. We do the same for the case of resolution and introduce the
following alternative definition for the space needed in a refutation.

Definition 2 Let k € IN, we say that an unsatisfiable CNF formula ¢ has resolution
refutation bounded by space k if there is a series of CNF formulas 1, ..., ps, such that
1 C p, O € @, in any p; there are at most k clauses, and for each i < s, @i 1S
obtained from @; by deleting (if wished) some of its clauses, adding the resolvent of two
clauses of p;, and adding (if wished) some of the clauses of ¢ (initial clauses).

The space needed for the resolution of an unsatisfiable formula is the minimum &
for which the formula has a refutation bounded by space k.

In the new definition it is allowed to add initial clauses to the set of active clauses
at any stage in the refutation. Therefore this clauses do not need to be stored and do
not consume much space since in any moment at most two of them are needed simul-
taneously. The only clauses that consume space are the ones derived at intermediate
stages. As we will see in Section 2, there are natural classes of formulas that can be
refuted using only logarithmic space (in the number of initial clauses), or even constant
space. Recently in [2] this definition of space for resolution has also been adopted.

There is another natural way to look at this definition using pebble games on
graphs, a traditional model used for space measures in complexity theory and for
register allocation problems (see [16]). Resolution refutations can be represented as
directed acyclic graphs of in-degree two, in which the nodes are the clauses used in the
refutation, and a vertex (clause) has outgoing edges to the resolvents obtained using
this clause. In this graph the sources are the initial clauses, all the other nodes have
in-degree two, and the unique sink is the empty clause. In case that in the refutation
no derived clauses are reused, that is, when all the nodes (except maybe the sources)
have out-degree one, the proof is called tree-like. There is a restriction of resolution
called regular resolution in which is required that in every path from the empty clause
to an initial clause in the refutation graph, every variable is solved at most once.



The space required for the resolution refutation of a CNF formula ¢ (as expressed
in Definition 2) corresponds to the minimum number of pebbles needed in the following
game played on the graph of a refutation of ¢.

Definition 3 Given a connected directed acyclic graph with one sink the aim of the
pebble game is to put a pebble on the sink of the graph (the only node with no outgoing
edges) following this set of rules:

1) A pebble can be placed in any initial node, that is, a node with no predecessors.
2) Any pebble can be removed from any node at any time.
3) A node can be pebbled provided all its parent nodes are pebbled.

3’) If all the parent nodes of node are pebbled, instead of placing a new pebble on i,
one can shift a pebble from a parent node.

There are several variations of this simple pebble game in the literature. In fact, in
[22] it is shown that the inclusion of rule 3’ in the game can at most decrease by one
the number of pebbles needed to pebble a graph, but in the worst case the saving is
obtained at the price of squaring the number of moves needed in the game. We include
rule 3’ so that the number of pebbles coincides exactly with the space in Definition 2.
This fact is stated in the following straightforward Lemma.

Lemma 4 Let ¢ be an unsatisfiable CNF formula. The space needed in a resolution
refutation of ¢ coincides with the number of pebbles needed for the pebble game played
on the graph of a resolution refutation of .

This second characterization of space in resolution proofs allow us to use techniques
introduced for the estimation of the number of pebbles required for pebbling certain
graphs, for computing the space needed in resolution refutations. However the estima-
tion of the number of pebbles needed in the refutation of a formula is harder than the
estimation of the number of pebbles needed for a graph, since in the first case one has
to consider all the possible refutation graphs for the formula.

In Section 3 we give upper and lower bounds for the amount of space needed for
resolution. When measuring the space relative to the number of variables in the initial
formula we show that any unsatisfiable CNF formula with n variables has a resolution
proof that uses space n + 1, and we also obtain a matching lower bound, that is, we
show that there are formulas on n variables whose refutation needs space n+1. We also



obtain optimal space lower bounds for the two important families of Tseitin formulas
and formulas expressing the Pigeonhole Principle.

Very similar results also hold for these families of formulas if the width instead of
the space of a resolution refutation is used [4]. This is surprising since both measures
seem unrelated, and suggest that there might be a relationship between the concepts
of width and space. Space lower bounds for these families of formulas for resolution
and Polynomial Calculus have been obtained independently in [2].

We show in Section 3.1 space lower bounds for the refutation of Tseitin formulas.
This family of formulas was first defined by Tseitin [20], and express the principle that
the sum of the degrees of the vertices in a graph must be even. Tseitin proved in [20)]
super-polynomial lower bounds on the size of regular resolution refutations for them:.
Later Urquhart [21] improved these bounds to exponential lower bounds for general
resolution. We prove that the space needed for the resolution of a Tseitin formula with
associated graph G is at least ex(G) — [£] 4+ 1, where ex(G) is the expansion of G
and d its maximum degree. For Tseitin formulas corresponding to expander graphs
with n nodes, this means that the space needed is at least n — ¢ for some constant
c. These formulas have O(n) variables and clauses, and because of the general space
upper bound mentioned above, the space needed is ©(n), and this linear lower bound
on the number of initial clauses is optimal up to a constant factor®.

The family of formulas for the general Pigeonhole Principle PHP]" express the fact
that it is not possible to fit m pigeons in n pigeonholes (for m > n). As mentioned
above, for the case m = n + 1, this was the first example of a family of formulas with
an exponential resolution size lower bound [10]. We show that the negation of PHP
formulas needs refutation space n-+1, independently of the number of pigeons 2. In this
case we have an exact bound since Messner [13] has proven that n+ 1 is also an upper
bound for the space needed for the refutation of PHP formulas with n pigeonholes.

This lower bound result is also interesting due to the fact that the complexity of
resolution refutations of the general Pigeon Hole Principle is not known. For example,
only trivial lower bounds on the size are known when the number of pigeons m is greater
than n?. Buss and Pitassi [5] have shown that for the case of tree-like resolution, for
any m > n, "PHP]" needs tree-like resolution refutation of size at least 2". This result
can also be proven using a lower bound on the width of refutations for =PHP]" from
[4]. Due to the fact that tree-like resolution refutations of size S require at most space
[log S|+ 1, the above mentioned space lower bound for =PHP!" also provides the lower

'A linear space lower bound in the number of initial clauses for Tseitin formulas have been inde-
pendently proven in [2]
2A Q(n) lower bound for the resolution space of PHP™ have been obtained independently in [2]



bound 2" on the size of tree-like resolution refutations for these formulas.

We obtain in Section 4 an upper bound on the size of a refutation of a formula in
terms of the space needed for its resolution and the depth of the refutation. (The depth
of a refutation is the size of the longest path from the empty clause to an initial clause
in the refutation graph). We prove in Theorem 22 that if a formula ¢ has a resolution
refutation of depth d that uses space s, then this refutation has size bounded by (d“).
For types of resolution in which the depth of the proofs is bounded (like in the case of
regular resolution), this provides an exponential upper bound for the resolution size in
terms of the resolution space.

In the last section we study the space needed in tree-like refutations. We give a
characterization of this measure in terms of lists of active clauses, and show then that
for the case of tree-like resolution, the space needed in a refutation of a formula is at
least as large as the refutation width minus the initial with of the formula. Again here
we find a connection between the concepts of space and width.

2 Definitions and Examples

In this section we give two examples of families of unsatisfiable formulas that can be
refuted within less space than its number of clauses. The first example are the formulas
whose clauses are all possible combinations of literals in such a way that every variable
appears once in every clause. We will see that the space needed to refute these formulas
is bounded by the number of different variables in it. In fact we will prove a more
general result about the space needed in a tree-like resolution.

Definition 5 We say that a graph G is embedded in a graph G5 if a graph isomorphic
to Gy can be obtained from G1 by adding nodes and edges or inserting nodes in the
middle of edges of G.

Observe that the number of pebbles needed for pebbling any graph is greater than
or equal to the number of pebbles needed for pebbling any embedded subgraph in
it. This is true since any pebbling strategy for the graph, also pebbles the embedded
subgraph.

Let ¢ a CNF-formula, and « a (partial) truth assignment to the variables in ¢. ¢,
is a modification of ¢ according to a. For every variable x in « if its truth value is 1,
all the clauses in ¢ containing the positive literal x are deleted and all occurrences of
Z are deleted. If the truth value of z is 0, then all clauses in ¢ containing Z are deleted
and all occurrences of the literal x are deleted.



The next lemma, an easy adaptation of [14, Theorem 1], states the well known fact
that for a resolution refutation of a formula ¢, for any partial truth assignment a to
the variables, we can get a resolution refutation of ¢,, the formula after applying the
partial assignment, embedded in the initial refutation.

Lemma 6 Let II be a resolution refutation of the CNF'-formula ¢, let a be a partial
truth assignment and @, the formula after applying the partial assignment. There is a
resolution refutation of v, whose resolution graph is embedded in II.

Proof. We construct a new refutation I1' transforming the clauses of II. Every
original clause is either eliminated or transformed into a new one. The new graph of
clauses, after maybe contracting some adjacent nodes representing the same clause, is
also a refutation graph, and by construction, the new refutation graph is embedded in
the original one.

To build the new refutation we start transforming the initial clauses going downward
following the original refutation. If an original clause contains a literal that has been
assigned value 1 by «, then the whole clause is deleted. If it contains a literal with value
0, then the literal is deleted from the clause. Otherwise the clause remains unchanged.

If a clause in the original refutation is the resolvent of two previous ones, there are
two cases depending on whether the resolved variable has been given a value by a or
not. Suppose that clause C' is the resolvent of AV z and B V 7.

Case 1, variable z has been assigned by a. If AV z (resp. BV %) has been replaced by
A’ (resp. B') then C is replaced by A’ (resp. B') if a(z) = 0 (resp. a(z) =1).

Case 2, variable z has not been assigned by «. If AV z (resp. BV ) has been replaced
by A’ (resp. B’) then C is replaced by the resolvent of A" and B’ if both contain
variable x, and otherwise C is replaced by any of A’ or B’ that does not contain
variable x.

Consider the part of the new graph connected to the empty clause. Contracting
nodes of in-degree one, we obtain a refutation graph that is embedded in the original
one. -

Theorem 7 Let ¢ be an unsatisfiable CNF formula with a treelike resolution of size
s, then ¢ has a resolution refutation of space [logs]| + 1.

Proof. We will show that the resolution tree in the refutation of ¢ can be pebbled
with d + 1 pebbles, where d is the depth of the biggest complete binary tree embedded



in the refutation graph. As the biggest possible complete binary tree embedded in a
tree of size s has depth [logs]|, the theorem holds. It is a well known fact (see for
example [16]) that d + 1 pebbles suffice to pebble a complete binary tree of depth d
(with the directed edges pointing to the root). In fact d + 1 pebbles suffice to pebble
any binary tree whose biggest embedded complete binary tree has depth d. In order
to see this we use induction on the size of the tree. The base case is obvious. Let T be
refutation tree, and T} and T3 be the two subtrees from the root. Let us call d.(T') the
depth of the biggest embedded subtree in 7. So

max(d,(T}), d.(Ty)) if do(T}) # do(Tp)
de(T) = { do(Ty) + 1 if do(T}) = do(Tp)

By induction hypothesis one can pebble T} with d.(T}) + 1 pebbles and T, with
d.(Ty) + 1 pebbles. Let us suppose that d.(T7) < d.(T»), then d.(T) = d.(T») and
one can pebble first T, with d.(T3) + 1 pebbles, leave a pebble in the root of T5
and then pebble T} with d.(T7) + 1. For this second part of the pebbling one needs
d.(Th) + 2 < d.(T3) + 1. The other case is similar. |

We can apply the above lemma to compute the space needed in the refutation of
the following formula.

Definition 8 Letn € IN, COMPLETE-TREE,, is the CNF formula on the set of variables
{z1,...,2,}, whose clauses are all possible combinations of literals with the restriction
that each variable appears once in each clause.

COMPLETE-TREE,, = (2123 ...%,), (T1Z2 ... Zp), ..., (T1Z2 . ..

Observe that this formula has 2" clauses. It is not hard to see that COMPLETE-
TREE, can be refuted using space n 4+ 1. This is so since a straightforward tree-like
resolution of the formula that resolves the variables in different stages, has size 2"*1 —1.
The previous lemma assures that this refutation can be pebbled with n 4+ 1 pebbles.
In the next section we will see that this amount of space is also necessary.

As second example, consider the class of unsatisfiable formulas in CNF with at most
two literals per clause.

Theorem 9 Any unsatisfiable CNF formula with at most two literals in each clause
can be resolved within constant space.

Proof. The first part of the proof is similar to the one for showing that the set of
2-CNF unsatisfiable formulas can be recognized in nondeterministic logarithmic space.

10



In fact it is not hard to see that this result can also be derived from this Theorem.
Given a 2-CNF formula ¢ one can construct a directed graph G, related to it. This
graph will be useful to know whether the formula is unsatisfiable or not, and in the
former case, will provide us with a strategy to find a refutation that can be pebbled
with constant space.

The set V' of vertices of G, is the set of literals in ¢. For any clause (z; V z3) (that
can be viewed as the implication Z; — x5 or also To — x) we include in E a directed
edge from z; to x5 and another one from z, to x;. If the clause has only one literal x,
we consider it as (z; V x1) and include in F and edge from Z; to z;. No other edge is
included in F.

The formula is unsatisfiable if and only if there is a cycle in the graph that con-
tains a literal, say zy, and its negation. We can use this cycle to get a resolution
refutation. Starting from node zy, let us call the clauses related to the edges in the
cycle Cq,Cy,...,Cy (all these are initial clauses of the refutation), and suppose that
C1,...Cy are the clauses corresponding to the edges from x; to Z; in the cycle, and
Ciyq ... Cy correspond to the edges from z; to ;. One can resolve C; with C getting a
new clause which will be resolved with C5 and so on. When resolving with C} one gets
the clause x;. For this only 2 pebbles are needed. Analogously, starting from literal z,
one can resolve (1 with C},5 and so on, until resolving with C} and thus getting the
clause 7;. Resolving finally both clauses x; and Z; the empty clause is obtained. This
shows that at most 3 pebbles are needed to pebble such a refutation. |

3 Upper and Lower Bounds
For the results in this section the following concept will be very useful.

Definition 10 We say that a CNF unsatisfiable formula is minimally unsatisfiable if
removing any clause the formula becomes satisfiable.

The following result attributed to M. Tarsi can be found in [1].

Lemma 11 Any minimally unsatisfiable CNF formula must have more clauses than
variables.

We start by giving bounds with respect to the number of variables.

Theorem 12 FEvery unsatisfiable formula with n variables can be resolved using reso-
lution in space at most n + 1.

11



Proof. As mentioned in the proof of Theorem 7, for pebbling a tree of depth d,
d + 1 pebbles suffice. If we consider regular tree-like resolution, which is complete, we
have refutation trees whose depth is at most the number of variables in the formula
being refuted. [ |

There is a matching lower bound, since there are formulas of n variables whose
refutation graphs can only be pebbled with n+ 1 pebbles. This is a consequence of the
following result:

Theorem 13 Let ¢ an unsatisfiable CNF formula and k the smallest number of literals
of a clause of . Any resolution refutation of @ needs at least space k + 1.

Proof. For any pebbling strategy, there is a first step, let us call it s, in which the
set of pebbled clauses becomes unsatisfiable. This step must exist because the first
pebbling step consists of pebbling an initial clause, which is always satisfiable, and the
last step pebbles the empty clause.

In step s, an initial clause has to be pebbled since according to the pebbling rules
the only other possibility would be to pebble a clause with both parents pebbled,
and this step would not transform the set of pebbled clauses into an unsatisfiable set.
Therefore the set of pebbled clauses at step s contains at least k variables (the ones of
the initial clause).

Let us suppose than the set of pebbled clauses at step s is minimally unsatisfiable,
then, by Lemma 11, it has at least k£ 4 1 clauses because it has at least k variables. On
the other hand, if this set is not minimally unsatisfiable, we can throw aside clauses
until the remaining set becomes minimally unsatisfiable. Notice that we cannot delete
the initial clause last added to the set, otherwise the set of clauses would be a subset of
the clauses at stage s — 1 and becomes therefore satisfiable. So, k& + 1 clauses are still
needed because the initial clause is contained in the set and has at least £ variables. Il

Since all the clauses in COMPLETE-TREE,, have n variables, we obtain:

Corollary 14 For all n € IN any resolution refutation of COMPLETE-TREE,, requires
at least space n + 1.

Theorem 13 can be strengthened to allow to prove lower bounds for the space
needed in the refutation of a more general class of formulas.

Theorem 15 Let ¢ be a unsatisfiable CNF formula, and let k be the mazimum over

all partial assignments a of the minimum number of literals of a clause in ¢,. The
space needed in a resolution refutation of ¢ is at least k.

12



Proof. Let a be any partial assignment to the variables in ¢, and II a refutation of
¢ that needs the smallest amount of space. From Lemma 6 we know that there exists
a refutation I’ for ¢, embedded in the structure of II. Theorem 13 guarantees that to
pebble ¢, one needs at least a number of pebbles equal to the length of the shortest
clause in ¢,. But as IT' is embedded in II, one cannot pebble IT with fewer pebbles
than IT". To finish the proof we just need to consider an assignment a which produces
a shortest clause of maximal length. [ |

3.1 Lower bounds on Tseitin formulas

In this section we study the space used in resolution refutations of some formulas
related to graphs. These formulas were defined originally by Tseitin [20], and have also
been used in order to prove lower bounds on the size of resolution refutations in [21]
and [18].

Let G = (V, E) be a connected undirected graph with n vertices, and let m : V' —
{0,1} be a marking of the vertices of G satisfying the property

Zm(x) = 1(mod 2).

eV

For such a graph we can define an unsatisfiable formula in conjunctive normal form
©(G,m) in the following way: The formula has E as set of variables, and is a conjunc-
tion of the translation in CNF of the formulas ¢, for x € V, where

e(z)® ... Deqg(x) if mx)=1
Pr =

() ®...Deqg(x) if m(x)=0

Here e;(x) .. .eq(x) are the edges (variables) incident with vertex z. If d is the maximum
degree of a node in G, (G, m) contains at most n2%~" many clauses, each one with at
most d many literals. The number of variables of the formulas is bounded by %".

©(G,m) captures the combinatorial principle that for all graphs the sum of the
degrees of the vertices is even. When the marking m is odd, ¢(G,m) is unsatisfiable.
Suppose on the contrary that there were a satisfying assignment « : E — {0,1}. For
every vertex x, the number of edges of x that have been assigned value 1 by « has the
same parity as m(z), and therefore

Z Z al(z,y)) = Zm(m) = 1( mod 2)

z€V (z,y)EE eV

13



but in the left hand sum in the equality, every edge is counted twice and therefore this
sum must be even, which is a contradiction.

The following fact was also used in [21] and [18] and plays a fundamental role in
the proof of the lower bound. For completeness we include a proof of it.

Fact 16 For an odd marking m, for every x € V there exists an assignment o with
a(py) = 0, and alpy) = 1 for all y # x. If the marking is even, then (G, m) is
satisfiable.

Proof. Let m be an odd marking and x be a node in V. The desired assignment «
can be constructed in the following way: We start with an assignment 3 with §(p,) = 0.
For an odd number of nodes v (including z) the value of ¢, under 3 in now 0. We pick
two such nodes u and v different from . Since the graph is connected there must be a
path from u to v. We toggle in the assignment [ the value of all the variables (edges)
along this path. Now the values of ¢, and ¢, are also changed and these formulas have
therefore value 1. On the other hand, the formulas related to the nodes w lying between
u and v keep the same truth value as before because for these formulas the truth value
of two of the edges has been changed. This procedure is repeated for different pairs of
nodes u, v until the desired assignment « is found. For an even marking m the proof
is completely analogous. |

Consider a a partial truth assignment « of some of the variables. We refer to the
following process as applying « to (G, m): Setting a variable (x,y) in a to 0 corresponds
to deleting the edge (x,y) in the graph, and setting it to 1 corresponds to deleting the
edge from the graph and toggling the value of m(z) and m(y) in G. Observe that
the formula p(G’, m') for the graph and marking (G', m’) resulting after applying « to
(G,m) is still unsatisfiable.

In order to prove the lower bound we will consider the last stage in any pebbling
strategy in which two properties are satisfied. On the one hand, the set of pebbled
clauses must be simultaneously satisfiable. The other property needed is based on
non-splitting assignments, a concept that we define next.

Definition 17 We say that a partial truth assignment o of some of the variables in
©(G,m) is non-splitting for (G,m), if applying it to (G, m) produces a pair (G',m’')
so that G' has a connected component of size > %n with an odd number of 1’s in its
marking, and an even number of 1’s in the markings of all other connected components.

Definition 18 Let G = (V, E) be an undirected graph with with |V| =n. The expan-
sion of G, ex(G) is defined as:
n 2n

ex(G) =mink: 35 C V.|| € [5,?] @y eB: xeSyg sy =k

14



Intuitively the expansion of a graph is the minimum size of a cut produced when
the vertices are partitioned into two subsets that do not differ too much in size. As
shown in the next theorem, the expansion of a graph is a lower bound on the space
required in the resolution of its associated Tseitin formula.

Theorem 19 Let G = (V, E) be an undirected and connected graph with |V | =n and
mazimum degree d, and let m be an odd marking of G. Any resolution refutation of
©(G, m) requires space at least ex(G) — [£] + 1.

Proof. Let II be a resolution refutation of the formula, and consider the last stage
s in a pebbling strategy of the graph of II in which there is a partial assignment «
fulfilling the following two properties:

i) « simultaneously satisfies all the pebbled clauses at stage s,
i1) a is non-splitting for (G, m).

This stage in the pebbling must exist: Before the initial step, no clause has a pebble.
Since G is connected, the empty truth assignment is trivially a non-splitting partial
assignment satisfying the set of pebbled clauses. At the end, the set of pebbled clauses
contains the empty clause which cannot be satisfied by any assignment. Stage s must
exist in between.

The clause pebbled in stage s+ 1 must be an initial one. The only other clause that
could be pebbled at stage s+ 1 would be a clause C3 whose parents C and C already
have a pebble, but any partial assignment satisfying C; and C also satisfies C3, and
the non-splitting partial assignment from stage s would also work for stage s + 1. For
some vertex x in G, this last initial pebbled clause corresponds to the formula ¢,.

Let v be a partial assignment satisfying properties i) and i) at stage s. There is
an extension of « that satisfies ¢!, the formula for x after applying . To see this,
observe that after applying a to (G, m), the graph has a connected component of size
at least 2?" with an odd marking, and the rest of the components have even markings.
By Fact 16, for every vertex z, the formula ¢/, can therefore be satisfied by an extension
of a. Moreover, the initial clause C pebbled at stage s + 1 corresponds to a vertex x
in the big connected component with odd marking since otherwise there would be also
non-splitting partial assignments satisfying all the pebbled clauses at stage s + 1.

Let a be a non-splitting partial truth assignment of minimal size satisfying the
clauses at stage s, and (G',m') the graph and marking resulting after applying o.
It suffices to extend «a giving some value to one or more of the variables in the last
pebbled clause to obtain an assignment o satisfying all the clauses pebbled at stage
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s+ 1. However, o is a splitting assignment and applying it to (G, m) does not produce
2

a connected component larger than £n with odd marking. We will show that there is
always a way to extend « to o by assigning some new variables in the last pebbled
clause C, in such a way that o' satisfies all the pebbled clauses and produces a subgraph
disconnected from the rest and with a number of nodes in the interval [%, 2?"]

Let C be the initial clause pebbled at stage s+ 1, corresponding to a node x and let
d' be the degree of z in G' (d' < d). ¢'(x) is the formula e;(z) @ ... D eg(x) = m'(z).
We have shown that this formula is satisfiable. d’ is at least 1, since otherwise o would
also satisfy ¢! .

x is connected in G’ to d’ components Ay, ..., Ay, and there is no edge between any
two of such components A;, A;. Otherwise, satisfying the clause C' by satisfying the
literal corresponding to the edge connecting x and A;, would provide a non-splitting
extension of .

We consider different cases depending on the size of the A components.

Case 1: Some component A; has size within the interval. Deleting the edge con-
necting x and A;, this component is isolated from the rest of the graph.

Case 2: The size of all the A; components lie outside the interval. This implies
that they all have size smaller than %, since otherwise, by Fact 16, there would be
an extension of a that satisfies C', and disconnects all the components form node
x producing an odd marking in the component of size greater that 2?", and an even
marking in all the other ones. This would provide a non-splitting assignment satisfying
all the pebbled clauses at stage s + 1. The size of all the components A; is therefore

smaller than 2 and the sum of all their sizes is greater than %" There is a set of at

3
most L%'J components such that the sum of their sizes lie within the interval. This set
of components can be isolated from the rest of the graph just by deleting the edges
connecting them to x.

In both cases, by deleting at most {gj edges from G’ we have isolated a set of nodes
S of size within [, %"] from the rest of the graph. There are at least ex(G) edges

y,2} in G with y € S and z ¢ S. All these edges, except at most | 4| of them have
2

been removed by the partial assignment a. Since a was chosen to be an assignment of

minimal size satisfying all the pebbled clauses at stage s, there are at least ex(G) — | 4]

pebbled clauses at this stage and ex(G) — [2] + 1 pebbled clauses at stage s +1. W

There exist expander graphs G with n nodes constant degree d and with ex(G) >
n [12]. In [17] it is shown that the degree for such expander graphs can be reduced
to d = 8. For an odd marking of such a graph the formula ¢(G, m) has at most %
variables and n2¢~! clauses. By the above result, the space needed in a resolution
refutation of (G, m) is at least n — 3 as stated in the next corollary:
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Corollary 20 For the constant d = 8 there is a family of unsatisfiable formulas
©1, P2, ... (corresponding to expander graphs) such that for every n @, has at most
256n clauses and 4n variables, and any resolution refutation of ¢, requires at least
space n — 3.

The number of variables of a formula is an upper bound for its resolution space
(Theorem 12). For the family of formulas mentioned in the corollary, the space needed
is therefore ©(n). Observe that this bound is linear, measured in terms of the number
of clauses of the formula.

An interesting fact is that Theorem 19 (even with the lower bound ex(G) instead
of ex(G) — [2] + 1) also holds if the width of the refutation instead of the space is

2
considered [4].

3.2 The Pigeonhole Principle

Let m > n. The tautology PHP]" expresses the Pigeonhole Principle that there is no
one-one mapping from a domain of size m (the set of pigeons) into a range of size n (the
set of holes). We study the space needed in a resolution refutation of the contradiction
—PHP]". This contradiction can be written as a CNF formula in the following way:
The variables of the formula are z;;, 1 < i < m,1 < j < n. z;; has the intuitive
meaning that pigeon ¢ is mapped to hole j. There are mn variables. The clauses of
the formula are:

(1) 20 Vo V...V, for 1 <i<m, and

(2) T VT for 1 <i,j<m, 1<k<n,i#j.
Clauses of type (1) express the fact that every pigeon is mapped to some hole, while
the clauses of type (2) indicate that at most one pigeon can be mapped to any hole.

The number of clauses in =PHP™ is m + (7)n < m?n.

Theorem 21 For any m > n, the space needed in a resolution refutation of ~PHP)"
s at least n + 1.

Proof. Let II be a resolution refutation of =PHP]" and consider the last stage s in
a pebbling strategy of the graph of IT in which there is a partial assignment « fulfilling
the following two properties:

i) « simultaneously satisfies all the pebbled clauses at stage s, and

i1) a does not assign value false to any of the initial clauses.

17



At stage s = 0 in the pebbling process, such a partial assignment « exists since
there are no pebbled clauses. Also, at the end of the pebbling, the empty clause has
a pebble on it and therefore there is no « fulfilling property 7). Because of this, the
stage s defined above must exist.

The pebble from stage s 4+ 1 is placed in an initial clause. Otherwise the two
parents of the pebbled clause at stage s+ 1 contain a pebble in stage s and any partial
assignment satisfying the pebbled clauses at stage s also satisfies the clauses at stage
s+ 1.

Let o be a partial assignment simultaneously satisfying all the pebbled clauses at
stage s. a can be extended to a partial assignment o that satisfies the last pebbled
clause C'. We have seen that C' must be an initial clause. If no extension of o can
satisfy clause C' it is because « assigns value false to all the literals in C', but this is a
contradiction since C' is an initial clause, and by condition ii) o cannot give value false
to any initial clause.

Let o be a partial assignment of minimal size satisfying all the pebbled clauses at
stage s and not giving value false to any initial clause, and let o/ be any extension of «
satisfying the clause C' pebbled at stage s + 1. By hypothesis, o' falsifies some initial
clause.

If C is of type (1) for some pigeon i, C' can be satisfied by giving value true to
some variable z; ; that has not been assigned by a. This makes some initial clause C;
false, and therefore C; ;, must be of type (2), Ciy = Z;x V T for some j. This implies
that for any hole k, o assigns variable x; value false, or variable x;; value true (for
some j # i), and therefore a assigns at least as many variables as holes. Since o was a
partial assignment of minimal size satisfying all the pebbled clauses at stage s, in this
stage at least n clauses were pebbled, and in s 4+ 1 at least n + 1.

If C is of type (2), C = T;x V Ty, assigning value true to any literal in C' that has
not been assigned by «, falsifies some initial clause of type (1). If o has not assigned
value to any of the variables in C', this means that the number of variables assigned
by « is at least 2n — 2. Otherwise « has assigned at least n variables. For n > 2, this
implies that the number of variables assigned by « is at least n, which means that the
number of pebbled clauses at stage s — 1 is at least n, and at stage s, n + 1. [ |

Jochen Messner [13] has proved that n+ 1 pebbles suffice in a resolution refutation
of the Pigeonhole Principle with n holes and m > n pigeons. This means the the above
space lower bound is exact.

Although only trivial lower bounds for the size of a resolution refutation of the
general Pigeonhole Principle =PHP™ are known for the case m > n?, the situation is
better when restricted to tree-like resolution. In [5] it is shown that for any m > n,
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—PHP]" requires tree-like resolution refutations of size 2”. Using Theorem 7 we can
derive this bound as a corollary of the above space lower bound. The same bound for
tree-like refutations of =PHP]" has also obtained in [4] using a lower bound on the
width of the refutations of -PHP]".

4 Relationships between Space and Size

The main result of this section provides an upper bound on the size of resolution
refutations of a formula in terms of the space and the depth needed in a refutation?.
Recall that the depth of a resolution refutation is the size of the longest path from the
empty clause to an initial clause in the graph of the refutation.

Theorem 22 A resolution refutation for an unsatisfiable CNF formula ¢ on n vari-

ables using space s and depth d, has size at most (d;“s).

Proof. Let II be the resolution refutation proof that can be pebbled with s pebbles.
The depth of a clause C' in II is the length of the longest path from C' to the empty
clause.

We associate a set A of at most s clauses in [T with an array depth(A4) = a; ... a,
of s numbers between 1 and d+ 1 in the following way: Sort the clauses in A by depth
in IT and for 1 < j < s let a; be the depth of the clause of j-th smallest depth. If there
are less than j clauses in A then let a; = d + 1. In this way the array depth(A) has
always s positions. We can compare these arrays as base d + 1 numbers in the usual
way.

IT can be pebbled with s pebbles. W.l.o.g. we can suppose that in the pebbling
strategy pebbles are removed from clauses in the first moment they are not needed
anymore, that is, pebbles can only be removed from a clause only immediately after
one of its successors has been pebbled.

In the pebbling strategy pebbles are placed and removed. We consider the stages
right before the pebbles are placed. Let ¢; be the set of clauses containing pebbles
at the stage right before the i-th time a pebble is set or shifted. ¢; is the empty
set. Observe that, by the special form of pebbling strategy we are considering, ¢;q
is obtained from ¢; by pebbling one clause, and eventually removing one or the two
predecessors of this clause.

We claim that if ;; and ; are two consecutive pebbling stages as described, then
depth(p;) > depth(p;1). If in stage ¢;41 no clauses are deleted, then the result is

3In [9] a better upper bound was announced. Unfortunately, the proof of the mentioned result is
incorrect, and it is not known whether the result holds.
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clear, since either one of the non-used pebbles at stage i (with depth d + 1) is placed
at depth < d, or some pebble is shifted to a position with smaller depth. In the other
case one or two pebbles are deleted in stage 7 + 1, but this can only happen if at stage
t + 1 a clause C' resolvent of the clauses with the removed pebbles is pebbled. ;.
differs from ¢; since it contains C' and does not contain one or the two predecessors of
C. Since the depth of C is smaller than the depth of its predecessors the inequality
holds.

In each stage 7 in the pebbling strategy at most a new clause is considered and it
holds depth(y;) > depth(p;;1). Because of this the number of clauses in the refutation
is bounded by the set of possible values of the function depth(A) for sets A of size
at most s. depth(A) is encoded by an ordered sequence of s numbers ranging from
1 to d + 1. Since there are (d;“s) possible values for these sequences, the size of the

refutation is bounded by (djs). [ |
We get several consequences from this result:

Corollary 23 Any family of unsatisfiable CNF formulas with resolution refutations of
polynomial depth and constant space, have resolution refutations of polynomial size.

In some types of resolution, the depth of the proof is automatically bounded. An
example is regular resolution. For this type of resolution it is required that in every
path from the empty clause to an initial clause in the refutation graph, every variable
is solved at most once. Clearly in this case the number of variables is a bound on the
depth of the proof.

Corollary 24 If an unsatisfiable CNF-formula on n variables has a reqular resolution

refutation of space s, then the size of this refutation is bounded by (":5)

An interesting question is whether the depth of the refutation can be taken out of
the bound given by Theorem 22. A way to do this would be by showing that a refutation
of a formula can be transformed into another one that uses the same amount of space,
but has bounded depth. It is not clear that this result holds, but as we see in the next
section, it does hold for the case of tree-like resolution.

5 Space in tree-like resolution

We consider in this section the question of measuring the space when the resolution
refutations are restricted to be tree-like. Recall that in this case all the nodes in
the underlying graph have fan out one, and that the same clause may appear more
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than once in this graph. Since in definition 2 does not refer to the structure of the
underlying graph, we measure initially the tree-like space needed for the refutation of
an unsatisfiable formula as the minimum number of pebbles needed to play the game
on a refutation tree of the formula. Later on we will show that it is also possible to
give a characterization of tree-like space in terms of list of clauses kept in memory, in
a similar way as in definition 2. We start showing that a tree-like resolution can be
made regular without increasing the space. Tseitin [20] showed that the same result
holds also if the size of the refutation tree (instead of the space) is considered.

Theorem 25 If ¢ is a CNF unsatisfiable formula with a tree-like resolution refutation
that can be pebbled with s pebbles, then ¢ has a tree-like reqular resolution refutation
with the same amount of pebbles.

Proof. Let ¢ be any formula and II any tree-like refutation of ¢ and for any clause
C let T¢ be the subtree in the refutation tree that derives C from initial clauses.
Suppose that the last resolution step in the refutation (the one having O as resolvent)
resolves the variable x, and that this variable is resolved more than once in R. Applying
Lemma 6 to T, (resp. T;) with the partial truth assignment a(z) = 0 (resp. a(z) =1)
and then adding again the literal z (resp. ) to the clauses that had it deleted, one
derives z (resp. Z) or directly the empty clause. Putting both refutation trees together,
the resulting tree-like refutation is embedded in IT and resolves variable z at most once.
One can continue in this way with the parent clauses of x and ¥ modifying the refutation
until the initial clauses are reached. The way in which the new refutation is constructed
assures that on every path from the empty clause to an initial one, every variable is
resolved at most once, and moreover the new refutation in embedded in the former
one, and therefore it does not need anymore space. [ |

We can give now a definition of space in tree-like resolution considering list of
clauses kept in memory, with the particularity that when a clause is used to derive
other clauses, it is removed from the memory.

Definition 26 Let k € IN, we say that an unsatisfiable CNF formula ¢ has a tree-like
resolution refutation bounded by space k if there is a series of CNF formulas (without
having repeated clauses) 1, ..., ps, such that o1 C ¢, O € @,, in any ¢; there are at
most k clauses, and for each i < s, p;y1 is obtained from ; by

e deleting (if wished) some of its clauses,

e adding the resolvent of two clauses of p; and deleting the parent clauses.
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e adding (if wished) some of the clauses of ¢ (initial clauses).

We show the equivalence of this definition and the one using pebbles. Clearly if a
formula can be refuted in space k according to definition 26, then there is a refutation
tree than can be pebbled with k& pebbles.

For the other direction, the successive lists ¢; will be formed by the pebbled clauses
in the tree. A problem can happen in case there are repetitions in the set of pebbled
clauses, because in the list there can be only one copy of each clause. When deleting
one instance of this clause we are deleting the only occurrence of the clause in the list.
We show that one can always have a tree-like refutation using the same space and in
which two occurrences of the same clause are never pebbled simultaneously.

Lemma 27 Let s be the minimum number of pebbles needed in any tree-like refutation
of ¢. There is a reqular tree-like resolution refutation of ¢ that can be pebbled with s
pebbles in such a way that two nodes corresponding to the same clause are not pebbled
simultaneously.

Proof. By Theorem 25 we can suppose that there is a tree-like regular refutation
of ¢ using s pebbles. Since every clause in the tree has at most one successor clause,
when the successor clause is pebbled, in any sensible strategy, the parent clause can be
deleted immediately. In Theorem 7 it is proved that the space needed to pebble a tree
is the depth of its biggest embedded subtree. An optimal strategy is then: starting
from the root, pebble first the subtree with the biggest embedded complete subtree
and then the other subtree. Apply this rule recursively to both subtrees. If we follow
this strategy when a clause, A is pebbled then we pebble the subtree that derives its
mating clause A’. Since we are dealing with a regular refutation, A cannot be in the
tree deriving A’. Otherwise, there would a path going from the copy of A deriving A’
to the resolvent of A and A’ and then to the empty clause, in which a variable has to
be resolved twice, contradicting the fact that we are dealing with regular resolution. l

Using Theorem 25 and the fact that in the proof of Theorem 22, applies to any
kind of resolution, we get:

Corollary 28 If an unsatisfiable formula ¢ with n variables has a tree-like resolution

refutation of space s, then it has a tree-like resolution refutation of size (njs)

The relationship between the two complexity measures of space and width is not
clear. Recall that width of a refutation denotes the maximum number of literals of a
clause appearing in the refutation. Formally:
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Definition 29 [/] The width of a clause C, w(C'), is defined as the number of literals
in C. The width of a set of clauses in the mazrimal width of a clause in the set. The
width of deriving a clause C from the formula ¢, denoted w(p F C) is defined by
ming{w(IT)} where the minimum is taken over all resolution derivations I1 of C from

©.

In the case of tree-like resolution we can show a connection between the concepts
of size and width. For any unsatisfiable formula ¢, the difference between the width
in a refutation of ¢ minus the initial width of the formula, is bounded by the space in
any tree-like refutation of the formula. The proof of this fact relies on the following
lemma from Ben-Sasson and Wigderson:

Lemma 30 /] Let ¢ be a CNF unsatisfiable formula, and for a literal a, let py and ¢,
be the formulas resulting from assigning a the truth values 0 and 1 respectively. If for
some value k, w(po F O) <k —1 and w(p, = O) < k then w(p = 0) < maz{k, w(y)}

Corollary 31 Tree-space(p) — 1 > w(p F O) — w(y).

Proof. Let ¢ be an unsatisfiable CNF formula, and s the minimum number of
pebbles needed in any tree-like refutation of ¢, II. We prove by induction on the depth
of I, d, that w(¢ F O) < w(p)+ s — 1. For d = 0, we have that O is an initial clause,
and the results holds trivially. For d > 0, let IT be a tree-like refutation of ¢ of depth
d and let x be the last variable being resolved. Let T, and 77 be the subtrees in the
refutation deriving the literals  and T from initial clauses, and let sy and s; be the
number of pebbles needed to pebble these subtrees reaching the literals  and 7.

Since we are dealing with a tree-like refutation, by (the proof of) Theorem 7, either
so or s; must be smaller than s. W.l.o.g. let us consider sy < s. Also, Ty and T} have
depth smaller than d.

Applying the partial assignment x = 0 to all the clauses in T (respectively the
partial truth assignment x = 1 to the clauses in T}), we obtain two refutation trees
deriving the empty clause from two sets of clauses ¢q, ¢1. By induction, w(ge - 0O) <
w(po) +s0—1 < w(p)+s—2,and w(p; F O) < w(p) +s1—1 < w(p)+s—1.
Applying Lemma 30 we obtain s — 1 > w(p = O) — w(yp) [ |

This result shows that width lower bounds can be used to obtain space lower bounds
for the restricted case of tree-like resolution. Consider for example, for the case of a
Tseitin formulas related to an undirected graph G' with odd marking. Ben-Sasson and
Wigderson have proved a width lower bound of the expansion of G [4]. By Corollary 31,
this can be translated into a space lower bound for tree-like resolution of this formulas
of at least the expansion of G minus the maximal degree of the graph. This is a little
worse than the space lower bound for general resolution from theorem 3.1.
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6 Conclusions and Open Problems

We have introduced a new definition to measure the space needed in the resolution
of an unsatisfiable formula. This definition is more natural than the former one since
it is closer to space measures in other complexity models and can be characterized
in terms of a well studied pebble game. We have obtained upper and matching lower
bounds for the space needed, as well as relationships between the space and the size of a
refutation. These results bring new insight in the structure of resolution and hopefully
will be useful in the analysis of refutations. Besides the interest the bounds have on
their own for a better understanding of the studied classes of formulas, some of these
results point to a possible connection between the seemingly unrelated measures of
resolution width and space. Similar lower bounds to the ones shown here, hold also for
the case of width, and besides, it is known that for the case of tree-like resolution both
width and space lower bounds imply exponentially larger size lower-bounds. It has
been shown in [2] that this is not true for the case of general resolution. However, the
question of whether space lower bounds imply size lower bounds for other restrictions
of resolution is still open.

There are several other interesting problems that remain open, like for example
whether Theorem 22 can be modified so that the depth is not a parameter in the
upper bound for the size, or whether it is true that every unsatisfiable formula that
can be resolved in logarithmic space, has a resolution refutation of polynomial size (an
improvement of Corollary 23).

Acknowledgment: The authors would like to thank an anonymous referee for sim-
plifying Theorem 22 and Jochen Messner for helpful discussions on earlier versions of
the paper.
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