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AbstractWe introduce a new way to measure the space needed in resolution refutationsof CNF formulas in propositional logic. With the former de�nition [11] the spacerequired for the resolution of any unsatis�able formula in CNF is linear in thenumber of clauses. The new de�nition allows a much �ner analysis of the spacein the refutation, ranging from constant to linear space. Moreover, the newde�nition allows to relate the space needed in a resolution proof of a formulato other well studied complexity measures. It coincides with the complexityof a pebble game in the resolution graphs of a formula, and as we show, hasrelationships to the size of the refutation. We also give upper and lower boundson the space needed for the resolution of unsatis�able formulas. We show thatTseitin formulas associated to a certain kind of expander graphs of n nodes needresolution space n� c for some constant c. Measured on the number of clauses,this result is the best possible. We also show that the formulas expressing thegeneral Pigeonhole Principle with n holes and more than n pigeons, need spacen + 1 independently of the number of pigeons. Since a matching space upperbound of n + 1 for these formulas exist, the obtained bound is exact. We alsopoint to a possible connection between resolution space and resolution width,another measure for the complexity of resolution refutations.
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1 Introduction and De�nitionsIn this paper we deal exclusively with propositional logic, and the only refutationsystem considered is resolution. Due to its simplicity and to its importance in automatictheorem proving and logic programming systems, resolution is one of the best studiedrefutation systems. Resolution contains only one inference rule: If A _ x and B _ �xare clauses, then the clause A_B may be inferred by the resolution rule resolving thevariable x. A resolution refutation of a conjunctive normal form (CNF) formula ' isa sequence of clauses C1 : : : Cs where each Ci is either a clause of ' or is inferred fromearlier clauses in the refutation by the resolution rule, and Cs is the empty clause,2. One way to measure the complexity of resolution applied to a speci�c formula, isto measure the minimum size of a refutation for it. This is de�ned as the number ofclauses in the refutation. More than a decade ago, Haken [10] gave the �rst proof of anexponential lower bound on the number of clauses needed in any resolution refutationof a family of formulas expressing the pigeonhole principle. In following years, theoriginal proof has been greatly simpli�ed and extended to other classes of formulas[21, 6, 3, 18, 15].Because of the importance of resolution, other measures for the complexity of res-olution refutations have been introduced. Recently Ben-Sasson and Wigderson [4],building on previous work [3, 7], uni�ed all the existing exponential lower bounds forresolution size using the concept of width. The width of a resolution refutation is themaximal number of literals in any clause of the refutation. The authors relate in [4]width and size showing that lower bounds for resolution width imply lower bounds forresolution size.A less studied measure for the complexity of a resolution refutation is the amountof space it needs. This measure was de�ned in [11] in the following way:De�nition 1 [11] Let k 2 IN, we say that an unsatis�able CNF formula ' has resolu-tion refutation bounded by space k if there is a series of CNF formulas '1; : : : ; 's, suchthat ' = '1, 2 2 's, in any 'i there are at most k clauses, and for each i < s, 'i+1is obtained from 'i by deleting (if wished) some of its clauses and adding the resolventof two clauses of 'i.Intuitively this expresses the idea of keeping a set of active clauses in the refutation,and producing from this set a new one by copying clauses from the previous set andresolving one pair of clauses, until the empty clause is included in the set. Initiallythe set of active clauses consists of all the clauses of ', and the space needed is themaximum number of clauses that are simultaneously active in the refutation.4



In [11] it is proven that any unsatis�able CNF formula ' with n variables and mclauses can be refuted in space m + n, and in [8] it is observed that the space upperbound 2m can also be obtained.The above de�nition has the important drawback that the space needed in a refu-tation can never be less than the number of clauses in the formula being refuted. Thisis so because this formula is the �rst one in the sequence used to derive the emptyclause. Making an analogy with a more familiar computation model, like the Turingmachine, this is the same as saying that the space needed cannot be less than the sizeof the input being processed. To be able to study problems in which the working spaceis smaller than the size of the input, the space needed in the input tape is usually nottaken into consideration. We do the same for the case of resolution and introduce thefollowing alternative de�nition for the space needed in a refutation.De�nition 2 Let k 2 IN, we say that an unsatis�able CNF formula ' has resolutionrefutation bounded by space k if there is a series of CNF formulas '1; : : : ; 's, such that'1 � ', 2 2 's, in any 'i there are at most k clauses, and for each i < s, 'i+1 isobtained from 'i by deleting (if wished) some of its clauses, adding the resolvent of twoclauses of 'i, and adding (if wished) some of the clauses of ' (initial clauses).The space needed for the resolution of an unsatis�able formula is the minimum kfor which the formula has a refutation bounded by space k.In the new de�nition it is allowed to add initial clauses to the set of active clausesat any stage in the refutation. Therefore this clauses do not need to be stored and donot consume much space since in any moment at most two of them are needed simul-taneously. The only clauses that consume space are the ones derived at intermediatestages. As we will see in Section 2, there are natural classes of formulas that can berefuted using only logarithmic space (in the number of initial clauses), or even constantspace. Recently in [2] this de�nition of space for resolution has also been adopted.There is another natural way to look at this de�nition using pebble games ongraphs, a traditional model used for space measures in complexity theory and forregister allocation problems (see [16]). Resolution refutations can be represented asdirected acyclic graphs of in-degree two, in which the nodes are the clauses used in therefutation, and a vertex (clause) has outgoing edges to the resolvents obtained usingthis clause. In this graph the sources are the initial clauses, all the other nodes havein-degree two, and the unique sink is the empty clause. In case that in the refutationno derived clauses are reused, that is, when all the nodes (except maybe the sources)have out-degree one, the proof is called tree-like. There is a restriction of resolutioncalled regular resolution in which is required that in every path from the empty clauseto an initial clause in the refutation graph, every variable is solved at most once.5



The space required for the resolution refutation of a CNF formula ' (as expressedin De�nition 2) corresponds to the minimum number of pebbles needed in the followinggame played on the graph of a refutation of '.De�nition 3 Given a connected directed acyclic graph with one sink the aim of thepebble game is to put a pebble on the sink of the graph (the only node with no outgoingedges) following this set of rules:1) A pebble can be placed in any initial node, that is, a node with no predecessors.2) Any pebble can be removed from any node at any time.3) A node can be pebbled provided all its parent nodes are pebbled.3') If all the parent nodes of node are pebbled, instead of placing a new pebble on it,one can shift a pebble from a parent node.There are several variations of this simple pebble game in the literature. In fact, in[22] it is shown that the inclusion of rule 3' in the game can at most decrease by onethe number of pebbles needed to pebble a graph, but in the worst case the saving isobtained at the price of squaring the number of moves needed in the game. We includerule 3' so that the number of pebbles coincides exactly with the space in De�nition 2.This fact is stated in the following straightforward Lemma.Lemma 4 Let ' be an unsatis�able CNF formula. The space needed in a resolutionrefutation of ' coincides with the number of pebbles needed for the pebble game playedon the graph of a resolution refutation of '.This second characterization of space in resolution proofs allow us to use techniquesintroduced for the estimation of the number of pebbles required for pebbling certaingraphs, for computing the space needed in resolution refutations. However the estima-tion of the number of pebbles needed in the refutation of a formula is harder than theestimation of the number of pebbles needed for a graph, since in the �rst case one hasto consider all the possible refutation graphs for the formula.In Section 3 we give upper and lower bounds for the amount of space needed forresolution. When measuring the space relative to the number of variables in the initialformula we show that any unsatis�able CNF formula with n variables has a resolutionproof that uses space n + 1, and we also obtain a matching lower bound, that is, weshow that there are formulas on n variables whose refutation needs space n+1. We also6



obtain optimal space lower bounds for the two important families of Tseitin formulasand formulas expressing the Pigeonhole Principle.Very similar results also hold for these families of formulas if the width instead ofthe space of a resolution refutation is used [4]. This is surprising since both measuresseem unrelated, and suggest that there might be a relationship between the conceptsof width and space. Space lower bounds for these families of formulas for resolutionand Polynomial Calculus have been obtained independently in [2].We show in Section 3.1 space lower bounds for the refutation of Tseitin formulas.This family of formulas was �rst de�ned by Tseitin [20], and express the principle thatthe sum of the degrees of the vertices in a graph must be even. Tseitin proved in [20]super-polynomial lower bounds on the size of regular resolution refutations for them.Later Urquhart [21] improved these bounds to exponential lower bounds for generalresolution. We prove that the space needed for the resolution of a Tseitin formula withassociated graph G is at least ex(G) � bd2c + 1, where ex(G) is the expansion of Gand d its maximum degree. For Tseitin formulas corresponding to expander graphswith n nodes, this means that the space needed is at least n � c for some constantc. These formulas have O(n) variables and clauses, and because of the general spaceupper bound mentioned above, the space needed is �(n), and this linear lower boundon the number of initial clauses is optimal up to a constant factor1.The family of formulas for the general Pigeonhole Principle PHPmn express the factthat it is not possible to �t m pigeons in n pigeonholes (for m > n). As mentionedabove, for the case m = n + 1, this was the �rst example of a family of formulas withan exponential resolution size lower bound [10]. We show that the negation of PHPformulas needs refutation space n+1, independently of the number of pigeons 2. In thiscase we have an exact bound since Messner [13] has proven that n+1 is also an upperbound for the space needed for the refutation of PHP formulas with n pigeonholes.This lower bound result is also interesting due to the fact that the complexity ofresolution refutations of the general Pigeon Hole Principle is not known. For example,only trivial lower bounds on the size are known when the number of pigeonsm is greaterthan n2. Buss and Pitassi [5] have shown that for the case of tree-like resolution, forany m > n, :PHPmn needs tree-like resolution refutation of size at least 2n. This resultcan also be proven using a lower bound on the width of refutations for :PHPmn from[4]. Due to the fact that tree-like resolution refutations of size S require at most spacedlogSe+1, the above mentioned space lower bound for :PHPmn also provides the lower1A linear space lower bound in the number of initial clauses for Tseitin formulas have been inde-pendently proven in [2]2A 
(n) lower bound for the resolution space of PHPmn have been obtained independently in [2]7



bound 2n on the size of tree-like resolution refutations for these formulas.We obtain in Section 4 an upper bound on the size of a refutation of a formula interms of the space needed for its resolution and the depth of the refutation. (The depthof a refutation is the size of the longest path from the empty clause to an initial clausein the refutation graph). We prove in Theorem 22 that if a formula ' has a resolutionrefutation of depth d that uses space s, then this refutation has size bounded by �d+ss �.For types of resolution in which the depth of the proofs is bounded (like in the case ofregular resolution), this provides an exponential upper bound for the resolution size interms of the resolution space.In the last section we study the space needed in tree-like refutations. We give acharacterization of this measure in terms of lists of active clauses, and show then thatfor the case of tree-like resolution, the space needed in a refutation of a formula is atleast as large as the refutation width minus the initial with of the formula. Again herewe �nd a connection between the concepts of space and width.2 De�nitions and ExamplesIn this section we give two examples of families of unsatis�able formulas that can berefuted within less space than its number of clauses. The �rst example are the formulaswhose clauses are all possible combinations of literals in such a way that every variableappears once in every clause. We will see that the space needed to refute these formulasis bounded by the number of di�erent variables in it. In fact we will prove a moregeneral result about the space needed in a tree-like resolution.De�nition 5 We say that a graph G1 is embedded in a graph G2 if a graph isomorphicto G2 can be obtained from G1 by adding nodes and edges or inserting nodes in themiddle of edges of G1.Observe that the number of pebbles needed for pebbling any graph is greater thanor equal to the number of pebbles needed for pebbling any embedded subgraph init. This is true since any pebbling strategy for the graph, also pebbles the embeddedsubgraph.Let ' a CNF-formula, and � a (partial) truth assignment to the variables in '. '�is a modi�cation of ' according to �. For every variable x in � if its truth value is 1,all the clauses in ' containing the positive literal x are deleted and all occurrences of�x are deleted. If the truth value of x is 0, then all clauses in ' containing �x are deletedand all occurrences of the literal x are deleted.8



The next lemma, an easy adaptation of [14, Theorem 1], states the well known factthat for a resolution refutation of a formula ', for any partial truth assignment � tothe variables, we can get a resolution refutation of '�, the formula after applying thepartial assignment, embedded in the initial refutation.Lemma 6 Let � be a resolution refutation of the CNF -formula ', let � be a partialtruth assignment and '� the formula after applying the partial assignment. There is aresolution refutation of '� whose resolution graph is embedded in �.Proof. We construct a new refutation �0 transforming the clauses of �. Everyoriginal clause is either eliminated or transformed into a new one. The new graph ofclauses, after maybe contracting some adjacent nodes representing the same clause, isalso a refutation graph, and by construction, the new refutation graph is embedded inthe original one.To build the new refutation we start transforming the initial clauses going downwardfollowing the original refutation. If an original clause contains a literal that has beenassigned value 1 by �, then the whole clause is deleted. If it contains a literal with value0, then the literal is deleted from the clause. Otherwise the clause remains unchanged.If a clause in the original refutation is the resolvent of two previous ones, there aretwo cases depending on whether the resolved variable has been given a value by � ornot. Suppose that clause C is the resolvent of A _ x and B _ x.Case 1, variable x has been assigned by �. If A _ x (resp. B _ �x) has been replaced byA0 (resp. B0) then C is replaced by A0 (resp. B0) if �(x) = 0 (resp. �(x) = 1).Case 2, variable x has not been assigned by �. If A _ x (resp. B _ �x) has been replacedby A0 (resp. B0) then C is replaced by the resolvent of A0 and B0 if both containvariable x, and otherwise C is replaced by any of A0 or B0 that does not containvariable x.Consider the part of the new graph connected to the empty clause. Contractingnodes of in-degree one, we obtain a refutation graph that is embedded in the originalone. �Theorem 7 Let ' be an unsatis�able CNF formula with a treelike resolution of sizes, then ' has a resolution refutation of space dlog se+ 1.Proof. We will show that the resolution tree in the refutation of ' can be pebbledwith d+1 pebbles, where d is the depth of the biggest complete binary tree embedded9



in the refutation graph. As the biggest possible complete binary tree embedded in atree of size s has depth dlog se, the theorem holds. It is a well known fact (see forexample [16]) that d + 1 pebbles su�ce to pebble a complete binary tree of depth d(with the directed edges pointing to the root). In fact d + 1 pebbles su�ce to pebbleany binary tree whose biggest embedded complete binary tree has depth d. In orderto see this we use induction on the size of the tree. The base case is obvious. Let T berefutation tree, and T1 and T2 be the two subtrees from the root. Let us call dc(T ) thedepth of the biggest embedded subtree in T . Sodc(T ) = � max(dc(T1); dc(T2)) if dc(T1) 6= dc(T2)dc(T1) + 1 if dc(T1) = dc(T2)By induction hypothesis one can pebble T1 with dc(T1) + 1 pebbles and T2 withdc(T2) + 1 pebbles. Let us suppose that dc(T1) < dc(T2), then dc(T ) = dc(T2) andone can pebble �rst T2 with dc(T2) + 1 pebbles, leave a pebble in the root of T2and then pebble T1 with dc(T1) + 1. For this second part of the pebbling one needsdc(T1) + 2 � dc(T2) + 1. The other case is similar. �We can apply the above lemma to compute the space needed in the refutation ofthe following formula.De�nition 8 Let n 2 IN, complete-treen is the CNF formula on the set of variablesfx1; : : : ; xng, whose clauses are all possible combinations of literals with the restrictionthat each variable appears once in each clause.complete-treen = (x1x2 : : : xn); (�x1x2 : : : xn); : : : ; (�x1�x2 : : : �xn):Observe that this formula has 2n clauses. It is not hard to see that complete-treen can be refuted using space n + 1. This is so since a straightforward tree-likeresolution of the formula that resolves the variables in di�erent stages, has size 2n+1�1.The previous lemma assures that this refutation can be pebbled with n + 1 pebbles.In the next section we will see that this amount of space is also necessary.As second example, consider the class of unsatis�able formulas in CNF with at mosttwo literals per clause.Theorem 9 Any unsatis�able CNF formula with at most two literals in each clausecan be resolved within constant space.Proof. The �rst part of the proof is similar to the one for showing that the set of2-CNF unsatis�able formulas can be recognized in nondeterministic logarithmic space.10



In fact it is not hard to see that this result can also be derived from this Theorem.Given a 2-CNF formula ' one can construct a directed graph G' related to it. Thisgraph will be useful to know whether the formula is unsatis�able or not, and in theformer case, will provide us with a strategy to �nd a refutation that can be pebbledwith constant space.The set V of vertices of G' is the set of literals in '. For any clause (x1 _ x2) (thatcan be viewed as the implication �x1 ! x2 or also �x2 ! x1) we include in E a directededge from �x1 to x2 and another one from �x2 to x1. If the clause has only one literal x1we consider it as (x1 _ x1) and include in E and edge from �x1 to x1. No other edge isincluded in E.The formula is unsatis�able if and only if there is a cycle in the graph that con-tains a literal, say x1, and its negation. We can use this cycle to get a resolutionrefutation. Starting from node x1, let us call the clauses related to the edges in thecycle C1; C2; : : : ; Ck (all these are initial clauses of the refutation), and suppose thatC1; : : : Cl are the clauses corresponding to the edges from x1 to �x1 in the cycle, andCl+1 : : : Ck correspond to the edges from �x1 to x1. One can resolve C1 with C2 getting anew clause which will be resolved with C3 and so on. When resolving with Cl one getsthe clause x1. For this only 2 pebbles are needed. Analogously, starting from literal �x1one can resolve Cl+1 with Cl+2 and so on, until resolving with Ck and thus getting theclause �x1. Resolving �nally both clauses x1 and �x1 the empty clause is obtained. Thisshows that at most 3 pebbles are needed to pebble such a refutation. �3 Upper and Lower BoundsFor the results in this section the following concept will be very useful.De�nition 10 We say that a CNF unsatis�able formula is minimally unsatis�able ifremoving any clause the formula becomes satis�able.The following result attributed to M. Tarsi can be found in [1].Lemma 11 Any minimally unsatis�able CNF formula must have more clauses thanvariables.We start by giving bounds with respect to the number of variables.Theorem 12 Every unsatis�able formula with n variables can be resolved using reso-lution in space at most n + 1. 11



Proof. As mentioned in the proof of Theorem 7, for pebbling a tree of depth d,d+ 1 pebbles su�ce. If we consider regular tree-like resolution, which is complete, wehave refutation trees whose depth is at most the number of variables in the formulabeing refuted. �There is a matching lower bound, since there are formulas of n variables whoserefutation graphs can only be pebbled with n+1 pebbles. This is a consequence of thefollowing result:Theorem 13 Let ' an unsatis�able CNF formula and k the smallest number of literalsof a clause of '. Any resolution refutation of ' needs at least space k + 1.Proof. For any pebbling strategy, there is a �rst step, let us call it s, in which theset of pebbled clauses becomes unsatis�able. This step must exist because the �rstpebbling step consists of pebbling an initial clause, which is always satis�able, and thelast step pebbles the empty clause.In step s, an initial clause has to be pebbled since according to the pebbling rulesthe only other possibility would be to pebble a clause with both parents pebbled,and this step would not transform the set of pebbled clauses into an unsatis�able set.Therefore the set of pebbled clauses at step s contains at least k variables (the ones ofthe initial clause).Let us suppose than the set of pebbled clauses at step s is minimally unsatis�able,then, by Lemma 11, it has at least k+1 clauses because it has at least k variables. Onthe other hand, if this set is not minimally unsatis�able, we can throw aside clausesuntil the remaining set becomes minimally unsatis�able. Notice that we cannot deletethe initial clause last added to the set, otherwise the set of clauses would be a subset ofthe clauses at stage s� 1 and becomes therefore satis�able. So, k + 1 clauses are stillneeded because the initial clause is contained in the set and has at least k variables. �Since all the clauses in complete-treen have n variables, we obtain:Corollary 14 For all n 2 IN any resolution refutation of complete-treen requiresat least space n+ 1.Theorem 13 can be strengthened to allow to prove lower bounds for the spaceneeded in the refutation of a more general class of formulas.Theorem 15 Let ' be a unsatis�able CNF formula, and let k be the maximum overall partial assignments � of the minimum number of literals of a clause in '�. Thespace needed in a resolution refutation of ' is at least k.12



Proof. Let � be any partial assignment to the variables in ', and � a refutation of' that needs the smallest amount of space. From Lemma 6 we know that there existsa refutation �0 for '� embedded in the structure of �. Theorem 13 guarantees that topebble '� one needs at least a number of pebbles equal to the length of the shortestclause in '�. But as �0 is embedded in �, one cannot pebble � with fewer pebblesthan �0. To �nish the proof we just need to consider an assignment � which producesa shortest clause of maximal length. �3.1 Lower bounds on Tseitin formulasIn this section we study the space used in resolution refutations of some formulasrelated to graphs. These formulas were de�ned originally by Tseitin [20], and have alsobeen used in order to prove lower bounds on the size of resolution refutations in [21]and [18].Let G = (V;E) be a connected undirected graph with n vertices, and let m : V !f0; 1g be a marking of the vertices of G satisfying the propertyXx2V m(x) = 1(mod 2):For such a graph we can de�ne an unsatis�able formula in conjunctive normal form'(G;m) in the following way: The formula has E as set of variables, and is a conjunc-tion of the translation in CNF of the formulas 'x for x 2 V , where'x = 8<: e1(x)� : : :� ed(x) if m(x) = 1e1(x)� : : :� ed(x) if m(x) = 0Here e1(x) : : : ed(x) are the edges (variables) incident with vertex x. If d is the maximumdegree of a node in G, '(G;m) contains at most n2d�1 many clauses, each one with atmost d many literals. The number of variables of the formulas is bounded by dn2 .'(G;m) captures the combinatorial principle that for all graphs the sum of thedegrees of the vertices is even. When the marking m is odd, '(G;m) is unsatis�able.Suppose on the contrary that there were a satisfying assignment � : E ! f0; 1g. Forevery vertex x, the number of edges of x that have been assigned value 1 by � has thesame parity as m(x), and thereforeXx2V X(x;y)2E �((x; y)) �Xx2V m(x) � 1( mod 2)13



but in the left hand sum in the equality, every edge is counted twice and therefore thissum must be even, which is a contradiction.The following fact was also used in [21] and [18] and plays a fundamental role inthe proof of the lower bound. For completeness we include a proof of it.Fact 16 For an odd marking m, for every x 2 V there exists an assignment � with�('x) = 0, and �('y) = 1 for all y 6= x. If the marking is even, then '(G;m) issatis�able.Proof. Let m be an odd marking and x be a node in V . The desired assignment �can be constructed in the following way: We start with an assignment � with �('x) = 0.For an odd number of nodes v (including x) the value of 'v under � in now 0. We picktwo such nodes u and v di�erent from x. Since the graph is connected there must be apath from u to v. We toggle in the assignment � the value of all the variables (edges)along this path. Now the values of 'u and 'v are also changed and these formulas havetherefore value 1. On the other hand, the formulas related to the nodes w lying betweenu and v keep the same truth value as before because for these formulas the truth valueof two of the edges has been changed. This procedure is repeated for di�erent pairs ofnodes u; v until the desired assignment � is found. For an even marking m the proofis completely analogous. �Consider a a partial truth assignment � of some of the variables. We refer to thefollowing process as applying � to (G;m): Setting a variable (x; y) in � to 0 correspondsto deleting the edge (x; y) in the graph, and setting it to 1 corresponds to deleting theedge from the graph and toggling the value of m(x) and m(y) in G. Observe thatthe formula '(G0; m0) for the graph and marking (G0; m0) resulting after applying � to(G;m) is still unsatis�able.In order to prove the lower bound we will consider the last stage in any pebblingstrategy in which two properties are satis�ed. On the one hand, the set of pebbledclauses must be simultaneously satis�able. The other property needed is based onnon-splitting assignments, a concept that we de�ne next.De�nition 17 We say that a partial truth assignment � of some of the variables in'(G;m) is non-splitting for (G;m), if applying it to (G;m) produces a pair (G0; m0)so that G0 has a connected component of size > 23n with an odd number of 1's in itsmarking, and an even number of 1's in the markings of all other connected components.De�nition 18 Let G = (V;E) be an undirected graph with with jV j = n. The expan-sion of G, ex(G) is de�ned as:ex(G) = mink : 9S � V; jSj 2 �n3 ; 2n3 � ; jf(x; y) 2 E : x 2 S; y 62 Sgj = k:14



Intuitively the expansion of a graph is the minimum size of a cut produced whenthe vertices are partitioned into two subsets that do not di�er too much in size. Asshown in the next theorem, the expansion of a graph is a lower bound on the spacerequired in the resolution of its associated Tseitin formula.Theorem 19 Let G = (V;E) be an undirected and connected graph with jV j = n andmaximum degree d, and let m be an odd marking of G. Any resolution refutation of'(G;m) requires space at least ex(G)� bd2c+ 1.Proof. Let � be a resolution refutation of the formula, and consider the last stages in a pebbling strategy of the graph of � in which there is a partial assignment �ful�lling the following two properties:i) � simultaneously satis�es all the pebbled clauses at stage s,ii) � is non-splitting for (G;m).This stage in the pebbling must exist: Before the initial step, no clause has a pebble.Since G is connected, the empty truth assignment is trivially a non-splitting partialassignment satisfying the set of pebbled clauses. At the end, the set of pebbled clausescontains the empty clause which cannot be satis�ed by any assignment. Stage s mustexist in between.The clause pebbled in stage s+1 must be an initial one. The only other clause thatcould be pebbled at stage s+1 would be a clause C3 whose parents C1 and C2 alreadyhave a pebble, but any partial assignment satisfying C1 and C2 also satis�es C3, andthe non-splitting partial assignment from stage s would also work for stage s+ 1. Forsome vertex x in G, this last initial pebbled clause corresponds to the formula 'x.Let � be a partial assignment satisfying properties i) and ii) at stage s. There isan extension of � that satis�es '0x, the formula for x after applying �. To see this,observe that after applying � to (G;m), the graph has a connected component of sizeat least 2n3 with an odd marking, and the rest of the components have even markings.By Fact 16, for every vertex x, the formula '0x can therefore be satis�ed by an extensionof �. Moreover, the initial clause C pebbled at stage s + 1 corresponds to a vertex xin the big connected component with odd marking since otherwise there would be alsonon-splitting partial assignments satisfying all the pebbled clauses at stage s+ 1.Let � be a non-splitting partial truth assignment of minimal size satisfying theclauses at stage s, and (G0; m0) the graph and marking resulting after applying �.It su�ces to extend � giving some value to one or more of the variables in the lastpebbled clause to obtain an assignment �0 satisfying all the clauses pebbled at stage15



s+1. However, �0 is a splitting assignment and applying it to (G;m) does not producea connected component larger than 23n with odd marking. We will show that there isalways a way to extend � to �0 by assigning some new variables in the last pebbledclause C, in such a way that �0 satis�es all the pebbled clauses and produces a subgraphdisconnected from the rest and with a number of nodes in the interval [n3 ; 2n3 ]Let C be the initial clause pebbled at stage s+1, corresponding to a node x and letd0 be the degree of x in G0 (d0 � d). '0(x) is the formula e1(x)� : : :� ed0(x) = m0(x):We have shown that this formula is satis�able. d0 is at least 1, since otherwise � wouldalso satisfy '0x.x is connected in G0 to d0 components A1; : : : ; Ad0 , and there is no edge between anytwo of such components Ai, Aj. Otherwise, satisfying the clause C by satisfying theliteral corresponding to the edge connecting x and Ai, would provide a non-splittingextension of �.We consider di�erent cases depending on the size of the A components.Case 1: Some component Ai has size within the interval. Deleting the edge con-necting x and Ai, this component is isolated from the rest of the graph.Case 2: The size of all the Ai components lie outside the interval. This impliesthat they all have size smaller than n3 , since otherwise, by Fact 16, there would bean extension of � that satis�es C, and disconnects all the components form nodex producing an odd marking in the component of size greater that 2n3 , and an evenmarking in all the other ones. This would provide a non-splitting assignment satisfyingall the pebbled clauses at stage s + 1. The size of all the components Ai is thereforesmaller than n3 and the sum of all their sizes is greater than 2n3 . There is a set of atmost bd02 c components such that the sum of their sizes lie within the interval. This setof components can be isolated from the rest of the graph just by deleting the edgesconnecting them to x.In both cases, by deleting at most bd2c edges from G0 we have isolated a set of nodesS of size within [n3 ; 2n3 ] from the rest of the graph. There are at least ex(G) edgesfy; zg in G with y 2 S and z 62 S. All these edges, except at most bd2c of them havebeen removed by the partial assignment �. Since � was chosen to be an assignment ofminimal size satisfying all the pebbled clauses at stage s, there are at least ex(G)�bd2cpebbled clauses at this stage and ex(G)� bd2c+ 1 pebbled clauses at stage s+ 1. �There exist expander graphs G with n nodes constant degree d and with ex(G) >n [12]. In [17] it is shown that the degree for such expander graphs can be reducedto d = 8. For an odd marking of such a graph the formula '(G;m) has at most dn2variables and n2d�1 clauses. By the above result, the space needed in a resolutionrefutation of '(G;m) is at least n� 3 as stated in the next corollary:16



Corollary 20 For the constant d = 8 there is a family of unsatis�able formulas'1; '2; : : : (corresponding to expander graphs) such that for every n 'n has at most256n clauses and 4n variables, and any resolution refutation of 'n requires at leastspace n� 3.The number of variables of a formula is an upper bound for its resolution space(Theorem 12). For the family of formulas mentioned in the corollary, the space neededis therefore �(n). Observe that this bound is linear, measured in terms of the numberof clauses of the formula.An interesting fact is that Theorem 19 (even with the lower bound ex(G) insteadof ex(G) � bd2c + 1) also holds if the width of the refutation instead of the space isconsidered [4].3.2 The Pigeonhole PrincipleLet m > n. The tautology PHPmn expresses the Pigeonhole Principle that there is noone-one mapping from a domain of sizem (the set of pigeons) into a range of size n (theset of holes). We study the space needed in a resolution refutation of the contradiction:PHPmn . This contradiction can be written as a CNF formula in the following way:The variables of the formula are xi;j; 1 � i � m; 1 � j � n. xi;j has the intuitivemeaning that pigeon i is mapped to hole j. There are mn variables. The clauses ofthe formula are:(1) xi;1 _ xi;2 _ : : : _ xi;n for 1 � i � m, and(2) xi;k _ xj;k for 1 � i; j � m; 1 � k � n; i 6= j:Clauses of type (1) express the fact that every pigeon is mapped to some hole, whilethe clauses of type (2) indicate that at most one pigeon can be mapped to any hole.The number of clauses in :PHPmn is m+ �m2 �n < m2n.Theorem 21 For any m > n, the space needed in a resolution refutation of :PHPmnis at least n+ 1.Proof. Let � be a resolution refutation of :PHPmn and consider the last stage s ina pebbling strategy of the graph of � in which there is a partial assignment � ful�llingthe following two properties:i) � simultaneously satis�es all the pebbled clauses at stage s, andii) � does not assign value false to any of the initial clauses.17



At stage s = 0 in the pebbling process, such a partial assignment � exists sincethere are no pebbled clauses. Also, at the end of the pebbling, the empty clause hasa pebble on it and therefore there is no � ful�lling property i). Because of this, thestage s de�ned above must exist.The pebble from stage s + 1 is placed in an initial clause. Otherwise the twoparents of the pebbled clause at stage s+1 contain a pebble in stage s and any partialassignment satisfying the pebbled clauses at stage s also satis�es the clauses at stages+ 1.Let � be a partial assignment simultaneously satisfying all the pebbled clauses atstage s. � can be extended to a partial assignment �0 that satis�es the last pebbledclause C. We have seen that C must be an initial clause. If no extension of � cansatisfy clause C it is because � assigns value false to all the literals in C, but this is acontradiction since C is an initial clause, and by condition ii) � cannot give value falseto any initial clause.Let � be a partial assignment of minimal size satisfying all the pebbled clauses atstage s and not giving value false to any initial clause, and let �0 be any extension of �satisfying the clause C pebbled at stage s + 1. By hypothesis, �0 falsi�es some initialclause.If C is of type (1) for some pigeon i, C can be satis�ed by giving value true tosome variable xi;k that has not been assigned by �. This makes some initial clause Ci;kfalse, and therefore Ci;k must be of type (2), Ci;k = xi;k _ xj;k for some j. This impliesthat for any hole k, � assigns variable xi;k value false, or variable xj;k value true (forsome j 6= i), and therefore � assigns at least as many variables as holes. Since � was apartial assignment of minimal size satisfying all the pebbled clauses at stage s, in thisstage at least n clauses were pebbled, and in s+ 1 at least n+ 1.If C is of type (2), C = xi;k _ xj;k, assigning value true to any literal in C that hasnot been assigned by �, falsi�es some initial clause of type (1). If � has not assignedvalue to any of the variables in C, this means that the number of variables assignedby � is at least 2n� 2. Otherwise � has assigned at least n variables. For n � 2, thisimplies that the number of variables assigned by � is at least n, which means that thenumber of pebbled clauses at stage s� 1 is at least n, and at stage s, n+ 1. �Jochen Messner [13] has proved that n+1 pebbles su�ce in a resolution refutationof the Pigeonhole Principle with n holes and m > n pigeons. This means the the abovespace lower bound is exact.Although only trivial lower bounds for the size of a resolution refutation of thegeneral Pigeonhole Principle :PHPmn are known for the case m > n2, the situation isbetter when restricted to tree-like resolution. In [5] it is shown that for any m > n,18



:PHPmn requires tree-like resolution refutations of size 2n. Using Theorem 7 we canderive this bound as a corollary of the above space lower bound. The same bound fortree-like refutations of :PHPmn has also obtained in [4] using a lower bound on thewidth of the refutations of :PHPmn .4 Relationships between Space and SizeThe main result of this section provides an upper bound on the size of resolutionrefutations of a formula in terms of the space and the depth needed in a refutation3.Recall that the depth of a resolution refutation is the size of the longest path from theempty clause to an initial clause in the graph of the refutation.Theorem 22 A resolution refutation for an unsatis�able CNF formula ' on n vari-ables using space s and depth d, has size at most �d+ss �.Proof. Let � be the resolution refutation proof that can be pebbled with s pebbles.The depth of a clause C in � is the length of the longest path from C to the emptyclause.We associate a set A of at most s clauses in � with an array depth(A) = a1 : : : asof s numbers between 1 and d+1 in the following way: Sort the clauses in A by depthin � and for 1 � j � s let aj be the depth of the clause of j-th smallest depth. If thereare less than j clauses in A then let aj = d + 1. In this way the array depth(A) hasalways s positions. We can compare these arrays as base d + 1 numbers in the usualway.� can be pebbled with s pebbles. W.l.o.g. we can suppose that in the pebblingstrategy pebbles are removed from clauses in the �rst moment they are not neededanymore, that is, pebbles can only be removed from a clause only immediately afterone of its successors has been pebbled.In the pebbling strategy pebbles are placed and removed. We consider the stagesright before the pebbles are placed. Let 'i be the set of clauses containing pebblesat the stage right before the i-th time a pebble is set or shifted. '1 is the emptyset. Observe that, by the special form of pebbling strategy we are considering, 'i+1is obtained from 'i by pebbling one clause, and eventually removing one or the twopredecessors of this clause.We claim that if 'i+1 and 'i are two consecutive pebbling stages as described, thendepth('i) > depth('i+1). If in stage 'i+1 no clauses are deleted, then the result is3In [9] a better upper bound was announced. Unfortunately, the proof of the mentioned result isincorrect, and it is not known whether the result holds.19



clear, since either one of the non-used pebbles at stage i (with depth d + 1) is placedat depth � d, or some pebble is shifted to a position with smaller depth. In the othercase one or two pebbles are deleted in stage i+ 1, but this can only happen if at stagei + 1 a clause C resolvent of the clauses with the removed pebbles is pebbled. 'i+1di�ers from 'i since it contains C and does not contain one or the two predecessors ofC. Since the depth of C is smaller than the depth of its predecessors the inequalityholds.In each stage i in the pebbling strategy at most a new clause is considered and itholds depth('i) > depth('i+1). Because of this the number of clauses in the refutationis bounded by the set of possible values of the function depth(A) for sets A of sizeat most s. depth(A) is encoded by an ordered sequence of s numbers ranging from1 to d + 1. Since there are �d+ss � possible values for these sequences, the size of therefutation is bounded by �d+ss �. �We get several consequences from this result:Corollary 23 Any family of unsatis�able CNF formulas with resolution refutations ofpolynomial depth and constant space, have resolution refutations of polynomial size.In some types of resolution, the depth of the proof is automatically bounded. Anexample is regular resolution. For this type of resolution it is required that in everypath from the empty clause to an initial clause in the refutation graph, every variableis solved at most once. Clearly in this case the number of variables is a bound on thedepth of the proof.Corollary 24 If an unsatis�able CNF-formula on n variables has a regular resolutionrefutation of space s, then the size of this refutation is bounded by �n+ss �.An interesting question is whether the depth of the refutation can be taken out ofthe bound given by Theorem 22. A way to do this would be by showing that a refutationof a formula can be transformed into another one that uses the same amount of space,but has bounded depth. It is not clear that this result holds, but as we see in the nextsection, it does hold for the case of tree-like resolution.5 Space in tree-like resolutionWe consider in this section the question of measuring the space when the resolutionrefutations are restricted to be tree-like. Recall that in this case all the nodes inthe underlying graph have fan out one, and that the same clause may appear more20



than once in this graph. Since in de�nition 2 does not refer to the structure of theunderlying graph, we measure initially the tree-like space needed for the refutation ofan unsatis�able formula as the minimum number of pebbles needed to play the gameon a refutation tree of the formula. Later on we will show that it is also possible togive a characterization of tree-like space in terms of list of clauses kept in memory, ina similar way as in de�nition 2. We start showing that a tree-like resolution can bemade regular without increasing the space. Tseitin [20] showed that the same resultholds also if the size of the refutation tree (instead of the space) is considered.Theorem 25 If ' is a CNF unsatis�able formula with a tree-like resolution refutationthat can be pebbled with s pebbles, then ' has a tree-like regular resolution refutationwith the same amount of pebbles.Proof. Let ' be any formula and � any tree-like refutation of ' and for any clauseC let TC be the subtree in the refutation tree that derives C from initial clauses.Suppose that the last resolution step in the refutation (the one having 2 as resolvent)resolves the variable x, and that this variable is resolved more than once in R. ApplyingLemma 6 to Tx (resp. T�x) with the partial truth assignment �(x) = 0 (resp. �(x) = 1)and then adding again the literal x (resp. �x) to the clauses that had it deleted, onederives x (resp. �x) or directly the empty clause. Putting both refutation trees together,the resulting tree-like refutation is embedded in � and resolves variable x at most once.One can continue in this way with the parent clauses of x and xmodifying the refutationuntil the initial clauses are reached. The way in which the new refutation is constructedassures that on every path from the empty clause to an initial one, every variable isresolved at most once, and moreover the new refutation in embedded in the formerone, and therefore it does not need anymore space. �We can give now a de�nition of space in tree-like resolution considering list ofclauses kept in memory, with the particularity that when a clause is used to deriveother clauses, it is removed from the memory.De�nition 26 Let k 2 IN, we say that an unsatis�able CNF formula ' has a tree-likeresolution refutation bounded by space k if there is a series of CNF formulas (withouthaving repeated clauses) '1; : : : ; 's, such that '1 � ', 2 2 'n, in any 'i there are atmost k clauses, and for each i < s, 'i+1 is obtained from 'i by� deleting (if wished) some of its clauses,� adding the resolvent of two clauses of 'i and deleting the parent clauses.21



� adding (if wished) some of the clauses of ' (initial clauses).We show the equivalence of this de�nition and the one using pebbles. Clearly if aformula can be refuted in space k according to de�nition 26, then there is a refutationtree than can be pebbled with k pebbles.For the other direction, the successive lists 'i will be formed by the pebbled clausesin the tree. A problem can happen in case there are repetitions in the set of pebbledclauses, because in the list there can be only one copy of each clause. When deletingone instance of this clause we are deleting the only occurrence of the clause in the list.We show that one can always have a tree-like refutation using the same space and inwhich two occurrences of the same clause are never pebbled simultaneously.Lemma 27 Let s be the minimum number of pebbles needed in any tree-like refutationof '. There is a regular tree-like resolution refutation of ' that can be pebbled with spebbles in such a way that two nodes corresponding to the same clause are not pebbledsimultaneously.Proof. By Theorem 25 we can suppose that there is a tree-like regular refutationof ' using s pebbles. Since every clause in the tree has at most one successor clause,when the successor clause is pebbled, in any sensible strategy, the parent clause can bedeleted immediately. In Theorem 7 it is proved that the space needed to pebble a treeis the depth of its biggest embedded subtree. An optimal strategy is then: startingfrom the root, pebble �rst the subtree with the biggest embedded complete subtreeand then the other subtree. Apply this rule recursively to both subtrees. If we followthis strategy when a clause, A is pebbled then we pebble the subtree that derives itsmating clause A0. Since we are dealing with a regular refutation, A cannot be in thetree deriving A0. Otherwise, there would a path going from the copy of A deriving A0to the resolvent of A and A0 and then to the empty clause, in which a variable has tobe resolved twice, contradicting the fact that we are dealing with regular resolution. �Using Theorem 25 and the fact that in the proof of Theorem 22, applies to anykind of resolution, we get:Corollary 28 If an unsatis�able formula ' with n variables has a tree-like resolutionrefutation of space s, then it has a tree-like resolution refutation of size �n+ss �.The relationship between the two complexity measures of space and width is notclear. Recall that width of a refutation denotes the maximum number of literals of aclause appearing in the refutation. Formally:22



De�nition 29 [4] The width of a clause C, w(C), is de�ned as the number of literalsin C. The width of a set of clauses in the maximal width of a clause in the set. Thewidth of deriving a clause C from the formula ', denoted w(' ` C) is de�ned bymin�fw(�)g where the minimum is taken over all resolution derivations � of C from'. In the case of tree-like resolution we can show a connection between the conceptsof size and width. For any unsatis�able formula ', the di�erence between the widthin a refutation of ' minus the initial width of the formula, is bounded by the space inany tree-like refutation of the formula. The proof of this fact relies on the followinglemma from Ben-Sasson and Wigderson:Lemma 30 [4] Let ' be a CNF unsatis�able formula, and for a literal a, let '0 and '1be the formulas resulting from assigning a the truth values 0 and 1 respectively. If forsome value k, w('0 ` 2) � k � 1 and w('1 ` 2) � k then w(' ` 2) � maxfk; w(')gCorollary 31 Tree-space(')� 1 � w(' ` 2)� w(').Proof. Let ' be an unsatis�able CNF formula, and s the minimum number ofpebbles needed in any tree-like refutation of ', �. We prove by induction on the depthof �, d, that w(' ` 2) � w(') + s� 1. For d = 0, we have that 2 is an initial clause,and the results holds trivially. For d > 0, let � be a tree-like refutation of ' of depthd and let x be the last variable being resolved. Let T0 and T1 be the subtrees in therefutation deriving the literals x and x from initial clauses, and let s0 and s1 be thenumber of pebbles needed to pebble these subtrees reaching the literals x and x.Since we are dealing with a tree-like refutation, by (the proof of) Theorem 7, eithers0 or s1 must be smaller than s. W.l.o.g. let us consider s0 < s. Also, T0 and T1 havedepth smaller than d.Applying the partial assignment x = 0 to all the clauses in T0 (respectively thepartial truth assignment x = 1 to the clauses in T1), we obtain two refutation treesderiving the empty clause from two sets of clauses '0, '1. By induction, w('0 ` 2) �w('0) + s0 � 1 � w(') + s � 2, and w('1 ` 2) � w('1) + s1 � 1 � w(') + s � 1.Applying Lemma 30 we obtain s� 1 � w(' ` 2)� w(') �This result shows that width lower bounds can be used to obtain space lower boundsfor the restricted case of tree-like resolution. Consider for example, for the case of aTseitin formulas related to an undirected graph G with odd marking. Ben-Sasson andWigderson have proved a width lower bound of the expansion of G [4]. By Corollary 31,this can be translated into a space lower bound for tree-like resolution of this formulasof at least the expansion of G minus the maximal degree of the graph. This is a littleworse than the space lower bound for general resolution from theorem 3.1.23



6 Conclusions and Open ProblemsWe have introduced a new de�nition to measure the space needed in the resolutionof an unsatis�able formula. This de�nition is more natural than the former one sinceit is closer to space measures in other complexity models and can be characterizedin terms of a well studied pebble game. We have obtained upper and matching lowerbounds for the space needed, as well as relationships between the space and the size of arefutation. These results bring new insight in the structure of resolution and hopefullywill be useful in the analysis of refutations. Besides the interest the bounds have ontheir own for a better understanding of the studied classes of formulas, some of theseresults point to a possible connection between the seemingly unrelated measures ofresolution width and space. Similar lower bounds to the ones shown here, hold also forthe case of width, and besides, it is known that for the case of tree-like resolution bothwidth and space lower bounds imply exponentially larger size lower-bounds. It hasbeen shown in [2] that this is not true for the case of general resolution. However, thequestion of whether space lower bounds imply size lower bounds for other restrictionsof resolution is still open.There are several other interesting problems that remain open, like for examplewhether Theorem 22 can be modi�ed so that the depth is not a parameter in theupper bound for the size, or whether it is true that every unsatis�able formula thatcan be resolved in logarithmic space, has a resolution refutation of polynomial size (animprovement of Corollary 23).Acknowledgment: The authors would like to thank an anonymous referee for sim-plifying Theorem 22 and Jochen Messner for helpful discussions on earlier versions ofthe paper.References[1] Aharoni, R., Linial, N.: Minimal non-two-colorable hypergraphs and minimal un-satis�able formulas. Journal of Combinatorial Theory, 43 (1986) 196{204.[2] Alekhnovich, M., Ben-Sasson, E., Razborov A. and Wigderson, A.: Space complex-ity in Propositional Calculus. In Proc. 32nd ACM Symp. on Theory of Computing(2000) 358{367.[3] Beame, P. and Pitassi, T.: Simpli�ed and Improved Resolution Lower Bounds. InProc. 37th IEEE Symp. on Foundations of Computer Science, (1996) 274{282.24
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