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1. The Complexity of Obtaining Solutions for Problems in NP and NL 2NP with a polynomial-bounded existential quanti�er, there is a polynomialp and a polynomial-time computable relation R such that for all strings xin �� x 2 A() 9y jyj � p(jxj) and R(x; y):For every instance x, the set of strings y satisfying the relation R(x; y) isusually called the set of solutions or the set of proofs of membership for xin A. The search problem for A consists of �nding a solution for an inputinstance x. In this chapter we survey some results about the complexityof functions computing such a solution for problems in NP. For an NPproblem A characterized as above by a relation R, FAR denotes the set ofsearch functions for A, de�ned asf 2 FAR () f(x) = 8<: some y; jy j � p(jxj) and R(x; y);if such y exists,unde�ned ; otherwise.Observe that in general a search function can be partial. This should notcreate a problem since we are interested in �nding solutions when theyexist.3As we will see, the complexity of computing a search function might varydepending on what kind of solution we want and also on the complexityof the decision problem. For example, it might be harder to �nd a spe-ci�c solution or an optimal solution in a certain sense than to �nd anysolution at all. Also, �nding solutions for NP-complete problems might beharder than �nding solutions for problems in NP that do not seem to becomplete. Although the question of �nding solutions for NP problems is afundamental one, up to now the complexity of the search problem has notbeen classi�ed in a completely satisfactory way. As we will see in Section 2,the complexity of �nding optimal solutions is well understood. However,there are many open questions related to the complexity of �nding anysolution at all. In the di�erent sections of this survey, we describe some ofthe complexity classes of functions that arise when trying to capture thecomplexity of the search problem, comparing them and showing some ofthe results and properties known for these classes. For any of the classeswe consider, we give examples of natural problems in NP that have searchfunctions in the class.We start by considering in Section 2 the class FPNP of functions com-putable in polynomial time with access to an oracle in NP. This class pro-vides an upper bound for the complexity of the search problem. In fact, aswe will see, this class captures exactly the complexity of obtaining optimalsolutions for many important NP-complete problems. In other words, manyNP optimization problems are complete for this class of functions. An NP3Also, for simplicity, where there is no confusion, we will not include therelation R in the notation and just write FA.



1. The Complexity of Obtaining Solutions for Problems in NP and NL 3optimization problem is de�ned by an NP set A together with a polynomial-time computable cost function c that associates with every instance x andevery solution y of x a cost c(x; y). For an input x, the optimization prob-lem consists of �nding the solution y maximizing (minimizing) c(x; y) overall possible solutions. If we consider the concept of metric reducibility asa tool to compare the complexity of functions, the optimization functionsfor many NP-complete problems are the hardest ones in the class FPNP.A natural question to ask is whether there are other search functions (notnecessarily giving the optimal solution) that are easier to compute. Wepresent a result showing that under the hypothesis NP 6= co-NP, thereare search functions for NP-complete problems that are not complete forFPNP. On the other hand, we also show that obtaining certain concretesolutions related to counting problems is probably harder than obtainingthe optimal one.In Section 3, we consider function classes that arise when bounding thenumber of queries that can be made to an NP oracle. We give examples ofsome problems in NP with search functions in such bounded query classes,showing that the existence of search functions in these classes is related tothe amount of nondeterminism needed to solve a problem in NP. In thesame way as FPNP can be associated in a natural way with the complexityof obtaining optimal solutions for NP-complete problems, there is a weakvariant of NP optimization that provides many examples of functions inthe bounded query classes. Any NP optimization problem induces the weakoptimization problem of �nding the cost of the optimal solution for aninstance (without necessarily obtaining the solution). Many NP-completeoptimization problems with a polynomially bounded cost function (a costfunction whose value is bounded by a polynomial in the input size) haveweak optimization versions in the class FPNP[O(logn)]. We also reviewsome recent results relating bounded queries to the approximation of weakoptimization problems.The class NPSV of NP single-valued functions is considered in Section 4.The functions in this class are de�ned in terms of nondeterministic trans-ducers, a model that uses nondeterminism to compute functions in a dif-ferent way than the oracle query approach. Although there are some exam-ples of search functions in NPSV, the main result explained in this sectionshows that NPSV functions probably cannot compute proofs of member-ship for NP-complete problems, since this would imply the collapse of thepolynomial-time hierarchy to its second level.Section 5 is devoted to the class FPNPtt , the nonadaptive version of FPNP.This class is a good candidate to improve the best known upper bound forthe complexity of the search problem. We present a result showing that,relative to a random oracle, solutions for NP-complete problems can becomputed in this class. On the other hand, we mention a relativized resultin the other direction. We also review some results about the relative powerof FPNPtt and the other function classes considered in this survey.



1. The Complexity of Obtaining Solutions for Problems in NP and NL 4The search problem is not particular to the class NP, and it also makessense to de�ne the problem for other complexity classes de�ned in termsof nondeterminism. In Section 6, we take a look at the search problem fornondeterministic logarithmic space (NL), comparing the situation in thissetting to the results known for NP. We consider the two function classesOptL and FLNL, pointing out that not all of the results for the NP casetranslate directly to the logarithmic space setting.For the basic notions of complexity theory used in this survey, as well asfor the de�nitions of some of the complexity classes we mention, we referthe reader to the introductory books in the area such as [BDG88]. [Sel94]constitutes a good introduction for de�nitions and relationships betweenfunction classes in the polynomial-time setting.The functions that we consider throughout this survey are de�ned from�� to ��, that is, they operate on strings rather than on natural num-bers. When necessary, we assume a standard polynomial-time computablebijection from �� to the set of integer numbers.In order to compare the complexity of di�erent functions, we use through-out the survey the notion ofmetric reducibility [Kre88]. Given two functionsf and g, we say that f is metric reducible to g if there are two functions h1and h2 in FP such that for every x, f(x) = h1(x; g(h2(x))). Intuitively, thismeans that f can be computed by applying function g to a polynomial-timetransformation of x and then performing a polynomial-time computation.We represent a particular metric reduction by its two functions (h1; h2).Since the functions we are dealing with might be unde�ned for some in-puts, we require that every reduction (h1; h2) should be monotonic, thatis, f(x) is unde�ned if g(h2(x)) is unde�ned. This applies in general to allthe functions considered; if a function's argument is unde�ned, then thefunction is unde�ned. For questions related to the de�nitions and relation-ships between function classes in the polynomial-time setting that are nottreated in this chapter, we refer the reader to the survey [Sel94].For simplicity, many of the results about the complexity of obtainingsolutions for NP-complete problems are presented only for Satis�ability(SAT), the set of satis�able Boolean formulas.2 Computing Optimal Solutions: The Class FPNPFPNP is de�ned as the class of functions computable in polynomial time bya deterministic Turing machine that can query an oracle in NP. This classprovides an upper bound for the complexity of the search problem sincewith the help of an NP oracle one can compute solutions for NP problemsin the following easy way: Let A be an NP problem, and let p and R bethe polynomial and the polynomial-time relation de�ning the problem inthe existential characterization of NP. Given an instance x in A, a solution



1. The Complexity of Obtaining Solutions for Problems in NP and NL 5for x can be obtained querying the set of the pre�xes of the solutionsPrefA = fhx; ui j x 2 A and 9v; juvj � p(jxj) and R(x; uv)g:Clearly, PrefA belongs to NP, and querying this set at most p(jxj) times,a solution for x can be constructed by the standard pre�x search method.Depending on how the pre�x search is done, one can construct the lexico-graphically smallest or largest solution, and therefore this method is indi-cated to solve NP optimization problems. For simplicity, in this survey weconsider only maximization problems, the minimization case is completelyanalogous. To obtain the best solution for an NP maximization problem�, one can �rst obtain the cost of the best solution for an instance x byquerying the setMax-CostA = fhx; ki j 9y; R(x; y) and c(x; y) � kgat most a polynomial number of times using binary search, and then �ndthe solution with the obtained cost by a pre�x search using the setPref0A = fhx; k; ui j x 2 A and 9v; R(x; uv) and c(x; uv) = kg:In order to capture the complexity of optimization problems, Krentelintroduced in [Kre88] the complexity class OptP containing the functionscomputable by taking the maximum (or minimum) over a set of feasiblesolutions. These functions can be best understood using the metric Turingmachine model, also introduced in [Kre88]. A metric Turing machine Mis a nondeterministic polynomial-time Turing machine that at the end ofa computation path might write an integer number before halting. De�neoptM(x) to be the largest output written by M on any computation pathon input x. By convention, if no output is written at the end of any com-putation path on input x, we consider that optM (x) is unde�ned. OptP isthe class of functions f that for some metric Turing machine M and forevery instance x satisfy f(x) = optM (x).For example, consider the function Max-Assign, computing the maxi-mum (that is, lexicographically largest) satisfying assignment of a Booleanformula. This function is computed by a metric Turing machine M thaton input F guesses an assignment y for F , and if it satis�es the formula itoutputs y (considered now as an integer). Clearly, Max-Assign = optM .As a second example, consider the optimization version of the Cliqueproblem, consisting of obtaining a clique of largest size in a graph (in casethere is more than one such clique, the one with the largest encoding shouldbe selected). We can construct a metric machine for this problem that onevery nondeterministic computation path guesses a set of nodes, and ifthese nodes form a clique, then the machine outputs its size. This machinecomputes the cost of the best solution rather than the solution itself. How-ever, the metric machine can be easily modi�ed to encode in its output the



1. The Complexity of Obtaining Solutions for Problems in NP and NL 6clique together with its size in a way that cliques of greater size produce alarger output.From the considerations made before, the largest output of a metric Tur-ing machine can be computed with adaptive queries to NP, and thereforeOptP is a subclass of FPNP. However, as shown by Krentel, [Kre88] therelation between both classes is stronger.Theorem 2.1 FPNP coincides with the metric closure of OptP.Proof. As we have mentioned, every function in OptP is containedin FPNP. This shows one of the containments, since FPNP is closed undermetric reducibility. The other containment is more interesting. Let f bea function computed in FPNP by a deterministic machine M that queriesan NP set A. Let p be a polynomial and R a polynomial-time relationde�ning the set A. We can suppose that there is a polynomial q such thaton input x the machine queries A exactly q(jxj) times. We give the de-scription of a metric machine M 0 that can output di�erent values, and thelargest of them coincides with the sequence of query answers of M on agiven instance. On input x, M 0 conjectures a sequence of oracle answersa1; : : : ; aq(jxj), (the ai's take either value 0 or 1, and we identify 0 witha negative answer and 1 with a positive one). The machine simulates the(deterministic) computation of M on x following the sequence of guessedanswers, and for every query qi answered positively, it guesses a string yiof size bounded by p(jqij). If for every query qi with a positive answer ai,R(qi; yi) holds, then M 0 outputs a1a2 : : :aq(jxj) (considered as an integer),otherwise M 0 halts without producing any output. Observe that althoughM 0 might output wrong sequences of oracle answers, the positive answersin all sequences are always correct. If a wrong sequence s is produced, thereis always a larger sequence also given as output, namely one that provides acorrect positive answer to the �rst wrong negative answer of s. From this, itfollows that the function computing the correct sequence of oracle answersof M coincides with the largest output of this metric machine. The �nalobservation needed to prove the theorem is that the function f is metricreducible to the correct sequence of oracle answers of M . 2Krentel [Kre88] has shown that optimization versions of important NP-complete problems such as Knapsack and 0{1 Integer Programming aremetric complete for OptP, and therefore also for FPNP. Gasarch, Krentel,and Rappoport [GKR95] have extended the list of NP-complete problemswith optimization versions that are complete for OptP, indicating thatOptP completeness is the standard behavior for the optimization versionof NP-complete problems.These results show that the functions computing the best solution forNP-complete problems are the hardest ones in FPNP, and every other func-tion in the class can be metric reduced to them. What is the situation forobtaining solutions other than the optimal? It is not hard to see that in



1. The Complexity of Obtaining Solutions for Problems in NP and NL 7the way the class of search functions for an NP problem is de�ned, one canconstruct search functions that are not even recursive. A more interestingquestion is whether there are solutions that are easier to compute than theoptimal one, or whether all of them are metric hard for FPNP. Next, weshow a result by Watanabe and Toda [WT93] that under the hypothesis NP6= co-NP, the optimal search functions for NP-complete problems cannotbe reduced to all search function for the problem. Therefore, there mightbe solutions that are easier to compute. The original result is proven forfunctional reducibility, a generalization of metric reducibility that allowspolynomially many (nonadaptive) functional queries. The following lemmaplays an important role in the result.Lemma 2.2 Let f be any function and A a set in NP. If f is metricreducible to every search function for A, then there is a uniform metricreduction (h1; h2) such that f is metric reducible to every search functionfor A via (h1; h2).The statement that a function is reducible to all the functions in theclass using always the same reduction has strong consequences.Theorem 2.3 If Max-Assign can be metric reduced to every search func-tion for SAT, then NP= coNP.Proof. Given a Boolean formulaF on variables x1; : : :xn, let us denoteby F 0 the formula :x0_F (x1; : : : ; xn). Then, the formula F 0 is satis�able;clearly, F is satis�able if and only if the maximum satisfying assignment ofF 0 gives to x0 the value 1. Under the hypothesis that Max-Assign can bereduced to every search function for SAT, using the previous lemma thereis a uniform metric reduction (h1; h2) such that for every search functionfor SAT g and every Boolean formula F ,Max-Assign(F ) = h1(F; g(h2(F ))):A formula F is unsatis�able if and only if Max-Assign(F 0) assigns thevalue 0 to x0, and this is true if and only if for every search function forSAT g, h1(F 0; g(h2(F 0))) assigns x0 value 0. Observe that since (h1; h2)is a metric reduction (and hence is monotonic), and Max-Assign(F 0) isde�ned, g(h2(F 0)) is an assignment for the (satis�able) formula h2(F 0).Also, since the value of h1(F 0; g(h2(F 0))) is always the same independentof the assignment for h2(F 0) produced by g, we have that F is unsatis�ableif and only if there exists an assignment a for h2(F 0) such that h1(F 0; a)assigns x0 value 0. But this in an NP predicate to decide unsatis�ability,and from this follows NP = co-NP. 2The proof of Lemma 2.2 uses the fact that the class of search functionsfor SAT is very broad, and therefore a reduction to every search function isa very strong hypothesis. However, it is not hard to see that for the originalfunctional reducibility used in [WT93] the converse result also holds, that



1. The Complexity of Obtaining Solutions for Problems in NP and NL 8is, if NP = co-NP, then the optimal search function for SAT could befunctionally reduced to any other search function for the problem.We �nish this section by mentioning a result by Toda [Tod90] that char-acterizes the complexity of �nding a speci�c solution di�erent from theoptimal one. He considers the solution that coincides with the median ofthe output values of a metric Turing machine and shows that the complex-ity of obtaining such a solution for SAT and other NP-complete problemsis metric complete for the class FPPP. Together with another result fromToda, the theorem stating that the polynomial-time hierarchy (PH) is Tur-ing reducible to PP [Tod91], this implies that unless PH collapses, thisspeci�c search function cannot be computed in FPNP. Related results forother speci�c search functions connected to counting have been obtainedby Vollmer and Wagner in [VW93].3 Bounded Queries to NPIn this section, we consider the functions that arise by bounding the accessto the NP oracle in the class FPNP. Let us say that a function f from IN toIN is smooth if f is nondecreasing and polynomial-time computable (withrespect to the value of n). For a smooth function f , FPNP[f ] denotes theclass of functions that can be computed by a deterministic polynomial-timemachine that on inputs of length n makes at most f(n) queries to an oraclein NP. For a class F of functions, FPNP[F ] is de�ned in the natural way.We have seen in the previous section that solutions to NP problems canbe computed in FPNP with at most a polynomial number of queries to theoracle. Can these functions also be obtained with fewer oracle queries? Sincein the procedures described, basically one oracle query is needed for each bitof the solution, the question is closely related to that of what is the shortestlength for the string quanti�ed existentially in the characterization of an NPproblem or, in other words, to the question of what is the smallest amountof nondeterminism needed to solve a problem in NP. All known examplesof NP-complete problems need a polynomial, or at least linear, numberof nondeterministic bits for their solution. However, there are interestingexamples of problems in NP that are not known to be in P but have shorterproofs of membership. For a smooth function f , de�ne NP(f) to be the classof problems A in NP that for some polynomial-time computable relationR can be expressed asA = fx j 9y; jyj � f(jxj) and R(x; y)g:For polylogarithmic functions, these classes of bounded nondeterminismwere de�ned by Kintala and Fisher [KF84]. It is easy to construct versions ofNP problems that fall in these classes; for example, the problem of whethera graph has a clique of logarithmic size in its number of nodes is contained



1. The Complexity of Obtaining Solutions for Problems in NP and NL 9in NP(log2 n). Here the solution encodes the logn nodes in the clique, andlogn bits are needed to encode each node. The classes NP(f) restricted topolylogarithmic functions f also contain interesting natural problems, in-cluding Dominating Set for tournament graphs, VC-Dimension, and Quasi-group Isomorphism, that are not known to be solvable in polynomial time(see [MV88, DT90, PY93, Far94]).It is straightforward to verify that a problem in NP has a proof of mem-bership computable in FPNP[f ] if and only if the problem belongs to NP(f).Since NP(f) is contained in DTIME(2f ) (that is, in P for f 2 O(logn)),probably one cannot obtain solutions for NP-complete problems in FPNP[f ]for functions f much smaller than linear. This reasoning can be used toshow that under the standard complexity hypothesis certain containmentresults among the bounded query classes of functions are not possible, asthe following result from Krentel [Kre88] shows.Theorem 3.1 If FPNP[nO(1)] � FPNP[O(logn)] then P = NP.The hypothesis states that membership tests for SAT can be obtained inthe class FPNP[O(logn)], but this implies SAT 2 NP(O(logn)), and thisclass coincides with P. In the same paper, Krentel proved a more generalseparation result, showing that in certain cases all the queries are necessary.Theorem 3.2 Let f be smooth and f(n) � � logn, for some � < 1. IfFPNP[f(n)] � FPNP[f(n) � 1];then P = NP.4Krentel asked whether similar results could be obtained for other func-tions greater than � logn. As we will see later in Section 5, it follows fromTheorem 5.5 that for functions f in O(logn) such a containment would im-ply the collapse of the polynomial-time hierarchy to its third level. Resultsimplying a collapse of PH under the hypothesis of the equality of functionclasses in which more queries are allowed are still open.Another motivation for studying the bounded query classes of functionsis related to a weak form of optimization. Recall from Section 1 that inan optimization problem for NP there are two parameters of interest: theoptimal cost and a solution achieving such a cost. We have just observedthat in order to compute an optimal solution for each one of its bits, a queryto NP seems to be needed. On the other hand, if we are just interested inthe optimal cost achieved by any solution, how hard is this weak formof optimization? If the cost function is exponential in the input size ashappens in many problems, computing a cost can be basically as hard ascomputing a solution. For example, computing the cost of the best tourfor the Traveling Salesperson Problem is complete in FPNP, and also there4This result was originally proved for � < 12 . As observed by Beigel in [Bei88],the result is true for any � < 1.



1. The Complexity of Obtaining Solutions for Problems in NP and NL 10are cases like the function Max-Assign considered in Section 2 in which thesolution is encoded in the cost function. There are, however, many otheroptimization problems, like Max-Clique, also considered in Section 2, forwhich the cost function is subexponential, and therefore it is possible tocompute it with less than a polynomial number of queries. In fact, Krentel[Kre88] has shown that some problems like computing the MaximumCliqueSize, Chromatic Number, and Max-Sat (computing the maximum numberof simultaneously satis�able clauses in a Boolean formula in conjunctivenormal form) are metric complete for the class FPNP[O(logn)]. From anapproximation algorithm from Karmarkar and Karp for Bin Packing Size[KK82], it follows that this problem can be computed in FPNP[O(log logn)].The number of NP queries provides a quantitative framework for com-paring the complexities of these examples. Using Theorems 3.1 and 3.2,it can be concluded that the weak optimization version for the TravelingSalesperson Problem is strictly harder than MaximumClique Size, and thisproblem is strictly harder than Bin Packing Size.Recently, Chang, Gasarch and Lund [CG93, CGL94, Cha94] have pointedout a very interesting connection between bounded queries and approxi-mation of weak optimization problems showing that there is a trade-o�between the number of NP queries and the closeness of the approximationfor such problems. In particular, it is shown in [Cha94] that the prob-lem of approximating Maximum Clique Size by a constant factor is metriccomplete for the class FPNP[log logn + O(1)]. Again in this setting, thequantitative nature of the bounded queries to NP can provide a frameworkfor comparing the complexity of di�erent approximation problems.4 Computing Solutions Uniquely: The Class NPSVIn order to compute solutions for problems in NP, it seems that nondeter-minism as a resource has to be used in one way or another. This can bedone with queries to an NP oracle as explained in the previous sections,but there is a di�erent way: using nondeterministic transducers to computefunctions directly. A problem with this approach is that a nondeterministictransducer, a machine that on every path might output some value, canproduce many di�erent outputs for the same input instance and thereforedoes not compute a function in the usual sense, but a multivalued func-tion ([BLS84]; see also [FHOS93, Sel94]). In order to compute functions,we should make the additional restriction that for any input given to thenondeterministic transducer, all the computation paths that produce someoutput value produce the same one. A computation path can also stopwithout producing any output. This idea de�nes the class NPSV, intro-duced by Book, Long, and Selman in [BLS84], of functions computable bypolynomial-time nondeterministic transducers that for any input produce



1. The Complexity of Obtaining Solutions for Problems in NP and NL 11at most one output value. If no output is produced, we consider that thefunction is unde�ned for that input.Are there NPSV functions computing solutions for problems in NP?There are not many examples of problems that are not known to be inP but have solutions computable in NPSV. An important one is Primes,the problem of deciding whether a given number is prime. This set hasproofs of membership in NPSV since it belongs to UP [FK92], the class ofNP problems that can be accepted by nondeterministic machines with atmost one accepting path. Clearly, every set in UP has proofs of membershipin NPSV. Its complement, Composites (also known to be in UP [FK92]),has a very natural proof of membership: given an integer, its list of primefactors can be computed in NPSV.Can NPSV functions also compute solutions for harder problems in NP?Hemaspaandra, Naik, Ogihara, and Selman [HNOS94] have shown that forNP-complete problems this is probably not the case, since it would implythe collapse of the polynomial-time hierarchy to its second level. The proofof this result applies the notion of selectivity, or semimembership algorithm,a recursion-theoretic concept de�ned in the 1960's that was translated tothe polynomial-time setting by Selman in [Sel79]. We de�ne only NPSV-selectivity, the type of selectivity that is used in the following result. We saythat a set A is NPSV-selective if there is a function f 2 NPSV, the selector,such that for every pair of strings x; y, f(x; y) 2 fx; yg or is unde�ned, andif at least one of the strings x or y belongs to A, then f(x; y) 2 A.To show that computing solutions for NP-complete problems in NPSVimplies a collapse of PH, Hemaspaandra et al. [HNOS94] proved the fol-lowing lemma relating the possibility of computing solutions in NPSV withNPSV-selectivity and then showed that NPSV-selective sets cannot be toohard. The result of the lemmaholds in fact in both directions. For simplicitywe only consider here the direction needed to prove the main result.Lemma 4.1 If solutions for SAT can be computed in NPSV, then SAT isNPSV-selective.Proof. Let f be a function in NPSV \ FSAT, and let M be a nonde-terministic transducer computing f . From M , we can construct an NPSVselector for SAT, as described by the following nondeterministic programM 0: On inputting a pair of Boolean formulas (F1; F2), let G = F1 _F2 andsimulateM on G. IfM outputs a string y (a solution for G), check whethery satis�es F1. If this is the case, output F1, otherwise output F2. Clearly,M 0 computes an NPSV function that selects SAT. 2The next result shows that NPSV-selective sets can be computed inNP\coNP with the help of some small amount of additional information.Asde�ned by Karp and Lipton [KL80] for a complexity class C, the nonuniformversion of C, C=poly, is the class of sets A for which there is a set B 2 C,a polynomial p, and a function h such that for every string x it holds that



1. The Complexity of Obtaining Solutions for Problems in NP and NL 12jh(x)j � p(jxj), and x 2 A if and only if hx; h(0jxj)i 2 B. Ko proved in[Ko83] that P-selective sets are in P=poly. The proof of the next resultfollows similar arguments.Theorem 4.2 NPSV-selective sets in NP are in (NP \ coNP)=poly.Proof. Let A be a set in NP that is NPSV-selective via a selectorfunction f . without loss of generality, we can suppose that for every pair ofstrings x; y, f(x; y) is either unde�ned or f(x; y) = f(y; x). Let n 2 IN. Weshow how to construct an advice of polynomial size for all the strings in��n. Consider a directed graph Gn that has as nodes all the strings in ��nand for which there is a directed edge from node x to node y if f(x; y) = y.The subgraph induced by the strings of A�n is a tournament, that is, thereis a directed edge between each pair of nodes in this subgraph. Tournamentgraphs always have a dominating set of size logarithmic in the number ofnodes. Since jjA�njj � 2n+1, there is a dominating set of nodes S � Aof size at most n + 1. Observe that for each x 2 A and for each y 2 S,f(x; y) = y, and also, for each z 2 A n S, it holds that f(y; z) = z. Thatis, S together with the selector function can give enough information todecide A.For two �nite sets, S and T , we will say that the triple h0n; S; T i is anadvice if S � A�n and T contains a proof of membership in A for eachstring in S. De�ne the set A0 asA0 = fhx; h0jxj; S; T ii j h0jxj; S; T i is an adviceand for some string y 2 S; f(x; y) = xg:The set A0 is clearly in NP. Moreover, A0 belongs also to coNP, since aninstance hx; h0jxj; S; T ii is in A0 if either h0jxj; S; T i is not an advice (thiscan be tested in polynomial time) or for all strings y 2 S, f(x; y) = y.This second fact is true, since in case h0jxj; S; T i is an advice, S � A, andtherefore for all strings y 2 S, f(x; y) is de�ned.We can de�ne h(0n) to be the advice h0n; S; T i, encoding in S the smallestdominating set in the subgraph induced by A in Gn, and in T the smallestproofs of membership in A for the strings in S. Clearly, for every string x,x 2 A if and only if hx; h(0jxj)i 2 A0, and this proves A 2 (NP\coNP)=poly.2 Improving a result by Karp and Lipton [KL80], K�obler and Watanabe[KW95] have shown that if SAT � (NP\coNP)=poly, then PH collapses tothe class ZPPNP. This result, together with Lemma 4.1 and Theorem 4.2,yields the following theorem, stated in [HNOS94].Theorem 4.3 If solutions to NP-complete sets can be computed in NPSV,then the polynomial-time hierarchy collapses to ZPPNP.This result has been subsequently improved in [BKT94] and recently byOgihara [Ogi95] in a way that relates bounded queries and NPSV functions:



1. The Complexity of Obtaining Solutions for Problems in NP and NL 13If solutions to NP-complete sets can be computed in FPNPSV[�(logn)] forsome � < 1, then the polynomial-time hierarchy collapses to �2. (FPNPSVis the class of functions computed in polynomial time with the help offunctional oracle queries to NPSV [FHOS93].)5 Nonadaptive Queries to NP: The Class FPNPttThe pre�x search method described in Section 2 to compute the optimalsolution of an NP problem queries an NP oracle in an adaptive way, andthe fact that the queries made at a certain stage of the computation de-pend on the previous answers seems crucial. A question that has motivatedimportant research e�orts is whether NP problems have some solution thatcan be obtained with nonadaptive queries to NP, that is, whether functionsin FPNPtt can compute proofs of memberships for problems in NP. FPNPtt isde�ned to be the class of functions that can be computed in polynomialtime by a machine that makes only truth-table or parallel queries to NP.This means that the queries cannot depend on previous oracle answers andhave to be written in a list before the machine gets any oracle answer.It is easy to see that FPNPtt contains both classes FPNP[O(logn)] andNPSV. For the inclusion FPNP[O(logn)] � FPNPtt , observe that if an oraclemachine queries some string in a computation stage, depending on the ora-cle answer, there are at most two new strings that can be queried in the nextquery stage. If only a logarithmic number of adaptive queries is allowed, apolynomial-time machine can consider the complete tree of polynomiallymany possible oracle queries for a given input and query them all at thesame time in parallel. The inclusion NPSV � FPNPtt illustrates a fact thatwill play an important role in other results, namely, that if there is onlyone possible solution, then it can be computed with nonadaptive queries toNP. This is done by asking in parallel for all i0s up to the solution's lengthwhether there is a solution whose ith bit is a 1.Again, in this case there are natural problems in NP for which FPNPtt isthe best-known classi�cation for the complexity of its search problem. Anexample is Graph Automorphism, the problem to decide whether a givengraph has an automorphism di�erent from the identity. Lozano and Tor�anproved in [LT92] that the smallest nontrivial permutation (in the standardorder of permutations) that de�nes an automorphism can be found withparallel queries to Graph Automorphism. Curiously, the problem of �nd-ing the largest permutation is as hard as Graph Isomorphism, which seemsto be a harder problem. These results have recently been generalized in[AA96]. Another example of a problem with solutions in FPNPtt is GroupIntersection, the problem to decide, given sets of generators for two permu-tation groups, whether there is a permutation (di�erent from the identity)in the intersection of both groups. In [Tor95] it is shown that permutations



1. The Complexity of Obtaining Solutions for Problems in NP and NL 14in the intersection group can be obtained with parallel queries to GroupIntersection.As we have mentioned, an important open question is whether solutionscan be computed in FPNPtt for other NP problems, in particular, for NP-complete problems.Trying to compute optimal solutions in FPNPtt may be asking for toomuch. This would imply that FPNP coincides with FPNPtt . In [Sel94] it isshown that the equality of the function classes is equivalent to the equal-ity of the language classes PNP and PNPtt . Although no unexpected con-sequences of these equalities are known, we believe that the two functionclasses FPNP and FPNPtt are di�erent. However, there might be other solu-tions di�erent from the optimal one that could be easier to compute andthat might be obtained with nonadaptive queries to NP. Watanabe andToda [WT93] have shown that in fact this is true in almost all relativizedworlds. Again, for simplicity, we state the result for the case of SAT, andin fact the original result is stronger than the one mentioned here.Theorem 5.1 There is a polynomial-time machine M that nonadaptivelyqueries a set in NPX such that for almost every oracle X, M computesproofs of membership for SAT. That is, the Lebesgue measure of fX :FPNPXtt \ FSAT 6= ;g is 1.Although this is a statement about almost every oracle, the result infact has to do with random oracles, and more generally with randomizedcomputation. In results dealing with almost every oracle, the measure ofthe size of a class of sets is done in terms of the probability that a randomset belongs to the class. Random sets are constructed by independent seriesof tosses (one toss for each string in ��) of an unbiased coin.The proof of this theorem is strongly based on the well-known result byValiant and Vazirani [VV86] that says that for any nonempty set A � �n,with the help of n randomly chosen vectors from f0; 1gn it is possible withhigh probability to isolate a single element of A. Roughly speaking, theidea from the proof of [WT93] is to get from the random oracle enoughrandomness to perform the isolation technique from Valiant and Vaziranion the set of satisfying assignments of a given formula. Once a single as-signment has been selected, it can be computed with nonadaptive queriesto NP as in the proof of NPSV � FPNPtt .An intermediate result proved by Watanabe and Toda in order to obtainTheorem 5.1 gives a clear view of the role played by randomization in theresult.Theorem 5.2 For every polynomial p there exists a polynomial-time ran-domized nonadaptive machine M querying a set in NP such that for everyBoolean formula F :i) if F 2 SAT, then PrfM (F ) outputs a satisfying assignment for Fg �1� 2�p(jF j);



1. The Complexity of Obtaining Solutions for Problems in NP and NL 15ii) if F 62 SAT, then PrfM (F ) is unde�ned g = 1.As the authors point out in [WT93], this result does not say that thereis a randomized nonadaptive query machine that computes a function inFSAT, since M might output di�erent assignments for di�erent randombits and therefore does not strictly compute a function. The existence ofsuch a randomized machine computing a function in FSAT is still an openproblem.In spite of the fact that Theorem 5.1 holds for almost every oracle,Buhrman and Thierauf [BT96] have obtained a relativization in the oppo-site direction. Using results about exponential time, they have constructedan oracle A such that FPNPAtt \ FSAT = ;.From Theorems 5.1 and 5.2, one might get the idea that if some solutionfor an NP-complete problem like SAT can be computed in FPNPtt , thenit should be a \random one." On the other hand, the next result fromBuhrman, Kadin, and Thierauf [BKT94] states that if a solution for SATcan be computed in FPNPtt , then also a very special one, namely the solutionwith the maximum number of 0's, can be computed in this class.Theorem 5.3 FSAT \ FPNPtt 6= ; if and only if satisfying assignments forSAT with maximum number of 0's can be computed in FPNPtt .Adaptive versus nonadaptive oracle access is an important research topic.As in the adaptive case, the number of nonadaptive queries to an NP oracleis a resource that has become a subject of study. In these studies, oneconsiders the relative power of function classes de�ned by bounding thenumber of oracle queries.The following result from [BKS94] is the analogue of Theorem 3.2 forthe nonadaptive setting.Theorem 5.4 Let f be smooth and f(n) � � logn for some � < 1.If FPNPtt [f(n)] � FPNP[f(n) � 1], then P = NP.A di�erent collapse for functions in O(logn) was obtained in [ABG94].Theorem 5.5 Let f be smooth and f 2 O(logn).If FPNPtt [f(n)] � FPNP[f(n)� 1], then NP � coNP=poly (and PH = �p3).The question of whether FPNP[O(logn)] and FPNPtt coincide is of specialinterest. We have seen already that FPNP[O(logn)] � FPNPtt . Moreover, inthe decisional case (that is, in the case where the functions computed arerestricted to produce 0/1 outputs) both classes coincide.If the classes FPNPtt and FPNP[O(logn)] coincide, then there is a poly-nomial-time algorithm that correctly decides the satis�ability of a formulawith at most one satisfying assignment. (If the formula has more thanone assignment, the algorithm may incorrectly decide that the formula isnot satis�able.) In order to see this, observe that we can de�ne a func-tion f 2 FPNPtt that for a Boolean formula F (x1; : : : ; xn) outputs a stringa1 : : :an 2 f0; 1gn with ai = 1 if and only if there is a satisfying assignment



1. The Complexity of Obtaining Solutions for Problems in NP and NL 16for F assigning value 1 to the variable xi. In the case that F has a uniquesatisfying assignment, this is the value of f(F ). Under the hypothesis ofequality of the function classes above, f is contained in FPNP[O(logn)].Simulating all the possible values for the oracle answers of the machinecomputing f , one can get a list of polynomially many values, one of whichsatis�es the formula F . This result is stated formally using the conceptof promise problems (see [ESY84]). A promise problem is a pair of sets(Q;R). A set L is called a solution to the promise problem (Q;R) if8x(x 2 Q ) (x 2 L , x 2 R)): 1SAT denotes the set of Boolean for-mulas with at most one satisfying assignment.Theorem 5.6 If FPNPtt � FPNP[O(logn)];then the promise problem (1SAT; SAT) has a solution in P.A polynomial-time solution for the promise problem (1SAT; SAT) wouldimply the unexpected consequences expressed in the following theorem.5Theorem 5.7 If the promise problem (1SAT; SAT) has a solution in P,then FewP = P, NP = R, and coNP = US.As a consequence of these two results, we state the following theorem,which summarizes the situation. This result was obtained by Selman in[Sel94].6Theorem 5.8 If FPNPtt � FPNP[O(logn)];then FewP = P, NP = R, and coNP = US.The consequence NP = R is especially strong, since it implies the collapseof the polynomial-time hierarchy. We obtained in [JT95] a di�erent conse-quence of the equality of the function classes that, contrary to the previousresults, does not seem to be related to the promise problem (1SAT; SAT).Namely, if FPNPtt = FPNP[O(logn)], then a polylogarithmic amount of non-determinism can be simulated in polynomial time, and SAT can be decided(for any k) in polynomial time with the help of only nlogk n nondeterministicbits. The main tool needed for these results is the following theorem, whichunder the hypothesis of the equality of the function classes gives an upperbound for the complexity of selecting a Boolean formula from a list. Fora smooth function f , NPSVNP[f ] denotes the generalization of NPSV tofunctions computed by a nondeterministic single-valued machine that can5Valiant and Vazirani [VV86] obtained the second and third consequences.Beigel [Bei88] observed that the weaker result UP = P follows from the equivalenthypothesis that Unique-SAT and SAT are P-separable.6Beigel [Bei88] and Toda [Tod91] contain other interesting applications ofTheorem 5.7.



1. The Complexity of Obtaining Solutions for Problems in NP and NL 17make f queries to an NP oracle before doing any nondeterministic step (see[JT95]).Theorem 5.9 If FPNPtt � FPNP[O(logn)];then there is a function f 2 NPSVNP[O(log log)] that for a sequence ofBoolean formulas F1; : : : ; Fn outputs one satis�able formula from the listin case one exists.The proof of this result orders the set of possible answers given by themachine computing the function in FPNP[O(logn)] forming a lattice anduses combinatorial arguments and the fact that the Set Cover Problem canbe approximated by a logarithmic factor to contract this lattice. An inter-esting observation is that the satis�able formula selected from a sequenceF1; : : : ; Fn by the function f in the result is not necessarily the �rst satis�-able one in the sequence; the selection depends on how a function in FPNPttcan be computed with O(logn) adaptive queries. Based on these results,we obtained some consequences that make reference to subclasses of NPwith bounded nondeterminism (see Section 3), showing that under the hy-pothesis FPNPtt = FPNP[O(logn)], a signi�cant reduction in the number ofnondeterministic bits in an NP computation can be obtained.Theorem 5.10 If FPNPtt = FPNP[O(logn)];then for any smooth function f and for any k 2 IN, NP(f) � NP( flogk ).This theorem has some direct consequences. For example, from the equal-ity of the function classes it follows that for any k 2 IN, the class NP(logk)is included in P and SAT 2 NP( nlogk n ).Although Theorems 5.9 and 5.10 give strong evidence that the functionclasses are di�erent, it is still an open problem whether the hypothesisFPNP[O(logn)] = FPNPtt implies P = NP. A recent result from [NS96]makes progress in this direction. We refer to the original paper for thede�nition of e�ective inclusion.Theorem 5.11 If there is a constant k such that FPNPtt [nk] is e�ectivelyincluded in FPNP[kdlogne � 1], then P = NP.6 A Look inside Nondeterministic LogspaceAs in the NP case, problems computable in nondeterministic logarithmicspace (NL) are traditionally decision problems. Typical (NL-complete) ex-amples are the Graph Accessibility Problem for directed graphs, where fora graph G it is asked whether there is a path between two given nodess and t; or the Nonemptiness Problem for Nondeterministic Finite-state



1. The Complexity of Obtaining Solutions for Problems in NP and NL 18Automata, where for a given automaton A it is asked whether L(A) isnonempty.As in the case of NP, it is more natural to consider the search versions ofthese problems, which compute a solution for the decision problem at hand,that is, a path from s to t in G or a witness w 2 L(A) for the nonemptinessproblem. Again, this can best be formalized using a quanti�er characteriza-tion of NL. To obtain such a characterization, it does not su�ce to restrictthe predicate R(x; y) in the characterization of NP to be computable inlogspace (this again yields a characterization of NP). Additionally, the pa-rameter y of the input (the solution) must only be scanned one-way. Tocompute these predicates, we hence need a special, somewhat unnaturalversion of the common (deterministic) Turing machine model, with twoinput tapes, one of which contains x and is scanned two-way, and one ofwhich contains y and is scanned one-way. Such machines were introducedby Lange [Lan86]) and are called protocol machines, because the one-wayparameter y can be thought of as a protocol of an NL computation.Let A be a problem in NL. Then, there is a polynomial p and a relationR computable by a logspace-bounded protocol machine such that 8x 2 ��,x 2 A() 9y! 2 �� : jy! j � p(jxj) and R(x; y!):(Here, the right arrow above y indicates that y is only scanned one-way.)Completely analogous to the case of NP, the search problem for A nowconsists of �nding a solution for an input instance x, that is, a stringy! such that R(x; y!) holds. In the setting mentioned, a special case ofthe search problem is the optimization problem for A, to compute for x asolution of maximum (minimum) cost. More formally, given a cost functionc computable by a logspace protocol machine, the function fR;c is de�nedby fR;c(x) = 8><>: some y!; jy j � p(jxj); R(x; y!); andc(x; y!) = maxfc(x; z!) j R(x; z!)g;0; if no y! with R(x; y!) exists.(Observe that in this case the function is total. As we will see, this has todo with the fact that NL is closed under complementation).In this section, we study the exact complexity of computing solutionsfor NL problems and the function classes that arise in the classi�cation ofthese problems. We are especially interested to see how the situation herecompares with the NP case. One might suspect that the results obtained forNP simply translate to the NL case. However, as we will see, the techniquesof Theorem 2.1 cannot be applied in the logspace case.We mainly consider two function classes, OptL and FLNL. NL optimiza-tion corresponds to the class OptL and, surprisingly, there are NL optimiza-tion problems that seem to be harder than computing lexicographicallyoptimal solutions. The complexity of obtaining such solutions is captured



1. The Complexity of Obtaining Solutions for Problems in NP and NL 19by the class FLNL of functions computable by a logspace machine withaccess to an oracle in NL. NL optimization problems are only known to bein FLNL for polynomially bounded cost functions, and computing the cost(without the solution) of such NL optimization problems (a form of weakNL optimization) can be done with just logarithmically many queries toNL.In order to capture the complexity of NL optimization problems, �Alvarezand Jenner [AJ93] introduced the complexity class OptL analogous to theclass OptP of Krentel [Kre88]. The functions in OptL are de�ned using amachine model called the NL transducer. An NL transducer is a nondeter-ministic logarithmic space-bounded polynomially clocked Turing machineT with a (write-only) unbounded output tape and accepting and rejecting�nal states. In any move of T , T writes an output bit 0 or 1, or nothing,onto its output tape. The output of a computation of T on input x is thecontent of T 's output tape when T halts, and if T halts in an acceptingstate, the output is considered to be \valid." We assume that any trans-ducer has at least one valid output for each input. This is no restriction forNL transducers: Since NL is closed under complementation [Imm88, Sze88],the absence of a valid output can be checked by a precomputation. Observethat although the number of reachable con�gurations of T is bounded by apolynomial in the length of the input, due to the logarithmic space bound,T can have exponentially many valid outputs. The length of any of theoutputs is always bounded by a polynomial in the length of the input.For a transducer T , let optT denote the function that for an input xcomputes the maximum valid output value of T on x with respect to lexi-cographical order. The class OptL is the class of functions f such that forsome NL transducer T and every input x, f(x) = optT (x).In the NP case, the class OptP, de�ned via metric Turing machines,clearly captures the idea of NP optimization problems. (More formally,the closures of these classes under metric reducibility coincide.) Moreover,the class is closely related to FPNP (see Theorem 2.1). In the NL case,some new arguments are needed to prove that both characterizations of NLoptimization, via predicates or via NL transducer, basically yield the sameclass. We say that a function f is logspace metric reducible to a functiong if there exist two logspace computable functions h1; h2 such that f(x) =h1(x; g(h2(x))) for all x. The logspace metric closure of a class C is theclass of all functions that are logspace metric reducible to a function in C.Theorem 6.1 The logspace metric closures of the class of NL optimiza-tion problems and of the class OptL coincide.Proof. First, we reduce an arbitrary function f 2 OptL computed byan NL transducer T to an NL optimization problem gR;c. De�ne R(x; y!)to be the predicate stating that T on input x produces some valid outputon computation y!, and de�ne c(x; y!) to be the valid output produced byT (x) following the computation y! (or 0, if no valid output is produced).



1. The Complexity of Obtaining Solutions for Problems in NP and NL 20Then, gR;c(x) de�nes a computation y! with maximum cost, and f(x) isobtained by the reduction that simply computes c(x; y!).Now, we show the reduction of an arbitrary NL optimization problemfR;c to an optT function for an NL transducer T . The straightforward ideahere is to use codi�cations of the solutions y! together with their costsc(x; y!) as output of the transducer T . However, T can only remembercosts of up to logarithmic length. The following trick achieves the result.Without loss of generality, we can assume that there are polynomialsp and q such that the solutions y! satisfying R(x; y!) have length exactlyp(jxj) and the costs c(x; y!) have length exactly q(jxj). Let MR and Tc bethe logspace protocol machines that compute R and c, respectively. Let theposition-i-con�guration of Tc or MR on input (x; y!) be the con�gurationthat the machines enter when they move the input head of the protocoltape to position i, the ith symbol of y!. The position-1-con�guration is justthe initial con�guration.On input x, T works in p(jxj) stages, giving in each stage one bit ofthe solution. On stage i, T guesses a solution y! simulating in parallel themachines MR and Tc step by step according to the guessed bits of y!, andoutputs c(x; y!) followed by the ith bit of y!. T discards its computation ifMR rejects; otherwise, it continues with the next stage. During this simula-tion, just when the ith bit of y! is guessed, T checks whether both machinesMR and Tc are in their position-i-con�gurations, and if this is not the case,T rejects. Furthermore, T stores the position-(i+ 1)-con�gurations of MRand Tc to continue the simulation in the next stage correctly.It can be shown that after p(jxj) iterations, the maximum valid out-put produced by T has the form c(x; y!)y1c(x; y!)y2 : : : c(x; y!)yp, wherey1 : : : yp encodes a solution y! maximizing the cost c(x; y!). Simple count-ing, and hence logspace, su�ces to obtain this solution from the sequence.This shows that NL optimization problems are logspace metric reducibleto functions in OptL. 2OptL provides an upper bound to all NL optimization problems. But howdi�cult are OptL functions to compute? One answer can be given in termsof complete problems for OptL. These include, for example, computingthe Maximal Word Function for Nondeterministic Finite-state Automata[AJ93] and computing the Iterated Product of Word Matrices over f0; 1g�using the operations maximum and concatenation [AJ95].As best-known upper bound, it is known that OptL is included in AC1,the class of functions computable by unbounded fan-in Boolean circuits oflogarithmic depth [AJ95]. As shown by Allender, Bruschi, and Pighizzini[AW90], AC1 contains the broad class of optimization functions de�ned viaoptimization for one-way nondeterministic auxiliary pushdown automata(and hence for the class of context-free languages).It is an open problem whether the class OptL is included in the classDET of problems that are NC1 reducible to computing the determinant



1. The Complexity of Obtaining Solutions for Problems in NP and NL 21of an integer matrix. This class was introduced by Cook in [Coo85]. Thequestion is equivalent to the question of whether computing the IteratedProduct of Word Matrices using the operations maximum and concatena-tion is reducible to the normal Iterated Matrix Product. (For an overviewof the complexities of various iterated matrix products see Immerman andLandau [IL95].)The second class that we consider is FLNL, the class of all functionscomputable by a (deterministic) logspace transducer with an oracle in NL.(FL denotes the class of all deterministic logspace functions.) Observe thatan NL transducer can easily simulate an FLNL machine solving the oraclequeries by NL subroutines, using again that NL is closed under complemen-tation. (This NL transducer is in fact single-valued, that is, it computesexactly one valid value for each input). This shows that FLNL � OptL.Contrary to the case of OptL, FLNL is known to be included in DET[Coo85].In the polynomial-time setting, the class OptP is included in FPNP (seeTheorem 2.1). The proof of this result based on pre�x search does not fullytranslate to the NL case, since here we can only remember pre�xes up tologarithmic length. We can apply pre�x search when the cost function ispolynomially bounded. Similarly, a pre�x technique can be used to computesolutions and lexicographically maximal solutions of NL search problems.Theorem 6.2 (i) The lexicographically maximal solution of any NL searchproblem can be computed in FLNL.(ii) NL optimization problems with polynomially-bounded cost functions canbe computed in FLNL.Proof. (i) Let fR be an NL search problem, let M be the logspaceprotocol machine that accepts R, and let p be the polynomial that boundsthe running time ofM . De�ne the NL oracle L$P := fz$v j z 2 L; v 2 Pg,whereL := fhx; ki j 9y!; jy j � p(jxj); R(x; y!); and jy! j � kg; andP := fhx; k; ci j 9z!; jz!j = k and M started in con�guration con input (x; z!) acceptsg:For input x, using L the length of the lexicographically maximal solutiony! that satis�es R can be computed in logspace with binary search. Then,a pre�x construction using the set P yields y!.(ii) This is similar to the NP case. We have only to adapt the proof tothe computation of protocol machines. The maximal cost can be computedwith oracle queries to a set in NL (by brute force or, more e�ciently, bybinary search). This value can be stored within logspace. Now, we canconstruct a solution with that cost analogous to the proof of Theorem 2.1using a variant of the set P above that incorporates the cost. 2



1. The Complexity of Obtaining Solutions for Problems in NP and NL 22We mention that bounded query classes in the logarithmic space set-ting also compute some interesting functions. FLNL[O(logn)] is the classof all FLNL functions that are computable with only logarithmically manyqueries. In this class, for example, the length of the shortest path for agiven instance of the Graph Accessibility Problem can be computed (orthe length of the shortest word accepted by a given �nite-state automaton,etc.). Similarly, any weak optimization problem for polynomially-boundedcost functions belongs to FLNL[O(logn)].The class FLNL can compute solutions for NL decision problems andhence provides an upper bound to all NL search problems. FLNL is avery robust class that has a variety of other characterizations (see [Coo85,ABJ95, AJ95]). For example, FLNL is the closure of NL under functionalAC0- or NC1-reducibility, via an L transducer that make one round of non-adaptive queries to an oracle in NL or via a single-valued NL transducer.These di�erent characterizations are not very surprising considering thefact that NL is closed under complementation. (Observe that under thehypothesis NP = coNP, all the classes FPNP, FPNPtt , and NPSV coincide.)Examples of functional problems that are complete for the class FLNL areIterated Boolean Matrix Product [Coo85], the Maximal Word Function forDeterministic Finite-state Automata [AJ93], and computing the IteratedProduct of Word Matrices over f1g� using the operations maximum andconcatenation [AJ95]. The latter two problems are restrictions of problemsthat are complete for OptL.This again shows that there is a structural di�erence between the classesFLNL and OptL. Unfortunately, it is not known whether OptL � FLNLimplies L = NL or any similar statement that is widely believed to be false.It remains an open problem to derive such an implication.7 ConclusionsFinding solutions for problems in NP is a fundamental problem whose com-plexity has not yet been classi�ed in a completely satisfactory way.We havereviewed some of the known results related to this question by consideringseveral important complexity classes of functions that can compute proofsof membership for di�erent problems in NP. We have shown that althoughthe complexity of �nding optimal solutions for NP-complete problems iswell understood, there are many unsolved questions related to the com-plexity of computing other solutions. Here, the question of whether NP-complete problems have solutions that can be computed with polynomiallymany nonadaptive queries to NP is of particular interest. All the knownexamples of problems in NP with solutions computable in FPNPtt have veryspecial counting properties (see [KST92] and the chapter by Fortnow [For]in this book.) It is unclear whether these special properties hold only for



1. The Complexity of Obtaining Solutions for Problems in NP and NL 23these examples or are true for any problem with solutions computable inFPNPtt . Also, some relationships between function classes remain open. Forexample, although we believe that FPNPtt is strictly contained in FPNP, nostrong consequences are known to follow from the equality of both classes(such as, for example, a collapse of the polynomial-time hierarchy).The most prominent open questions about logarithmic space-boundedfunction classes are, on the one hand, what is the (possible) di�erencebetween the classes FLNL and OptL (that is, computing the lexicographi-cally maximal solution versus computing an optimal one) and, on the otherhand, what are the precise relationships between optimization and otherimportant problems of the area (computing the determinant or recognitionof context-free languages).The manifold open questions that relate the complexity of computingsolutions to other aspects of complexity theory demonstrate the importanceof this area of research.Acknowledgments: We would like to thank Thomas Thierauf, Klaus-J�ornLange, and the anonymous referees for many helpful comments.References[AA96] M. Agrawal and V. Arvind. A note on decision vs. search for graphautomorphism. Proceedings of the 11th Annual IEEE Conference onComputational Complexity, pp. 272{277, 1996.[AW90] E. Allender, D. Bruschi, and G. Pighizzini. The complexity of com-puting maximal word functions. Computational Complexity, 3: 368{391, 1993.[AJ93] C. �Alvarez and B. Jenner. A very hard log-space counting class.Theoretical Computer Science, 107: 3{30, 1993.[AJ95] C. �Alvarez and B. Jenner. A note on logspace optimization. Compu-tational Complexity, 5: 155{167, 1995.[ABJ95] C. �Alvarez, J. Balc�azar, and B. Jenner. Adaptive logspace reducibil-ity and parallel time. Mathematical Systems Theory, 28: 117{140,1995.[ABG94] A. Amir, R. Beigel, and B. Gasarch. Some connections betweenbounded query classes and non-uniform complexity. Manuscript,1994. See also Proceedings of the 5th Annual IEEE Conference onStructure in Complexity Theory, pp. 232{244, 1990.[BDG88] J. Balc�azar, J. Diaz, and J. Gabarr�o. Structural Complexity TheoryI , Springer-Verlag, Berlin, 1988.[Bei88] R. Beigel. NP-hard sets are p-superterse unless R=NP. TechnicalReport TR4, Department of Computer Science, John Hopkins Uni-versity, Baltimore, 1988.[BKS94] R. Beigel, M. Kummer, and F. Stephan. Approximable sets. Proceed-ings of the 9th Annual IEEE Conference on Structure in ComplexityTheory, pp. 12{23, 1994.
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