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ABSTRACT We review some of the known results about the complexity
of computing solutions or proofs of membership for problems in NP. Trying
to capture the complexity of this problem, we consider the classes of func-
tions FPNY FPNP[f] (for certain bounded functions f), NPSV, and FP}®
and provide some examples of NP problems with search functions in these
classes. We also consider whether NP-complete problems can have such
proofs of membership. We use the problem of obtaining solutions to com-
pare the relative powers of the function classes above . Finally, we consider
the situation in the nondeterministic logarithmic space setting, showing
how the complexity of obtaining solutions for NI, sets compares with the

NP case.

1 Introduction

Problems in the class NP have traditionally been studied from a decisional
point of view. This has been so mainly because in all natural cases an al-
gorithm providing a yes/no answer to an NP problem can be used to obtain
a solution for the problem, and therefore, if there exists a polynomial-time
algorithm for the decision problem, a solution can also be found in poly-
nomial time. Tt is more natural, however, to consider the search version,
studying directly the complexity of obtaining solutions for the problem.
Formally, let A be a problem in NP. By the standard characterization of
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NP with a polynomial-bounded existential quantifier, there is a polynomial
p and a polynomial-time computable relation R such that for all strings =
in ¥
v € A = 3y |yl < p(Jz]) and R(z, ).

For every instance 2, the set of strings y satisfying the relation R(z,y) is
usually called the set of solutions or the set of proofs of membership for =
in A. The search problem for A consists of finding a solution for an input
instance 2. In this chapter we survey some results about the complexity
of functions computing such a solution for problems in NP. For an NP
problem A characterized as above by a relation R, F4, denotes the set of
search functions for A, defined as

somey, |yl < p(le]) and R(z,y),
JEFa, = flx)= if such y exists,
undefined , otherwise.

Observe that in general a search function can be partial. This should not
create a problem since we are interested in finding solutions when they
exist.?

As we will see, the complexity of computing a search function might vary
depending on what kind of solution we want and also on the complexity
of the decision problem. For example, it might be harder to find a spe-
cific solution or an optimal solution in a certain sense than to find any
solution at all. Also, finding solutions for NP-complete problems might be
harder than finding solutions for problems in NP that do not seem to be
complete. Although the question of finding solutions for NP problems is a
fundamental one, up to now the complexity of the search problem has not,
been classified in a completely satisfactory way. As we will see in Section 2,
the complexity of finding optimal solutions is well understood. However,
there are many open questions related to the complexity of finding any
solution at all. In the different sections of this survey, we describe some of
the complexity classes of functions that arise when trying to capture the
complexity of the search problem, comparing them and showing some of
the results and properties known for these classes. For any of the classes
we consider, we give examples of natural problems in NP that have search
functions in the class.

PNP of functions com-

We start by considering in Section 2 the class F
putable in polynomial time with access to an oracle in NP. This class pro-
vides an upper bound for the complexity of the search problem. In fact, as
we will see, this class captures exactly the complexity of obtaining optimal
solutions for many important NP-complete problems. In other words, many

NP optimization problems are complete for this class of functions. An NP

# Also, for simplicity, where there is no confusion, we will not include the
relation R in the notation and just write F4.
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optimization problem is defined by an NP set A together with a polynomial-
time computable cost function ¢ that associates with every instance x and
every solution y of 2 a cost ¢(x,y). For an input 2, the optimization prob-
lem consists of finding the solution y maximizing (minimizing) ¢(x, y) over
all possible solutions. Tf we consider the concept of metric reducibility as
a tool to compare the complexity of functions, the optimization functions
for many NP-complete problems are the hardest ones in the class FPNP,
A natural question to ask is whether there are other search functions (not
necessarily giving the optimal solution) that are easier to compute. We
present a result. showing that under the hypothesis NP # co-NP, there
are search functions for NP-complete problems that are not complete for
FPNP. On the other hand, we also show that obtaining certain concrete
solutions related to counting problems is probably harder than obtaining
the optimal one.

In Section 3, we consider function classes that arise when bounding the
number of queries that can be made to an NP oracle. We give examples of
some problems in NP with search functions in such bounded query classes,
showing that the existence of search functions in these classes is related to
the amount of nondeterminism needed to solve a problem in NP. In the
same way as FPNP can be associated in a natural way with the complexity
of obtaining optimal solutions for NP-complete problems, there is a weak
variant of NP optimization that provides many examples of functions in
the bounded query classes. Any NP optimization problem induces the weak
optimization problem of finding the cost of the optimal solution for an
instance (without necessarily obtaining the solution). Many NP-complete
optimization problems with a polynomially bounded cost function (a cost
function whose value is bounded by a polynomial in the input size) have
weak optimization versions in the class FPNP[O(logn)]. We also review
some recent results relating bounded queries to the approximation of weak
optimization problems.

The class NPSV of NP single-valued functions is considered in Section 4.
The functions in this class are defined in terms of nondeterministic trans-
ducers, a model that uses nondeterminism to compute functions in a dif-
ferent way than the oracle query approach. Although there are some exam-
ples of search functions in NPSV, the main result explained in this section
shows that NPSV functions probably cannot compute proofs of member-
ship for NP-complete problems, since this would imply the collapse of the
polynomial-time hierarchy to its second level.

Section b is devoted to the class F’P]t\ip, the nonadaptive version of FPNP,
This class is a good candidate to improve the best known upper bound for
the complexity of the search problem. We present a result showing thaft,
relative to a random oracle, solutions for NP-complete problems can be
computed in this class. On the other hand, we mention a relativized result
in the other direction. We also review some results about the relative power
of FPNY and the other function classes considered in this survey.
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The search problem is not particular to the class NP, and it also makes
sense to define the problem for other complexity classes defined in terms
of nondeterminism. In Section 6, we take a look at the search problem for
nondeterministic logarithmic space (NL), comparing the situation in this
setting to the results known for NP. We consider the two function classes
OptT. and FLNT, pointing out that not all of the results for the NP case
translate directly to the logarithmic space setting.

For the basic notions of complexity theory used in this survey, as well as
for the definitions of some of the complexity classes we mention, we refer
the reader to the introductory hooks in the area such as [BDG88]. [Sel94]
constitutes a good introduction for definitions and relationships between
function classes in the polynomial-time setting.

The functions that we consider throughout this survey are defined from
¥* to ¥*, that is, they operate on strings rather than on natural num-
bers. When necessary, we assume a standard polynomial-time computable
bijection from X* to the set of integer numbers.

In order to compare the complexity of different functions, we use through-
out the survey the notion of metric reducibility [Kre88]. Given two functions
f and ¢, we say that f is metric reducible to g if there are two functions h,
and hy in FP such that for every x, f(x) = hq(x, g(ha(2))). Tntuitively, this
means that f can be computed by applying function g to a polynomial-time
transformation of # and then performing a polynomial-time computation.
We represent. a particular metric reduction by its two functions (hy, hs).
Since the functions we are dealing with might be undefined for some in-
puts, we require that every reduction (hq, he) should be monotonic, that
is, f(x) is undefined if g(h2(2)) is undefined. This applies in general to all
the functions considered; if a function’s argument is undefined, then the
function is undefined. For questions related to the definitions and relation-
ships between function classes in the polynomial-time setting that are not
treated in this chapter, we refer the reader to the survey [Sel94].

For simplicity, many of the results about the complexity of obtaining
solutions for NP-complete problems are presented only for Satisfiability
(SAT), the set of satisfiable Boolean formulas.

2  Computing Optimal Solutions: The Class FPNY

FPNP is defined as the class of functions computable in polynomial time by
a deterministic Turing machine that can query an oracle in NP. This class
provides an upper bound for the complexity of the search problem since
with the help of an NP oracle one can compute solutions for NP problems
in the following easy way: et A be an NP problem, and let p and R be
the polynomial and the polynomial-time relation defining the problem in
the existential characterization of NP. (ziven an instance x in A, a solution
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for = can be obtained querying the set of the prefixes of the solutions
Prefs = {{x,u) |2 € A and Fo, |uv| < p(|z]) and R(z,uv)}.

Clearly, Pref, belongs to NP, and querying this set at most p(|z|) times,
a solution for x can be constructed by the standard prefix search method.
Depending on how the prefix search is done, one can construct the lexico-
graphically smallest or largest solution, and therefore this method is indi-
cated to solve NP optimization problems. For simplicity, in this survey we
consider only maximization problems, the minimization case is completely
analogous. To obtain the best solution for an NP maximization problem
T, one can first obtain the cost of the best solution for an instance = by
querying the set

Max-Cost 4 = {{x, k) |y, R(x,y) and e(x,y) > k}

at most a polynomial number of times using binary search, and then find
the solution with the obtained cost by a prefix search using the set

Prefy = {{x,k,u) |2z € A and v, R(z,uv) and c(z,uv) = k}.

In order to capture the complexity of optimization problems, Krentel
introduced in [Kre88] the complexity class OptP containing the functions
computable by taking the maximum (or minimum) over a set, of feasible
solutions. These functions can be best understood using the metric Turing
machine model, also introduced in [Kre88]. A metric Turing machine M
is a nondeterministic polynomial-time Turing machine that at the end of
a computation path might write an integer number before halting. Define
optar () to be the largest output written by M on any computation path
on input x. By convention, if no output is written at the end of any com-
putation path on input 2, we consider that optas(2) is undefined. OptP is
the class of functions f that for some metric Turing machine M and for
every instance z satisfy f(x) = optas ().

For example, consider the function Max-Assign, computing the maxi-
mum (that is, lexicographically largest) satisfying assignment of a Boolean
formula. This function is computed by a metric Turing machine M that
on input F guesses an assignment y for F', and if it satisfies the formula it
outputs y (considered now as an integer). Clearly, Max-Assign = opt ys.

As a second example, consider the optimization version of the Clique
problem, consisting of obtaining a clique of largest size in a graph (in case
there is more than one such clique, the one with the largest encoding should
be selected). We can construct a metric machine for this problem that on
every nondeterministic computation path guesses a set of nodes, and if
these nodes form a clique, then the machine outputs its size. This machine
computes the cost of the best solution rather than the solution itself. How-
ever, the metric machine can be easily modified to encode in its output the
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clique together with its size in a way that cliques of greater size produce a
larger output.

From the considerations made bhefore, the largest output of a metric Tur-
ing machine can be computed with adaptive queries to NP, and therefore
OptP is a subclass of FPNP. However, as shown by Krentel, [Kre88] the
relation between both classes is stronger.

Theorem 2.1 FPNY coincides with the metric closure of OptP.

Proof. As we have mentioned, every function in OptP is contained
in FPNP . This shows one of the containments, since FPN is closed under
metric reducibility. The other containment is more interesting. et f be
a function computed in FPNY by a deterministic machine M that queries
an NP set A. Let p be a polynomial and R a polynomial-time relation
defining the set A. We can suppose that there is a polynomial ¢ such that
on input z the machine queries A exactly ¢(]z|) times. We give the de-
scription of a metric machine M’ that can output different values, and the
largest of them coincides with the sequence of query answers of M on a
given instance. On input z, M’ conjectures a sequence of oracle answers
a1y g(lz))s (the a;’s take either value 0 or 1, and we identify 0 with
a negative answer and 1 with a positive one). The machine simulates the
(deterministic) computation of M on z following the sequence of guessed
answers, and for every query ¢; answered positively, it guesses a string y;
of size bounded by p(|g;|). Tf for every query ¢; with a positive answer a;,
R(qg;, y;) holds, then M’ outputs ajas . ..a,(,) (considered as an integer),
otherwise M’ halts without producing any output. QObserve that although
M’ might output wrong sequences of oracle answers, the positive answers
in all sequences are always correct. If a wrong sequence s is produced, there
is always a larger sequence also given as output, namely one that provides a
correct positive answer to the first wrong negative answer of s. From this, it
follows that the function computing the correct sequence of oracle answers
of M coincides with the largest output of this metric machine. The final
observation needed to prove the theorem is that the function f is metric
reducible to the correct sequence of oracle answers of M. a

Krentel [Kre88] has shown that optimization versions of important NP-
complete problems such as Knapsack and 0 1 Integer Programming are
metric complete for OptP, and therefore also for FPNP. Gasarch, Krentel,
and Rappoport [GKR95] have extended the list. of NP-complete problems
with optimization versions that are complete for OptP, indicating that
OptP completeness is the standard behavior for the optimization version
of NP-complete problems.

These results show that the functions computing the best solution for
NP-complete problems are the hardest ones in FPNP | and every other func-
tion in the class can be metric reduced to them. What is the situation for
obtaining solutions other than the optimal? Tt is not hard to see that in
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the way the class of search functions for an NP problem is defined, one can
construct search functions that are not even recursive. A more interesting
question is whether there are solutions that are easier to compute than the
optimal one, or whether all of them are metric hard for FPNP. Next, we
show a result by Watanabe and Toda [WT93] that under the hypothesis NP
# co-NP, the optimal search functions for NP-complete problems cannot
be reduced to all search function for the problem. Therefore, there might
be solutions that are easier to compute. The original result is proven for
functional reducibility, a generalization of metric reducibility that allows
polynomially many (nonadaptive) functional queries. The following lemma
plays an important role in the result.

Lemma 2.2 Lef f be any function and A a set in NP. If f is metric
reducible to every search function for A, then there is a uniform metric
reduction (hy, he) such that f is metric reducible to every search function
Jor A wia (hq, hs).

The statement that a function is reducible to all the functions in the
class using always the same reduction has strong consequences.

Theorem 2.3 If Max-Assign can be metric reduced to every search func-
tion for SAT, then NP= coNP.

Proof. Given a Boolean formula F on variables xq,...x,, let us denote
by F' the formula =20V F(21,...,2,). Then, the formula F' is satisfiable;
clearly, F'is satisfiable if and only if the maximum satisfying assignment of
F’ gives to xg the value 1. Under the hypothesis that Max-Assign can be
reduced to every search function for SAT, using the previous lemma there
is a uniform metric reduction (hy, he) such that for every search function
for SAT g and every Boolean formula F,

Max-Assign(F) = hi(F, g(h2(F))).

A formula F is unsatisfiable if and only if Max-Assign(F’) assigns the
value 0 to xq, and this is true if and only if for every search function for
SAT g, hi(F',g(ha(F"))) assigns xq value 0. Observe that since (hy, ha)
is a metric reduction (and hence is monotonic), and Max-Assign(F’) is
defined, g(h2(F’)) is an assignment for the (satisfiable) formula hy(F’).
Also, since the value of hy(F’, g(ha(F’))) is always the same independent,
of the assignment for ho(F’) produced by g, we have that F is unsatisfiable
if and only if there exists an assignment a for hy(F’) such that hqy(F’', a)
assigns xg value (. But this in an NP predicate to decide unsatisfiability,
and from this follows NP = co-NP. a

The proof of Lemma 2.2 uses the fact that the class of search functions
for SAT is very broad, and therefore a reduction to every search function is
a very strong hypothesis. However, it is not hard to see that for the original
functional reducibility used in [WT93] the converse result also holds, that
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is, if NP = co-NP, then the optimal search function for SAT could be
functionally reduced to any other search function for the problem.

We finish this section by mentioning a result by Toda [Tod90] that char-
acterizes the complexity of finding a specific solution different from the
optimal one. He considers the solution that coincides with the median of
the output values of a metric Turing machine and shows that the complex-
ity of obtaining such a solution for SAT and other NP-complete problems
is metric complete for the class FPPP. Together with another result from
Toda, the theorem stating that the polynomial-time hierarchy (PH) is Tur-
ing reducible to PP [Tod91], this implies that unless PH collapses, this
specific search function cannot be computed in FPNP. Related results for
other specific search functions connected to counting have been obtained

by Vollmer and Wagner in [VW93].

3  Bounded Queries to NP

In this section, we consider the functions that arise by bounding the access
to the NP oracle in the class FPNP. Tet us say that a function f from N to
N is smooth if f is nondecreasing and polynomial-time computable (with
respect to the value of n). For a smooth function f, FPNP[f] denotes the
class of functions that can be computed by a deterministic polynomial-time
machine that on inputs of length n makes at most f(n) queries to an oracle
in NP. For a class F of functions, FPNP[_T] is defined in the natural way.
We have seen in the previous section that solutions to NP problems can

PYP with at most a polynomial number of queries to the

be computed in F
oracle. Can these functions also be obtained with fewer oracle queries? Since
in the procedures described, basically one oracle query is needed for each bit
of the solution, the question is closely related to that of what is the shortest,
length for the string quantified existentially in the characterization of an NP
problem or, in other words, to the question of what is the smallest amount,
of nondeterminism needed to solve a problem in NP. All known examples
of NP-complete problems need a polynomial, or at least linear, number
of nondeterministic bits for their solution. However, there are interesting
examples of problems in NP that are not known to be in P but have shorter
proofs of membership. For a smooth function f, define NP(f) to be the class
of problems A in NP that for some polynomial-time computable relation
R can be expressed as

A={z | Fylyl < f(lx]) and R(z,y)}.

For polylogarithmic functions, these classes of bounded nondeterminism
were defined by Kintala and Fisher [KF84]. Tt is easy to construct versions of
NP problems that fall in these classes; for example, the problem of whether
a graph has a clique of logarithmic size in its number of nodes is contained
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in NP(]og2 n). Here the solution encodes the log n nodes in the clique, and
logn bits are needed to encode each node. The classes NP(f) restricted to
polylogarithmic functions f also contain interesting natural problems, in-
cluding Dominating Set for tournament graphs, VC-Dimension, and Quasi-
group Isomorphism, that are not known to be solvable in polynomial time
(see [MV88, DTI0, PY93, Far94]).

Tt is straightforward to verify that a problem in NP has a proof of mem-
bership computable in FPNP[£]if and only if the problem belongs to NP(f).
Since NP(f) is contained in DTIME(2f) (that is, in P for f € O(logn)),
probably one cannot obtain solutions for NP-complete problems in FPNP[£]
for functions f much smaller than linear. This reasoning can be used to
show that under the standard complexity hypothesis certain containment,
results among the bounded query classes of functions are not possible, as
the following result from Krentel [Kre88] shows.

Theorem 3.1 If FPNY[n2(] C FPNP[0O(logn)] then P = NP.

The hypothesis states that membership tests for SAT can be obtained in
the class FPNP[O(logn)], but this implies SAT € NP(O(logn)), and this
class coincides with P. In the same paper, Krentel proved a more general
separation result, showing that in certain cases all the queries are necessary.

Theorem 3.2 Let [ be smooth and f(n) < elogn, for some e < 1. If
FPNE[f(n)] € FPR[f(n) — 1),

then P =NP.*

Krentel asked whether similar results could be obtained for other func-
tions greater than elogn. As we will see later in Section 5, it follows from
Theorem 5.5 that for functions f in O(logn) such a containment, would im-
ply the collapse of the polynomial-time hierarchy to its third level. Results
implying a collapse of PH under the hypothesis of the equality of function
classes in which more queries are allowed are still open.

Another motivation for studying the bounded query classes of functions
is related to a weak form of optimization. Recall from Section 1 that in
an optimization problem for NP there are two parameters of interest: the
optimal cost and a solution achieving such a cost. We have just observed
that in order to compute an optimal solution for each one of its bits, a query
to NP seems to be needed. On the other hand, if we are just interested in
the optimal cost achieved by any solution, how hard is this weak form
of optimization? If the cost function is exponential in the input size as
happens in many problems, computing a cost can be basically as hard as
computing a solution. For example, computing the cost of the best tour

PNP

for the Traveling Salesperson Problem is complete in F and also there

k)

*This result, was originally proved for e < 15 As observed by Beigel in [Bei88],
the result is true for any e < 1.
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are cases like the function Max-Assign considered in Section 2 in which the
solution is encoded in the cost function. There are, however, many other
optimization problems, like Max-Clique, also considered in Section 2, for
which the cost function is subexponential, and therefore it is possible to
compute it with less than a polynomial number of queries. In fact, Krentel
[Kre&8] has shown that some problems like computing the Maximum Clique
Size, Chromatic Number, and Max-Sat (computing the maximum number
of simultaneously satisfiable clauses in a Boolean formula in conjunctive
normal form) are metric complete for the class FPNP[O(logn)]. From an
approximation algorithm from Karmarkar and Karp for Bin Packing Size
[KK82], it follows that this problem can be computed in FPNP[O(loglog n)].

The number of NP queries provides a quantitative framework for com-
paring the complexities of these examples. Using Theorems 3.1 and 3.2,
it can be concluded that the weak optimization version for the Traveling
Salesperson Problem is strictly harder than Maximum Clique Size, and this
problem is strictly harder than Bin Packing Size.

Recently, Chang, Gasarch and Lund [CG93, CGT.94, Cha94] have pointed
out a very interesting connection between bounded queries and approxi-
mation of weak optimization problems showing that there is a trade-off
between the number of NP queries and the closeness of the approximation
for such problems. Tn particular, it is shown in [Cha94] that the prob-
lem of approximating Maximum Clique Size by a constant factor is metric
complete for the class FPNPlloglogn + O(1)]. Again in this setting, the
quantitative nature of the bounded queries to NP can provide a framework
for comparing the complexity of different approximation problems.

4 Computing Solutions Uniquely: The Class NPSV

In order to compute solutions for problems in NP, it seems that nondeter-
minism as a resource has to be used in one way or another. This can be
done with queries to an NP oracle as explained in the previous sections,
but there is a different way: using nondeterministic transducers to compute
functions directly. A problem with this approach is that a nondeterministic
transducer, a machine that on every path might output some value, can
produce many different outputs for the same input instance and therefore
does not compute a function in the usual sense, but a multivalued func-
tion ([BL.S84]; see also [FHOS93, Sel94]). Tn order to compute functions,
we should make the additional restriction that for any input given to the
nondeterministic transducer, all the computation paths that produce some
output value produce the same one. A computation path can also stop
without producing any output. This idea defines the class NPSV, intro-
duced by Book, T.ong, and Selman in [BT.S84], of functions computable by
polynomial-time nondeterministic transducers that for any input produce
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at most one output value. If no output is produced, we consider that the
function is undefined for that input.

Are there NPSV functions computing solutions for problems in NP?
There are not many examples of problems that are not known to be in
P but have solutions computable in NPSV. An important one is Primes,
the problem of deciding whether a given number is prime. This set has
proofs of membership in NPSV since it belongs to UP [FK92], the class of
NP problems that can be accepted by nondeterministic machines with at
most one accepting path. Clearly, every set in UP has proofs of membership
in NPSV. Tts complement, Composites (also known to be in UP [FK92]),
has a very natural proof of membership: given an integer, its list of prime
factors can be computed in NPSV.

Can NPSV functions also compute solutions for harder problems in NP7
Hemaspaandra, Naik, Ogihara, and Selman [HNOS94] have shown that for
NP-complete problems this is probably not the case, since it would imply
the collapse of the polynomial-time hierarchy to its second level. The proof
of this result applies the notion of selectivity, or semimembership algorithm,
a recursion-theoretic concept defined in the 1960’s that was translated to
the polynomial-time setting by Selman in [Sel79]. We define only NPSV-
selectivity, the type of selectivity that is used in the following result. We say
that a set A is NPSV-selective if there is a function f € NPSV, the selector,
such that for every pair of strings 2, y, f(z,y) € {#,y} or is undefined, and
if at least one of the strings 2 or y helongs to A, then f(z,y) € A.

To show that computing solutions for NP-complete problems in NPSV
implies a collapse of PH, Hemaspaandra et al. [HNOS94] proved the fol-
lowing lemma relating the possibility of computing solutions in NPSV with
NPSV-selectivity and then showed that NPSV-selective sets cannot be too
hard. The result of the lemma holds in fact in both directions. For simplicity
we only consider here the direction needed to prove the main result.

Lemma 4.1 If solutions for SAT can be computed in NPSV, then SAT is
NPSV-selective.

Proof. TLet f be a function in NPSV N Fgar, and let M be a nonde-
terministic transducer computing f. From M, we can construct an NPSV
selector for SAT, as described by the following nondeterministic program
M': On inputting a pair of Boolean formulas (Fy, Fy), let G = Fy V F3 and
simulate M on G. Tf M outputs a string y (a solution for &), check whether
y satisfies Fy. If this is the case, output Fy, otherwise output Fs. Clearly,
M’ computes an NPSV function that selects SAT. a

The next result shows that NPSV-selective sets can be computed in
NPNcoNP with the help of some small amount of additional information. As
defined by Karp and Lipton [KT.80] for a complexity class C, the nonuniform
version of C, C/poly, is the class of sets A for which there is a set B € C,
a polynomial p, and a function A such that for every string = it holds that
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|h(2)| < p(|z]), and = € A if and only if (z, h(0I"1)} € B. Ko proved in
[Ko83] that P-selective sets are in P/poly. The proof of the next result
follows similar arguments.

Theorem 4.2 NPSV-selective sets in NP are in (NP N coNP)/poly.

Proof. Tet A be a set in NP that is NPSV-selective via a selector
function f. without loss of generality, we can suppose that for every pair of
strings x,y, f(x,y) is either undefined or f(x,y) = f(y, x). Let n € N. We
show how to construct an advice of polynomial size for all the strings in
Y<7_ Consider a directed graph G, that has as nodes all the strings in £
and for which there is a directed edge from node x to node y if f(x,y) = y.
The subgraph induced by the strings of AS” is a tournament, that is, there
is a directed edge between each pair of nodes in this subgraph. Tournament
graphs always have a dominating set of size logarithmic in the number of
nodes. Since [[AS7|| < 27F1 there is a dominating set of nodes S C A
of size at most n + 1. Ohserve that for each € A and for each y € S,
f(z,y) = y, and also, for each z € A\ 9, it holds that f(y,z) = z. That
is, S together with the selector function can give enough information to
decide A.

For two finite sets, S and T, we will say that the triple (0,5, T) is an
advice if § C AS™ and T contains a proof of membership in A for each
string in 5. Define the set A’ as

A = {{x, <0|m|, S, Ty | <0|m|, S, T is an advice
and for some string y € S, f(x,y) = «}.

The set A’ is clearly in NP. Moreover, A’ belongs also to coNP, since an
instance (x, (0171, S, T)} is in A7 if either (01, S, T is not an advice (this
can be tested in polynomial time) or for all strings y € S, f(z,y) = v.
This second fact is true, since in case <0|m|,5, T) is an advice, § C A, and
therefore for all strings y € 9, f(x,y) is defined.

We can define h(0”) to be the advice (07, 5, T}, encoding in S the smallest
dominating set in the subgraph induced by A in (G,,, and in T the smallest
proofs of membership in A for the strings in S. Clearly, for every string =z,
z € Aifand only if (z, h(01"1)) € A’, and this proves A € (NPNcoNP)/poly.
O

ITmproving a result by Karp and Lipton [KT.80], Kobler and Watanabe
[KW95] have shown that if SAT C (NPNcoNP)/poly, then PH collapses to
the class ZPPNP . This result, together with Lemma 4.1 and Theorem 4.2,
yields the following theorem, stated in [HNOS94].

Theorem 4.3 If solutions to NP-complete sets can be computed in NPSV,
then the polynomial-time hierarchy collapses to ZPPNY .

This result has been subsequently improved in [BKT94] and recently by
Ogihara [Ogi95] in a way that relates bounded queries and NPSV functions:
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If solutions to NP-complete sets can be computed in FPNPSV[e(logn)] for
some ¢ < 1, then the polynomial-time hierarchy collapses to ¥,. (FPNPSY
is the class of functions computed in polynomial time with the help of

functional oracle queries to NPSV [FH0OS93].)

5 Nonadaptive Queries to NP: The Class FP}F

The prefix search method described in Section 2 to compute the optimal
solution of an NP problem queries an NP oracle in an adaptive way, and
the fact that the queries made at a certain stage of the computation de-
pend on the previous answers seems crucial. A question that has motivated
important research efforts is whether NP problems have some solution that
can be obtained with nonadaptive queries to NP, that is, whether functions
in F’PEP can compute proofs of memberships for problems in NP. F’PEP is
defined to be the class of functions that can be computed in polynomial
time by a machine that makes only truth-table or parallel queries to NP.
This means that the queries cannot depend on previous oracle answers and
have to be written in a list before the machine gets any oracle answer.

Tt is easy to see that FPNT contains both classes FPNY[O(logn)] and
NPSV. For the inclusion FPYY[Q(logn)] C FPRF, observe that if an oracle
machine queries some string in a computation stage, depending on the ora-
cle answer, there are at most two new strings that can be queried in the next
query stage. If only a logarithmic number of adaptive queries is allowed, a
polynomial-time machine can consider the complete tree of polynomially
many possible oracle queries for a given input and query them all at the
same time in parallel. The inclusion NPSV C FPLF illustrates a fact that
will play an important role in other results, namely, that if there is only
one possible solution, then it can be computed with nonadaptive queries to
NP. This is done by asking in parallel for all /s up to the solution’s length
whether there is a solution whose ith bit is a 1.

Again, in this case there are natural problems in NP for which F’PEP is
the best-known classification for the complexity of its search problem. An
example is Graph Automorphism, the problem to decide whether a given
graph has an automorphism different from the identity. L.ozano and Toran
proved in [T.T92] that the smallest nontrivial permutation (in the standard
order of permutations) that defines an automorphism can be found with
parallel queries to Graph Automorphism. Curiously, the problem of find-
ing the largest permutation is as hard as Graph Isomorphism, which seems
to be a harder problem. These results have recently been generalized in
[AA96]. Another example of a problem with solutions in F’PEP is Group
Intersection, the problem to decide, given sets of generators for two permu-
tation groups, whether there is a permutation (different from the identity)
in the intersection of both groups. Tn [Tor95] it is shown that permutations
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in the intersection group can be obtained with parallel queries to Group
Intersection.

As we have mentioned, an important open question is whether solutions
can be computed in F’P]t\ip for other NP problems, in particular, for NP-
complete problems.

Trying to compute optimal solutions in F’PEP may be asking for too
much. This would imply that FPNP coincides with FPLY. Tn [Sel94] it is
shown that the equality of the function classes is equivalent to the equal-
ity of the langunage classes PP and PNP. Although no unexpected con-
sequences of these equalities are known, we believe that the two function
classes FPNY and F’PEP are different. However, there might be other solu-
tions different from the optimal one that could be easier to compute and
that might be obtained with nonadaptive queries to NP. Watanabe and
Toda [WT93] have shown that in fact this is true in almost all relativized
worlds. Again, for simplicity, we state the result for the case of SAT, and
in fact the original result is stronger than the one mentioned here.

Theorem 5.1 There is a polynomial-time machine M that nonadaptively
queries a set in NPX such that for almost every oracle X, M computes
proofs of membership for SAT. That is, the Lebesque measure of {X :
FPNPY (N Faar # 0B} ds 1.

Although this is a statement about almost every oracle, the result in
fact has to do with random oracles, and more generally with randomized
computation. In results dealing with almost every oracle, the measure of
the size of a class of sets is done in terms of the probability that a random
set belongs to the class. Random sets are constructed by independent series
of tosses (one toss for each string in £*) of an unbiased coin.

The proof of this theorem is strongly based on the well-known result by
Valiant and Vazirani [VV86] that says that for any nonempty set A C X7,
with the help of n randomly chosen vectors from {0, 1}" it is possible with
high probability to isolate a single element of A. Roughly speaking, the
idea from the proof of [WT93] is to get from the random oracle enough
randomness to perform the isolation technique from Valiant and Vazirani
on the set of satisfying assignments of a given formula. Once a single as-
signment has been selected, it can be computed with nonadaptive queries
to NP as in the proof of NPSV C F’P]t\ip.

An intermediate result proved by Watanabe and Toda in order to obtain
Theorem 5.1 gives a clear view of the role played by randomization in the
result.

Theorem 5.2 For every polynomial p there exists a polynomial-time ran-
domized nonadaptive machine M querying a set in NP such that for every
Boolean formula F':

i) if F € SAT, then Pr{M(F) outputs a salisfying assignment for F} >
1 9-p(FD

B
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i1) if F ¢ SAT, then Pr{M(F) is undefined } = 1.

As the authors point out in [WT93], this result does not say that there
is a randomized nonadaptive query machine that computes a function in
Fsar, since M might output different assignments for different random
bits and therefore does not strictly compute a function. The existence of
such a randomized machine computing a function in Fgar is still an open
problem.

In spite of the fact that Theorem 5.1 holds for almost every oracle,
Buhrman and Thierauf [BT96] have obtained a relativization in the oppo-
site direction. Using results about exponential time, they have constructed
an oracle A such that F’P]t\iPA N Fear = 0.

From Theorems 5.1 and 5.2, one might get the idea that if some solution
for an NP-complete problem like SAT can be computed in F’P]t\ip, then
it should be a “random one.” On the other hand, the next result from
Buhrman, Kadin, and Thierauf [BKT94] states that if a solution for SAT
can be computed in F’P]t\ip, then also a very special one, namely the solution
with the maximum number of ()’s, can be computed in this class.

Theorem 5.3 Fgar N F’P]t\ip + O if and only if satisfying assignments for
SAT with marimum number of 0’s can be computed in F’P]t\ip.

Adaptive versus nonadaptive oracle access is an important research topic.
As in the adaptive case, the number of nonadaptive queries to an NP oracle
is a resource that has become a subject of study. In these studies, one
considers the relative power of function classes defined by bounding the
number of oracle queries.

The following result from [BKS94] is the analogue of Theorem 3.2 for
the nonadaptive setting.

Theorem 5.4 Let [ be smooth and f(n) < elogn for some e < 1.
If FPNPf(n)] C FPYP[f(n) — 1], then P = NP.
A different collapse for functions in O(logn) was obtained in [ABG94].

Theorem 5.5 Let [ be smooth and f € O(logn).
If FPNP[f(n)] C FPNP[f(n) — 1], then NP C coNP /poly (and PH = ¥5).

The question of whether FPNP[O(logn)] and FPLF coincide is of special
interest. We have seen already that FPNF[O(logn)] C FPNT. Moreover, in
the decisional case (that is, in the case where the functions computed are
restricted to produce 0/1 outputs) both classes coincide.

Tf the classes FPNT and FPYP[O(logn)] coincide, then there is a poly-
nomial-time algorithm that correctly decides the satisfiability of a formula
with at most one satisfying assignment. (Tf the formula has more than
one assignment, the algorithm may incorrectly decide that the formula is
not satisfiable.) Tn order to see this, ohserve that we can define a func-
tion f € F’P]t\ip that for a Boolean formula F(zq,...,x,) outputs a string
ai...a, € {0,1}" with a; = 1 if and only if there is a satisfying assignment
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for F assigning value 1 to the variable x;. In the case that F' has a unique
satisfying assignment, this is the value of f(F). Under the hypothesis of
equality of the function classes above, f is contained in PPNP[O(logn)].
Simulating all the possible values for the oracle answers of the machine
computing f, one can get a list of polynomially many values, one of which
satisfies the formula F. This result is stated formally using the concept
of promise problems (see [ESY84]). A promise problem is a pair of sets
(Q,R). A set L is called a solution to the promise problem (Q, R) if
Ve(r € Q = (# € L & 2 € R)). 1SAT denotes the set of Boolean for-
mulas with at most one satisfying assignment.

Theorem 5.6 If
FPYP C FPYP[0(log )]

then the promise problem (1SAT,SAT) has a solution in P.

A polynomial-time solution for the promise problem (1SAT, SAT) would
imply the unexpected consequences expressed in the following theorem.®
Theorem 5.7 If the promise problem (1SAT,SAT) has a solution in P,
then FewP = P, NP = R, and coNP = US.

As a consequence of these two results, we state the following theorem,
which summarizes the situation. This result was obtained by Selman in

[Sel94].6

Theorem 5.8 If
FPYP C FPYP[0(log )]

then FewP = P, NP = R, and coNP = US.

The consequence NP = R is especially strong, since it implies the collapse
of the polynomial-time hierarchy. We obtained in [JT95] a different conse-
quence of the equality of the function classes that, contrary to the previous
results, does not seem to be related to the promise problem (1SAT,SAT).
Namely, if FPNP = FpNP [O(logn)], then a polylogarithmic amount of non-
determinism can be simulated in polynomial time, and SAT can be decided
(for any k) in polynomial time with the help of only m+n nondeterministic
bits. The main tool needed for these results is the following theorem, which
under the hypothesis of the equality of the function classes gives an upper
bound for the complexity of selecting a Boolean formula from a list. For
a smooth function f, NPSVNP[.f] denotes the generalization of NPSV to
functions computed by a nondeterministic single-valued machine that can

*Valiant and Vazirani [VV86] obtained the second and third consequences.
Beigel [Bei&8] observed that the weaker result UP = P follows from the equivalent
hypothesis that Unique-SAT and SAT are P-separable.

“Beigel [Bei88] and Toda [Tod91] contain other interesting applications of
Theorem 5.7.
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make f queries to an NP oracle before doing any nondeterministic step (see

[TT95]).

Theorem 5.9 If
FPYP C FPYP[0(log )]

then there is a function f € NPSVNP[O(]oglog)] that for a sequence of
Boolean formulas Fy, ..., F, ouitputs one satisfiable formula from the list
mn case one erists.

The proof of this result orders the set of possible answers given by the
machine computing the function in FPNY[O(logn)] forming a lattice and
uses combinatorial arguments and the fact that the Set Cover Problem can
be approximated by a logarithmic factor to contract this lattice. An inter-
esting observation is that the satisfiable formula selected from a sequence
Fi,..., F, by the function f in the result is not necessarily the first satisfi-
able one in the sequence; the selection depends on how a function in F’P]t\ip
can be computed with O(logn) adaptive queries. Based on these results,
we obtained some consequences that make reference to subclasses of NP
with bounded nondeterminism (see Section 3), showing that under the hy-
pothesis FPNT = FPNP[0O(logn)], a significant reduction in the number of
nondeterministic bits in an NP computation can be obtained.

Theorem 5.10 If
FPYY = FPNP[O(logn)],

then for any smooth function f and for any k € N, NP(f) C NP(#).

This theorem has some direct consequences. For example, from the equal-
ity of the function classes it follows that for any k& € N, the class NP(logk)
is included in P and SAT € NP(M;7—,;H).

Although Theorems 5.9 and 5.10 give strong evidence that the function
classes are different, it is still an open problem whether the hypothesis
FPNP[O(logn)] = FPNP implies P = NP. A recent result from [NS96]
makes progress in this direction. We refer to the original paper for the
definition of effective inclusion.

Theorem 5.11 If there is a constant k such that FPRP[n*] is effectively
included in FPNY[k[logn] — 1], then P = NP.

6 A Look inside Nondeterministic Logspace

As in the NP case, problems computable in nondeterministic logarithmic
space (NT.) are traditionally decision problems. Typical (NT-complete) ex-
amples are the Graph Accessibility Problem for directed graphs, where for
a graph (& it is asked whether there is a path between two given nodes
s and t; or the Nonemptiness Problem for Nondeterministic Finite-state
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Automata, where for a given antomaton A it is asked whether L(A) is
nonempty.

As in the case of NP, it is more natural to consider the search versions of
these problems, which compute a solution for the decision problem at hand,
that is, a path from s to ¢ in (G or a witness w € L(A) for the nonemptiness
problem. Again, this can best be formalized using a quantifier characteriza-
tion of NI.. To obtain such a characterization, it does not suffice to restrict
the predicate R(x,y) in the characterization of NP to be computable in
logspace (this again yields a characterization of NP). Additionally, the pa-
rameter y of the input (the solution) must only be scanned one-way. To
compute these predicates, we hence need a special, somewhat unnatural
version of the common (deterministic) Turing machine model, with two
input tapes, one of which contains # and is scanned two-way, and one of
which contains y and is scanned one-way. Such machines were introduced
by Lange [Lan86]) and are called protocol machines, because the one-way
parameter y can be thought of as a protocol of an NI, computation.

Let A be a problem in NI.. Then, there is a polynomial p and a relation
R computable by a logspace-bounded protocol machine such that Vo € 3%,

reA<«—= 3 ¥ : |7 <p(=x|) and R(z, 7).

(Here, the right arrow above y indicates that y is only scanned one-way.)
Completely analogous to the case of NP, the search problem for A now
consists of finding a solution for an input instance x, that is, a string
7 such that R(z,7) holds. Tn the setting mentioned, a special case of
the search problem is the optimization problem for A, to compute for x a
solution of maximum (minimum) cost. More formally, given a cost function
c computable by a logspace protocol machine, the function fg . is defined
by
some ¥, |y| <p(|z|), B(x,7), and
Frc(e) = c(z,7) = maz{e(x,2) | R(x,7)},

0, if no 7 with R(z,7) exists.

(Observe that in this case the function is total. As we will see, this has to
do with the fact that NT. is closed under complementation).

In this section, we study the exact complexity of computing solutions
for NT. problems and the function classes that arise in the classification of
these problems. We are especially interested to see how the situation here
compares with the NP case. One might suspect that the results obtained for
NP simply translate to the NT. case. However, as we will see, the techniques
of Theorem 2.1 cannot be applied in the logspace case.

We mainly consider two function classes, Optl. and FLNV N optimiza-
tion corresponds to the class Optl. and, surprisingly, there are NI, optimiza-
tion problems that seem to be harder than computing lexicographically
optimal solutions. The complexity of obtaining such solutions is captured
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by the class FLN" of functions computable by a logspace machine with
access to an oracle in NTL. NI, optimization problems are only known to be
in FLN" for polynomially bounded cost functions, and computing the cost
(without the solution) of such NT. optimization problems (a form of weak
N optimization) can be done with just logarithmically many queries to
NT..

In order to capture the complexity of NI, optimization problems, Alvarez,
and Jenner [AJ93] introduced the complexity class Optl, analogous to the
class OptP of Krentel [Kre88]. The functions in Optl are defined using a
machine model called the NI, transducer. An NI, transducer is a nondeter-
ministic logarithmic space-bounded polynomially clocked Turing machine
T with a (write-only) unbounded output tape and accepting and rejecting
final states. ITn any move of T, T writes an output bit (0 or 1, or nothing,
onto its output tape. The output of a computation of 7" on input x is the
content of T’s output tape when T halts, and if T" halts in an accepting
state, the output is considered to be “valid.” We assume that any trans-
ducer has at least one valid output for each input. This is no restriction for
NT. transducers: Since NT. is closed under complementation [Tmm88, Sze&8],
the absence of a valid output can be checked by a precomputation. Observe
that although the number of reachable configurations of T is bounded by a
polynomial in the length of the input, due to the logarithmic space hound,
T can have exponentially many valid outputs. The length of any of the
outputs is always bounded by a polynomial in the length of the input.

For a transducer T, let opty denote the function that for an input
computes the maximum valid output value of T on x with respect to lexi-
cographical order. The class Optl. is the class of functions f such that for
some NT. transducer T and every input 2, f(z) = opty(x).

In the NP case, the class OptP, defined via metric Turing machines,
clearly captures the idea of NP optimization problems. (More formally,
the closures of these classes under metric reducibility coincide.) Moreover,
the class is closely related to FPNP (see Theorem 2.1). In the NI case,
some new arguments are needed to prove that both characterizations of NI,
optimization, via predicates or via NI, transducer, basically yield the same
class. We say that a function f is logspace metric reducible to a function
g if there exist two logspace computable functions hq, hy such that f(z) =
hi(x,g(ha(x))) for all 2. The logspace metric closure of a class C' is the
class of all functions that are logspace metric reducible to a function in C.

Theorem 6.1 The logspace metric closures of the class of NI optimiza-
tion problems and of the class Optl coincide.

Proof. First, we reduce an arbitrary function f € Optl. computed by
an NTL transducer T to an NT. optimization problem gg .. Define R(x,7)
to be the predicate stating that T on input # produces some valid output
on computation 77, and define ¢(2,7) to be the valid output produced by

—

T(x) following the computation 7 (or 0, if no valid output is produced).
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Then, gr.c(x) defines a computation ¥ with maximum cost, and f(z) is
obtained by the reduction that simply computes ¢(z, 7).

Now, we show the reduction of an arbitrary NI. optimization problem
fr,c to an optp function for an NI transducer T. The straightforward idea
here is to use codifications of the solutions 7 together with their costs
c(z,7) as output of the transducer T. However, T can only remember
costs of up to logarithmic length. The following trick achieves the result.

Without loss of generality, we can assume that there are polynomials
p and ¢ such that the solutions g satisfying R(x,7) have length exactly
p(|z|) and the costs (2, 7)) have length exactly ¢(|z]). Let Mg and T, be
the logspace protocol machines that compute R and ¢, respectively. Let the
position-i-configuration of T, or Mg on input (x,%) be the configuration
that the machines enter when they move the input head of the protocol
tape to position 7, the ith symbol of 7. The position-1-configuration is just
the initial configuration.

On input 2, T works in p(|z|) stages, giving in each stage one bit of
the solution. On stage 4, T guesses a solution  simulating in parallel the
machines Mg and T, step by step according to the guessed bits of 77, and
outputs ¢(z, 7 ) followed by the ith bit of 7. T discards its computation if
Mg rejects; otherwise, it continues with the next stage. During this simula-
tion, just when the ith bit of 7 is guessed, T checks whether both machines
Mg and T, are in their position-i-configurations, and if this is not the case,
T rejects. Furthermore, T stores the position-(7 + 1)-configurations of Mg
and T. to continue the simulation in the next stage correctly.

Tt can be shown that after p(|x|) iterations, the maximum valid out-
put produced by T has the form e(z, 7 )yic(z, 7 )y2-..c(2, 7 )yp, where
Y1 ... yp encodes a solution ¥ maximizing the cost e(z, 7). Simple count-
ing, and hence logspace, suffices to obtain this solution from the sequence.
This shows that NT. optimization problems are logspace metric reducible
to functions in Optl. a

Optl. provides an upper bound to all NI, optimization problems. But how
difficult are Optl. functions to compute? One answer can be given in terms
of complete problems for Optl.. These include, for example, computing
the Maximal Word Function for Nondeterministic Finite-state Automata
[AJ93] and computing the Tterated Product of Word Matrices over {0, 1}*
using the operations maximum and concatenation [AJ95].

As best-known upper bound, it is known that OptlL is included in AC',
the class of functions computable by unbounded fan-in Boolean circuits of
logarithmic depth [AJ95]. As shown by Allender, Bruschi, and Pighizzini
[AW90], AC" contains the broad class of optimization functions defined via
optimization for one-way nondeterministic auxiliary pushdown automata
(and hence for the class of context-free languages).

It is an open problem whether the class Optl is included in the class
DET of problems that are NC' reducible to computing the determinant
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of an integer matrix. This class was introduced by Cook in [Coo85]. The
question is equivalent to the question of whether computing the Tterated
Product of Word Matrices using the operations maximum and concatena-
tion is reducible to the normal Tterated Matrix Product. (For an overview
of the complexities of various iterated matrix products see Immerman and
Landau [T1.95].)

The second class that we consider is FLN", the class of all functions
computable by a (deterministic) logspace transducer with an oracle in NT..
(FT. denotes the class of all deterministic logspace functions.) Observe that
an NI transducer can easily simulate an FLY" machine solving the oracle
queries by NI, subroutines, using again that NT. is closed under complemen-
tation. (This NT. transducer is in fact single-valued, that is, it computes
exactly one valid value for each input). This shows that FLN C Optl.
Contrary to the case of Optl, FLN" is known to be included in DET
[Coo85].

In the polynomial-time setting, the class OptP is included in FpNP (see
Theorem 2.1). The proof of this result based on prefix search does not fully
translate to the NI, case, since here we can only remember prefixes up to
logarithmic length. We can apply prefix search when the cost function is
polynomially bounded. Similarly, a prefix technique can be used to compute
solutions and lexicographically maximal solutions of NI, search problems.

Theorem 6.2 (i) The lexicographically marimal solution of any NT. search
problem can be computed in FLN.

(ii) NT. optimization problems with polynomially-bounded cost functions can
be computed in FLN.

Proof. (i) Tet fg be an NI search problem, let M be the logspace
protocol machine that accepts R, and let p be the polynomial that bounds
the running time of M. Define the NT. oracle L$P := {28v |z € I, v € P},
where

L= {837, Iyl < pllzD), R@7), and 7] > k), and
P = {{z,k,e)|37,|Z| = k and M started in configuration ¢

on input (z,7") accepts}.

For input x, using I. the length of the lexicographically maximal solution
7 that satisfies R can be computed in logspace with binary search. Then,
a prefix construction using the set P yields 7.

(i1) This is similar to the NP case. We have only to adapt the proof to
the computation of protocol machines. The maximal cost can be computed
with oracle queries to a set in NI (by brute force or, more efficiently, by
binary search). This value can be stored within logspace. Now, we can
construct a solution with that cost analogous to the proof of Theorem 2.1
using a variant of the set P above that incorporates the cost. a
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We mention that bounded query classes in the logarithmic space set-
ting also compute some interesting functions. FL.N"[Q(logn)] is the class
of all FLN" functions that are computable with only logarithmically many
queries. In this class, for example, the length of the shortest path for a
given instance of the Graph Accessibility Problem can he computed (or
the length of the shortest word accepted by a given finite-state automaton,
etc.). Similarly, any weak optimization problem for polynomially-bounded
cost, functions belongs to FL.N"[O(logn)].

The class FLN" can compute solutions for NT. decision problems and
hence provides an upper bound to all NI, search problems. FLN" is a
very robust class that has a variety of other characterizations (see [Coo85,
ABJ95, AJ95]). For example, FLN" is the closure of NT, under functional
ACP- or NC'-reducibility, via an T, transducer that make one round of non-
adaptive queries to an oracle in NI or via a single-valued NI, transducer.
These different characterizations are not very surprising considering the
fact that NT. is closed under complementation. (Observe that under the
hypothesis NP = coNP, all the classes FPNF, F’P]t\ip, and NPSV coincide.)

Examples of functional problems that are complete for the class FL.N" are
Tterated Boolean Matrix Product [Coo85], the Maximal Word Function for
Deterministic Finite-state Automata [AJ93], and computing the Tterated
Product of Word Matrices over {1}* using the operations maximum and
concatenation [AJ95]. The latter two problems are restrictions of problems
that are complete for Optl.

This again shows that there is a structural difference between the classes
FLN" and Optl.. Unfortunately, it is not known whether Optl. C FLN
implies I. = NT., or any similar statement that is widely believed to be false.
Tt remains an open problem to derive such an implication.

7 Conclusions

Finding solutions for problems in NP is a fundamental problem whose com-
plexity has not yet been classified in a completely satisfactory way. We have
reviewed some of the known results related to this question by considering
several important complexity classes of functions that can compute proofs
of membership for different problems in NP. We have shown that although
the complexity of finding optimal solutions for NP-complete problems is
well understood, there are many unsolved questions related to the com-
plexity of computing other solutions. Here, the question of whether NP-
complete problems have solutions that can be computed with polynomially
many nonadaptive queries to NP is of particular interest. All the known
examples of problems in NP with solutions computable in FPNP have very
special counting properties (see [KST92] and the chapter by Fortnow [For]
in this book.) Tt is unclear whether these special properties hold only for



1. The Complexity of Obtaining Solutions for Problems in NP and NI. 23

these examples or are true for any problem with solutions computable in
FPNP. Also, some relationships between function classes remain open. For
example, although we believe that FPNF is strictly contained in FPNP no
strong consequences are known to follow from the equality of both classes
(such as, for example, a collapse of the polynomial-time hierarchy).

The most prominent open questions about logarithmic space-bounded
function classes are, on the one hand, what is the (possible) difference
between the classes FLN" and Optl. (that is, computing the lexicographi-
cally maximal solution versus computing an optimal one) and, on the other
hand, what are the precise relationships between optimization and other
important problems of the area (computing the determinant or recognition
of context-free languages).

The manifold open questions that relate the complexity of computing
solutions to other aspects of complexity theory demonstrate the importance
of this area of research.

Acknowledgments: We would like to thank Thomas Thierauf, Klaus-Jorn
Lange, and the anonymous referees for many helpful comments.
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