
The Java™ Native
Interface

Programmer’s Guide and Specification

jni.book Page 1 Thursday, February 21, 2002 4:36 PM

jni.book Page 2 Thursday, February 21, 2002 4:36 PM

The Java™ Native
Interface

Programmer’s Guide and Specification

Sheng Liang

ADDISON-WESLEY

An imprint of Addison Wesley Longman, Inc.
Reading, Massachusetts • Harlow, England • Menlo Park, California

Berkeley, California • Don Mills, Ontario • Sydney
Bonn • Amsterdam • Tokyo • Mexico City

jni.book Page 3 Thursday, February 21, 2002 4:36 PM

Copyright © 1999 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, CA 94303 USA.
All rights reserved.

Duke™ designed by Joe Palrang.

Sun Microsystems, Inc. has intellectual property rights relating to implementations of the technology
described in this publication. In particular, and without limitation, these intellectual property rights
may include one or more U.S. patents, foreign patents, or pending applications. Sun, Sun
Microsystems, the Sun logo, and all Sun, Java, Jini, and Solaris based trademarks and logos are
trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other
countries. UNIX is a registered trademark in the United States and other countries, exclusively licensed
through X/Open Company, Ltd.

Sun Microsystems, Inc. (SUN) hereby grants to you a fully paid, nonexclusive, nontransferable,
perpetual, worldwide limited license (without the right to sublicense) under SUN’s intellectual
property rights that are essential to practice this specification. This license allows and is limited to the
creation and distribution of clean room implementations of this specification that: (i) include a
complete implementation of the current version of this specification without subsetting or supersetting;
(ii) implement all the required interfaces and functionality of the Java™ 2 Platform, Standard Edition,
as defined by SUN, without subsetting or supersetting; (iii) do not add any additional packages,
classes, or interfaces to the java.* or javax.* packages or their subpackages; (iv) pass all test suites
relating to the most recent published version of the specification of the Java™ 2 Platform, Standard
Edition, that are available from SUN six (6) months prior to any beta release of the clean room
implementation or upgrade thereto; (v) do not derive from SUN source code or binary materials; and
(vi) do not include any SUN source code or binary materials without an appropriate and separate
license from SUN.

U.S. GOVERNMENT USE: This specification relates to commercial items, processes, or software.
Accordingly, use by the United States Government is subject to these terms and conditions, consistent
with FAR 12.211 and 12.212.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGE-
MENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHI-
CAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN;
THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION.
SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN ANY
TECHNOLOGY, PRODUCT, OR PROGRAM DESCRIBED IN THIS PUBLICATION AT ANY
TIME.

The publisher offers discounts on this book when ordered in quantity for special sales. For more
information, please contact the Corporate, Government, and Special Sales Group, CEPUB, Addison
Wesley Longman, Inc., One Jacob Way, Reading, Massachusetts 01867.

ISBN 0-201-32577-2
1 2 3 4 5 6 7 8 9-MA-0302010099
First printing, June 1999

jni.book Page 4 Thursday, February 21, 2002 4:36 PM

 To the VM Teams

jni.book Page 5 Thursday, February 21, 2002 4:36 PM

jni.book Page 6 Thursday, February 21, 2002 4:36 PM

vii

Contents

Preface . xiii

Part One: Introduction and Tutorial

1 Introduction. 3
1.1 The Java Platform and Host Environment . 4
1.2 Role of the JNI . 4
1.3 Implications of Using the JNI. 6
1.4 When to Use the JNI. 6
1.5 Evolution of the JNI . 7
1.6 Example Programs . 8

2 Getting Started . 11
2.1 Overview . 11
2.2 Declare the Native Method. 13
2.3 Compile the HelloWorld Class . 14
2.4 Create the Native Method Header File . 14
2.5 Write the Native Method Implementation . 15
2.6 Compile the C Source and Create a Native Library 15
2.7 Run the Program. 16

Part Two: Programmer’s Guide

3 Basic Types, Strings, and Arrays. 21
3.1 A Simple Native Method . 21

3.1.1 C Prototype for Implementing the Native Method. 22
3.1.2 Native Method Arguments . 22
3.1.3 Mapping of Types . 23

3.2 Accessing Strings . 24
3.2.1 Converting to Native Strings . 24
3.2.2 Freeing Native String Resources . 25
3.2.3 Constructing New Strings . 26
3.2.4 Other JNI String Functions . 26
3.2.5 New JNI String Functions in Java 2 SDK Release 1.2 27

jni.book Page vii Thursday, February 21, 2002 4:36 PM

CONTENTS

viii

3.2.6 Summary of JNI String Functions. 29
3.2.7 Choosing among the String Functions . 31

3.3 Accessing Arrays . 33
3.3.1 Accessing Arrays in C. 34
3.3.2 Accessing Arrays of Primitive Types . 34
3.3.3 Summary of JNI Primitive Array Functions 35
3.3.4 Choosing among the Primitive Array Functions 36
3.3.5 Accessing Arrays of Objects . 38

4 Fields and Methods . 41
4.1 Accessing Fields . 41

4.1.1 Procedure for Accessing an Instance Field 43
4.1.2 Field Descriptors . 44
4.1.3 Accessing Static Fields . 44

4.2 Calling Methods. 46
4.2.1 Calling Instance Methods . 47
4.2.2 Forming the Method Descriptor . 48
4.2.3 Calling Static Methods . 49
4.2.4 Calling Instance Methods of a Superclass. 51

4.3 Invoking Constructors . 51
4.4 Caching Field and Method IDs . 53

4.4.1 Caching at the Point of Use. 53
4.4.2 Caching in the Defining Class’s Initializer 56
4.4.3 Comparison between the Two Approaches to Caching IDs 57

4.5 Performance of JNI Field and Method Operations 58

5 Local and Global References . 61
5.1 Local and Global References. 61

5.1.1 Local References . 62
5.1.2 Global References . 64
5.1.3 Weak Global References . 65
5.1.4 Comparing References . 66

5.2 Freeing References . 66
5.2.1 Freeing Local References . 67
5.2.2 Managing Local References in Java 2 SDK Release 1.2 68
5.2.3 Freeing Global References . 69

5.3 Rules for Managing References. 70

6 Exceptions. 73
6.1 Overview . 73

6.1.1 Caching and Throwing Exceptions in Native Code 73
6.1.2 A Utility Function . 75

6.2 Proper Exception Handling . 76
6.2.1 Checking for Exceptions . 76
6.2.2 Handling Exceptions . 78
6.2.3 Exceptions in Utility Functions. 79

jni.book Page viii Thursday, February 21, 2002 4:36 PM

CONTENTS

ix

7 The Invocation Interface . 83
7.1 Creating the Java Virtual Machine . 83
7.2 Linking Native Applications with the Java Virtual Machine 86

7.2.1 Linking with a Known Java Virtual Machine 86
7.2.2 Linking with Unknown Java Virtual Machines 87

7.3 Attaching Native Threads . 89

8 Additional JNI Features . 93
8.1 JNI and Threads . 93

8.1.1 Constraints . 93
8.1.2 Monitor Entry and Exit . 94
8.1.3 Monitor Wait and Notify . 95
8.1.4 Obtaining a JNIEnv Pointer in Arbitrary Contexts 96
8.1.5 Matching the Thread Models . 97

8.2 Writing Internationalized Code . 99
8.2.1 Creating jstrings from Native Strings 99
8.2.2 Translating jstrings to Native Strings 100

8.3 Registering Native Methods . 101
8.4 Load and Unload Handlers . 102

8.4.1 The JNI_OnLoad Handler . 102
8.4.2 The JNI_OnUnload Handler. 104

8.5 Reflection Support . 105
8.6 JNI Programming in C++ . 106

9 Leveraging Existing Native Libraries . 109
9.1 One-to-One Mapping . 109
9.2 Shared Stubs . 113
9.3 One-to-One Mapping versus Shared Stubs . 116
9.4 Implementation of Shared Stubs . 116

9.4.1 The CPointer Class . 117
9.4.2 The CMalloc Class . 117
9.4.3 The CFunction Class . 118

9.5 Peer Classes . 123
9.5.1 Peer Classes in the Java Platform. 124
9.5.2 Freeing Native Data Structures . 125
9.5.3 Backpointers to Peer Instances . 127

10 Traps and Pitfalls . 131
10.1 Error Checking . 131
10.2 Passing Invalid Arguments to JNI Functions . 131
10.3 Confusing jclass with jobject . 132
10.4 Truncating jboolean Arguments . 132
10.5 Boundaries between Java Application and Native Code 133
10.6 Confusing IDs with References . 134
10.7 Caching Field and Method IDs. 135
10.8 Terminating Unicode Strings . 137

jni.book Page ix Thursday, February 21, 2002 4:36 PM

CONTENTS

x

10.9 Violating Access Control Rules. 137
10.10 Disregarding Internationalization . 138
10.11 Retaining Virtual Machine Resources . 139
10.12 Excessive Local Reference Creation . 140
10.13 Using Invalid Local References. 141
10.14 Using the JNIEnv across Threads . 141
10.15 Mismatched Thread Models . 141

Part Three: Specification

11 Overview of the JNI Design . 145
11.1 Design Goals . 145
11.2 Loading Native Libraries . 146

11.2.1 Class Loaders . 146
11.2.2 Class Loaders and Native Libraries. 147
11.2.3 Locating Native Libraries . 148
11.2.4 A Type Safety Restriction . 150
11.2.5 Unloading Native Libraries . 151

11.3 Linking Native Methods . 151
11.4 Calling Conventions. 153
11.5 The JNIEnv Interface Pointer . 153

11.5.1 Organization of the JNIEnv Interface Pointer 153
11.5.2 Benefits of an Interface Pointer . 155

11.6 Passing Data. 155
11.6.1 Global and Local References . 156
11.6.2 Implementing Local References . 157
11.6.3 Weak Global References . 158

11.7 Accessing Objects . 158
11.7.1 Accessing Primitive Arrays. 158
11.7.2 Fields and Methods . 160

11.8 Errors and Exceptions . 161
11.8.1 No Checking for Programming Errors 161
11.8.2 Java Virtual Machine Exceptions . 162
11.8.3 Asynchronous Exceptions . 163

12 JNI Types . 165
12.1 Primitive and Reference Types . 165

12.1.1 Primitive Types . 165
12.1.2 Reference Types . 166
12.1.3 The jvalue Type . 167

12.2 Field and Method IDs . 168
12.3 String Formats . 168

12.3.1 UTF-8 Strings . 168
12.3.2 Class Descriptors. 169
12.3.3 Field Descriptors . 169
12.3.4 Method Descriptors . 170

12.4 Constants . 170

jni.book Page x Thursday, February 21, 2002 4:36 PM

CONTENTS

xi

13 JNI Functions . 173
13.1 Summary of the JNI Functions. 173

13.1.1 Directly-Exported Invocation Interface Functions. 173
13.1.2 The JavaVM Interface . 174
13.1.3 Functions Defined in Native Libraries . 175
13.1.4 The JNIEnv Interface . 175

13.2 Specification of JNI Functions . 180

Index . 293

jni.book Page xi Thursday, February 21, 2002 4:36 PM

jni.book Page xii Thursday, February 21, 2002 4:36 PM

xiii

Preface

THIS book covers the Java™ Native Interface (JNI). It will be useful to you if
you are interested in any of the following:

• integrating a Java application with legacy code written in languages such as C
or C++

• incorporating a Java virtual machine implementation into an existing applica-
tion written in languages such as C or C++

• implementing a Java virtual machine

• understanding the technical issues in language interoperability, in particular
how to handle features such as garbage collection and multithreading

First and foremost, the book is written for developers. You will find easy steps
to get started with the JNI, informative discussions on various JNI features, and
helpful tips on how to use the JNI effectively. The JNI was initially released in
early 1997. The book summarizes two years of collective experience gained by
engineers at Sun Microsystems as well as the vast number of developers in the
Java technology community.

Second, the book presents the design rationale of various JNI features. Not
only is this of interest to the academic community, but a thorough understanding
of the design is also a prerequisite to using the JNI effectively.

Third, a part of the book is the definitive JNI specification for the Java 2 plat-
form. JNI programmers may use the specification as a reference manual. Java vir-
tual machine implementors must follow the specification to achieve conformance.

Send comments on this specification or questions about JNI to our electronic
mail address: jni@java.sun.com. For the latest on the Java 2 platform, or to get
the latest Java 2 SDK release, visit our web site at http://java.sun.com. For
updated information about The Java™ Series, including errata for this book, and
previews of forthcoming books, visit http://java.sun.com/Series.

The JNI was designed following a series of discussions between Sun Micro-
systems and Java technology licensees. The JNI partly evolved from Netscape’s
Java Runtime Interface (JRI), which was designed by Warren Harris. Many people

jni.book Page xiii Thursday, February 21, 2002 4:36 PM

PREFACE

xiv

from Java technology licensee companies actively participated in the design dis-
cussions. They include Russ Arun (Microsoft), Patrick Beard (Apple), Simon
Nash (IBM), Ken Root (Intel), Ian Ellison-Taylor (Microsoft), and Mike Tou-
tonghi (Microsoft).

The JNI design also benefited greatly from Sun internal design reviews con-
ducted by Dave Bowen, James Gosling, Peter Kessler, Tim Lindholm, Mark Rein-
hold, Derek White, and Frank Yellin. Dave Brown, Dave Connelly, James
McIlree, Benjamin Renaud, and Tom Rodriguez made significant contributions to
the JNI enhancements in Java 2 SDK 1.2. Carla Schroer’s team of compatibility
testers in Novosibirsk, Russia, wrote compatibility tests for the JNI. In the process
they uncovered places where the original specification was unclear or incomplete.

The JNI technology would not have been developed and deployed without the
management support of Dave Bowen, Larry Abrahams, Dick Neiss, Jon Kanne-
gaard, and Alan Baratz. I received full support and encouragement to work on this
book from my manager Dave Bowen.

Tim Lindholm, author of The Java™ Virtual Machine Specification, led the
Java virtual machine development effort at the time when the JNI was being
designed. Tim did pioneering work on the virtual machine and native interfaces,
advocated the use of the JNI, and added rigor and clarity to this book. He also pro-
vided the initial sketch for this book’s “kitchen and dining room” cover art design.

This book benefited from the help of many colleagues. Anand Palaniswamy
wrote a portion of Chapter 10 on common traps and pitfalls. Janet Koenig care-
fully reviewed a preliminary draft and contributed many useful ideas. Beth
Stearns wrote a draft of Chapter 2 based on the online JNI tutorial.

I received valuable comments on a draft of this book from Craig J. Bordelon,
Michael Brundage, Mary Dageforde, Joshua Engel, and Elliott Hughes.

Lisa Friendly, editor of The Java™ Series, was instrumental in getting this
book written and published. Ken Arnold, author of The Java™ Programming
Language, first suggested that a JNI book be written. I am indebted to Mike Hen-
drikson and Marina Lang at Addison-Wesley for their help and their patience
throughout the process. Diane Freed oversaw the production process from copy
editing to final printing.

In the past several years I have had the privilege of working with a group of
talented and dedicated people in Java Software at Sun Microsystems, in particular
members of the original, HotSpot, and Sun Labs virtual machine teams. This book
is dedicated to them.

Sheng Liang
May 1999

jni.book Page xiv Thursday, February 21, 2002 4:36 PM

Part One: Introduction and
Tutorial

jni.book Page 1 Thursday, February 21, 2002 4:36 PM

jni.book Page 2 Thursday, February 21, 2002 4:36 PM

3

C H A P T E R 1
Introduction

THE Java™ Native Interface (JNI) is a powerful feature of the Java platform.
Applications that use the JNI can incorporate native code written in programming
languages such as C and C++, as well as code written in the Java programming
language. The JNI allows programmers to take advantage of the power of the Java
platform, without having to abandon their investments in legacy code. Because the
JNI is a part of the Java platform, programmers can address interoperability issues
once, and expect their solution to work with all implementations of the Java plat-
form.

This book is both a programming guide and a reference manual for the JNI.
The book consists of three parts:

• Chapter 2 introduces the JNI through a simple example. It is a tutorial
intended for the beginning users who are unfamiliar with the JNI.

• Chapters 3 to 10 constitute a programmer’s guide that gives a broad overview
of a number of JNI features. We will go though a series of short but descrip-
tive examples to highlight various JNI features and to present the techniques
that have proven to be useful in JNI programming.

• Chapters 11 to 13 present the definitive specification for all JNI types and
functions. These chapters are also organized to serve as a reference manual.

This book tries to appeal to a wide audience with different needs for the JNI.
The tutorial and programming guide are targeted toward beginning programmers,
whereas experienced developers and JNI implementors may find the reference
sections more useful. The majority of readers will likely be developers who use
the JNI to write applications. The term “you” in this book will implicitly denote
developers who program with the JNI, as opposed to JNI implementors or end-
users of applications written using the JNI.

The book assumes that you have basic knowledge of the Java, C, and C++
programming languages. If not, you may refer to one of the many excellent books
that are available: The Java™ Programming Language, Second Edition, by Ken
Arnold and James Gosling (Addison-Wesley, 1998), The C Programming Lan-
guage, Second Edition, by Brian Kernighan and Dennis Ritchie (Prentice Hall,

jni.book Page 3 Thursday, February 21, 2002 4:36 PM

1.1 The Java Platform and Host Environment INTRODUCTION

4

1988), and The C++ Programming Language, Third Edition, by Bjarne Strous-
trup (Addison-Wesley, 1997).

The remainder of this chapter introduces the background, role, and evolution
of the JNI.

1.1 The Java Platform and Host Environment

Because this book covers applications written in the Java programming language
as well as in native (C, C++, etc.) programming languages, let us first clarify the
exact scope of the programming environments for these languages.

The Java platform is a programming environment consisting of the Java vir-
tual machine (VM) and the Java Application Programming Interface (API).1 Java
applications are written in the Java programming language, and compiled into a
machine-independent binary class format. A class can be executed on any Java
virtual machine implementation. The Java API consists of a set of predefined
classes. Any implementation of the Java platform is guaranteed to support the
Java programming language, virtual machine, and API.

The term host environment represents the host operating system, a set of
native libraries, and the CPU instruction set. Native applications are written in
native programming languages such as C and C++, compiled into host-specific
binary code, and linked with native libraries. Native applications and native librar-
ies are typically dependent on a particular host environment. A C application built
for one operating system, for example, typically does not work on other operating
systems.

Java platforms are commonly deployed on top of a host environment. For
example, the Java Runtime Environment (JRE) is a Sun product that supports the
Java platform on existing operating systems such as Solaris and Windows. The
Java platform offers a set of features that applications can rely on independent of
the underlying host environment.

1.2 Role of the JNI

When the Java platform is deployed on top of host environments, it may become
desirable or necessary to allow Java applications to work closely with native code
written in other languages. Programmers have begun to adopt the Java platform to
build applications that were traditionally written in C and C++. Because of the

1. As used herein, the phrases “Java virtual machine” or “Java VM” mean a virtual machine for the
Java platform. Similarly, the phrase “Java API” means the API for the Java platform.

jni.book Page 4 Thursday, February 21, 2002 4:36 PM

INTRODUCTION Role of the JNI 1.2

5

existing investment in legacy code, however, Java applications will coexist with C
and C++ code for many years to come.

The JNI is a powerful feature that allows you to take advantage of the Java
platform, but still utilize code written in other languages. As a part of the Java vir-
tual machine implementation, the JNI is a two-way interface that allows Java
applications to invoke native code and vice versa. Figure 1.1 illustrates the role of
the JNI.

Figure 1.1 Role of the JNI

The JNI is designed to handle situations where you need to combine Java
applications with native code. As a two-way interface, the JNI can support two
types of native code: native libraries and native applications.

• You can use the JNI to write native methods that allow Java applications to
call functions implemented in native libraries. Java applications call native
methods in the same way that they call methods implemented in the Java pro-
gramming language. Behind the scenes, however, native methods are imple-
mented in another language and reside in native libraries.

• The JNI supports an invocation interface that allows you to embed a Java vir-
tual machine implementation into native applications. Native applications can
link with a native library that implements the Java virtual machine, and then
use the invocation interface to execute software components written in the
Java programming language. For example, a web browser written in C can
execute downloaded applets in an embedded Java virtual machine implemen-
tion.

Java virtual machineJava application

Host environment

Native application
JNIand library and libraryimplementation

jni.book Page 5 Thursday, February 21, 2002 4:36 PM

1.3 Implications of Using the JNI INTRODUCTION

6

1.3 Implications of Using the JNI

Remember that once an application uses the JNI, it risks losing two benefits of the
Java platform.

First, Java applications that depend on the JNI can no longer readily run on
multiple host environments. Even though the part of an application written in the
Java programming language is portable to multiple host environments, it will be
necessary to recompile the part of the application written in native programming
languages.

Second, while the Java programming language is type-safe and secure, native
languages such as C or C++ are not. As a result, you must use extra care when
writing applications using the JNI. A misbehaving native method can corrupt the
entire application. For this reason Java applications are subject to security checks
before invoking JNI features.

As a general rule, you should architect the application so that native methods
are defined in as few classes as possible. This entails a cleaner isolation between
native code and the rest of the application.

1.4 When to Use the JNI

Before you embark on a project using the JNI, it is worth taking a step back to
investigate whether there are alternative solutions that are more appropriate. As
mentioned in the last section, applications that use the JNI have inherent disadvan-
tages when compared with applications written strictly in the Java programming
language. For example, you lose the type-safety guarantee of the Java program-
ming language.

A number of alternative approaches also allow Java applications to interoper-
ate with code written in other languages. For example:

• A Java application may communicate with a native application through a
TCP/IP connection or through other inter-process communication (IPC)
mechanisms.

• A Java application may connect to a legacy database through the JDBC™
API.

• A Java application may take advantage of distributed object technologies such
as the Java IDL API.

A common characteristic of these alternative solutions is that the Java applica-
tion and native code reside in different processes (and in some cases on different
machines). Process separation offers an important benefit. The address space pro-

jni.book Page 6 Thursday, February 21, 2002 4:36 PM

INTRODUCTION Evolution of the JNI 1.5

7

tection supported by processes enables a high degree of fault isolation—a crashed
native application does not immediately terminate the Java application with which
it communicates over TCP/IP.

Sometimes, however, you may find it necessary for a Java application to com-
municate with native code that resides in the same process. This is when the JNI
becomes useful. Consider, for example, the following scenarios:

• The Java API might not support certain host-dependent features needed by an
application. An application may want to perform, for example, special file
operations that are not supported by the Java API, yet it is both cumbersome
and inefficient to manipulate files through another process.

• You may want to access an existing native library and are not willing to pay
for the overhead of copying and transmitting data across different processes.
Loading the native library in the same process is much more efficient.

• Having an application span multiple processes could result in unacceptable
memory footprint. This is typically true if these processes need to reside on
the same client machine. Loading a native library into the existing process
hosting the application requires less system resources than starting a new pro-
cess and loading the library into that process.

• You may want to implement a small portion of time-critical code in a lower-
level language, such as assembly. If a 3D-intensive application spends most of
its time in graphics rendering, you may find it necessary to write the core por-
tion of a graphics library in assembly code to achieve maximum performance.

In summary, use the JNI if your Java application must interoperate with native
code that resides in the same process.

1.5 Evolution of the JNI

The need for Java applications to interoperate with native code has been recog-
nized since the very early days of the Java platform. The first release of the Java
platform, Java Development Kit (JDK™) release 1.0, included a native method
interface that allowed Java applications to call functions written in other lan-
guages such as C and C++. Many third-party applications, as well as the imple-
mentation of the Java class libraries (including, for example, java.lang,
java.io, and java.net), relied on the native method interface to access the fea-
tures in the underlying host environment.

Unfortunately, the native method interface in JDK release 1.0 had two major
problems:

jni.book Page 7 Thursday, February 21, 2002 4:36 PM

1.6 Example Programs INTRODUCTION

8

• First, the native code accesses fields in objects as members of C structures.
However, the Java virtual machine specification does not define how objects
are laid out in memory. If a given Java virtual machine implementation lays
out objects in a way other than that assumed by the native method interface,
then you have to recompile the native method libraries.

• Second, the native method interface in JDK release 1.0 relies on a conserva-
tive garbage collector because native methods can get hold of direct pointers
to objects in the virtual machine. Any virtual machine implementation that
uses more advanced garbage collection algorithms cannot support the native
method interface in JDK release 1.0.

The JNI was designed to overcome these problems. It is an interface that can
be supported by all Java virtual machine implementations on a wide variety of
host environments. With the JNI:

• Each virtual machine implementor can support a larger body of native code.

• Development tool vendors do not have to deal with different kinds of native
method interfaces.

• Most importantly, application programmers are able to write one version of
their native code and this version will run on different implementations of the
Java virtual machine.

The JNI was first supported in JDK release 1.1. Internally, however, JDK
release 1.1 still uses old-style native methods (as in JDK release 1.0) to implement
the Java APIs. This is no longer the case in Java 2 SDK release 1.2 (formerly
known as JDK release 1.2). Native methods have been rewritten so that they con-
form to the JNI standard.

The JNI is the native interface supported by all Java virtual machine imple-
mentations. From JDK release 1.1 on, you should program to the JNI. The old-
style native method interface is still supported in Java 2 SDK release 1.2, but will
not (and cannot) be supported in advanced Java virtual machine implementations
in the future.

Java 2 SDK release 1.2 contains a number of JNI enhancements. The
enhancements are backward compatible. All future evolutions of JNI will main-
tain complete binary compatibility.

1.6 Example Programs

This book contains numerous example programs that demonstrate JNI features.
The example programs typically consist of multiple code segments written in the

jni.book Page 8 Thursday, February 21, 2002 4:36 PM

INTRODUCTION Example Programs 1.6

9

Java programming language as well as C or C++ native code. Sometimes the
native code refers to host-specific features in Solaris and Win32. We also show
how to build JNI programs using the command line tools (such as javah) shipped
with JDK and Java 2 SDK releases.

Keep in mind that the use of the JNI is not limited to specific host environ-
ments or specific application development tools. The book focuses on writing the
code, not on the tools used to build and run the code. The command line tools bun-
dled with JDK and Java 2 SDK releases are rather primitive. Third-party tools
may offer an improved way to build applications that use the JNI. We encourage
you to consult the JNI-related documentation bundled with the development tools
of your choice.

You can download the source code of the examples in this book, as well as the
latest updates to this book, from the following web address:

http://java.sun.com/docs/books/jni/

jni.book Page 9 Thursday, February 21, 2002 4:36 PM

jni.book Page 10 Thursday, February 21, 2002 4:36 PM

11

C H A P T E R 2
Getting Started

THIS chapter walks you through a simple example of using the Java Native
Interface. We will write a Java application that calls a C function to print “Hello
World!”.

2.1 Overview

Figure 2.1 illustrates the process for using JDK or Java 2 SDK releases to write a
simple Java application that calls a C function to print “Hello World!”. The pro-
cess consists of the following steps:

1. Create a class (HelloWorld.java) that declares the native method.

2. Use javac to compile the HelloWorld source file, resulting in the class file
HelloWorld.class. The javac compiler is supplied with JDK or Java 2 SDK
releases.

3. Use javah -jni to generate a C header file (HelloWorld.h) containing the
function prototype for the native method implementation. The javah tool is
provided with JDK or Java 2 SDK releases.

4. Write the C implementation (HelloWorld.c) of the native method.

5. Compile the C implementation into a native library, creating HelloWorld.dll

or libHelloWorld.so. Use the C compiler and linker available on the host
environment.

6. Run the HelloWorld program using the java runtime interpreter. Both the
class file (HelloWorld.class) and the native library (HelloWorld.dll or
libHelloWorld.so) are loaded at runtime.

The remainder of this chapter explains these steps in detail.

jni.book Page 11 Thursday, February 21, 2002 4:36 PM

2.1 Overview GETTING STARTED

12

Figure 2.1 Steps in Writing and Running the “Hello World” Program

Create a class

HelloWorld.java

Use javac Usejavah

file

Write the C
implementation

of the native
method

HelloWorld.class
HelloWorld.h

HelloWorld.c

HelloWorld.dll

Run the
program using

the java
interpreter “Hello World!”

1.

2. 3.

4.

6.

5.

to compile the
program

that declares the
native method

to
generate header

Compile C
code and generate

native library

jni.book Page 12 Thursday, February 21, 2002 4:36 PM

GETTING STARTED Declare the Native Method 2.2

13

2.2 Declare the Native Method

You begin by writing the following program in the Java programming language.
The program defines a class named HelloWorld that contains a native method,
print.

class HelloWorld {
 private native void print();
 public static void main(String[] args) {
 new HelloWorld().print();
 }
 static {
 System.loadLibrary("HelloWorld");
 }
}

The HelloWorld class definition begins with the declaration of the print

native method. This is followed by a main method that instantiates the Hello-

World class and invokes the print native method for this instance. The last part of
the class definition is a static initializer that loads the native library containing the
implementation of the print native method.

There are two differences between the declaration of a native method such as
print and the declaration of regular methods in the Java programming language.
A native method declaration must contain the native modifier. The native mod-
ifier indicates that this method is implemented in another language. Also, the
native method declaration is terminated with a semicolon, the statement termina-
tor symbol, because there is no implementation for native methods in the class
itself. We will implement the print method in a separate C file.

Before the native method print can be called, the native library that imple-
ments print must be loaded. In this case, we load the native library in the static
initializer of the HelloWorld class. The Java virtual machine automatically runs
the static initializer before invoking any methods in the HelloWorld class, thus
ensuring that the native library is loaded before the print native method is called.

We define a main method to be able to run the HelloWorld class. Hello-
World.main calls the native method print in the same manner as it would call a
regular method.

System.loadLibrary takes a library name, locates a native library that corre-
sponds to that name, and loads the native library into the application. We will dis-
cuss the exact loading process later in the book. For now simply remember that in
order for System.loadLibrary("HelloWorld") to succeed, we need to create a
native library called HelloWorld.dll on Win32, or libHelloWorld.so on
Solaris.

jni.book Page 13 Thursday, February 21, 2002 4:36 PM

2.3 Compile the HelloWorld Class GETTING STARTED

14

2.3 Compile the HelloWorld Class

After you have defined the HelloWorld class, save the source code in a file called
HelloWorld.java. Then compile the source file using the javac compiler that
comes with the JDK or Java 2 SDK release:

javac HelloWorld.java

This command will generate a HelloWorld.class file in the current direc-
tory.

2.4 Create the Native Method Header File

Next we will use the javah tool to generate a JNI-style header file that is useful
when implementing the native method in C. You can run javah on the Hello-

World class as follows:

javah -jni HelloWorld

The name of the header file is the class name with a “.h” appended to the end
of it. The command shown above generates a file named HelloWorld.h. We will
not list the generated header file in its entirety here. The most important part of the
header file is the function prototype for Java_HelloWorld_print, which is the C
function that implements the HelloWorld.print method:

JNIEXPORT void JNICALL
Java_HelloWorld_print (JNIEnv *, jobject);

Ignore the JNIEXPORT and JNICALL macros for now. You may have noticed
that the C implementation of the native method accepts two arguments even
though the corresponding declaration of the native method accepts no arguments.
The first argument for every native method implementation is a JNIEnv interface
pointer. The second argument is a reference to the HelloWorld object itself (sort
of like the “this” pointer in C++). We will discuss how to use the JNIEnv interface
pointer and the jobject arguments later in this book, but this simple example
ignores both arguments.

jni.book Page 14 Thursday, February 21, 2002 4:36 PM

GETTING STARTED Compile the C Source and Create a Native Library 2.6

15

2.5 Write the Native Method Implementation

The JNI-style header file generated by javah helps you to write C or C++ imple-
mentations for the native method. The function that you write must follow the
prototype specified in the generated header file. You can implement the Hello-

World.print method in a C file HelloWorld.c as follows:

#include <jni.h>
#include <stdio.h>
#include "HelloWorld.h"

JNIEXPORT void JNICALL
Java_HelloWorld_print(JNIEnv *env, jobject obj)
{
 printf("Hello World!\n");
 return;
}

The implementation of this native method is straightforward. It uses the
printf function to display the string “Hello World!” and then returns. As men-
tioned before, both arguments, the JNIEnv pointer and the reference to the object,
are ignored.

The C program includes three header files:

• jni.h — This header file provides information the native code needs to call
JNI functions. When writing native methods, you must always include this file
in your C or C++ source files.

• stdio.h — The code snippet above also includes stdio.h because it uses
the printf function.

• HelloWorld.h — The header file that you generated using javah. It includes
the C/C++ prototype for the Java_HelloWorld_print function.

2.6 Compile the C Source and Create a Native Library

Remember that when you created the HelloWorld class in the HelloWorld.java

file, you included a line of code that loaded a native library into the program:

System.loadLibrary("HelloWorld");

jni.book Page 15 Thursday, February 21, 2002 4:36 PM

2.7 Run the Program GETTING STARTED

16

Now that all the necessary C code is written, you need to compile Hello-

World.c and build this native library.
Different operating systems support different ways to build native libraries.

On Solaris, the following command builds a shared library called libHello-

World.so:

cc -G -I/java/include -I/java/include/solaris
 HelloWorld.c -o libHelloWorld.so

The -G option instructs the C compiler to generate a shared library instead of a
regular Solaris executable file. Because of the limitation of page width in this
book, we break the command line into two lines. You need to type the command
in a single line, or place the command in a script file. On Win32, the following
command builds a dynamic link library (DLL) HelloWorld.dll using the
Microsoft Visual C++ compiler:

cl -Ic:\java\include -Ic:\java\include\win32
 -MD -LD HelloWorld.c -FeHelloWorld.dll

The -MD option ensures that HelloWorld.dll is linked with the Win32 multi-
threaded C library. The -LD option instructs the C compiler to generate a DLL
instead of a regular Win32 executable. Of course, on both Solaris and Win32 you
need to put in the include paths that reflect the setup on your own machine.

2.7 Run the Program

At this point, you have the two components ready to run the program. The class
file (HelloWorld.class) calls a native method, and the native library (Hello-
World.dll) implements the native method.

Because the HelloWorld class contains its own main method, you can run the
program on Solaris or Win32 as follows:

java HelloWorld

You should see the following output:

Hello World!

It is important to set your native library path correctly for your program to run.
The native library path is a list of directories that the Java virtual machine searches
when loading native libraries. If you do not have a native library path set up cor-
rectly, then you see an error similar to the following:

jni.book Page 16 Thursday, February 21, 2002 4:36 PM

GETTING STARTED Run the Program 2.7

17

java.lang.UnsatisfiedLinkError: no HelloWorld in library path
 at java.lang.Runtime.loadLibrary(Runtime.java)
 at java.lang.System.loadLibrary(System.java)
 at HelloWorld.main(HelloWorld.java)

Make sure that the native library resides in one of the directories in the native
library path. If you are running on a Solaris system, the LD_LIBRARY_PATH envi-
ronment variable is used to define the native library path. Make sure that it
includes the name of the directory that contains the libHelloWorld.so file. If the
libHelloWorld.so file is in the current directory, you can issue the following two
commands in the standard shell (sh) or KornShell (ksh) to set up the
LD_LIBRARY_PATH environment variable properly:

LD_LIBRARY_PATH=.
export LD_LIBRARY_PATH

The equivalent command in the C shell (csh or tcsh) is as follows:

setenv LD_LIBRARY_PATH .

If you are running on a Windows 95 or Windows NT machine, make sure that
HelloWorld.dll is in the current directory, or in a directory that is listed in the
PATH environment variable.

In Java 2 SDK 1.2 release, you can also specify the native library path on the
java command line as a system property as follows:

java -Djava.library.path=. HelloWorld

The “-D” command-line option sets a Java platform system property. Setting
the java.library.path property to “.” instructs the Java virtual machine to
search for native libraries in the current directory.

jni.book Page 17 Thursday, February 21, 2002 4:36 PM

jni.book Page 18 Thursday, February 21, 2002 4:36 PM

Part Two: Programmer’s Guide

jni.book Page 19 Thursday, February 21, 2002 4:36 PM

jni.book Page 20 Thursday, February 21, 2002 4:36 PM

21

C H A P T E R 3
Basic Types, Strings, and

Arrays

ONE of the most common questions programmers ask when interfacing Java
applications with native code is how data types in the Java programming language
map to the data types in native programming languages such as C and C++. In the
“Hello World!” example presented in the last chapter, we did not pass any argu-
ments to the native method, nor did the native method return any result. The native
method simply printed a message and returned.

In practice, most programs will need to pass arguments to native methods, and
receive results from native methods as well. In this chapter, we will describe how
to exchange data types between code written in the Java programming language
and the native code that implements native methods. We will start with primitive
types such as integers and common object types such as strings and arrays. We
will defer the full treatment of arbitrary objects to the next chapter, where we will
explain how the native code can access fields and make method calls.

3.1 A Simple Native Method

Let us start with a simple example that is not too different from the HelloWorld

program in the last chapter. The example program, Prompt.java, contains a
native method that prints a string, waits for user input, and then returns the line
that the user has typed in. The source code for this program is as follows:

jni.book Page 21 Thursday, February 21, 2002 4:36 PM

3.1.1 C Prototype for Implementing the Native Method BASIC TYPES, STRINGS, AND ARRAYS

22

class Prompt {
 // native method that prints a prompt and reads a line
 private native String getLine(String prompt);

 public static void main(String args[]) {
 Prompt p = new Prompt();
 String input = p.getLine("Type a line: ");
 System.out.println("User typed: " + input);
 }
 static {
 System.loadLibrary("Prompt");
 }
}

Prompt.main calls the native method Prompt.getLine to receive user input.
The static initializer calls the System.loadLibrary method to load a native
library called Prompt.

3.1.1 C Prototype for Implementing the Native Method

The Prompt.getLine method can be implemented with the following C function:

JNIEXPORT jstring JNICALL
Java_Prompt_getLine(JNIEnv *env, jobject this, jstring prompt);

You can use the javah tool (§2.4) to generate a header file containing the
above function prototype. The JNIEXPORT and JNICALL macros (defined in the
jni.h header file) ensure that this function is exported from the native library and
C compilers generate code with the correct calling convention for this function.
The name of the C function is formed by concatenating the “Java_” prefix, the
class name, and the method name. Section 11.3 contains a more precise descrip-
tion of how the C function names are formed.

3.1.2 Native Method Arguments

As briefly discussed in Section 2.4, the native method implementation such as
Java_Prompt_getLine accepts two standard parameters, in addition to the argu-
ments declared in the native method. The first parameter, the JNIEnv interface
pointer, points to a location that contains a pointer to a function table. Each entry
in the function table points to a JNI function. Native methods always access data
structures in the Java virtual machine through one of the JNI functions. Figure 3.1
illustrates the JNIEnv interface pointer.

jni.book Page 22 Thursday, February 21, 2002 4:36 PM

BASIC TYPES, STRINGS, AND ARRAYS Mapping of Types 3.1.3

23

Figure 3.1 The JNIEnv Interface Pointer

The second argument differs depending on whether the native method is a
static or an instance method. The second argument to an instance native method is
a reference to the object on which the method is invoked, similar to the this

pointer in C++. The second argument to a static native method is a reference to
the class in which the method is defined. Our example, Java_Prompt_getLine,
implements an instance native method. Thus the jobject parameter is a reference
to the object itself.

3.1.3 Mapping of Types

Argument types in the native method declaration have corresponding types in
native programming languages. The JNI defines a set of C and C++ types that cor-
respond to types in the Java programming language.

There are two kinds of types in the Java programming language: primitive
types such as int, float, and char, and reference types such as classes, instances,
and arrays. In the Java programming language, strings are instances of the
java.lang.String class.

The JNI treats primitive types and reference types differently. The mapping of
primitive types is straightforward. For example, the type int in the Java program-
ming language maps to the C/C++ type jint (defined in jni.h as a signed 32-bit
integer), while the type float in the Java programming language maps to the C
and C++ type jfloat (defined in jni.h as a 32-bit floating point number). Sec-
tion 12.1.1 contains the definition of all primitive types defined in the JNI.

The JNI passes objects to native methods as opaque references. Opaque refer-
ences are C pointer types that refer to internal data structures in the Java virtual
machine. The exact layout of the internal data structures, however, is hidden from
the programmer. The native code must manipulate the underlying objects via the

JNIEnv * JNI functions

...

Array of pointers
to

Pointer
an interface

function

an interface
function

an interface
function

Pointer

Pointer

Pointer

(Internal virtual
machine data
structures)

jni.book Page 23 Thursday, February 21, 2002 4:36 PM

3.2 Accessing Strings BASIC TYPES, STRINGS, AND ARRAYS

24

appropriate JNI functions, which are available through the JNIEnv interface
pointer. For example, the corresponding JNI type for java.lang.String is
jstring. The exact value of a jstring reference is irrelevant to the native code.
The native code calls JNI functions such as GetStringUTFChars (§3.2.1) to
access the contents of a string.

All JNI references have type jobject. For convenience and enhanced type
safety, the JNI defines a set of reference types that are conceptually “subtypes” of
jobject. (A is a subtype of B of every instance of A is also an instance of B.)
These subtypes correspond to frequently used reference types in the Java pro-
gramming language. For example, jstring denotes strings; jobjectArray

denotes an array of objects. Section 12.1.2 contains a complete listing of the JNI
reference types and their subtyping relationships.

3.2 Accessing Strings

The Java_Prompt_getLine function receives the prompt argument as a jstring

type. The jstring type represents strings in the Java virtual machine, and is dif-
ferent from the regular C string type (a pointer to characters, char *). You cannot
use a jstring as a normal C string. The following code, if run, would not produce
the desired results. In fact, it will most likely crash the Java virtual machine.

JNIEXPORT jstring JNICALL
Java_Prompt_getLine(JNIEnv *env, jobject obj, jstring prompt)
{
 /* ERROR: incorrect use of jstring as a char* pointer */
 printf("%s", prompt);
 ...
}

3.2.1 Converting to Native Strings

Your native method code must use the appropriate JNI functions to convert
jstring objects to C/C++ strings. The JNI supports conversion both to and from
Unicode and UTF-8 strings. Unicode strings represent characters as 16-bit values,
whereas UTF-8 strings (§12.3.1) use an encoding scheme that is upward compati-
ble with 7-bit ASCII strings. UTF-8 strings act like NULL-terminated C strings,
even if they contain non-ASCII characters. All 7-bit ASCII characters whose val-
ues are between 1 and 127 remain the same in the UTF-8 encoding. A byte with
the highest bit set signals the beginning of a multi-byte encoded 16-bit Unicode
value.

jni.book Page 24 Thursday, February 21, 2002 4:36 PM

BASIC TYPES, STRINGS, AND ARRAYS Freeing Native String Resources 3.2.2

25

The Java_Prompt_getLine function calls the JNI function GetStringUTF-

Chars to read the contents of the string. The GetStringUTFChars function is
available through the JNIEnv interface pointer. It converts the jstring reference,
typically represented by the Java virtual machine implementation as a Unicode
sequence, into a C string represented in the UTF-8 format. If you are certain that
the original string contains only 7-bit ASCII characters, you may pass the con-
verted string to regular C library functions such as printf. (We will discuss how
to handle non-ASCII strings in Section 8.2.)

JNIEXPORT jstring JNICALL
Java_Prompt_getLine(JNIEnv *env, jobject obj, jstring prompt)
{
 char buf[128];
 const jbyte *str;
 str = (*env)->GetStringUTFChars(env, prompt, NULL);
 if (str == NULL) {
 return NULL; /* OutOfMemoryError already thrown */
 }
 printf("%s", str);
 (*env)->ReleaseStringUTFChars(env, prompt, str);
 /* We assume here that the user does not type more than
 * 127 characters */
 scanf("%s", buf);
 return (*env)->NewStringUTF(env, buf);
}

Do not forget to check the return value of GetStringUTFChars. Because the
Java virtual machine implementation needs to allocate memory to hold the UTF-8
string, there is a chance that memory allocation will fail. When that happens, Get-
StringUTFChars returns NULL and throws an OutOfMemoryError exception. As
we will learn in Chapter 6, throwing an exception through the JNI is different
from throwing an exception in the Java programming language. A pending excep-
tion thrown through the JNI does not automatically change control flow in native
C code. Instead, we need to issue an explicit return statement in order to skip the
remaining statements in the C function. After Java_Prompt_getLine returns, the
exception will be thrown in Prompt.main, caller of the Prompt.getLine native
method.

3.2.2 Freeing Native String Resources

When your native code finishes using the UTF-8 string obtained through Get-

StringUTFChars, it calls ReleaseStringUTFChars. Calling ReleaseString-

UTFChars indicates that the native method no longer needs the UTF-8 string

jni.book Page 25 Thursday, February 21, 2002 4:36 PM

3.2.3 Constructing New Strings BASIC TYPES, STRINGS, AND ARRAYS

26

returned by GetStringUTFChars; thus the memory taken by the UTF-8 string can
be freed. Failure to call ReleaseStringUTFChars would result in a memory leak,
which could ultimately lead to memory exhaustion.

3.2.3 Constructing New Strings

You can construct a new java.lang.String instance in the native method by
calling the JNI function NewStringUTF. The NewStringUTF function takes a C
string with the UTF-8 format and constructs a java.lang.String instance. The
newly constructed java.lang.String instance represents the same sequence of
Unicode characters as the given UTF-8 C string.

If the virtual machine cannot allocate the memory needed to construct the
java.lang.String instance, NewStringUTF throws an OutOfMemoryError

exception and returns NULL. In this example, we do not need to check its return
value because the native method returns immediately afterwards. If NewString-
UTF fails, the OutOfMemoryError exception will be thrown in the Prompt.main

method that issued the native method call. If NewStringUTF succeeds, it returns a
JNI reference to the newly constructed java.lang.String instance. The new
instance is returned by Prompt.getLine and then assigned to the local variable
input in Prompt.main.

3.2.4 Other JNI String Functions

The JNI supports a number of other string-related functions, in addition to the
GetStringUTFChars, ReleaseStringUTFChars, and NewStringUTF functions
introduced earlier.

GetStringChars and ReleaseStringChars obtain string characters repre-
sented in the Unicode format. These functions are useful when, for example, the
operating system supports Unicode as the native string format.

UTF-8 strings are always terminated with the ‘\0’ character, whereas Uni-
code strings are not. To find out the number of Unicode characters in a jstring

reference, JNI programmers can call GetStringLength. To find out how many
bytes are needed to represent a jstring in the UTF-8 format, JNI programmers
can either call the ANSI C function strlen on the result of GetStringUTFChars,
or call the JNI function GetStringUTFLength on the jstring reference directly.

The third argument to GetStringChars and GetStringUTFChars requires
additional explanation:

const jchar *
GetStringChars(JNIEnv *env, jstring str, jboolean *isCopy);

jni.book Page 26 Thursday, February 21, 2002 4:36 PM

BASIC TYPES, STRINGS, AND ARRAYS New JNI String Functions in Java 2 SDK Release 1.2 3.2.5

27

Upon returning from GetStringChars, the memory location pointed to by
isCopy will be set to JNI_TRUE if the returned string is a copy of the characters in
the original java.lang.String instance. The memory location pointed to by
isCopy will be set to JNI_FALSE if the returned string is a direct pointer to the
characters in the original java.lang.String instance. When the location pointed
to by isCopy is set to JNI_FALSE, native code must not modify the contents of the
returned string. Violating this rule will cause the original java.lang.String

instance to be modified as well. This breaks the invariant that java.lang.String
instances are immutable.

Most often you pass NULL as the isCopy argument because you do not care
whether the Java virtual machine returns a copy of the characters in the
java.lang.String instance or a direct pointer to the original.

It is in general not possible to predict whether the virtual machine will copy
the characters in a given java.lang.String instance. Programmers must there-
fore assume functions such as GetStringChars may take time and space propor-
tional to the number of characters in the java.lang.String instance. In a typical
Java virtual machine implementation, the garbage collector relocates objects in
the heap. Once a direct pointer to a java.lang.String instance is passed back to
the native code, the garbage collector can no longer relocate the
java.lang.String instance. To put it another way, the virtual machine must pin
the java.lang.String instance. Because excessive pinning leads to memory
fragmentation, the virtual machine implementation may, at its discretion, decide
to either copy the characters or pin the instance for each individual GetString-
Chars call.

Do not forget to call ReleaseStringChars when you no longer need access
to the string elements returned from GetStringChars. The ReleaseStringChars

call is necessary whether GetStringChars has set *isCopy to JNI_TRUE or
JNI_FALSE. ReleaseStringChars either frees the copy or unpins the instance,
depending upon whether GetStringChars has returned a copy or not.

3.2.5 New JNI String Functions in Java 2 SDK Release 1.2

To increase the possibility that the virtual machine is able to return a direct pointer
to the characters in a java.lang.String instance, Java 2 SDK release 1.2 intro-
duces a new pair of functions, Get/ReleaseStringCritical. On the surface,
they appear to be similar to Get/ReleaseStringChars functions in that both
return a pointer to the characters if possible; otherwise, a copy is made. There are,
however, significant restrictions on how these functions can be used.

You must treat the code inside this pair of functions as running in a “critical
region.” Inside a critical region, native code must not call arbitrary JNI functions,
or any native function that may cause the current thread to block and wait for

jni.book Page 27 Thursday, February 21, 2002 4:36 PM

3.2.5 New JNI String Functions in Java 2 SDK Release 1.2 BASIC TYPES, STRINGS, AND ARRAYS

28

another thread running in the Java virtual machine. For example, the current
thread must not wait for input on an I/O stream being written to by another thread.

These restrictions make it possible for the virtual machine to disable garbage
collection when the native code is holding a direct pointer to string elements
obtained via GetStringCritical. When garbage collection is disabled, any other
threads that trigger garbage collection will be blocked as well. Native code
between a Get/ReleaseStringCritical pair must not issue blocking calls or
allocate new objects in the Java virtual machine. Otherwise, the virtual machine
may deadlock. Consider the following scenario:

• A garbage collection triggered by another thread cannot make progress until
the current thread finishes the blocking call and reenables garbage collection.

• Meanwhile, the current thread cannot make progress because the blocking
call needs to obtain a lock already held by the other thread that is waiting to
perform the garbage collection.

It is safe to overlap multiple pairs of GetStringCritical and Release-

StringCritical functions. For example:

jchar *s1, *s2;
s1 = (*env)->GetStringCritical(env, jstr1);
if (s1 == NULL) {
 ... /* error handling */
}
s2 = (*env)->GetStringCritical(env, jstr2);
if (s2 == NULL) {
 (*env)->ReleaseStringCritical(env, jstr1, s1);
 ... /* error handling */
}
... /* use s1 and s2 */
(*env)->ReleaseStringCritical(env, jstr1, s1);
(*env)->ReleaseStringCritical(env, jstr2, s2);

The Get/ReleaseStringCritical pairs need not be strictly nested in a stack
order. We must not forget to check its return value against NULL for possible out of
memory situations, because GetStringCritical might still allocate a buffer and
make a copy of the array if the VM internally represents arrays in a different for-
mat. For example, the Java virtual machine may not store arrays contiguously. In
that case, GetStringCritical must copy all the characters in the jstring

instance in order to return a contiguous array of characters to the native code.
To avoid deadlocks, you must make sure that the native code does not call

arbitrary JNI functions after it issues a GetStringCritical call and before it
makes the corresponding ReleaseStringCritical call. The only JNI functions

jni.book Page 28 Thursday, February 21, 2002 4:36 PM

BASIC TYPES, STRINGS, AND ARRAYS Summary of JNI String Functions 3.2.6

29

allowed in the “critical region” are overlapped Get/ReleaseStringCritical and
Get/ReleasePrimitiveArrayCritical (§3.3.2) calls.

The JNI does not support GetStringUTFCritical and ReleaseStringUTF-

Critical functions. Such functions would likely require the virtual machine to
make a copy of the string, because virtual machines implementation almost cer-
tainly represent strings internally in the Unicode format.

Other additions to Java 2 SDK release 1.2 are GetStringRegion and
GetStringUTFRegion. These functions copy the string elements into a preallo-
cated buffer. The Prompt.getLine method may be reimplemented using Get-

StringUTFRegion as follows:

JNIEXPORT jstring JNICALL
Java_Prompt_getLine(JNIEnv *env, jobject obj, jstring prompt)
{

/* assume the prompt string and user input has less than 128
 characters */
 char outbuf[128], inbuf[128];
 int len = (*env)->GetStringLength(env, prompt);
 (*env)->GetStringUTFRegion(env, prompt, 0, len, outbuf);
 printf("%s", outbuf);
 scanf("%s", inbuf);
 return (*env)->NewStringUTF(env, inbuf);
}

The GetStringUTFRegion function takes a starting index and length, both
counted as number of Unicode characters. The function also performs bounds
checking, and raises StringIndexOutOfBoundsException if necessary. In the
above code, we obtained the length from the string reference itself, and are thus
certain that there will be no index overflow. (The above code, however, lacks the
necessary checks to ensure that the prompt string contains less than 128 charac-
ters.)

The code is somewhat simpler than using GetStringUTFChars. Because Get-
StringUTFRegion performs no memory allocation, we need not check for possi-
ble out-of-memory conditions. (Again, the above code lacks the necessary checks
to ensure that the user input contains less than 128 characters.)

3.2.6 Summary of JNI String Functions

Table 3.1 summarizes all string-related JNI functions. Java 2 SDK 1.2 release
adds a number of new functions that enhance performance for certain string oper-
ations. The added functions support no new operations other than bringing perfor-
mance improvements.

jni.book Page 29 Thursday, February 21, 2002 4:36 PM

3.2.6 Summary of JNI String Functions BASIC TYPES, STRINGS, AND ARRAYS

30

Table 3.1 Summary of JNI String Functions

JNI Function Description Since

GetStringChars
ReleaseStringChars

Obtains or releases a pointer to the
contents of a string in Unicode for-
mat. May return a copy of the string.

JDK1.1

GetStringUTFChars
ReleaseStringUTFChars

Obtains or releases a pointer to the
contents of a string in UTF-8 format.
May return a copy of the string.

JDK1.1

GetStringLength Returns the number of Unicode char-
acters in the string.

JDK1.1

GetStringUTFLength Returns the number of bytes needed
(not including the trailing 0) to repre-
sent a string in the UTF-8 format.

JDK1.1

NewString Creates a java.lang.String

instance that contains the same
sequence of characters as the given
Unicode C string.

JDK1.1

NewStringUTF Creates a java.lang.String

instance that contains the same
sequence of characters as the given
UTF-8 encoded C string.

JDK1.1

GetStringCritical
ReleaseStringCritical

Obtains a pointer to the contents of a
string in Unicode format. May return
a copy of the string. Native code must
not block between a pair of Get/
ReleaseStringCritical calls.

Java 2
SDK1.2

GetStringRegion
SetStringRegion

Copies the contents of a string to or
from a preallocated C buffer in the
Unicode format.

Java 2
SDK1.2

GetStringUTFRegion
SetStringUTFRegion

Copies the content of a string to or
from a preallocated C buffer in the
UTF-8 format.

Java 2
SDK1.2

jni.book Page 30 Thursday, February 21, 2002 4:36 PM

BASIC TYPES, STRINGS, AND ARRAYS Choosing among the String Functions 3.2.7

31

3.2.7 Choosing among the String Functions

Figure 3.2 illustrates how a programmer may choose among the string-related
functions in JDK release 1.1 and Java 2 SDK release 1.2:

.

Figure 3.2 Choosing among the JNI String Functions

If you are targeting 1.1 or both 1.1 and 1.2 releases, there is no choice other
than Get/ReleaseStringChars and Get/ReleaseStringUTFChars.

If you are programming in Java 2 SDK release 1.2 and above, and you want to
copy the contents of a string into an already-allocated C buffer, use GetString-

Region or GetStringUTFRegion.
For small fixed-size strings, Get/SetStringRegion and Get/SetString-

UTFRegion are almost always the preferred functions because the C buffer can be
allocated on the C stack very cheaply. The overhead of copying a small number of
characters in the string is negligible.

One advantage of Get/SetStringRegion and Get/SetStringUTFRegion is
that they do not perform memory allocation, and therefore never raise unexpected

Any blocking or
JNI calls while
accessing string
contents?

Preallocated
C string buffer,
small fixed-size
strings, or small

substrings?

GetStringCritical

ReleaseStringCritical

GetStringRegion

SetStringRegion

GetStringUTFRegion

SetStringUTFRegion

GetStringChars

ReleaseStringChars

GetStringUTFChars

ReleaseStringUTFChars

N

Y

Y

N

Targeting
release 1.1 or

1.2?

1.2 and
beyond

1.1 or both

jni.book Page 31 Thursday, February 21, 2002 4:36 PM

3.2.7 Choosing among the String Functions BASIC TYPES, STRINGS, AND ARRAYS

32

out-of-memory exceptions. No exception checking is necessary if you make sure
that index overflow cannot occur.

Another advantage of Get/SetStringRegion and Get/SetStringUTFRegion

is that the you can specify a starting index and the number of characters. These
functions are suitable if the native code only needs to access a subset of characters
in a long string.

GetStringCritical must be used with extreme care (§3.2.5). You must
make sure that while holding a pointer obtained through GetStringCritical, the
native code does not allocate new objects in the Java virtual machine or perform
other blocking calls that may cause the system to deadlock.

Here is an example that demonstrates the subtle issues in the use of Get-

StringCritical. The following code obtains the content of a string and calls the
fprintf function to write out the characters to the file handle fd:

/* This is not safe! */
const char *c_str = (*env)->GetStringCritical(env, j_str, 0);
if (c_str == NULL) {
 ... /* error handling */
}
fprintf(fd, "%s\n", c_str);
(*env)->ReleaseStringCritical(env, j_str, c_str);

The problem with the above code is that it is not always safe to write to a file
handle when garbage collection is disabled by the current thread. Suppose, for
example, that another thread T is waiting to read from the fd file handle. Let us
further assume that the operating system buffering is set up in such a way that the
fprintf call waits until the thread T finishes reading all pending data from fd. We
have constructed a possible scenario for deadlocks: If thread T cannot allocate
enough memory to serve as a buffer for reading from the file handle, it must
request a garbage collection. The garbage collection request will be blocked until
the current thread executes ReleaseStringCritical, which cannot happen until
the fprintf call returns. The fprintf call is waiting, however, for thread T to fin-
ish reading from the file handle.

The following code, although similar to the example above, is almost cer-
tainly deadlock free:

/* This code segment is OK. */
const char *c_str = (*env)->GetStringCritical(env, j_str, 0);
if (c_str == NULL) {
 ... /* error handling */
}
DrawString(c_str);
(*env)->ReleaseStringCritical(env, j_str, c_str);

jni.book Page 32 Thursday, February 21, 2002 4:36 PM

BASIC TYPES, STRINGS, AND ARRAYS Accessing Arrays 3.3

33

DrawString is a system call that directly writes the string onto the screen.
Unless the screen display driver is also a Java application running in the same vir-
tual machine, the DrawString function will not block indefinitely waiting for gar-
bage collection to happen.

In summary, you need to consider all possible blocking behavior between a
pair of Get/ReleaseStringCritical calls.

3.3 Accessing Arrays

The JNI treats primitive arrays and object arrays differently. Primitive arrays con-
tain elements that are of primitive types such as int and boolean. Object arrays
contain elements that are of reference types such as class instances and other
arrays. For example, in the following code segment written in the Java program-
ming language:

int[] iarr;
float[] farr;
Object[] oarr;
int[][] arr2;

iarr and farr are primitive arrays, whereas oarr and arr2 are object arrays.
Accessing primitive arrays in a native method requires the use of JNI func-

tions similar to those used for accessing strings. Let us look at a simple example.
The following program calls a native method sumArray that adds up the contents
of an int array.

class IntArray {
 private native int sumArray(int[] arr);
 public static void main(String[] args) {
 IntArray p = new IntArray();
 int arr[] = new int[10];
 for (int i = 0; i < 10; i++) {
 arr[i] = i;
 }
 int sum = p.sumArray(arr);
 System.out.println("sum = " + sum);
 }
 static {
 System.loadLibrary("IntArray");
 }
}

jni.book Page 33 Thursday, February 21, 2002 4:36 PM

3.3.1 Accessing Arrays in C BASIC TYPES, STRINGS, AND ARRAYS

34

3.3.1 Accessing Arrays in C

Arrays are represented by the jarray reference type and its "subtypes" such as
jintArray. Just as jstring is not a C string type, neither is jarray a C array
type. You cannot implement the Java_IntArray_sumArray native method by
indirecting through a jarray reference. The following C code is illegal and would
not produce the desired results:

/* This program is illegal! */
JNIEXPORT jint JNICALL
Java_IntArray_sumArray(JNIEnv *env, jobject obj, jintArray arr)
{
 int i, sum = 0;
 for (i = 0; i < 10; i++) {
 sum += arr[i];
 }
}

You must instead use the proper JNI functions to access primitive array ele-
ments, as shown in the following corrected example:

JNIEXPORT jint JNICALL
Java_IntArray_sumArray(JNIEnv *env, jobject obj, jintArray arr)
{
 jint buf[10];
 jint i, sum = 0;
 (*env)->GetIntArrayRegion(env, arr, 0, 10, buf);
 for (i = 0; i < 10; i++) {
 sum += buf[i];
 }
 return sum;
}

3.3.2 Accessing Arrays of Primitive Types

The previous example uses the GetIntArrayRegion function to copy all the ele-
ments in the integer array into a C buffer (buf). The third argument is the starting
index of the elements, and the fourth argument is the number of elements to be
copied. Once the elements are in the C buffer, we can access them in native code.
No exception checking is necessary because we know that 10 is the length of the
array in our example, and thus there cannot be an index overflow.

The JNI supports a corresponding SetIntArrayRegion function that allows
native code to modify the array elements of type int. Arrays of other primitive
types (such as boolean, short, and float) are also supported.

jni.book Page 34 Thursday, February 21, 2002 4:36 PM

BASIC TYPES, STRINGS, AND ARRAYS Summary of JNI Primitive Array Functions 3.3.3

35

The JNI supports a family of Get/Release<Type>ArrayElements functions
(including, for example, Get/ReleaseIntArrayElements) that allow the native
code to obtain a direct pointer to the elements of primitive arrays. Because the
underlying garbage collector may not support pinning, the virtual machine may
return a pointer to a copy of the original primitive array. We can rewrite the native
method implementation in Section 3.3.1 using GetIntArrayElements as follows:

JNIEXPORT jint JNICALL
Java_IntArray_sumArray(JNIEnv *env, jobject obj, jintArray arr)
{
 jint *carr;
 jint i, sum = 0;
 carr = (*env)->GetIntArrayElements(env, arr, NULL);
 if (carr == NULL) {
 return 0; /* exception occurred */
 }
 for (i=0; i<10; i++) {
 sum += carr[i];
 }
 (*env)->ReleaseIntArrayElements(env, arr, carr, 0);
 return sum;
}

The GetArrayLength function returns the number of elements in primitive or
object arrays. The fixed length of an array is determined when the array is first
allocated.

Java 2 SDK release 1.2 introduces Get/ReleasePrimitiveArrayCritical

functions. These functions allow virtual machines to disable garbage collection
while the native code accesses the contents of primitive arrays. Programmers must
apply the same kind of care as when using Get/ReleaseStringCritical func-
tions (§3.2.4). Between a pair of Get/ReleasePrimitiveArrayCritical func-
tions, the native code must not call arbitrary JNI functions, or perform any
blocking operations that may cause the application to deadlock.

3.3.3 Summary of JNI Primitive Array Functions

Table 3.2 is a summary of all JNI functions related to primitive arrays. Java 2 SDK
release 1.2 adds a number of new functions that enhance performance for certain
array operations. The added functions do not support new operations other than
bringing performance improvements.

jni.book Page 35 Thursday, February 21, 2002 4:36 PM

3.3.4 Choosing among the Primitive Array Functions BASIC TYPES, STRINGS, AND ARRAYS

36

Table 3.2 Summary of JNI Primitive Array Functions

3.3.4 Choosing among the Primitive Array Functions

Figure 3.3 illustrates how a programmer may choose among JNI functions for
accessing primitive arrays in JDK release 1.1 and Java 2 SDK release 1.2:

JNI Function Description Since

Get<Type>ArrayRegion
Set<Type>ArrayRegion

Copies the contents of primi-
tive arrays to or from a pre-
allocated C buffer.

JDK1.1

Get<Type>ArrayElements
Release<Type>ArrayElements

Obtains a pointer to the con-
tents of a primitive array.
May return a copy of the
array.

JDK1.1

GetArrayLength Returns the number of ele-
ments in the array.

JDK1.1

New<Type>Array Creates an array with the
given length.

JDK1.1

GetPrimitiveArrayCritical
ReleasePrimitiveArrayCritical

Obtains or releases a pointer
to the contents of a primitive
array. May disable garbage
collection, or return a copy
of the array.

Java 2
SDK1.2

jni.book Page 36 Thursday, February 21, 2002 4:36 PM

BASIC TYPES, STRINGS, AND ARRAYS Choosing among the Primitive Array Functions 3.3.4

37

Figure 3.3 Choosing among Primitive Array Functions

If you need to copy to or copy from a preallocated C buffer, use the Get/

Set<Type>ArrayRegion family of functions. These functions perform bounds
checking and raise ArrayIndexOutOfBoundsException exceptions when neces-
sary. The native method implementation in Section 3.3.1 uses GetIntArray-

Region to copy 10 elements out of a jarray reference.
For small, fixed-size arrays, Get/Set<Type>ArrayRegion is almost always

the preferred function because the C buffer can be allocated on the C stack very
cheaply. The overhead of copying a small number of array elements is negligible.

The Get/Set<Type>ArrayRegion functions allow you to specify a starting
index and number of elements, and are thus the preferred functions if the native
code needs to access only a subset of elements in a large array.

If you do not have a preallocated C buffer, the primitive array is of undeter-
mined size and the native code does not issue blocking calls while holding the
pointer to array elements, use the Get/ReleasePrimitiveArrayCritical func-
tions in Java 2 SDK release 1.2. Just like the Get/ReleaseStringCritical func-
tions, the Get/ReleasePrimitiveArrayCritical functions must be used with
extreme care in order to avoid deadlocks.

Any blocking or
JNI calls while
accessing array

contents?

N

Preallocated
 C array buffer,
small fixed-size
arrays, or small

subarrays

Get<type>ArrayRegion

Set<type>ArrayRegion

Y

GetPrimitiveArrayCritical

ReleasePrimitiveArrayCritical

Get<type>ArrayElements

Release<Type>ArrayElements

Y
N

1.2 and
beyond

1.1 or both

Targeting
release 1.1 or

1.2?

jni.book Page 37 Thursday, February 21, 2002 4:36 PM

3.3.5 Accessing Arrays of Objects BASIC TYPES, STRINGS, AND ARRAYS

38

It is always safe to use the Get/Release<type>ArrayElements family of
functions. The virtual machine either returns a direct pointer to the array elements,
or returns a buffer that holds a copy of the array elements.

3.3.5 Accessing Arrays of Objects

The JNI provides a separate pair of functions to access objects arrays.
GetObjectArrayElement returns the element at a given index, whereas
SetObjectArrayElement updates the element at a given index. Unlike the situa-
tion with primitive array types, you cannot get all the object elements or copy
multiple object elements at once.

Strings and arrays are of reference types. You use Get/SetObjectArray-

Element to access arrays of strings and arrays of arrays.
The following example calls a native method to create a two-dimensional

array of int and then prints the content of the array.

class ObjectArrayTest {
 private static native int[][] initInt2DArray(int size);
 public static void main(String[] args) {
 int[][] i2arr = initInt2DArray(3);
 for (int i = 0; i < 3; i++) {
 for (int j = 0; j < 3; j++) {
 System.out.print(" " + i2arr[i][j]);
 }
 System.out.println();
 }
 }
 static {
 System.loadLibrary("ObjectArrayTest");
 }
}

The static native method initInt2DArray creates a two-dimensional array of
the given size. The native method that allocates and initializes the two-dimen-
sional array may be written as follows:

jni.book Page 38 Thursday, February 21, 2002 4:36 PM

BASIC TYPES, STRINGS, AND ARRAYS Accessing Arrays of Objects 3.3.5

39

JNIEXPORT jobjectArray JNICALL
Java_ObjectArrayTest_initInt2DArray(JNIEnv *env,
 jclass cls,
 int size)
{
 jobjectArray result;
 int i;
 jclass intArrCls = (*env)->FindClass(env, "[I");
 if (intArrCls == NULL) {
 return NULL; /* exception thrown */
 }
 result = (*env)->NewObjectArray(env, size, intArrCls,

NULL);
 if (result == NULL) {
 return NULL; /* out of memory error thrown */
 }
 for (i = 0; i < size; i++) {
 jint tmp[256]; /* make sure it is large enough! */
 int j;
 jintArray iarr = (*env)->NewIntArray(env, size);
 if (iarr == NULL) {
 return NULL; /* out of memory error thrown */
 }
 for (j = 0; j < size; j++) {
 tmp[j] = i + j;
 }
 (*env)->SetIntArrayRegion(env, iarr, 0, size, tmp);
 (*env)->SetObjectArrayElement(env, result, i, iarr);
 (*env)->DeleteLocalRef(env, iarr);
 }
 return result;
}

The newInt2DArray method first calls the JNI function FindClass to obtain a
reference of the element class of the two-dimensional int array. The "[I" argu-
ment to FindClass is the JNI class descriptor (§12.3.2) that corresponds to the
int[] type in the Java programming language. FindClass returns NULL and
throws an exception if class loading fails (due to, for example, a missing class file
or an out-of-memory condition).

Next the NewObjectArray function allocates an array whose element type is
denoted by the intArrCls class reference. The NewObjectArray function only
allocates the first dimension, and we are still left with the task of filling in the
array elements that constitute the second dimension. The Java virtual machine has
no special data structure for multi-dimensional arrays. A two-dimensional array is
simply an array of arrays.

jni.book Page 39 Thursday, February 21, 2002 4:36 PM

3.3.5 Accessing Arrays of Objects BASIC TYPES, STRINGS, AND ARRAYS

40

The code that creates the second dimension is quite straightforward. NewInt-
Array allocates the individual array elements, and SetIntArrayRegion copies the
contents of the tmp[] buffer into the newly allocated one-dimensional arrays.
After completing the SetObjectArrayElement call, the jth element of the ith
one-dimensional array has value i+j.

Running the ObjectArrayTest.main method produces the following output:

 0 1 2
 1 2 3
 2 3 4

The DeleteLocalRef call at the end of the loop ensures that the virtual
machine does not run out of the memory used to hold JNI references such as iarr.
Section 5.2.1 explains in detail when and why you need to call DeleteLocalRef.

jni.book Page 40 Thursday, February 21, 2002 4:36 PM

41

C H A P T E R 4
Fields and Methods

NOW that you know how the JNI lets native code access primitive types and ref-
erence types such as strings and arrays, the next step will be to learn how to inter-
act with fields and methods in arbitrary objects. In addition to accessing fields,
this includes making calls to methods implemented in the Java programming lan-
guage from native code, commonly known as performing callbacks from native
code.

We will begin by introducing the JNI functions that support field access and
method callbacks. Later in this chapter we will discuss how to make such opera-
tions more efficient by using a simple but effective caching technique. In the last
section, we will discuss the performance characteristics of calling native methods
as well as accessing fields and calling methods from native code.

4.1 Accessing Fields

The Java programming language supports two kinds of fields. Each instance of a
class has its own copy of the instance fields of the class, whereas all instances of a
class share the static fields of the class.

The JNI provides functions that native code can use to get and set instance
fields in objects and static fields in classes. Let us first look at an example program
that illustrates how to access instance fields from a native method implementation.

jni.book Page 41 Thursday, February 21, 2002 4:36 PM

4.1 Accessing Fields FIELDS AND METHODS

42

class InstanceFieldAccess {
 private String s;

 private native void accessField();
 public static void main(String args[]) {
 InstanceFieldAccess c = new InstanceFieldAccess();
 c.s = "abc";
 c.accessField();
 System.out.println("In Java:");
 System.out.println(" c.s = \"" + c.s + "\"");
 }
 static {
 System.loadLibrary("InstanceFieldAccess");
 }
}

The InstanceFieldAccess class defines an instance field s. The main

method creates an object, sets the instance field, and then calls the native method
InstanceFieldAccess.accessField. As we will see shortly, the native method
prints out the existing value of the instance field and then sets the field to a new
value. The program prints the field value again after the native method returns,
demonstrating that the field value has indeed changed.

Here is the implementation of the InstanceFieldAccess.accessField
native method.

JNIEXPORT void JNICALL
Java_InstanceFieldAccess_accessField(JNIEnv *env, jobject obj)
{
 jfieldID fid; /* store the field ID */
 jstring jstr;
 const char *str;

 /* Get a reference to obj’s class */
 jclass cls = (*env)->GetObjectClass(env, obj);

 printf("In C:\n");

 /* Look for the instance field s in cls */
 fid = (*env)->GetFieldID(env, cls, "s",
 "Ljava/lang/String;");
 if (fid == NULL) {
 return; /* failed to find the field */
 }

jni.book Page 42 Thursday, February 21, 2002 4:36 PM

FIELDS AND METHODS Procedure for Accessing an Instance Field 4.1.1

43

 /* Read the instance field s */
 jstr = (*env)->GetObjectField(env, obj, fid);
 str = (*env)->GetStringUTFChars(env, jstr, NULL);
 if (str == NULL) {
 return; /* out of memory */
 }
 printf(" c.s = \"%s\"\n", str);
 (*env)->ReleaseStringUTFChars(env, jstr, str);

 /* Create a new string and overwrite the instance field */
 jstr = (*env)->NewStringUTF(env, "123");
 if (jstr == NULL) {
 return; /* out of memory */
 }
 (*env)->SetObjectField(env, obj, fid, jstr);
}

Running the InstanceFieldAccess class with the InstanceFieldAccess

native library produces the following output:

In C:
 c.s = "abc"
In Java:
 c.s = "123"

4.1.1 Procedure for Accessing an Instance Field

To access an instance field, the native method follows a two-step process. First, it
calls GetFieldID to obtain the field ID from the class reference, field name, and
field descriptor:

fid = (*env)->GetFieldID(env, cls, "s", "Ljava/lang/String;");

The example code obtains the class reference cls by calling GetObjectClass

on the instance reference obj, which is passed as the second argument to the
native method implementation.

Once you have obtained the field ID, you can pass the object reference and the
field ID to the appropriate instance field access function:

jstr = (*env)->GetObjectField(env, obj, fid);

Because strings and arrays are special kinds of objects, we use GetObject-

Field to access the instance field that is a string. Besides Get/SetObjectField,
the JNI also supports other functions such as GetIntField and SetFloatField

for accessing instance fields of primitive types.

jni.book Page 43 Thursday, February 21, 2002 4:36 PM

4.1.2 Field Descriptors FIELDS AND METHODS

44

4.1.2 Field Descriptors

You might have noticed that in the previous section we used a specially encoded C
string "Ljava/lang/String;" to represent a field type in the Java programming
language. These C strings are called JNI field descriptors.

The content of the string is determined by the declared type of the field. For
example, you represent an int field with "I", a float field with "F", a double

field with "D", a boolean field with "Z", and so on.
The descriptor for a reference type, such as java.lang.String, begins with

the letter L, is followed by the JNI class descriptor (§3.3.5), and is terminated by a
semicolon. The “.” separators in fully qualified class names are changed to “/” in
JNI class descriptors. Thus, you form the field descriptor for a field with type
java.lang.String as follows:

"Ljava/lang/String;"

Descriptors for array types consist of the “[” character, followed by the
descriptor of the component type of the array. For example, "[I" is the descriptor
for the int[] field type. Section 12.3.3 contains the details of field descriptors and
their matching types in the Java programming language.

You can use the javap tool (shipped with JDK or Java 2 SDK releases) to
generate the field descriptors from class files. Normally javap prints out the
method and field types in a given class. If you specify the -s option (and the -p

option for exposing private members), javap prints JNI descriptors instead:

javap -s -p InstanceFieldAccess

This gives you output containing the JNI descriptors for the field s:

...
s Ljava/lang/String;
...

Using the javap tool helps eliminate mistakes that can occur from deriving
JNI descriptor strings by hand.

4.1.3 Accessing Static Fields

Accessing static fields is similar to accessing instance fields. Let us look at a
minor variation of the InstanceFieldAccess example:

jni.book Page 44 Thursday, February 21, 2002 4:36 PM

FIELDS AND METHODS Accessing Static Fields 4.1.3

45

class StaticFielcdAccess {
 private static int si;

 private native void accessField();
 public static void main(String args[]) {
 StaticFieldAccess c = new StaticFieldAccess();
 StaticFieldAccess.si = 100;
 c.accessField();
 System.out.println("In Java:");
 System.out.println(" StaticFieldAccess.si = " + si);
 }
 static {
 System.loadLibrary("StaticFieldAccess");
 }
}

The StaticFieldAccess class contains a static integer field si. The Static-

FieldAccess.main method creates an object, initializes the static field, and then
calls the native method StaticFieldAccess.accessField. As we will see
shortly, the native method prints out the existing value of the static field and then
sets the field to a new value. To verify that the field has indeed changed, the pro-
gram prints the static field value again after the native method returns.

Here is the implementation of the StaticFieldAccess.accessField native
method.

JNIEXPORT void JNICALL
Java_StaticFieldAccess_accessField(JNIEnv *env, jobject obj)
{
 jfieldID fid; /* store the field ID */
 jint si;

 /* Get a reference to obj’s class */
 jclass cls = (*env)->GetObjectClass(env, obj);

 printf("In C:\n");

 /* Look for the static field si in cls */
 fid = (*env)->GetStaticFieldID(env, cls, "si", "I");
 if (fid == NULL) {
 return; /* field not found */
 }
 /* Access the static field si */
 si = (*env)->GetStaticIntField(env, cls, fid);
 printf(" StaticFieldAccess.si = %d\n", si);
 (*env)->SetStaticIntField(env, cls, fid, 200);
}

jni.book Page 45 Thursday, February 21, 2002 4:36 PM

4.2 Calling Methods FIELDS AND METHODS

46

Running the program with the native library produces the following output:

In C:
 StaticFieldAccess.si = 100
In Java:
 StaticFieldAccess.si = 200

There are two differences between how you access a static field and how you
access an instance field:

1. You call GetStaticFieldID for static fields, as opposed to GetFieldID for
instance fields. GetStaticFieldID and GetFieldID have the same return type
jfieldID.

2. Once you have obtained the static field ID, you pass the class reference, as
opposed to an object reference, to the appropriate static field access function.

4.2 Calling Methods

There are several kinds of methods in the Java programming language. Instance
methods must be invoked on a specific instance of a class, whereas static methods
may be invoked independent of any instance. We will defer the discussion of con-
structors to the next section.

The JNI supports a complete set of functions that allow you to perform call-
backs from native code. The example program below contains a native method
that in turn calls an instance method implemented in the Java programming lan-
guage.

class InstanceMethodCall {
 private native void nativeMethod();
 private void callback() {
 System.out.println("In Java");
 }
 public static void main(String args[]) {
 InstanceMethodCall c = new InstanceMethodCall();
 c.nativeMethod();
 }
 static {
 System.loadLibrary("InstanceMethodCall");
 }
}

jni.book Page 46 Thursday, February 21, 2002 4:36 PM

FIELDS AND METHODS Calling Instance Methods 4.2.1

47

Here is the implementation of the native method:

JNIEXPORT void JNICALL
Java_InstanceMethodCall_nativeMethod(JNIEnv *env, jobject obj)
{
 jclass cls = (*env)->GetObjectClass(env, obj);
 jmethodID mid =
 (*env)->GetMethodID(env, cls, "callback", "()V");
 if (mid == NULL) {
 return; /* method not found */
 }
 printf("In C\n");
 (*env)->CallVoidMethod(env, obj, mid);
}

Running the above program produces the following output:

In C
In Java

4.2.1 Calling Instance Methods

The Java_InstanceMethodCall_nativeMethod implementation illustrates the
two steps required to call an instance method:

• The native method first calls the JNI function GetMethodID. GetMethodID
performs a lookup for the method in the given class. The lookup is based on
the name and type descriptor of the method. If the method does not exist,
GetMethodID returns NULL. At this point, an immediate return from the native
method causes a NoSuchMethodError to be thrown in the code that called
InstanceMethodCall.nativeMethod.

• The native method then calls CallVoidMethod. CallVoidMethod invokes an
instance method that has the return type void. You pass the object, the method
ID, and the actual arguments (though in the above example there are none) to
CallVoidMethod.

Besides the CallVoidMethod function, the JNI also supports method invoca-
tion functions with other return types. For example, if the method you called back
returned a value of type int, then your native method would use CallIntMethod.
Similarly, you can use CallObjectMethod to call methods that return objects,
which include java.lang.String instances and arrays.

You can use Call<Type>Method family of functions to invoke interface meth-
ods as well. You must derive the method ID from the interface type. The following

jni.book Page 47 Thursday, February 21, 2002 4:36 PM

4.2.2 Forming the Method Descriptor FIELDS AND METHODS

48

code segment, for example, invokes the Runnable.run method on a
java.lang.Thread instance:

jobject thd = ...; /* a java.lang.Thread instance */
jmethodID mid;
jclass runnableIntf =
 (*env)->FindClass(env, "java/lang/Runnable");
if (runnableIntf == NULL) {
 ... /* error handling */
}
mid = (*env)->GetMethodID(env, runnableIntf, "run", "()V");
if (mid == NULL) {
 ... /* error handling */
}
(*env)->CallVoidMethod(env, thd, mid);
... /* check for possible exceptions */

We have seen in Section 3.3.5 that the FindClass function returns a reference
to a named class. Here we also use it to obtain a reference to a named interface.

4.2.2 Forming the Method Descriptor

The JNI uses descriptor strings to denote method types in a way similar to how it
denotes field types. A method descriptor combines the argument types and the
return type of a method. The argument types appear first and are surrounded by
one pair of parentheses. Argument types are listed in the order in which they
appear in the method declaration. There are no separators between multiple argu-
ment types. If a method takes no arguments, this is represented with an empty pair
of parentheses. Place the method’s return type immediately after the right closing
parenthesis for the argument types.

For example, "(I)V" denotes a method that takes one argument of type int

and has return type void. "()D" denotes a method that takes no arguments and
returns a double. Do not let C function prototypes such as “int f(void)” mis-
lead you to thinking that "(V)I" is a valid method descriptor. Use "()I" instead.

Method descriptors may involve class descriptors (§12.3.2). For example, the
method:

native private String getLine(String);

has the following descriptor:

"(Ljava/lang/String;)Ljava/lang/String;"

jni.book Page 48 Thursday, February 21, 2002 4:36 PM

FIELDS AND METHODS Calling Static Methods 4.2.3

49

Descriptors for array types begin with the “[” character, followed by the
descriptor of the array element type. For example, the method descriptor of:

public static void main(String[] args);

is as follows:

"([Ljava/lang/String;)V"

Section 12.3.4 gives a complete description of how to form JNI method
descriptors. You can use the javap tool to print out JNI method descriptors. For
example, by running:

javap -s -p InstanceMethodCall

you obtain the following output:

...
private callback ()V
public static main ([Ljava/lang/String;)V
private native nativeMethod ()V
...

The -s flag informs javap to output JNI descriptor strings rather than types as
they appear in the Java programming language. The -p flag causes javap to
include information about the private members of the class in its output.

4.2.3 Calling Static Methods

The previous example demonstrates how native code calls an instance method.
Similarly, you can perform callbacks to static methods from native code by fol-
lowing these steps:

• Obtain the method ID using GetStaticMethodID, as opposed to Get-

MethodID.

• Pass the class, method ID, and arguments to one of the family of static method
invocation functions: CallStaticVoidMethod, CallStaticBooleanMethod,
and so on.

There is a key difference between the functions that allow you to call static
methods and the functions that allow you to call instance methods. The former
takes a class reference as the second argument, whereas the latter takes an object
reference as the second argument. For example, you pass the class reference to
CallStaticVoidMethod, but pass an object reference to CallVoidMethod.

jni.book Page 49 Thursday, February 21, 2002 4:36 PM

4.2.3 Calling Static Methods FIELDS AND METHODS

50

At the Java programming language level, you can invoke a static method f in
class Cls using two alternative syntaxes: either Cls.f or obj.f where obj is an
instance of Cls. (The latter is the recommended programming style, however.) In
the JNI, you must always specify the class reference when issuing static method
calls from native code.

Let us look at an example that makes a callback to a static method from native
code. It is a slight variation of the earlier InstanceMethodCall example:

class StaticMethodCall {
 private native void nativeMethod();
 private static void callback() {
 System.out.println("In Java");
 }
 public static void main(String args[]) {
 StaticMethodCall c = new StaticMethodCall();
 c.nativeMethod();
 }
 static {
 System.loadLibrary("StaticMethodCall");
 }
}

Here is the implementation of the native method:

JNIEXPORT void JNICALL
Java_StaticMethodCall_nativeMethod(JNIEnv *env, jobject obj)
{
 jclass cls = (*env)->GetObjectClass(env, obj);
 jmethodID mid =

(*env)->GetStaticMethodID(env, cls, "callback", "()V");
 if (mid == NULL) {
 return; /* method not found */
 }
 printf("In C\n");
 (*env)->CallStaticVoidMethod(env, cls, mid);
}

Make sure that you pass cls (highlighted in bold), as opposed to obj, to
CallStaticVoidMethod. Running the above program produces the following
expected output:

In C
In Java

jni.book Page 50 Thursday, February 21, 2002 4:36 PM

FIELDS AND METHODS Invoking Constructors 4.3

51

4.2.4 Calling Instance Methods of a Superclass

You can call instance methods which were defined in a superclass but that have
been overridden in the class to which the object belongs. The JNI provides a set of
CallNonvirtual<Type>Method functions for this purpose. To call a instance
method defined in a superclass, you do the following:

• Obtain the method ID from a reference to the superclass using GetMethodID,
as opposed to GetStaticMethodID.

• Pass the object, superclass, method ID, and arguments to one of the family of
nonvirtual invocation functions, such as CallNonvirtualVoidMethod,
CallNonvirtualBooleanMethod, and so on.

It is relatively rare that you will need to invoke the instance methods of a
superclass. This facility is similar to calling an overridden superclass method, say
f, using the following construct in the Java programming language:

super.f();

CallNonvirtualVoidMethod can also be used to invoke constructors, as the
next section will illustrate.

4.3 Invoking Constructors

In the JNI, constructors may be invoked following steps similar to those used for
calling instance methods. To obtain the method ID of a constructor, pass
"<init>" as the method name and "V" as the return type in the method descriptor.
You can then invoke the constructor by passing the method ID to JNI functions
such as NewObject. The following code implements the equivalent functionality
of the JNI function NewString, which constructs a java.lang.String object
from the Unicode characters stored in a C buffer:

jstring
MyNewString(JNIEnv *env, jchar *chars, jint len)
{
 jclass stringClass;
 jmethodID cid;
 jcharArray elemArr;
 jstring result;

 stringClass = (*env)->FindClass(env, "java/lang/String");
 if (stringClass == NULL) {
 return NULL; /* exception thrown */

}

jni.book Page 51 Thursday, February 21, 2002 4:36 PM

4.3 Invoking Constructors FIELDS AND METHODS

52

/* Get the method ID for the String(char[]) constructor */
 cid = (*env)->GetMethodID(env, stringClass,
 "<init>", "([C)V");
 if (cid == NULL) {
 return NULL; /* exception thrown */
 }

 /* Create a char[] that holds the string characters */
 elemArr = (*env)->NewCharArray(env, len);
 if (elemArr == NULL) {
 return NULL; /* exception thrown */
 }
 (*env)->SetCharArrayRegion(env, elemArr, 0, len, chars);

 /* Construct a java.lang.String object */
result = (*env)->NewObject(env, stringClass, cid, elemArr);

 /* Free local references */
 (*env)->DeleteLocalRef(env, elemArr);
 (*env)->DeleteLocalRef(env, stringClass);
 return result;
}

This function is complex enough to deserve careful explanation. First, Find-
Class returns a reference to the java.lang.String class. Next, GetMethodID
returns the method ID for the string constructor, String(char[] chars). We
then call NewCharArray to allocate a character array that holds all the string ele-
ments. The JNI function NewObject invokes the constructor specified by the
method ID. The NewObject function takes as arguments the reference to the class
to be constructed, the method ID of the constructor, and the arguments that need
to be passed to the constructor.

The DeleteLocalRef call allows the virtual machine to free the resources
used by local references elemArr and stringClass. Section 5.2.1 will provide a
detailed description of when and why you should call DeleteLocalRef.

Strings are objects. This example highlights the point further. The example
also leads to a question, however. Given that we can implement equivalent func-
tionality using other JNI functions, why does the JNI provide built-in functions
such as NewString? The reason is that the built-in string functions are far more
efficient than calling the java.lang.String API from native code. String is the
most frequently used type of objects, one that deserves special support in the JNI.

It is also possible to invoke constructors using the CallNonvirtualVoid-

Method function. In this case, the native code must first create an uninitialized
object by calling the AllocObject function. The single NewObject call above:

result = (*env)->NewObject(env, stringClass, cid, elemArr);

jni.book Page 52 Thursday, February 21, 2002 4:36 PM

FIELDS AND METHODS Caching at the Point of Use 4.4.1

53

may be replaced by an AllocObject call followed by a CallNonvirtualVoid-

Method call:

result = (*env)->AllocObject(env, stringClass);
if (result) {
 (*env)->CallNonvirtualVoidMethod(env, result, stringClass,
 cid, elemArr);
 /* we need to check for possible exceptions */
 if ((*env)->ExceptionCheck(env)) {
 (*env)->DeleteLocalRef(env, result);
 result = NULL;
 }
}

AllocObject creates an uninitialized object, and must be used with care so
that a constructor is called at most once on each object. The native code should
not invoke a constructor on the same object multiple times.

Occasionally you may find it useful to allocate an uninitialized object first and
call the constructor sometime later. In most cases, however, you should use
NewObject and avoid the more error-prone AllocObject/CallNonvirtualVoid-

Method pair.

4.4 Caching Field and Method IDs

Obtaining field and method IDs requires symbolic lookups based on the name and
descriptor of the field or method. Symbolic lookups are relatively expensive. In
this section, we introduce a technique that can be used to reduce this overhead.

The idea is to compute field and method IDs and cache them for repeated uses
later. There are two ways to cache field and method IDs, depending upon whether
caching is performed at the point of use of the field or method ID, or in the static
initializer of the class that defines the field or method.

4.4.1 Caching at the Point of Use

Field and method IDs may be cached at the point where native code accesses the
field values or performs method callbacks. The following implementation of the
Java_InstanceFieldAccess_accessField function caches the field ID in static
variables so that it need not be recomputed upon each invocation of the
InstanceFieldAccess.accessField method.

jni.book Page 53 Thursday, February 21, 2002 4:36 PM

4.4.1 Caching at the Point of Use FIELDS AND METHODS

54

JNIEXPORT void JNICALL
Java_InstanceFieldAccess_accessField(JNIEnv *env, jobject obj)
{
 static jfieldID fid_s = NULL; /* cached field ID for s */

 jclass cls = (*env)->GetObjectClass(env, obj);
 jstring jstr;
 const char *str;

 if (fid_s == NULL) {
fid_s = (*env)->GetFieldID(env, cls, "s",

 "Ljava/lang/String;");
 if (fid_s == NULL) {
 return; /* exception already thrown */
 }
 }

 printf("In C:\n");

 jstr = (*env)->GetObjectField(env, obj, fid_s);
 str = (*env)->GetStringUTFChars(env, jstr, NULL);
 if (str == NULL) {
 return; /* out of memory */
 }
 printf(" c.s = \"%s\"\n", str);
 (*env)->ReleaseStringUTFChars(env, jstr, str);

 jstr = (*env)->NewStringUTF(env, "123");
 if (jstr == NULL) {
 return; /* out of memory */
 }
 (*env)->SetObjectField(env, obj, fid_s, jstr);
}

The highlighted static variable fid_s stores the precomputed field ID for
InstanceFieldAccess.s. The static variable is initialized to NULL. When the
InstanceFieldAccess.accessField method is called for the first time, it com-
putes the field ID and caches it in the static variable for later use.

You may notice that there is an obvious race condition in the above code.
Multiple threads may call the InstanceFieldAccess.accessField method at
the same time and compute the same field ID concurrently. One thread may over-
write the static variable fid_s computed by another thread. Luckily, although this
race condition leads to duplicated work in multiple threads, it is otherwise harm-
less. The field IDs computed by multiple threads for the same field in the same
class will necessarily be the same.

jni.book Page 54 Thursday, February 21, 2002 4:36 PM

FIELDS AND METHODS Caching at the Point of Use 4.4.1

55

Following the same idea, we may also cache the method ID for the
java.lang.String constructor in the earlier MyNewString example:

jstring
MyNewString(JNIEnv *env, jchar *chars, jint len)
{
 jclass stringClass;
 jcharArray elemArr;
 static jmethodID cid = NULL;
 jstring result;

 stringClass = (*env)->FindClass(env, "java/lang/String");
 if (stringClass == NULL) {
 return NULL; /* exception thrown */
 }

 /* Note that cid is a static variable */
 if (cid == NULL) {
 /* Get the method ID for the String constructor */

cid = (*env)->GetMethodID(env, stringClass,
 "<init>", "([C)V");
 if (cid == NULL) {
 return NULL; /* exception thrown */
 }
 }

 /* Create a char[] that holds the string characters */
 elemArr = (*env)->NewCharArray(env, len);
 if (elemArr == NULL) {
 return NULL; /* exception thrown */
 }
 (*env)->SetCharArrayRegion(env, elemArr, 0, len, chars);

 /* Construct a java.lang.String object */
result = (*env)->NewObject(env, stringClass, cid, elemArr);

 /* Free local references */
 (*env)->DeleteLocalRef(env, elemArr);
 (*env)->DeleteLocalRef(env, stringClass);
 return result;
}

We compute the method ID for the java.lang.String constructor when
MyNewString is called for the first time. The highlighted static variable cid caches
the result.

jni.book Page 55 Thursday, February 21, 2002 4:36 PM

4.4.2 Caching in the Defining Class’s Initializer FIELDS AND METHODS

56

4.4.2 Caching in the Defining Class’s Initializer

When we cache a field or method ID at the point of use we must introduce a check
to detect whether the IDs have already been cached. Not only does this approach
incur a small performance impact on the “fast path” when the IDs have already
been cached, but it could lead to duplication of caching and checking as well. For
example, if multiple native methods all require access to the same field, then they
all need a check to compute and cache the corresponding field ID.

In many situations it is more convenient to initialize the field and method IDs
required by a native method before the application can have a chance to invoke the
native method. The virtual machine always executes the static initializer of a class
before it invokes any of the methods in that class. Thus a suitable place for com-
puting and caching field or method IDs is in the static initializer of the class that
defines the fields or methods.

For example, to cache the method ID for InstanceMethodCall.callback we
introduce a new native method initIDs, called from the static initializer of the
InstanceMethodCall class:

class InstanceMethodCall {
 private static native void initIDs();
 private native void nativeMethod();
 private void callback() {
 System.out.println("In Java");
 }
 public static void main(String args[]) {
 InstanceMethodCall c = new InstanceMethodCall();
 c.nativeMethod();
 }
 static {
 System.loadLibrary("InstanceMethodCall");
 initIDs();
 }
}

Compared to the original code in Section 4.2, the above program contains two
extra lines (highlighted in bold font). The implementation of initIDs simply
computes and caches the method ID for InstanceMethodCall.callback:

jmethodID MID_InstanceMethodCall_callback;

JNIEXPORT void JNICALL
Java_InstanceMethodCall_initIDs(JNIEnv *env, jclass cls)
{
 MID_InstanceMethodCall_callback =
 (*env)->GetMethodID(env, cls, "callback", "()V");
}

jni.book Page 56 Thursday, February 21, 2002 4:36 PM

FIELDS AND METHODS Comparison between the Two Approaches to Caching IDs 4.4.3

57

The virtual machine runs the static initializer, and in turn calls the initIDs

method, before executing any other methods (such as nativeMethod or main) in
the InstanceMethodCall class. With the method ID is already cached in a global
variable, the native implementation of InstanceMethodCall.nativeMethod no
longer needs to perform a symbolic lookup:

JNIEXPORT void JNICALL
Java_InstanceMethodCall_nativeMethod(JNIEnv *env, jobject obj)
{
 printf("In C\n");
 (*env)->CallVoidMethod(env, obj,
 MID_InstanceMethodCall_callback);
}

4.4.3 Comparison between the Two Approaches to Caching IDs

Caching IDs at the point of use is the reasonable solution if the JNI programmer
does not have control over the source of the class that defines the field or method.
For example, in the MyNewString example, we cannot inject a custom initIDs

native method into the java.lang.String class in order to precompute and cache
the method ID for the java.lang.String constructor.

Caching at the point of use has a number of disadvantages when compared
with caching in the static initializer of the defining class.

• As explained before, caching at the point of use requires a check in the execu-
tion fast path and may also require duplicated checks and initialization of the
same field or method ID.

• Method and field IDs are only valid until the class is unloaded. If you cache
field and method IDs at the point of use you must make sure that the defining
class will not be unloaded and reloaded as long as the native code still relies
on the value of the cached ID. (The next chapter will show how you can keep
a class from being unloaded by creating a reference to that class using the
JNI.) On the other hand, if caching is done in the static initializer of the defin-
ing class, the cached IDs will automatically be recalculated when the class is
unloaded and later reloaded.

Thus, where feasible, it is preferable to cache field and method IDs in the
static initializer of their defining classes.

jni.book Page 57 Thursday, February 21, 2002 4:36 PM

4.5 Performance of JNI Field and Method Operations FIELDS AND METHODS

58

4.5 Performance of JNI Field and Method Operations

After learning how to cache field and method IDs to enhance performance, you
might wonder: What are the performance characteristics of accessing fields and
calling methods using the JNI? How does the cost of performing a callback from
native code (a native/Java callback) compare with the cost of calling a native
method (a Java/native call), and with the cost of calling a regular method (a Java/
Java call)?

The answer to this question no doubt depends on how efficiently the underly-
ing virtual machine implements the JNI. It is thus impossible to give an exact
account of performance characteristics that is guaranteed to apply to a wide vari-
ety of virtual machine implementations. Instead, we will analyze the inherent cost
of native method calls and JNI field and method operations and provide a general
performance guideline for JNI programmers and implementors.

Let us start by comparing the cost of Java/native calls with the cost of Java/
Java calls. Java/native calls are potentially slower than Java/Java calls for the fol-
lowing reasons:

• Native methods most likely follow a different calling convention than that
used by Java/Java calls inside the Java virtual machine implementation. As a
result, the virtual machine must perform additional operations to build argu-
ments and set up the stack frame before jumping to a native method entry
point.

• It is common for the virtual machine to inline method calls. Inlining Java/
native calls is a lot harder than inlining Java/Java calls.

We estimate that a typical virtual machine may execute a Java/native call
roughly two to three times slower than it executes a Java/Java call. Because a Java/
Java call takes just a few cycles, the added overhead will be negligible unless the
native method performs trivial operations. It is also possible to build virtual
machine implementations with Java/native call performance close or equal to that
of Java/Java calls. (Such virtual machine implementations, for example, may
adopt the JNI calling convention as the internal Java/Java calling convention.)

The performance characteristics of a native/Java callback is technically simi-
lar to a Java/native call. In theory, the overhead of native/Java callbacks could also
be within two to three times of Java/Java calls. In practice, however, native/Java
callbacks are relatively infrequent. Virtual machine implementations do not usu-
ally optimize the performance of callbacks. At the time of this writing many pro-
duction virtual machine implementations are such that the overhead of a native/
Java callback can be as much as ten times higher than a Java/Java call.

jni.book Page 58 Thursday, February 21, 2002 4:36 PM

FIELDS AND METHODS Performance of JNI Field and Method Operations 4.5

59

The overhead of field access using the JNI lies in the cost of calling through
the JNIEnv. Rather than directly dereferencing objects, the native code has to per-
form a C function call which in turn dereferences the object. The function call is
necessary because it isolates the native code from the internal object representa-
tion maintained by the virtual machine implementation. The JNI field access over-
head is typically negligible because a function call takes only a few cycles.

jni.book Page 59 Thursday, February 21, 2002 4:36 PM

jni.book Page 60 Thursday, February 21, 2002 4:36 PM

61

C H A P T E R 5
Local and Global References

THE JNI exposes instance and array types (such as jobject, jclass, jstring,
and jarray) as opaque references. Native code never directly inspects the con-
tents of an opaque reference pointer. Instead it uses JNI functions to access the
data structure pointed to by an opaque reference. By only dealing with opaque ref-
erences, you need not worry about internal object layout that is dependent upon a
particular Java virtual machine implementation. You do, however, need to learn
more about different kinds of references in the JNI:

• The JNI supports three kinds of opaque references: local references, global
references, and weak global references.

• Local and global references have different lifetimes. Local references are
automatically freed, whereas global and weak global references remain valid
until they are freed by the programmer.

• A local or global reference keeps the referenced object from being garbage
collected. A weak global reference, on the other hand, allows the referenced
object to be garbage collected.

• Not all references can be used in all contexts. It is illegal, for example, to use
a local reference after the native method that created the reference returns.

In this chapter, we will discuss these issues in detail. Managing JNI references
properly is crucial to writing reliable and space-efficient code.

5.1 Local and Global References

What are local and global references, and how are they different? We will use a
series of examples to illustrate local and global references.

jni.book Page 61 Thursday, February 21, 2002 4:36 PM

5.1.1 Local References LOCAL AND GLOBAL REFERENCES

62

5.1.1 Local References

Most JNI functions create local references. For example, the JNI function New-

Object creates a new instance and returns a local reference to that instance.
A local reference is valid only within the dynamic context of the native

method that creates it, and only within that one invocation of the native method.
All local references created during the execution of a native method will be freed
once the native method returns.

You must not write native methods that store a local reference in a static vari-
able and expect to use the same reference in subsequent invocations. For example,
the following program, which is a modified version of the MyNewString function
in Section 4.4.1, uses local references incorrectly.

/* This code is illegal */
jstring
MyNewString(JNIEnv *env, jchar *chars, jint len)
{
 static jclass stringClass = NULL;
 jmethodID cid;
 jcharArray elemArr;
 jstring result;

 if (stringClass == NULL) {
 stringClass = (*env)->FindClass(env,
 "java/lang/String");
 if (stringClass == NULL) {
 return NULL; /* exception thrown */
 }
 }
 /* It is wrong to use the cached stringClass here,
 because it may be invalid. */
 cid = (*env)->GetMethodID(env, stringClass,
 "<init>", "([C)V");
 ...
 elemArr = (*env)->NewCharArray(env, len);
 ...

result = (*env)->NewObject(env, stringClass, cid, elemArr);
 (*env)->DeleteLocalRef(env, elemArr);
 return result;
}

We have elided the lines that are not directly relevant to our discussion here.
The goal for caching stringClass in a static variable might have been to elimi-
nate the overhead of repeatedly making the following function call:

 FindClass(env, "java/lang/String");

jni.book Page 62 Thursday, February 21, 2002 4:36 PM

LOCAL AND GLOBAL REFERENCES Local References 5.1.1

63

This is not the right approach because FindClass returns a local reference to the
java.lang.String class object. To see why this is a problem, suppose that the
native method implementation of C.f calls MyNewString:

JNIEXPORT jstring JNICALL
Java_C_f(JNIEnv *env, jobject this)
{
 char *c_str = ...;
 ...
 return MyNewString(c_str);
}

After the native method C.f returns, the virtual machine frees all local refer-
ences created during the execution of Java_C_f. These freed local references
include the local reference to the class object stored in the stringClass variable.
Future MyNewString calls will then attempt to use an invalid local reference,
which could lead to memory corruption or system crashes. A code segment such
as the following, for example, makes two consecutive calls to C.f and causes
MyNewString to encounter the invalid local reference:

...

... = C.f(); // The first call is perhaps OK.

... = C.f(); // This would use an invalid local reference.

...

There are two ways to invalidate a local reference. As explained before, the
virtual machine automatically frees all local references created during the execu-
tion of a native method after the native method returns. In addition, programmers
may explicitly manage the lifetime of local references using JNI functions such as
DeleteLocalRef.

Why do you want to delete local references explicitly if the virtual machine
automatically frees them after native methods return? A local reference keeps the
referenced object from being garbage collected until the local reference is invali-
dated. The DeleteLocalRef call in MyNewString, for example, allows the inter-
mediate array object, elemArr, to be garbage collected immediately. Otherwise
the virtual machine will only be able to free the elemArr object after the native
method that calls MyNewString (such as C.f above) returns.

A local reference may be passed through multiple native functions before it is
destroyed. For example, MyNewString returns the string reference created by
NewObject. It will then be up to the caller of MyNewString to determine whether
to free the local reference returned by MyNewString. In the Java_C_f example,
C.f in turn returns the result of MyNewString as the result of the native method
call. After the virtual machine receives the local reference from the Java_C_f

jni.book Page 63 Thursday, February 21, 2002 4:36 PM

5.1.2 Global References LOCAL AND GLOBAL REFERENCES

64

function, it passes the underlying string object to the caller of C.f and then
destroys the local reference that was originally created by the JNI function NewOb-

ject.
Local references are also only valid in the thread that creates them. A local

reference that is created in one thread cannot be used in another thread. It is a pro-
gramming error for a native method to store a local reference in a global variable
and expect another thread to use the local reference.

5.1.2 Global References

You can use a global reference across multiple invocations of a native method. A
global reference can be used across multiple threads and remains valid until it is
freed by the programmer. Like a local reference, a global reference ensures that
the referenced object will not be garbage collected.

Unlike local references, which are created by most JNI functions, global ref-
erences are created by just one JNI function, NewGlobalRef. The following ver-
sion of MyNewString illustrates how to use a global reference. We highlight the
differences between the code below and the code that mistakenly cached a local
reference in the last section:

/* This code is OK */
jstring
MyNewString(JNIEnv *env, jchar *chars, jint len)
{
 static jclass stringClass = NULL;
 ...
 if (stringClass == NULL) {
 jclass localRefCls =
 (*env)->FindClass(env, "java/lang/String");
 if (localRefCls == NULL) {
 return NULL; /* exception thrown */
 }
 /* Create a global reference */
 stringClass = (*env)->NewGlobalRef(env, localRefCls);

 /* The local reference is no longer useful */
 (*env)->DeleteLocalRef(env, localRefCls);

 /* Is the global reference created successfully? */
 if (stringClass == NULL) {
 return NULL; /* out of memory exception thrown */
 }
 }
 ...
}

jni.book Page 64 Thursday, February 21, 2002 4:36 PM

LOCAL AND GLOBAL REFERENCES Weak Global References 5.1.3

65

The modified version passes the local reference returned from FindClass to
NewGlobalRef, which creates a global reference to the java.lang.String class
object. We check whether the NewGlobalRef has successfully created string-

Class after deleting localRefCls because the local reference localRefCls

needs to be deleted in either case.

5.1.3 Weak Global References

Weak global references are new in Java 2 SDK release 1.2. They are created using
NewGlobalWeakRef and freed using DeleteGlobalWeakRef. Like global refer-
ences, weak global references remain valid across native method calls and across
different threads. Unlike global references, weak global references do not keep the
underlying object from being garbage collected.

The MyNewString example has shown how to cache a global reference to the
java.lang.String class. The MyNewString example could alternatively use a
weak global reference to store the cached java.lang.String class. It does not
matter whether we use a global reference or a weak global reference because
java.lang.String is a system class and will never be garbage collected.

Weak global references become more useful when a reference cached by the
native code must not keep the underlying object from being garbage collected.
Suppose, for example, a native method mypkg.MyCls.f needs to cache a reference
to the class mypkg.MyCls2. Caching the class in a weak global reference allows
the mypkg.MyCls2 class to still be unloaded:

JNIEXPORT void JNICALL
Java_mypkg_MyCls_f(JNIEnv *env, jobject self)
{
 static jclass myCls2 = NULL;
 if (myCls2 == NULL) {
 jclass myCls2Local =
 (*env)->FindClass(env, "mypkg/MyCls2");
 if (myCls2Local == NULL) {
 return; /* can’t find class */
 }
 myCls2 = NewWeakGlobalRef(env, myCls2Local);
 if (myCls2 == NULL) {
 return; /* out of memory */
 }
 }
 ... /* use myCls2 */
}

We assume that MyCls and MyCls2 have the same lifetime. (For example, they
may be loaded by the same class loader.) Thus we do not consider the case when

jni.book Page 65 Thursday, February 21, 2002 4:36 PM

5.1.4 Comparing References LOCAL AND GLOBAL REFERENCES

66

MyCls2 is unloaded and later reloaded while MyCls and its native method imple-
mentation Java_mypkg_MyCls remain to be in use. If that could happen, we would
have to check whether the cached weak reference still points to a live class object
or points to a class object that has already been garbage collected. The next sec-
tion will explain how to perform such checks on weak global references.

5.1.4 Comparing References

Given two local, global, or weak global references, you can check whether they
refer to the same object using the IsSameObject function. For example:

(*env)->IsSameObject(env, obj1, obj2)

returns JNI_TRUE (or 1) if obj1 and obj2 refer to the same object, and returns
JNI_FALSE (or 0) otherwise.

A NULL reference in JNI refers to the null object in the Java virtual machine.
If obj is a local or a global reference, you may use either

(*env)->IsSameObject(env, obj, NULL)

or

obj == NULL

to determine if obj refers to the null object.
The rules for weak global references are somewhat different. NULL weak refer-

ences refer to the null object. IsSameObject, however, has special uses for weak
global references. You can use IsSameObject to determine whether a non-NULL
weak global reference still points to a live object. Suppose wobj is a non-NULL
weak global reference. The following call:

(*env)->IsSameObject(env, wobj, NULL)

returns JNI_TRUE if wobj refers to an object that has already been collected, and
returns JNI_FALSE if wobj still refers to a live object.

5.2 Freeing References

Each JNI reference consumes a certain amount of memory by itself, in addition to
the memory taken by the referred object. As a JNI programmer, you should be
aware of the number of references that your program will use at a given time. In
particular, you should be aware of the upper bound of the number of local refer-

jni.book Page 66 Thursday, February 21, 2002 4:36 PM

LOCAL AND GLOBAL REFERENCES Freeing Local References 5.2.1

67

ences your program can create at any point during its execution, even though these
local references will eventually be freed automatically by the virtual machine.
Excessive reference creation, however transient, can lead to memory exhaustion.

5.2.1 Freeing Local References

In most cases, you do not have to worry about freeing local references when
implementing a native method. The Java virtual machine frees them for you when
the native method returns to the caller. However, there are times when you, the
JNI programmer, should explicitly free local references in order to avoid exces-
sive memory usage. Consider the following situations:

• You need to create a large number of local references in a single native
method invocation. This may result in an overflow of the internal JNI local
reference table. It is a good idea to delete promptly those local references that
will not be needed. For example, in the following program segment the native
code iterates through a potentially large array of strings. After each iteration,
the native code should explicitly free the local reference to the string element
as follows:

for (i = 0; i < len; i++) {
 jstring jstr = (*env)->GetObjectArrayElement(env, arr, i);
 ... /* process jstr */
 (*env)->DeleteLocalRef(env, jstr);
}

• You want to write a utility function that is called from unknown contexts. The
MyNewString example shown in Section 4.3 illustrates the use of Delete-

LocalRef to delete promptly local references in a utility function. Otherwise
there will be two local references that remains allocated after each call to the
MyNewString function.

• Your native method does not return at all. For example, a native method may
enter an infinite event dispatch loop. It is crucial to release local references
created inside the loop so that they do not accumulate indefinitely, resulting in
a memory leak.

• Your native method accesses a large object, thereby creating a local reference
to the object. The native method then performs additional computation before
returning to the caller. The local reference to the large object will prevent the
object from being garbage collected until the native method returns, even if
the object is no longer used in the remainder of the native method. For exam-
ple, in the following program segment, because there is an explicit call to
DeleteLocalRef beforehand, the garbage collector may be able to free the

jni.book Page 67 Thursday, February 21, 2002 4:36 PM

5.2.2 Managing Local References in Java 2 SDK Release 1.2 LOCAL AND GLOBAL REFERENCES

68

object referred to by lref when the execution is inside the function lengthy-

Computation:

/* A native method implementation */
JNIEXPORT void JNICALL
Java_pkg_Cls_func(JNIEnv *env, jobject this)
{
 lref = ... /* a large Java object */
 ... /* last use of lref */
 (*env)->DeleteLocalRef(env, lref);

 lengthyComputation(); /* may take some time */
 return; /* all local refs are freed */
}

5.2.2 Managing Local References in Java 2 SDK Release 1.2

Java 2 SDK release 1.2 provides an additional set of functions for managing the
lifetime of local references. These functions are EnsureLocalCapacity, New-

LocalRef, PushLocalFrame, and PopLocalFrame.
The JNI specification dictates that the virtual machine automatically ensures

that each native method can create at least 16 local references. Experience shows
that this provides enough capacity for the majority of native methods that do not
contain complex interactions with objects in the Java virtual machine. If, however,
there is a need to create additional local references, a native method may issue an
EnsureLocalCapacity call to make sure that space for a sufficient number of
local references is available. For example, a slight variation of a previous example
above reserves enough capacity for all local references created during the loop
execution if sufficient memory is available:

/* The number of local references to be created is equal to
 the length of the array. */
if ((*env)->EnsureLocalCapacity(env, len)) < 0) {
 ... /* out of memory */
}
for (i = 0; i < len; i++) {
 jstring jstr = (*env)->GetObjectArrayElement(env, arr, i);
 ... /* process jstr */
 /* DeleteLocalRef is no longer necessary */
}

Of course, the above version is likely to consume more memory that the previ-
ous version which promptly deletes local references.

jni.book Page 68 Thursday, February 21, 2002 4:36 PM

LOCAL AND GLOBAL REFERENCES Freeing Global References 5.2.3

69

Alternatively, the Push/PopLocalFrame functions allow programmers to cre-
ate nested scopes of local references. For example, we may also rewrite the same
example as follows:

#define N_REFS ... /* the maximum number of local references
 used in each iteration */

for (i = 0; i < len; i++) {
 if ((*env)->PushLocalFrame(env, N_REFS) < 0) {
 ... /* out of memory */
 }
 jstr = (*env)->GetObjectArrayElement(env, arr, i);
 ... /* process jstr */
 (*env)->PopLocalFrame(env, NULL);
}

PushLocalFrame creates a new scope for specific number of local references.
PopLocalFrame destroys the topmost scope, freeing all local references in that
scope.

The advantage of using the Push/PopLocalFrame functions is that they make
it possible to manage the lifetime of local references without having to worry
about every single local reference that might be created during execution. In the
above example, if the computation that processes jstr creates additional local
references, these local references will be freed after PopLocalFrame returns.

The NewLocalRef function is useful when you write utility functions that are
expected to return a local reference. We will demonstrate the use of the New-

LocalRef function in Section 5.3.
The native code may create local references beyond the default capacity of 16

or the capacity reserved in a PushLocalFrame or EnsureLocalCapacity call. The
virtual machine implementation will try to allocate the memory needed for the
local reference. There is no guarantee, however, that memory will be available.
The virtual machine exits if it fails to allocate the memory. You should reserve
enough memory for local references and free local references promptly to avoid
such unexpected virtual machine exits.

Java 2 SDK release 1.2 supports a command-line option -verbose:jni.
When this option is enabled, the virtual machine implementation reports excessive
local reference creation beyond the reserved capacity.

5.2.3 Freeing Global References

You should call DeleteGlobalRef when your native code no longer needs access
to a global reference. If you fail to call this function the Java virtual machine will
not garbage collect the corresponding object, even when the object is no longer
used anywhere else in the system.

jni.book Page 69 Thursday, February 21, 2002 4:36 PM

5.3 Rules for Managing References LOCAL AND GLOBAL REFERENCES

70

You should call DeleteWeakGlobalRef when your native code no longer
needs access to a weak global reference. If you fail to call this function the Java
virtual machine will still be able to garbage collect the underlying object, but will
not be able to reclaim the memory consumed by the weak global reference itself.

5.3 Rules for Managing References

We are now ready to go through the rules for managing JNI references in native
code, based on what we have covered in previous sections. The objective is to
eliminate unnecessary memory usage and object retention.

There are, in general, two kinds of native code: functions that directly imple-
ment native methods and utility functions that are used in arbitrary contexts.

When writing functions that directly implement native methods, you need to
be careful about excessive local reference creation in loops and unnecessary local
reference creation caused by native methods that do not return. It is acceptable to
leave up to 16 local references in use for the virtual machine to delete after the
native method returns. Native method calls must not cause global or weak global
references to accumulate because global and weak global references are not freed
automatically after native methods return.

When writing native utility functions you must be careful not to leak any local
references on any execution path throughout the function. Because a utility func-
tion may be called repeatedly from an unanticipated context, any unnecessary ref-
erence creation may cause memory overflow.

• When a utility function that returns a primitive type is called, it must not have
the side effect of accumulating additional local, global, or weak global refer-
ences.

• When a utility function that returns a reference type is called, it must not
accumulate extra local, global, or weak global references, other than the refer-
ence it returns as result.

It is acceptable for a utility function to create some global or weak global ref-
erences for the purpose of caching because only the very first call creates these
references.

If a utility function returns a reference, you should make the kind of returned
reference part of the function specification. It should not return a local reference
some of the time and a global reference at other times. The caller needs to know
the type of the reference returned by a utility function in order to manage its own
JNI references correctly. For example, the following code calls a utility function
GetInfoString repeatedly. We need to know the type of reference returned by

jni.book Page 70 Thursday, February 21, 2002 4:36 PM

LOCAL AND GLOBAL REFERENCES Rules for Managing References 5.3

71

GetInfoString to be able to free the returned JNI reference properly after each
iteration.

while (JNI_TRUE) {
 jstring infoString = GetInfoString(info);
 ... /* process infoString */

 ??? /* we need to call DeleteLocalRef, DeleteGlobalRef,
 or DeleteWeakGlobalRef depending on the type of
 reference returned by GetInfoString. */

}

In Java 2 SDK release 1.2, the NewLocalRef function sometimes is useful to
ensure that a utility function always returns a local reference. To illustrate, let us
make another (somewhat contrived) change to the MyNewString function. The fol-
lowing version caches a frequently requested string (say, "CommonString") in a
global reference:

jstring
MyNewString(JNIEnv *env, jchar *chars, jint len)
{
 static jstring result;

 /* wstrncmp compares two Unicode strings */
 if (wstrncmp("CommonString", chars, len) == 0) {
 /* refers to the global ref caching "CommonString" */
 static jstring cachedString = NULL;
 if (cachedString == NULL) {
 /* create cachedString for the first time */

 jstring cachedStringLocal = ... ;
 /* cache the result in a global reference */
 cachedString =
 (*env)->NewGlobalRef(env, cachedStringLocal);
 }
 return (*env)->NewLocalRef(env, cachedString);
 }

 ... /* create the string as a local reference and store in
 result as a local reference */

 return result;
}

The normal path returns a string as a local reference. As explained before, we
must store the cached string in a global reference so that it can be accessed in mul-
tiple native method invocations and from multiple threads. The highlighted line
creates a new local reference that refers to the same object as the cached global

jni.book Page 71 Thursday, February 21, 2002 4:36 PM

5.3 Rules for Managing References LOCAL AND GLOBAL REFERENCES

72

reference. As part of the contract with its callers, MyNewString always returns a
local reference.

The Push/PopLocalFrame functions are especially convenient for managing
the lifetime of local references. If you called PushLocalFrame on entry to a native
function, calling PopLocalFrame before the native function returns ensures that
all local references created during native function execution will be freed. The
Push/PopLocalFrame functions are efficient. You are strongly encouraged to use
them.

If you call PushLocalFrame on function entry, remember to call Pop-

LocalFrame in all function exit paths. For example, the following function has
one call to PushLocalFrame but needs multiple calls to PopLocalFrame:

jobject f(JNIEnv *env, ...)
{
 jobject result;
 if ((*env)->PushLocalFrame(env, 10) < 0) {
 /* frame not pushed, no PopLocalFrame needed */
 return NULL;
 }
 ...
 result = ...;
 if (...) {
 /* remember to pop local frame before return */
 result = (*env)->PopLocalFrame(env, result);
 return result;
 }
 ...
 result = (*env)->PopLocalFrame(env, result);
 /* normal return */
 return result;
}

Failing to place PopLocalFrame calls properly would lead to undefined
behavior, such as virtual machine crashes.

The above example also illustrates why it is sometimes useful to specify the
second argument to PopLocalFrame. The result local reference is initially cre-
ated in the new frame constructed by PushLocalFrame. PopLocalFrame converts
its second argument, result, to a new local reference in the previous frame before
popping the topmost frame.

jni.book Page 72 Thursday, February 21, 2002 4:36 PM

73

C H A P T E R 6
Exceptions

WE have encountered numerous situations in which native code checks for
possible errors after making JNI function calls. This chapter examines how native
code can detect and recover from these error conditions.

We will focus on errors that occur as the result of issuing JNI function calls,
not arbitrary errors that happen in native code. If a native method makes an oper-
ating systems call, it simply follows the documented way of checking for possible
failures in the system call. If, on the other hand, the native method issues a call-
back to a Java API method, then it must follow the steps described in this chapter
to properly check for and recover from possible exceptions that have occurred in
the method execution.

6.1 Overview

We introduce JNI exception handling functions through a series of examples.

6.1.1 Caching and Throwing Exceptions in Native Code

The program below shows how to declare a native method that throws an excep-
tion. The CatchThrow class declares the doit native method and specifies that it
throws an IllegalArgumentException:

class CatchThrow {
 private native void doit()
 throws IllegalArgumentException;
 private void callback() throws NullPointerException {
 throw new NullPointerException("CatchThrow.callback");
 }

jni.book Page 73 Thursday, February 21, 2002 4:36 PM

6.1.1 Caching and Throwing Exceptions in Native Code EXCEPTIONS

74

 public static void main(String args[]) {
 CatchThrow c = new CatchThrow();
 try {
 c.doit();
 } catch (Exception e) {
 System.out.println("In Java:\n\t" + e);
 }
 }
 static {
 System.loadLibrary("CatchThrow");
 }
}

The CatchThrow.main method calls the native method doit, implemented as
follows:

JNIEXPORT void JNICALL
Java_CatchThrow_doit(JNIEnv *env, jobject obj)
{
 jthrowable exc;
 jclass cls = (*env)->GetObjectClass(env, obj);
 jmethodID mid =
 (*env)->GetMethodID(env, cls, "callback", "()V");
 if (mid == NULL) {
 return;
 }
 (*env)->CallVoidMethod(env, obj, mid);
 exc = (*env)->ExceptionOccurred(env);
 if (exc) {
 /* We don't do much with the exception, except that
 we print a debug message for it, clear it, and

 throw a new exception. */
 jclass newExcCls;
 (*env)->ExceptionDescribe(env);
 (*env)->ExceptionClear(env);
 newExcCls = (*env)->FindClass(env,
 "java/lang/IllegalArgumentException");
 if (newExcCls == NULL) {
 /* Unable to find the exception class, give up. */
 return;
 }

(*env)->ThrowNew(env, newExcCls, "thrown from C code");
 }
}

jni.book Page 74 Thursday, February 21, 2002 4:36 PM

EXCEPTIONS A Utility Function 6.1.2

75

Running the program with the native library produces the following output:

java.lang.NullPointerException:
 at CatchThrow.callback(CatchThrow.java)
 at CatchThrow.doit(Native Method)
 at CatchThrow.main(CatchThrow.java)
In Java:
 java.lang.IllegalArgumentException: thrown from C code

The callback method throws a NullPointerException. When the CallVoid-

Method returns control to the native method, the native code will detect this excep-
tion by calling the JNI function ExceptionOccurred. In our example, when an
exception is detected, the native code outputs a descriptive message about the
exception by calling ExceptionDescribe, clears the exception using Exception-

Clear, and throws an IllegalArgumentException instead.
A pending exception raised through the JNI (by calling ThrowNew, for exam-

ple) does not immediately disrupt the native method execution. This is different
from how exceptions behave in the Java programming language. When an excep-
tion is thrown in the Java programming language, the virtual machine automati-
cally transfers the control flow to the nearest enclosing try/catch statement that
matches the exception type. The virtual machine then clears the pending excep-
tion and executes the exception handler. In contrast, JNI programmers must
explicitly implement the control flow after an exception has occurred.

6.1.2 A Utility Function

Throwing an exception involves first finding the exception class and then issuing a
call to the ThrowNew function. To simplify the task, we can write a utility function
that throws a named exception:

void
JNU_ThrowByName(JNIEnv *env, const char *name, const char *msg)
{
 jclass cls = (*env)->FindClass(env, name);
 /* if cls is NULL, an exception has already been thrown */
 if (cls != NULL) {
 (*env)->ThrowNew(env, cls, msg);
 }
 /* free the local ref */
 (*env)->DeleteLocalRef(env, cls);
}

In this book, the JNU prefix stands for JNI Utilities. JNU_ThrowByName first
finds the exception class using the FindClass function. If FindClass fails

jni.book Page 75 Thursday, February 21, 2002 4:36 PM

6.2 Proper Exception Handling EXCEPTIONS

76

(returns NULL), the virtual machine must have thrown an exception (such as
NoClassDefFoundError). In this case JNU_ThrowByName does not attempt to
throw another exception. If FindClass succeeds, we throw the named exception
by calling ThrowNew. When JNU_ThrowByName returns, it guarantees that there is a
pending exception, although the pending exception was not necessarily what is
specified by the name argument. We make sure to delete the local reference to the
exception class created in this function. Passing NULL to DeleteLocalRef is a no-
op, which is an appropriate action if FindClass fails and returns NULL.

6.2 Proper Exception Handling

JNI programmers must foresee possible exception conditions and write code that
checks for and handles these cases. Proper exception handling is sometimes
tedious but is necessary in order to produce robust applications.

6.2.1 Checking for Exceptions

There are two ways to check whether an error has occurred.

1. Most JNI functions use a distinct return value (such as NULL) to indicate that an
error has occurred. The error return value also implies that there is a pending
exception in the current thread. (Encoding error conditions in the return value
is common practice in C.)

The following example illustrates using the NULL value returned by Get-

FieldID in checking for errors. The example consists of two parts: a class
Window that defines a number of instance fields (handle, length, and width)
and a native method that caches the field IDs of these fields. Even though
these fields exist in the Window class, we still need to check for possible errors
returned from GetFieldID because the virtual machine may not be able to
allocate the memory needed to represent a field ID.

/* a class in the Java programming language */
public class Window {
 long handle;
 int length;
 int width;
 static native void initIDs();
 static {
 initIDs();
 }
}

jni.book Page 76 Thursday, February 21, 2002 4:36 PM

EXCEPTIONS Checking for Exceptions 6.2.1

77

/* C code that implements Window.initIDs */
jfieldID FID_Window_handle;
jfieldID FID_Window_length;
jfieldID FID_Window_width;

JNIEXPORT void JNICALL
Java_Window_initIDs(JNIEnv *env, jclass classWindow)
{
 FID_Window_handle =
 (*env)->GetFieldID(env, classWindow, "handle", "J");
 if (FID_Window_handle == NULL) { /* important check. */
 return; /* error occurred. */
 }
 FID_Window_length =
 (*env)->GetFieldID(env, classWindow, "length", "I");
 if (FID_Window_length == NULL) { /* important check. */
 return; /* error occurred. */
 }
 FID_Window_width =
 (*env)->GetFieldID(env, classWindow, "width", "I");
 /* no checks necessary; we are about to return anyway */
}

2. When using a JNI function whose return value cannot flag that an error has
occurred, native code must rely on the raised exception to do error checks. The
JNI function that performs checks for a pending exception in the current thread
is ExceptionOccurred. (ExceptionCheck was also added in Java 2 SDK
release 1.2.) For example, the JNI function CallIntMethod cannot encode an
error condition in the return value. Typical choices of error condition return
values, such as NULL and -1, do not work because they could be legal values
returned by the method that was called. Consider a Fraction class whose
floor method returns the integral part of the value of the fraction, and some
native code that calls this method.

public class Fraction {
 // details such as constructors omitted
 int over, under;
 public int floor() {
 return Math.floor((double)over/under);
 }
}

jni.book Page 77 Thursday, February 21, 2002 4:36 PM

6.2.2 Handling Exceptions EXCEPTIONS

78

/* Native code that calls Fraction.floor. Assume method ID
 MID_Fraction_floor has been initialized elsewhere. */
void f(JNIEnv *env, jobject fraction)
{
 jint floor = (*env)->CallIntMethod(env, fraction,
 MID_Fraction_floor);
 /* important: check if an exception was raised */
 if ((*env)->ExceptionCheck(env)) {
 return;
 }
 ... /* use floor */
}

When the JNI function returns a distinct error code, the native code may still
check for exceptions explicitly by calling, for example, ExceptionCheck. How-
ever, it is more efficient to check for the distinct error return value instead. If a JNI
function returns its error value, a subsequent ExceptionCheck call in the current
thread is guaranteed to return JNI_TRUE.

6.2.2 Handling Exceptions

Native code may handle a pending exception in two ways:

• The native method implementation can choose to return immediately, causing
the exception to be handled in the caller.

• The native code can clear the exception by calling ExceptionClear and then
execute its own exception handling code.

It is extremely important to check, handle, and clear a pending exception
before calling any subsequent JNI functions. Calling most JNI functions with a
pending exception—with an exception that you have not explicitly cleared—may
lead to unexpected results. You can call only a small number of JNI functions
safely when there is a pending exception in the current thread. Section 11.8.2
specifies the complete list of these JNI functions. Generally speaking, when there
is a pending exception you can call the JNI functions that are designed to handle
exceptions and the JNI functions that release various virtual machine resources
exposed through the JNI.

It is often necessary to be able to free resources when exceptions occur. In the
following example, the native method first obtains the contents of a string by issu-
ing a GetStringChars call. It calls ReleaseStringChars if a subsequent opera-
tion fails:

jni.book Page 78 Thursday, February 21, 2002 4:36 PM

EXCEPTIONS Exceptions in Utility Functions 6.2.3

79

JNIEXPORT void JNICALL
Java_pkg_Cls_f(JNIEnv *env, jclass cls, jstring jstr)
{
 const jchar *cstr = (*env)->GetStringChars(env, jstr);
 if (c_str == NULL) {
 return;
 }
 ...
 if (...) { /* exception occurred */
 (*env)->ReleaseStringChars(env, jstr, cstr);
 return;
 }
 ...
 /* normal return */
 (*env)->ReleaseStringChars(env, jstr, cstr);
}

The first call to ReleaseStringChars is issued when there is a pending
exception. The native method implementation releases the string resource and
returns immediately afterwards without first clearing the exception.

6.2.3 Exceptions in Utility Functions

Programmers writing utility functions should pay special attention to ensure that
exceptions are propagated to the caller native method. In particular, we emphasize
the following two issues:

• Preferably, utility functions should provide a special return value to indicate
that an exception has occurred. This simplifies the caller’s task of checking
for pending exceptions.

• In addition, utility functions should follow the rules (§5.3) for managing local
references in exception handling code.

To illustrate, let us introduce a utility function that performs a callback based
on the name and descriptor of an instance method:

jvalue
JNU_CallMethodByName(JNIEnv *env,
 jboolean *hasException,
 jobject obj,
 const char *name,
 const char *descriptor, ...)
{
 va_list args;
 jclass clazz;
 jmethodID mid;

jni.book Page 79 Thursday, February 21, 2002 4:36 PM

6.2.3 Exceptions in Utility Functions EXCEPTIONS

80

 jvalue result;
 if ((*env)->EnsureLocalCapacity(env, 2) == JNI_OK) {
 clazz = (*env)->GetObjectClass(env, obj);
 mid = (*env)->GetMethodID(env, clazz, name,
 descriptor);
 if (mid) {
 const char *p = descriptor;
 /* skip over argument types to find out the

 return type */
 while (*p != ')') p++;
 /* skip ')' */
 p++;
 va_start(args, descriptor);
 switch (*p) {
 case 'V':
 (*env)->CallVoidMethodV(env, obj, mid, args);
 break;
 case '[':
 case 'L':
 result.l = (*env)->CallObjectMethodV(
 env, obj, mid, args);
 break;
 case 'Z':
 result.z = (*env)->CallBooleanMethodV(
 env, obj, mid, args);
 break;
 case 'B':
 result.b = (*env)->CallByteMethodV(
 env, obj, mid, args);
 break;
 case 'C':
 result.c = (*env)->CallCharMethodV(
 env, obj, mid, args);
 break;
 case 'S':
 result.s = (*env)->CallShortMethodV(
 env, obj, mid, args);
 break;
 case 'I':
 result.i = (*env)->CallIntMethodV(
 env, obj, mid, args);
 break;
 case 'J':
 result.j = (*env)->CallLongMethodV(
 env, obj, mid, args);
 break;
 case 'F':
 result.f = (*env)->CallFloatMethodV(

jni.book Page 80 Thursday, February 21, 2002 4:36 PM

EXCEPTIONS Exceptions in Utility Functions 6.2.3

81

 env, obj, mid, args);
 break;
 case 'D':
 result.d = (*env)->CallDoubleMethodV(
 env, obj, mid, args);
 break;
 default:
 (*env)->FatalError(env, "illegal descriptor");
 }
 va_end(args);
 }
 (*env)->DeleteLocalRef(env, clazz);
 }
 if (hasException) {
 *hasException = (*env)->ExceptionCheck(env);
 }
 return result;
}

JNU_CallMethodByName takes, among other arguments, a pointer to a jbool-

ean. The jboolean will be set to JNI_FALSE if everything succeeds and to
JNI_TRUE if an exception occurs at any point during the execution of this function.
This gives the caller of JNU_CallMethodByName an obvious way to check for pos-
sible exceptions.

JNU_CallMethodByName first makes sure that it can create two local refer-
ences: one for the class reference and the other for the result returned from the
method call. Next, it obtains the class reference from the object and looks up the
method ID. Depending on the return type, the switch statement dispatches to the
corresponding JNI method call function. After the callback returns, if hasExcep-
tion is not NULL, we call ExceptionCheck to check for pending exceptions.

The ExceptionCheck function is new in Java 2 SDK release 1.2. It is similar
to the ExceptionOccurred function. The difference is that ExceptionCheck does
not return a reference to the exception object, but returns JNI_TRUE when there is
a pending exception and returns JNI_FALSE when there is no pending exception.
ExceptionCheck simplifies local reference management when the native code
only needs to know whether an exception has occurred but needs not obtain a ref-
erence to the exception object. The previous code would have to be rewritten as
follows in JDK release 1.1:

 if (hasException) {
 jthrowable exc = (*env)->ExceptionOccurred(env);
 *hasException = exc != NULL;
 (*env)->DeleteLocalRef(env, exc);
 }

jni.book Page 81 Thursday, February 21, 2002 4:36 PM

6.2.3 Exceptions in Utility Functions EXCEPTIONS

82

The additional DeleteLocalRef call is necessary in order to delete the local
reference to the exception object.

Using the JNU_CallMethodByName function we can rewrite the implementa-
tion of InstanceMethodCall.nativeMethod in Section 4.2 as follows:

JNIEXPORT void JNICALL
Java_InstanceMethodCall_nativeMethod(JNIEnv *env, jobject obj)
{
 printf("In C\n");
 JNU_CallMethodByName(env, NULL, obj, "callback", "()V");
}

We need not check for exceptions after the JNU_CallMethodByName call
because the native method returns immediately afterwards.

jni.book Page 82 Thursday, February 21, 2002 4:36 PM

83

C H A P T E R 7
The Invocation Interface

THIS chapter illustrates how you can embed a Java virtual machine in your
native application. A Java virtual machine implementation is typically shipped as
a native library. Native applications can link against this library and use the invo-
cation interface to load the Java virtual machine. Indeed, the standard launcher
command (java) in JDK or Java 2 SDK releases is no more than a simple C pro-
gram linked with the Java virtual machine. The launcher parses the command line
arguments, loads the virtual machine, and runs Java applications through the invo-
cation interface.

7.1 Creating the Java Virtual Machine

To illustrate the invocation interface, let’s look at a C program that loads a Java
virtual machine and calls the Prog.main method defined as follows:

public class Prog {
 public static void main(String[] args) {
 System.out.println("Hello World " + args[0]);
 }
}

The following C program, invoke.c, loads a Java virtual machine and
invokes Prog.main.

jni.book Page 83 Thursday, February 21, 2002 4:36 PM

7.1 Creating the Java Virtual Machine THE INVOCATION INTERFACE

84

#include <jni.h>

#define PATH_SEPARATOR ';' /* define it to be ':' on Solaris */
#define USER_CLASSPATH "." /* where Prog.class is */

main() {
 JNIEnv *env;
 JavaVM *jvm;
 jint res;
 jclass cls;
 jmethodID mid;
 jstring jstr;
 jclass stringClass;
 jobjectArray args;

#ifdef JNI_VERSION_1_2
 JavaVMInitArgs vm_args;
 JavaVMOption options[1];
 options[0].optionString =
 "-Djava.class.path=" USER_CLASSPATH;
 vm_args.version = 0x00010002;
 vm_args.options = options;
 vm_args.nOptions = 1;
 vm_args.ignoreUnrecognized = JNI_TRUE;
 /* Create the Java VM */
 res = JNI_CreateJavaVM(&jvm, (void**)&env, &vm_args);
#else
 JDK1_1InitArgs vm_args;
 char classpath[1024];
 vm_args.version = 0x00010001;
 JNI_GetDefaultJavaVMInitArgs(&vm_args);

/* Append USER_CLASSPATH to the default system class path */
 sprintf(classpath, "%s%c%s",

vm_args.classpath, PATH_SEPARATOR, USER_CLASSPATH);
 vm_args.classpath = classpath;
 /* Create the Java VM */
 res = JNI_CreateJavaVM(&jvm, &env, &vm_args);
#endif /* JNI_VERSION_1_2 */

 if (res < 0) {
 fprintf(stderr, "Can't create Java VM\n");
 exit(1);
 }
 cls = (*env)->FindClass(env, "Prog");
 if (cls == NULL) {
 goto destroy;

}

jni.book Page 84 Thursday, February 21, 2002 4:36 PM

THE INVOCATION INTERFACE Creating the Java Virtual Machine 7.1

85

 mid = (*env)->GetStaticMethodID(env, cls, "main",
 "([Ljava/lang/String;)V");
 if (mid == NULL) {
 goto destroy;
 }
 jstr = (*env)->NewStringUTF(env, " from C!");
 if (jstr == NULL) {
 goto destroy;
 }
 stringClass = (*env)->FindClass(env, "java/lang/String");
 args = (*env)->NewObjectArray(env, 1, stringClass, jstr);
 if (args == NULL) {
 goto destroy;
 }
 (*env)->CallStaticVoidMethod(env, cls, mid, args);

destroy:
 if ((*env)->ExceptionOccurred(env)) {
 (*env)->ExceptionDescribe(env);
 }
 (*jvm)->DestroyJavaVM(jvm);
}

The code conditionally compiles an initialization structure JDK1_1InitArgs

that is specific to the virtual machine implementation in JDK release 1.1. Java 2
SDK release 1.2 still supports JDK1_1InitArgs, although it introduces a general-
purpose virtual machine initialization structure called JavaVMInitArgs. The con-
stant JNI_VERSION_1_2 is defined in Java 2 SDK release 1.2, but not in JDK
release 1.1.

When it targets the 1.1 release, the C code begins with a call to
JNI_GetDefaultJavaVMInitArgs to obtain the default virtual machine settings.
JNI_GetDefaultJavaVMInitArgs returns such values as the heap size, stack size,
default class path, and so on, in the vm_args parameter. We then append the direc-
tory in which Prog.class resides to vm_args.classpath.

When it targets the 1.2 release, the C code creates a JavaVMInitArgs struc-
ture. The virtual machine initialization arguments are stored in a JavaVMOption

array. You can set both common options (e.g., -Djava.class.path=.) and imple-
mentation-specific options (e.g., -Xmx64m) that directly correspond to java com-
mand line options. Setting ignoreUnrecognized field to JNI_TRUE instructs the
virtual machine to ignore unrecognized implementation-specific options.

After setting up the virtual machine initialization structure, the C program
calls JNI_CreateJavaVM to load and initialize the Java virtual machine. The
JNI_CreateJavaVM function fills in two return values:

jni.book Page 85 Thursday, February 21, 2002 4:36 PM

7.2 Linking Native Applications with the Java Virtual Machine THE INVOCATION INTERFACE

86

• An interface pointer, jvm, to the newly created Java virtual machine.

• The JNIEnv interface pointer env for the current thread. Recall that native
code accesses JNI functions through the env interface pointer.

When the JNI_CreateJavaVM function returns successfully, the current native
thread has bootstrapped itself into the Java virtual machine. At this point it is run-
ning just like a native method. Thus it can, among other things, issue JNI calls to
invoke the Prog.main method.

Eventually the program calls the DestroyJavaVM function to unload the Java
virtual machine. (Unfortunately, you cannot unload the Java virtual machine
implementation in JDK release 1.1 or Java 2 SDK release 1.2. DestroyJavaVM
always returns an error code in these releases.)

Running the above program produces:

Hello World from C!

7.2 Linking Native Applications with the Java Virtual Machine

The invocation interface requires you to link programs such as invoke.c with a
Java virtual machine implementation. How you link with the Java virtual machine
depends on whether the native application is intended to be deployed with only a
particular virtual machine implementation or it is designed to work with a variety
of virtual machine implementations from different vendors.

7.2.1 Linking with a Known Java Virtual Machine

You may decide that your native application will be deployed only with a particu-
lar virtual machine implementation. In this case you can link the native applica-
tion with the native library that implements the virtual machine. For example,
with the JDK 1.1 release for Solaris, you can use the following command to com-
pile and link invoke.c:

cc -I<jni.h dir> -L<libjava.so dir> -lthread -ljava invoke.c

The -lthread option indicates that we use the Java virtual machine imple-
mentation with native thread support (§8.1.5). The -ljava option specifies that
libjava.so is the Solaris shared library that implements the Java virtual machine.

jni.book Page 86 Thursday, February 21, 2002 4:36 PM

THE INVOCATION INTERFACE Linking with Unknown Java Virtual Machines 7.2.2

87

On Win32 with the Microsoft Visual C++ compiler, the command line to
compile and link the same program with JDK 1.1 release is:

cl -I<jni.h dir> -MD invoke.c -link <javai.lib dir>\javai.lib

Of course, you need to supply the correct include and library directories that
correspond to the JDK installation on your machine. The -MD option ensures that
your native application is linked with the Win32 multithreaded C library, the same
C library used by the Java virtual machine implementation in JDK 1.1 and Java 2
SDK 1.2 releases. The cl command consults the javai.lib file, shipped with
JDK release 1.1 on Win32, for linkage information about invocation interface
functions such as JNI_CreateJavaVM implemented in the virtual machine. The
actual JDK 1.1 virtual machine implementation used at run time is contained in a
separate dynamic link library file called javai.dll. In contrast, the same Solaris
shared library (.so file) is used both at link time and at run time.

With Java 2 SDK release 1.2, virtual machine library names have changed to
libjvm.so on Solaris and to jvm.lib and jvm.dll on Win32. In general, differ-
ent vendors may name their virtual machine implementations differently.

Once compilation and linking are complete you can run the resulting execut-
able from the command line. You may get an error that the system cannot find
either a shared library or a dynamic link library. On Solaris, if the error message
indicates that the system cannot find the shared library libjava.so (or lib-

jvm.so in Java 2 SDK release 1.2), then you need to add the directory containing
the virtual machine library to your LD_LIBRARY_PATH variable. On a Win32 sys-
tem, the error message may indicate that it cannot find the dynamic link library
javai.dll (or jvm.dll in Java 2 SDK release 1.2). If this is the case, add the
directory containing the DLL to your PATH environment variable.

7.2.2 Linking with Unknown Java Virtual Machines

You cannot link the native application with one specific library that implements a
virtual machine if the application is intended to work with virtual machine imple-
mentations from different vendors. Because the JNI does not specify the name of
the native library that implements a Java virtual machine, you should be prepared
to work with Java virtual machine implementations that are shipped under differ-
ent names. For example, on Win32 the virtual machine is shipped as javai.dll in
JDK release 1.1 and as jvm.dll in Java 2 SDK release 1.2.

jni.book Page 87 Thursday, February 21, 2002 4:36 PM

7.2.2 Linking with Unknown Java Virtual Machines THE INVOCATION INTERFACE

88

The solution is to use run-time dynamic linking to load the particular virtual
machine library needed by the application. The name of the virtual machine
library can then be easily configured in an application-specific way. For example,
the following Win32 code finds the function entry point for JNI_CreateJavaVM
given the path of a virtual machine library:

/* Win32 version */
void *JNU_FindCreateJavaVM(char *vmlibpath)
{
 HINSTANCE hVM = LoadLibrary(vmlibpath);
 if (hVM == NULL) {
 return NULL;
 }
 return GetProcAddress(hVM, "JNI_CreateJavaVM");
}

LoadLibrary and GetProcAddress are the API functions for dynamic linking
on Win32. Although LoadLibrary can accept either the name (such as "jvm") or
the path (such as "C:\\jdk1.2\\jre\\bin\\classic\\jvm.dll") of the native
library that implements the Java virtual machine, it is preferable that you pass the
absolute path of the native library to JNU_FindCreateJavaVM. Relying on LoadL-

ibrary to search for jvm.dll makes your application susceptible to configuration
changes, such as additions to the PATH environment variable.

The Solaris version is similar:

/* Solaris version */
void *JNU_FindCreateJavaVM(char *vmlibpath)
{
 void *libVM = dlopen(vmlibpath, RTLD_LAZY);
 if (libVM == NULL) {
 return NULL;
 }
 return dlsym(libVM, "JNI_CreateJavaVM");
}

The dlopen and dlsym functions support dynamically linking shared libraries
on Solaris.

jni.book Page 88 Thursday, February 21, 2002 4:36 PM

THE INVOCATION INTERFACE Attaching Native Threads 7.3

89

7.3 Attaching Native Threads

Suppose that you have a multithreaded application such as a web server written in
C. As HTTP requests come in, the server creates a number of native threads to
handle the HTTP requests concurrently. We would like to embed a Java virtual
machine in this server so that multiple threads can perform operations in the Java
virtual machine at the same time, as illustrated in Figure 7.1.

Figure 7.1 Embedding the Java virtual machine in a web server

Server-spawned native methods may have a shorter life span than the Java vir-
tual machine. Therefore, we need a way to attach a native thread to a Java virtual
machine that is already running, perform JNI calls in the attached native thread,
and then detach the native thread from the virtual machine without disrupting
other attached threads.

The following example, attach.c, illustrates how to attach native threads to a
virtual machine using the invocation interface. This program is written using the
Win32 thread API. Similar versions can be written for Solaris and other operating
systems.

Web server written...HTTP requests

...Server-spawned
native threads

?
JNI

Java virtual machine

in C

jni.book Page 89 Thursday, February 21, 2002 4:36 PM

7.3 Attaching Native Threads THE INVOCATION INTERFACE

90

/* Note: This program only works on Win32 */
#include <windows.h>
#include <jni.h>
JavaVM *jvm; /* The virtual machine instance */

#define PATH_SEPARATOR ';'
#define USER_CLASSPATH "." /* where Prog.class is */

void thread_fun(void *arg)
{
 jint res;
 jclass cls;
 jmethodID mid;
 jstring jstr;
 jclass stringClass;
 jobjectArray args;
 JNIEnv *env;
 char buf[100];
 int threadNum = (int)arg;
 /* Pass NULL as the third argument */
#ifdef JNI_VERSION_1_2

res = (*jvm)->AttachCurrentThread(jvm, (void**)&env, NULL);
#else
 res = (*jvm)->AttachCurrentThread(jvm, &env, NULL);
#endif
 if (res < 0) {
 fprintf(stderr, "Attach failed\n");
 return;
 }
 cls = (*env)->FindClass(env, "Prog");
 if (cls == NULL) {
 goto detach;
 }
 mid = (*env)->GetStaticMethodID(env, cls, "main",
 "([Ljava/lang/String;)V");
 if (mid == NULL) {
 goto detach;
 }
 sprintf(buf, " from Thread %d", threadNum);
 jstr = (*env)->NewStringUTF(env, buf);
 if (jstr == NULL) {
 goto detach;
 }
 stringClass = (*env)->FindClass(env, "java/lang/String");
 args = (*env)->NewObjectArray(env, 1, stringClass, jstr);
 if (args == NULL) {
 goto detach;
 }

jni.book Page 90 Thursday, February 21, 2002 4:36 PM

THE INVOCATION INTERFACE Attaching Native Threads 7.3

91

 (*env)->CallStaticVoidMethod(env, cls, mid, args);

 detach:
 if ((*env)->ExceptionOccurred(env)) {
 (*env)->ExceptionDescribe(env);
 }
 (*jvm)->DetachCurrentThread(jvm);
}

main() {
 JNIEnv *env;
 int i;
 jint res;

#ifdef JNI_VERSION_1_2
 JavaVMInitArgs vm_args;
 JavaVMOption options[1];
 options[0].optionString =
 "-Djava.class.path=" USER_CLASSPATH;
 vm_args.version = 0x00010002;
 vm_args.options = options;
 vm_args.nOptions = 1;
 vm_args.ignoreUnrecognized = TRUE;
 /* Create the Java VM */
 res = JNI_CreateJavaVM(&jvm, (void**)&env, &vm_args);
#else
 JDK1_1InitArgs vm_args;
 char classpath[1024];
 vm_args.version = 0x00010001;
 JNI_GetDefaultJavaVMInitArgs(&vm_args);

/* Append USER_CLASSPATH to the default system class path */
 sprintf(classpath, "%s%c%s",

vm_args.classpath, PATH_SEPARATOR, USER_CLASSPATH);
 vm_args.classpath = classpath;
 /* Create the Java VM */
 res = JNI_CreateJavaVM(&jvm, &env, &vm_args);
#endif /* JNI_VERSION_1_2 */

if (res < 0) {
 fprintf(stderr, "Can't create Java VM\n");
 exit(1);
 }
 for (i = 0; i < 5; i++)
 /* We pass the thread number to every thread */
 _beginthread(thread_fun, 0, (void *)i);
 Sleep(1000); /* wait for threads to start */
 (*jvm)->DestroyJavaVM(jvm);
}

jni.book Page 91 Thursday, February 21, 2002 4:36 PM

7.3 Attaching Native Threads THE INVOCATION INTERFACE

92

The attach.c program is a variation of invoke.c. Rather than calling
Prog.main in the main thread, the native code starts five threads. Once it has
spawned the threads it waits for them to start and then calls DestroyJavaVM. Each
spawned thread attaches itself to the Java virtual machine, invokes the Prog.main

method, and finally detaches itself from the virtual machine before it terminates.
DestroyJavaVM returns after all five threads terminate. We ignore the return value
of DestroyJavaVM for now because this function is not fully implemented in JDK
release 1.1 and Java 2 SDK release 1.2.

JNI_AttachCurrentThread takes NULL as its third argument. Java 2 SDK
release 1.2 introduces the JNI_ThreadAttachArgs structure. It allows you to
specify additional arguments, such as the thread group to which you would like to
attach. The details of the JNI_ThreadAttachArgs structure is described as part of
the specification for JNI_AttachCurrentThread in Section 13.2.

When the program executes the function DetachCurrentThread it frees all
local references belonging to the current thread.

Running the program produces the following output:

Hello World from thread 1
Hello World from thread 0
Hello World from thread 4
Hello World from thread 2
Hello World from thread 3

The exact order of output will likely vary depending on random factors in
thread scheduling.

jni.book Page 92 Thursday, February 21, 2002 4:36 PM

93

C H A P T E R 8
Additional JNI Features

WE have discussed the JNI features used for writing native methods and
embedding a Java virtual machine implementation in a native application. This
chapter introduces the remaining JNI features.

8.1 JNI and Threads

The Java virtual machine supports multiple threads of control concurrently exe-
cuting in the same address space. This concurrency introduces a degree of com-
plexity that you do not have in a single-threaded environment. Multiple threads
may access the same objects, the same file descriptors—in short, the same shared
resources—at the same time.

To get the most out of this section, you should be familiar with the concepts of
multithreaded programming. You should know how to write Java applications that
utilize multiple threads and how to synchronize access of shared resources. A
good reference on multithreaded programming in the Java programming language
is Concurrent Programming in Java™, Design Principles and Patterns, by Doug
Lea (Addison-Wesley, 1997).

8.1.1 Constraints

There are certain constraints that you must keep in mind when writing native
methods that are to run in a multithreaded environment. By understanding and
programming within these constraints, your native methods will execute safely no
matter how many threads simultaneously execute a given native method. For
example:

• A JNIEnv pointer is only valid in the thread associated with it. You must not
pass this pointer from one thread to another, or cache and use it in multiple
threads. The Java virtual machine passes a native method the same JNIEnv

pointer in consecutive invocations from the same thread, but passes different
JNIEnv pointers when invoking that native method from different threads.

jni.book Page 93 Thursday, February 21, 2002 4:36 PM

8.1.2 Monitor Entry and Exit ADDITIONAL JNI FEATURES

94

Avoid the common mistake of caching the JNIEnv pointer of one thread and
using the pointer in another thread.

• Local references are valid only in the thread that created them. You must not
pass local references from one thread to another. You should always convert
local references to global references whenever there is a possibility that multi-
ple threads may use the same reference.

8.1.2 Monitor Entry and Exit

Monitors are the primitive synchronization mechanism on the Java platform. Each
object can be dynamically associated with a monitor. The JNI allows you to syn-
chronize using these monitors, thus implementing the functionality equivalent to a
synchronized block in the Java programming language:

synchronized (obj) {
 ... // synchronized block
}

The Java virtual machine guarantees that a thread acquires the monitor associ-
ated with the object obj before it executes any statements in the block. This
ensures that there can be at most one thread that holds the monitor and executes
inside the synchronized block at any given time. A thread blocks when it waits for
another thread to exit a monitor.

Native code can use JNI functions to perform equivalent synchronization on
JNI references. You can use the MonitorEnter function to enter the monitor and
the MonitorExit function to exit the monitor:

if ((*env)->MonitorEnter(env, obj) != JNI_OK) {
 ... /* error handling */
}
... /* synchronized block */
if ((*env)->MonitorExit(env, obj) != JNI_OK) {
 ... /* error handling */
};

Executing the code above, a thread must first enter the monitor associated
with obj before executing any code inside the synchronized block. The Monitor-

Enter operation takes a jobject as an argument and blocks if another thread has
already entered the monitor associated with the jobject. Calling MonitorExit

when the current thread does not own the monitor results in an error and causes an
IllegalMonitorStateException to be raised. The above code contains a
matched pair of MonitorEnter and MonitorExit calls, yet we still need to check
for possible errors. Monitor operations may fail if, for example, the underlying

jni.book Page 94 Thursday, February 21, 2002 4:36 PM

ADDITIONAL JNI FEATURES Monitor Wait and Notify 8.1.3

95

thread implementation cannot allocate the resources necessary to perform the
monitor operation.

MonitorEnter and MonitorExit work on jclass, jstring, and jarray

types, which are special kinds of jobject references.
Remember to match a MonitorEnter call with the appropriate number of

MonitorExit calls, especially in code that handles errors and exceptions:

if ((*env)->MonitorEnter(env, obj) != JNI_OK) ...;
...
if ((*env)->ExceptionOccurred(env)) {
 ... /* exception handling */
 /* remember to call MonitorExit here */
 if ((*env)->MonitorExit(env, obj) != JNI_OK) ...;
}
... /* Normal execution path.
if ((*env)->MonitorExit(env, obj) != JNI_OK) ...;

Failure to call MonitorExit will most likely lead to deadlocks. By comparing
the above C code segment with the code segment at the beginning of this section,
you can appreciate how much easier it is to program with the Java programming
language than with the JNI. Thus, it is preferable to express synchronization con-
structs in the Java programming language. If, for example, a static native method
needs to enter the monitor associated with its defining class, you should define a
static synchronized native method as opposed to performing JNI-level monitor
synchronization in native code.

8.1.3 Monitor Wait and Notify

The Java API contains several other methods that are useful for thread synchroni-
zation. They are Object.wait, Object.notify, and Object.notifyAll. No JNI
functions are supplied that correspond directly to these methods because monitor
wait and notify operations are not as performance critical as monitor enter and exit
operations. Native code may instead use the JNI method call mechanism to invoke
the corresponding methods in the Java API:

jni.book Page 95 Thursday, February 21, 2002 4:36 PM

8.1.4 Obtaining a JNIEnv Pointer in Arbitrary Contexts ADDITIONAL JNI FEATURES

96

/* precomputed method IDs */
static jmethodID MID_Object_wait;
static jmethodID MID_Object_notify;
static jmethodID MID_Object_notifyAll;

void
JNU_MonitorWait(JNIEnv *env, jobject object, jlong timeout)
{
 (*env)->CallVoidMethod(env, object, MID_Object_wait,
 timeout);
}

void
JNU_MonitorNotify(JNIEnv *env, jobject object)
{
 (*env)->CallVoidMethod(env, object, MID_Object_notify);
}

void
JNU_MonitorNotifyAll(JNIEnv *env, jobject object)
{
 (*env)->CallVoidMethod(env, object, MID_Object_notifyAll);
}

We assume that the method IDs for Object.wait, Object.notify, and
Object.notifyAll have been calculated elsewhere and are cached in the global
variables. Like in the Java programming language, you can call the above moni-
tor-related functions only when holding the monitor associated with the jobject

argument.

8.1.4 Obtaining a JNIEnv Pointer in Arbitrary Contexts

We explained earlier that a JNIEnv pointer is only valid in its associated thread.
This is generally not a problem for native methods because they receive the
JNIEnv pointer from the virtual machine as the first argument. Occasionally, how-
ever, it may be necessary for a piece of native code not called directly from the
virtual machine to obtain the JNIEnv interface pointer that belongs to the current
thread. For example, the piece of native code may belong to a “callback” function
called by the operating system, in which case the JNIEnv pointer will probably not
be available as an argument.

You can obtain the JNIEnv pointer for the current thread by calling the
AttachCurrentThread function of the invocation interface:

jni.book Page 96 Thursday, February 21, 2002 4:36 PM

ADDITIONAL JNI FEATURES Matching the Thread Models 8.1.5

97

JavaVM *jvm; /* already set */

f()
{
 JNIEnv *env;
 (*jvm)->AttachCurrentThread(jvm, (void **)&env, NULL);
 ... /* use env */
}

When the current thread is already attached to the virtual machine, Attach-
CurrentThread returns the JNIEnv interface pointer that belongs to the current
thread.

There are many ways to obtain the JavaVM pointer: by recording it when the
virtual machine is created, by querying for the created virtual machines using
JNI_GetCreatedJavaVMs, by calling the JNI function GetJavaVM inside a regular
native method, or by defining a JNI_OnLoad handler. Unlike the JNIEnv pointer,
the JavaVM pointer remains valid across multiple threads so it can be cached in a
global variable.

Java 2 SDK release 1.2 provides a new invocation interface function GetEnv

so that you can check whether the current thread is attached to the virtual
machine, and, if so, to return the JNIEnv pointer that belongs to the current thread.
GetEnv and AttachCurrentThread are functionally equivalent if the current
thread is already attached to the virtual machine.

8.1.5 Matching the Thread Models

Suppose that native code to be run in multiple threads accesses a global resource.
Should the native code use JNI functions MonitorEnter and MonitorExit, or use
the native thread synchronization primitives in the host environment (such as
mutex_lock on Solaris)? Similarly, if the native code needs to create a new thread,
should it create a java.lang.Thread object and perform a callback of
Thread.start through the JNI, or should it use the native thread creation primi-
tive in the host environment (such as thr_create on Solaris)?

The answer is that all of these approaches work if the Java virtual machine
implementation supports a thread model that matches that used by the native code.
The thread model dictates how the system implements essential thread operations
such as scheduling, context switching, synchronization, and blocking in system
calls. In a native thread model the operating system manages all the essential
thread operations. In a user thread model, on the other hand, the application code
implements the thread operations. For example, the “Green thread” model shipped
with JDK and Java 2 SDK releases on Solaris uses the ANSI C functions setjmp
and longjmp to implement context switches.

jni.book Page 97 Thursday, February 21, 2002 4:36 PM

8.1.5 Matching the Thread Models ADDITIONAL JNI FEATURES

98

Many modern operating systems (such as Solaris and Win32) support a native
thread model. Unfortunately, some operating systems still lack native thread sup-
port. Instead, there may be one or many user thread packages on these operating
systems.

If you write application strictly in the Java programming language, you need
not worry about the underlying thread model of the virtual machine implementa-
tion. The Java platform can be ported to any host environment that supports the
required set of thread primitives. Most native and user thread packages provide
the necessary thread primitives for implementing a Java virtual machine.

JNI programmers, on the other hand, must pay attention to thread models. The
application using native code may not function properly if the Java virtual imple-
mentation and the native code have a different notion of threading and synchroni-
zation. For example, a native method could be blocked in a synchronization
operation in its own thread model, but the Java virtual machine, running in a dif-
ferent thread model, may not be aware that the thread executing the native method
is blocked. The application deadlocks because no other threads will be scheduled.

The thread models match if the native code uses the same thread model as the
Java virtual machine implementation. If the Java virtual machine implementation
uses native thread support, the native code can freely invoke thread-related primi-
tives in the host environment. If the Java virtual machine implementation is based
on a user thread package, the native code should either link with the same user
thread package or rely on no thread operations at all. The latter may be harder to
achieve than you think: most C library calls (such as I/O and memory allocation
functions) perform thread synchronization underneath. Unless the native code per-
forms pure computation and makes no library calls, it is likely to use thread prim-
itives indirectly.

Most virtual machine implementations support only a particular thread model
for JNI native code. Implementations that support native threads are the most flex-
ible, hence native threads, when available, are typically preferred on a given host
environment. Virtual machine implementations that rely on a particular user
thread package may be severely limited as to the type of native code with which
they can operate.

Some virtual machine implementations may support a number of different
thread models. A more flexible type of virtual machine implementation may even
allow you to provide a custom thread model implementation for virtual machine’s
internal use, thus ensuring that the virtual machine implementation can work with
your native code. Before embarking on a project likely to require native code, you
should consult the documentation that comes with your virtual machine imple-
mentation for thread model limitations.

jni.book Page 98 Thursday, February 21, 2002 4:36 PM

ADDITIONAL JNI FEATURES Creating jstrings from Native Strings 8.2.1

99

8.2 Writing Internationalized Code

Special care must be taken to write code that works well in multiple locales. The
JNI gives programmers complete access to the internationalization features of the
Java platform. We will use string conversion as an example because file names
and messages may contain non-ASCII characters in many locales.

The Java virtual machine represents strings in the Unicode format. Although
some native platforms (such as Windows NT) also provide Unicode support, most
represent strings in locale-specific encodings.

Do not use GetStringUTFChars and GetStringUTFRegion functions to con-
vert between jstrings and locale-specific strings unless UTF-8 happens to be the
native encoding on the platform. UTF-8 strings are useful when representing
names and descriptors (such as the arguments to GetMethodID) that are to be
passed to JNI functions, but are not appropriate for representing locale-specific
strings such as file names.

8.2.1 Creating jstrings from Native Strings

Use the String(byte[] bytes) constructor to convert a native string into a
jstring. The following utility function creates a jstring from a locale-specific
native C string:

jstring JNU_NewStringNative(JNIEnv *env, const char *str)
{
 jstring result;
 jbyteArray bytes = 0;
 int len;
 if ((*env)->EnsureLocalCapacity(env, 2) < 0) {
 return NULL; /* out of memory error */
 }
 len = strlen(str);
 bytes = (*env)->NewByteArray(env, len);
 if (bytes != NULL) {
 (*env)->SetByteArrayRegion(env, bytes, 0, len,
 (jbyte *)str);

result = (*env)->NewObject(env, Class_java_lang_String,
 MID_String_init, bytes);
 (*env)->DeleteLocalRef(env, bytes);
 return result;
 } /* else fall through */
 return NULL;
}

jni.book Page 99 Thursday, February 21, 2002 4:36 PM

8.2.2 Translating jstrings to Native Strings ADDITIONAL JNI FEATURES

100

The function creates a byte array, copies the native C string into the byte array,
and finally invokes the String(byte[] bytes) constructor to create the resulting
jstring object. Class_java_lang_String is a global reference to the
java.lang.String class, and MID_String_init is the method ID of the string
constructor. Because this is a utility function, we make sure to delete the local ref-
erence to the byte array created temporarily to store the characters.

Delete the call to EnsureLocalCapacity if you need to use this function with
JDK release 1.1.

8.2.2 Translating jstrings to Native Strings

Use the String.getBytes method to convert a jstring to the appropriate native
encoding. The following utility function translates a jstring to a locale-specific
native C string:

char *JNU_GetStringNativeChars(JNIEnv *env, jstring jstr)
{
 jbyteArray bytes = 0;
 jthrowable exc;
 char *result = 0;
 if ((*env)->EnsureLocalCapacity(env, 2) < 0) {
 return 0; /* out of memory error */
 }
 bytes = (*env)->CallObjectMethod(env, jstr,
 MID_String_getBytes);
 exc = (*env)->ExceptionOccurred(env);
 if (!exc) {
 jint len = (*env)->GetArrayLength(env, bytes);
 result = (char *)malloc(len + 1);
 if (result == 0) {
 JNU_ThrowByName(env, "java/lang/OutOfMemoryError",
 0);
 (*env)->DeleteLocalRef(env, bytes);
 return 0;
 }
 (*env)->GetByteArrayRegion(env, bytes, 0, len,
 (jbyte *)result);
 result[len] = 0; /* NULL-terminate */
 } else {
 (*env)->DeleteLocalRef(env, exc);
 }
 (*env)->DeleteLocalRef(env, bytes);
 return result;
}

jni.book Page 100 Thursday, February 21, 2002 4:36 PM

ADDITIONAL JNI FEATURES Registering Native Methods 8.3

101

The function passes the java.lang.String reference to the String.get-

Bytes method and then copies the elements of the byte array to a newly allocated
C array. MID_String_getBytes is the precomputed method ID of the
String.getBytes method. Because this is a utility function, we make sure to
delete the local references to the byte array and the exception object. Keep in
mind that deleting a JNI reference to the exception object does not clear the pend-
ing exception.

Once again, delete the call to EnsureLocalCapacity if you need to use this
function with JDK release 1.1.

8.3 Registering Native Methods

Before an application executes a native method it goes through a two-step process
to load the native library containing the native method implementation and then
link to the native method implementation:

1. System.loadLibrary locates and loads the named native library. For example,
System.loadLibrary("foo") may cause foo.dll to be loaded on Win32.

2. The virtual machine locates the native method implementation in one of the
loaded native libraries. For example, a Foo.g native method call requires locat-
ing and linking the native function Java_Foo_g, which may reside in foo.dll.

This section will introduce another way to accomplish the second step.
Instead of relying on the virtual machine to search for the native method in the
already loaded native libraries, the JNI programmer can manually link native
methods by registering a function pointer with a class reference, method name,
and method descriptor:

JNINativeMethod nm;
nm.name = "g";
/* method descriptor assigned to signature field */
nm.signature = "()V";
nm.fnPtr = g_impl;
(*env)->RegisterNatives(env, cls, &nm, 1);

The above code registers the native function g_impl as the implementation of the
Foo.g native method:

void JNICALL g_impl(JNIEnv *env, jobject self);

The native function g_impl does not need to follow the JNI naming conven-
tion because only function pointers are involved, nor does it need to be exported

jni.book Page 101 Thursday, February 21, 2002 4:36 PM

8.4 Load and Unload Handlers ADDITIONAL JNI FEATURES

102

from the library (thus there is no need to declare the function using JNIEXPORT).
The native function g_impl must still, however, follow the JNICALL calling con-
vention.

The RegisterNatives function is useful for a number of purposes:

• It is sometimes more convenient and more efficient to register a large number
of native method implementations eagerly, as opposed to letting the virtual
machine link these entries lazily.

• You may call RegisterNatives multiple times on a method, allowing the
native method implementation to be updated at runtime.

• RegisterNatives is particularly useful when a native application embeds a
virtual machine implementation and needs to link with a native method imple-
mentation defined in the native application. The virtual machine would not be
able to find this native method implementation automatically because it only
searches in native libraries, not the application itself.

8.4 Load and Unload Handlers

Load and unload handlers allow the native library to export two functions: one to
be called when System.loadLibrary loads the native library, the other to be
called when the virtual machine unloads the native library. This feature was added
in Java 2 SDK release 1.2.

8.4.1 The JNI_OnLoad Handler

When System.loadLibrary loads a native library, the virtual machine searches
for the following exported entry in the native library:

JNIEXPORT jint JNICALL JNI_OnLoad(JavaVM *jvm, void *reserved);

You can invoke any JNI functions in an implementation of JNI_Onload. A
typical use of the JNI_OnLoad handler is caching the JavaVM pointer, class refer-
ences, or method and field IDs, as shown in the following example:

JavaVM *cached_jvm;
jclass Class_C;
jmethodID MID_C_g;

jni.book Page 102 Thursday, February 21, 2002 4:36 PM

ADDITIONAL JNI FEATURES The JNI_OnLoad Handler 8.4.1

103

JNIEXPORT jint JNICALL
JNI_OnLoad(JavaVM *jvm, void *reserved)
{
 JNIEnv *env;
 jclass cls;
 cached_jvm = jvm; /* cache the JavaVM pointer */

 if ((*jvm)->GetEnv(jvm, (void **)&env, JNI_VERSION_1_2)) {
 return JNI_ERR; /* JNI version not supported */
 }
 cls = (*env)->FindClass(env, "C");
 if (cls == NULL) {
 return JNI_ERR;
 }
 /* Use weak global ref to allow C class to be unloaded */
 Class_C = (*env)->NewWeakGlobalRef(env, cls);
 if (Class_C == NULL) {
 return JNI_ERR;
 }
 /* Compute and cache the method ID */
 MID_C_g = (*env)->GetMethodID(env, cls, "g", "()V");
 if (MID_C_g == NULL) {
 return JNI_ERR;
 }
 return JNI_VERSION_1_2;
}

The JNI_OnLoad function first caches the JavaVM pointer in the global vari-
able cached_jvm. It then obtains the JNIEnv pointer by calling GetEnv. It finally
loads the C class, caches the class reference, and computes the method ID for C.g.
The JNI_OnLoad function returns JNI_ERR (§12.4) on error and otherwise returns
the JNIEnv version JNI_VERSION_1_2 needed by the native library.

We will explain in the next section why we cache the C class in a weak global
reference instead of a global reference.

Given a cached JavaVM interface pointer it is trivial to implement a utility
function that allows the native code to obtain the JNIEnv interface pointer for the
current thread (§8.1.4) :

JNIEnv *JNU_GetEnv()
{
 JNIEnv *env;
 (*cached_jvm)->GetEnv(cached_jvm,
 (void **)&env,
 JNI_VERSION_1_2);
 return env;
}

jni.book Page 103 Thursday, February 21, 2002 4:36 PM

8.4.2 The JNI_OnUnload Handler ADDITIONAL JNI FEATURES

104

8.4.2 The JNI_OnUnload Handler

Intuitively, the virtual machine calls the JNI_OnUnload handler when it unloads a
JNI native library. This is not precise enough, however. When does the virtual
machine determine that it can unload a native library? Which thread runs the
JNI_OnUnload handler?

The rules of unloading native libraries are as follows:

• The virtual machine associates each native library with the class loader L of
the class C that issues the System.loadLibrary call.

• The virtual machine calls the JNI_OnUnload handler and unloads the native
library after it determines that the class loader L is no longer a live object.
Because a class loader refers to all the classes it defines, this implies that C can
be unloaded as well.

• The JNI_OnUnload handler runs in a finalizer, and is either invoked synchro-
niously by java.lang.System.runFinalization or invoked asynchro-
nously by the virtual machine.

Here is the definition of a JNI_OnUnload handler that cleans up the resources
allocated by the JNI_OnLoad handler in the last section:

JNIEXPORT void JNICALL
JNI_OnUnload(JavaVM *jvm, void *reserved)
{
 JNIEnv *env;
 if ((*jvm)->GetEnv(jvm, (void **)&env, JNI_VERSION_1_2)) {
 return;
 }
 (*env)->DeleteWeakGlobalRef(env, Class_C);
 return;
}

The JNI_OnUnload function deletes the weak global reference to the C class
created in the JNI_OnLoad handler. We need not delete the method ID MID_C_g

because the virtual machine automatically reclaims the resources needed to repre-
sent C’s method IDs when unloading its defining class C.

We are now ready to explain why we cache the C class in a weak global refer-
ence instead of a global reference. A global reference would keep C alive, which
in turn would keep C’s class loader alive. Given that the native library is associated
with C’s class loader L, the native library would not be unloaded and
JNI_OnUnload would not be called.

The JNI_OnUnload handler runs in a finalizer. In contrast, the JNI_OnLoad

handler runs in the thread that initiates the System.loadLibrary call. Because
JNI_OnUnload runs in an unknown thread context, to avoid possible deadlocks,

jni.book Page 104 Thursday, February 21, 2002 4:36 PM

ADDITIONAL JNI FEATURES Reflection Support 8.5

105

you should avoid complex synchronization and locking operations in
JNI_OnUnload. The JNI_OnUnload handler typically carries out simple tasks such
as releasing the resources allocated by the native library.

The JNI_OnUnload handler runs when the class loader that loaded the library
and all classes defined by that class loader are no longer alive. The JNI_OnUnload

handler must not use these classes in any way. In the above JNI_OnUnload defini-
tion, you must not perform any operations that assume Class_C still refers to a
valid class. The DeleteWeakGlobalRef call in the example frees the memory for
the weak global reference itself, but does not manipulate the referred class C in
any way.

In summary, you should be careful when writing JNI_OnUnload handlers.
Avoid complex locking operations that may introduce deadlocks. Keep in mind
that classes have been unloaded when the JNI_OnUnload handler is invoked.

8.5 Reflection Support

Reflection generally refers to manipulating language-level constructs at runtime.
For example, reflection allows you to discover at run time the name of arbitrary
class objects and the set of fields and methods defined in the class. Reflection sup-
port is provided at the Java programming language level through the
java.lang.reflect package as well as some methods in the java.lang.Object

and java.lang.Class classes. Although you can always call the corresponding
Java API to carry out reflective operations, the JNI provides the following func-
tions to make the frequent reflective operations from native code more efficient
and convenient:

• GetSuperclass returns the superclass of a given class reference.

• IsAssignableFrom checks whether instances of one class can be used when
instances of another class are expected.

• GetObjectClass returns the class of a given jobject reference.

• IsInstanceOf checks whether a jobject reference is an instance of a given
class.

• FromReflectedField and ToReflectedField allow the native code to con-
vert between field IDs and java.lang.reflect.Field objects. They are new
additions in Java 2 SDK release 1.2.

• FromReflectedMethod and ToReflectedMethod allow the native code to
convert between method IDs, java.lang.reflect.Method objects and
java.lang.reflect.Constructor objects. They are new additions in Java 2
SDK release 1.2.

jni.book Page 105 Thursday, February 21, 2002 4:36 PM

8.6 JNI Programming in C++ ADDITIONAL JNI FEATURES

106

8.6 JNI Programming in C++

The JNI presents a slightly simpler interface for C++ programmers. The jni.h

file contains a set of definitions so that C++ programmers can write, for example:

jclass cls = env->FindClass("java/lang/String");

instead of in C:

jclass cls = (*env)->FindClass(env, "java/lang/String");

The extra level of indirection on env and the env argument to FindClass are
hidden from the programmer. The C++ compiler inlines the C++ member function
calls to their equivalent C counterparts; the resulting code is exactly the same.
There is no inherent performance difference between using the JNI in C or C++.

In addition, the jni.h file also defines a set of dummy C++ classes to enforce
the subtyping relationships among different jobject subtypes:

 // JNI reference types defined in C++
 class _jobject {};
 class _jclass : public _jobject {};
 class _jstring : public _jobject {};
 ...
 typedef _jobject* jobject;
 typedef _jclass* jclass;
 typedef _jstring* jstring;
 ...

The C++ compiler is able to detect at compile time if you pass in, for exam-
ple, a jobject to GetMethodID:

// ERROR: pass jobject as a jclass:
jobject obj = env->NewObject(...);
jmethodID mid = env->GetMethodID(obj, "foo", "()V");

Because GetMethodID expects a jclass reference, the C++ compiler will
give an error message. In the C type definitions for JNI, jclass is the same as
jobject:

typedef jobject jclass;

Therefore, a C compiler is not able to detect that you have mistakenly passed
a jobject instead of jclass.

jni.book Page 106 Thursday, February 21, 2002 4:36 PM

ADDITIONAL JNI FEATURES JNI Programming in C++ 8.6

107

The added type hierarchy in C++ sometimes necessitates additional casting.
In C, you can fetch a string from an array of strings and assign the result to a
jstring:

jstring jstr = (*env)->GetObjectArrayElement(env, arr, i);

In C++, however, you need to insert an explicit conversion:

jstring jstr = (jstring)env->GetObjectArrayElement(arr, i);

jni.book Page 107 Thursday, February 21, 2002 4:36 PM

jni.book Page 108 Thursday, February 21, 2002 4:36 PM

109

C H A P T E R 9
Leveraging Existing Native

Libraries

ONE of the applications of the JNI is to write native methods that leverage code
in existing native libraries. A typical approach, covered in this chapter, is to pro-
duce a class library that wraps a set of native functions.

This chapter first discusses the most straightforward way to write wrapper
classes — one-to-one mapping. We then introduce a technique, shared stubs, that
simplifies the task of writing wrapper classes.

One-to-one mapping and shared stubs are both techniques for wrapping native
functions. At the end of this chapter, we will also discuss how to wrap native data
structures using peer classes.

The approaches described in this chapter directly expose a native library using
native methods, and thus have the disadvantage of making an application calling
such native methods dependent on that native library. Such an application may run
only on an operating system that supplies the native library. A preferred approach
is to declare operating system-independent native methods. Only the native func-
tions implementing those native methods use the native libraries directly, limiting
the need for porting to those native functions. The application, including the
native method declarations, does not need to be ported.

9.1 One-to-One Mapping

Let us begin with a simple example. Suppose that we want to write a wrapper
class that exposes the atol function in the standard C library:

long atol(const char *str);

The atol function parses a string and returns the decimal value represented
by the string. There is perhaps little reason to define such a native method in prac-
tice because the Integer.parseInt method, part of the Java API, supplies the
equivalent functionality. Evaluating atol("100"), for example, results in the inte-
ger value 100. We define a wrapper class as follows:

jni.book Page 109 Thursday, February 21, 2002 4:36 PM

9.1 One-to-One Mapping LEVERAGING EXISTING NATIVE LIBRARIES

110

public class C {
 public static native int atol(String str);
 ...
}

For the sake of illustrating JNI programming in C++, we will implement
native methods in this chapter using C++ (§8.6). The C++ implementation of the
C.atol native method is as follows:

JNIEXPORT jint JNICALL
Java_C_atol(JNIEnv *env, jclass cls, jstring str)
{
 const char *cstr = env->GetStringUTFChars(str, 0);
 if (cstr == NULL) {
 return 0; /* out of memory */
 }
 int result = atol(cstr);
 env->ReleaseStringUTFChars(str, cstr);
 return result;
}

The implementation is quite straightforward. We use GetStringUTFChars to
convert the Unicode string because decimal numbers are ASCII characters.

Let us now examine a more complex example that involves passing structure
pointers to a C function. Suppose that we want to write a wrapper class that
exposes the CreateFile function from the Win32 API:

typedef void * HANDLE;
typedef long DWORD;
typedef struct {...} SECURITY_ATTRIBUTES;

HANDLE CreateFile(
 const char *fileName, // file name
 DWORD desiredAccess, // access (read-write) mode
 DWORD shareMode, // share mode
 SECURITY_ATTRIBUTES *attrs, // security attributes
 DWORD creationDistribution, // how to create
 DWORD flagsAndAttributes, // file attributes
 HANDLE templateFile // file with attr. to copy
);

The CreateFile function supports a number of Win32-specific features not
available in the platform-independent Java File API. For example, the Create-

File function may be used to specify special access modes and file attributes, to
open Win32 named pipes, and to handle serial port communications.

jni.book Page 110 Thursday, February 21, 2002 4:36 PM

LEVERAGING EXISTING NATIVE LIBRARIES One-to-One Mapping 9.1

111

We will not discuss further details of the CreateFile function in this book.
The focus will be on how CreateFile may be mapped to a native method defined
in a wrapper class called Win32:

public class Win32 {
 public static native int CreateFile(
 String fileName, // file name
 int desiredAccess, // access (read-write) mode
 int shareMode, // share mode
 int[] secAttrs, // security attributes
 int creationDistribution, // how to create
 int flagsAndAttributes, // file attributes
 int templateFile); // file with attr. to copy
 ...
}

The mapping from the char pointer type to String is obvious. We map the
native Win32 type long (DWORD) to int in the Java programming language. The
Win32 type HANDLE, an opaque 32-bit pointer type, is also mapped to int.

Because of potential differences in how fields are laid out in memory, we do
not map C structures to classes in the Java programming language. Instead, we use
an array to store the contents of the C structure SECURITY_ATTRIBUTES. The caller
may also pass null as secAttrs to specify the default Win32 security attributes.
We will not discuss the contents of the SECURITY_ATTRIBUTES structure or how to
encode that in an int array.

A C++ implementation of the above native method is as follows:

JNIEXPORT jint JNICALL Java_Win32_CreateFile(
 JNIEnv *env,
 jclass cls,
 jstring fileName, // file name

jint desiredAccess, // access (read-write) mode
 jint shareMode, // share mode
 jintArray secAttrs, // security attributes
 jint creationDistribution, // how to create
 jint flagsAndAttributes, // file attributes
 jint templateFile) // file with attr. to copy
{
 jint result = 0;
 jint *cSecAttrs = NULL;
 if (secAttrs) {
 cSecAttrs = env->GetIntArrayElements(secAttrs, 0);
 if (cSecAttrs == NULL) {
 return 0; /* out of memory */
 }

}

jni.book Page 111 Thursday, February 21, 2002 4:36 PM

9.1 One-to-One Mapping LEVERAGING EXISTING NATIVE LIBRARIES

112

 char *cFileName = JNU_GetStringNativeChars(env, fileName);
 if (cFileName) {
 /* call the real Win32 function */
 result = (jint)CreateFile(cFileName,
 desiredAccess,
 shareMode,
 (SECURITY_ATTRIBUTES *)cSecAttrs,
 creationDistribution,
 flagsAndAttributes,
 (HANDLE)templateFile);
 free(cFileName);
 }
 /* else fall through, out of memory exception thrown */
 if (secAttrs) {
 env->ReleaseIntArrayElements(secAttrs, cSecAttrs, 0);
 }
 return result;
}

First, we convert the security attributes stored in the int array into a jint

array. If the secAttrs argument is a NULL reference, we pass NULL as the security
attribute to the Win32 CreateFile function. Next, we call the utility function
JNU_GetStringNativeChars (§8.2.2) to obtain the file name represented as a
locale-specific C string. Once we have converted the security attributes and file
name, we pass the results of the conversions and the remaining arguments to the
Win32 CreateFile function.

We take care to check for exceptions and release virtual machine resources
(such as cSecAttrs).

The C.atol and Win32.CreateFile examples demonstrate a common
approach to writing wrapper classes and native methods. Each native function (for
example, CreateFile) maps to a single native stub function (for example,
Java_Win32_CreateFile), which in turn maps to a single native method defini-
tion (for example, Win32.CreateFile). In one-to-one mapping, the stub function
serves two purposes:

1. The stub adapts the native function’s argument passing convention to what is
expected by the Java virtual machine. The virtual machine expects the native
method implementation to follow a given naming convention and to accept two
additional arguments (the JNIEnv pointer and the “this” pointer).

2. The stub converts between Java programming language types and native types.
For example, the Java_Win32_CreateFile function translates the jstring

file name to a locale-specific C string.

jni.book Page 112 Thursday, February 21, 2002 4:36 PM

LEVERAGING EXISTING NATIVE LIBRARIES Shared Stubs 9.2

113

9.2 Shared Stubs

The one-to-one mapping approach requires you to write one stub function for
each native function you want to wrap. This becomes tedious when you are faced
with the task of writing wrapper classes for a large number of native functions. In
this section we introduce the concept of shared stubs and demonstrate how shared
stubs may be used to simplify the task of writing wrapper classes.

A shared stub is a native method that dispatches to other native functions. The
shared stub is responsible for converting the argument types from what is pro-
vided by the caller to what is accepted by the native functions.

We will soon introduce a shared stub class CFunction, but first let us show
how it can simplify the implementation of the C.atol method:

public class C {
 private static CFunction c_atol =
 new CFunction("msvcrt.dll", // native library name
 "atol", // C function name
 "C"); // calling convention
 public static int atol(String str) {
 return c_atol.callInt(new Object[] {str});
 }
 ...
}

C.atol is no longer a native method (and thus no longer needs a stub func-
tion). Instead, C.atol is defined using the CFunction class. The CFunction class
internally implements a shared stub. The static variable C.c_atol stores a CFunc-

tion object that corresponds to the C function atol in the msvcrt.dll library
(the multithreaded C library on Win32). The CFunction constructor call also
specifies that atol follows the C calling convention (§11.4). Once the c_atol

field is initialized, calls to the C.atol method need only to redispatch through
c_atol.callInt, the shared stub.

The CFunction class belongs to a class hierarchy that we will build up and
use shortly:

CFunctionCMalloc

CPointer

java.lang.Object

jni.book Page 113 Thursday, February 21, 2002 4:36 PM

9.2 Shared Stubs LEVERAGING EXISTING NATIVE LIBRARIES

114

Instances of the CFunction class denote a pointer to a C function. CFunction
is a subclass of CPointer, which denotes arbitrary C pointers:

public class CFunction extends CPointer {
 public CFunction(String lib, // native library name
 String fname, // C function name
 String conv) { // calling convention
 ...
 }
 public native int callInt(Object[] args);
 ...
}

The callInt method takes as its argument an array of java.lang.Object. It
inspects the types of the elements in the array, converts them (from jstring to
char *, for example), and passes them as arguments to the underlying C function.
The callInt method then returns the result of the underlying C function as an
int. The CFunction class can define methods such as callFloat or callDouble
to handle C functions with other return types.

The CPointer class is defined as follows:

public abstract class CPointer {
 public native void copyIn(
 int bOff, // offset from a C pointer
 int[] buf, // source data
 int off, // offset into source
 int len); // number of elements to be copied
 public native void copyOut(...);
 ...
}

CPointer is an abstract class that supports arbitrary access to C pointers. The
copyIn method, for example, copies a number of elements from an int array to
the location pointed to by the C pointer. This method should be used with care
because it can easily be used to corrupt arbitrary memory locations in the address
space. Native methods such as CPointer.copyIn are as unsafe as direct pointer
manipulation in C.

CMalloc is a subclass of CPointer that points to a block of memory allocated
in the C heap using malloc:

public class CMalloc extends CPointer {
 public CMalloc(int size) throws OutOfMemoryError { ... }
 public native void free();
 ...
}

jni.book Page 114 Thursday, February 21, 2002 4:36 PM

LEVERAGING EXISTING NATIVE LIBRARIES Shared Stubs 9.2

115

The CMalloc constructor allocates a memory block of the given size in the C
heap. The CMalloc.free method releases the memory block.

Equipped with the CFunction and CMalloc classes, we can reimplement
Win32.CreateFile as follows:

public class Win32 {
 private static CFunction c_CreateFile =

new CFunction ("kernel32.dll", // native library name
 "CreateFileA", // native function
 "JNI"); // calling convention

 public static int CreateFile(
 String fileName, // file name
 int desiredAccess, // access (read-write) mode
 int shareMode, // share mode
 int[] secAttrs, // security attributes
 int creationDistribution, // how to create
 int flagsAndAttributes, // file attributes
 int templateFile) // file with attr. to copy
 {
 CMalloc cSecAttrs = null;
 if (secAttrs != null) {
 cSecAttrs = new CMalloc(secAttrs.length * 4);
 cSecAttrs.copyIn(0, secAttrs, 0, secAttrs.length);
 }
 try {
 return c_CreateFile.callInt(new Object[] {
 fileName,
 new Integer(desiredAccess),
 new Integer(shareMode),
 cSecAttrs,
 new Integer(creationDistribution),
 new Integer(flagsAndAttributes),
 new Integer(templateFile)});
 } finally {
 if (secAttrs != null) {
 cSecAttrs.free();
 }
 }
 }
 ...
}

We cache the CFunction object in a static variable. The Win32 API Create-
File is exported from kernel32.dll as CreateFileA. Another exported entry,
CreateFileW, takes a Unicode string as the file name argument. This function fol-

jni.book Page 115 Thursday, February 21, 2002 4:36 PM

9.3 One-to-One Mapping versus Shared Stubs LEVERAGING EXISTING NATIVE LIBRARIES

116

lows the JNI calling convention, which is the standard Win32 calling convention
(stdcall).

The Win32.CreateFile implementation first allocates a memory block in the
C heap that is big enough to hold the security attributes temporarily. It then pack-
ages all arguments in an array and invokes the underlying C function Create-

FileA through the shared dispatcher. Finally the Win32.CreateFile method frees
the C memory block used to hold the security attributes. We call cSecAttrs.free
in a finally clause to make sure the temporarily C memory is freed even if the
c_CreateFile.callInt call raises an exception.

9.3 One-to-One Mapping versus Shared Stubs

One-to-one mapping and shared stubs are two ways of building wrapper classes
for native libraries. Each has its own advantages.

The main advantage of shared stubs is that the programmer need not write a
large number of stub functions in native code. Once a shared stub implementation
such as CFunction is available, the programmer may be able to build wrapper
classes without writing a single line of native code.

Shared stubs must be used with care, however. With shared stubs, program-
mers are essentially writing C code in the Java programming language. This
defeats the type safety of the Java programming language. Mistakes in using
shared stubs can lead to corrupted memory and application crashes.

The advantage of one-to-one mapping is that it is typically more efficient in
converting the data types that are transferred between the Java virtual machine and
native code. Shared stubs, on the other hand, can handle at most a predetermined
set of argument types and cannot achieve optimal performance even for these
argument types. The caller of CFunction.callInt always has to create an Inte-

ger object for each int argument. This adds both space and time overhead to the
shared stubs scheme.

In practice, you need to balance performance, portability, and short-term pro-
ductivity. Shared stubs may be suitable for leveraging inherently nonportable
native code that can tolerate a slight performance degradation, whereas one-to-one
mapping should be used in cases where top performance is necessary or where
portability matters.

9.4 Implementation of Shared Stubs

We have so far treated CFunction, CPointer, and CMalloc classes as black boxes.
This section describes how they may be implemented using the basic JNI features.

jni.book Page 116 Thursday, February 21, 2002 4:36 PM

LEVERAGING EXISTING NATIVE LIBRARIES The CMalloc Class 9.4.2

117

9.4.1 The CPointer Class

We look at the CPointer class first because it is the superclass of both CFunction

and CMalloc. The abstract class CPointer contains a 64-bit field, peer, that stores
the underlying C pointer:

public abstract class CPointer {
 protected long peer;
 public native void copyIn(int bOff, int[] buf,
 int off,int len);
 public native void copyOut(...);
 ...
}

The C++ implementation of native methods such as copyIn is straightforward:

JNIEXPORT void JNICALL
Java_CPointer_copyIn__I_3III(JNIEnv *env, jobject self,
 jint boff, jintArray arr, jint off, jint len)
{
 long peer = env->GetLongField(self, FID_CPointer_peer);

env->GetIntArrayRegion(arr, off, len, (jint *)peer + boff);
}

FID_CPointer_peer is the precomputed field ID for CPointer.peer. The
native method implementation uses the long name encoding scheme (§11.3) to
resolve conflicts with implementations of overloaded copyIn native methods for
other array types in the CPointer class.

9.4.2 The CMalloc Class

The CMalloc class adds two native methods used to allocate and free C memory
blocks:

public class CMalloc extends CPointer {
 private static native long malloc(int size);
 public CMalloc(int size) throws OutOfMemoryError {
 peer = malloc(size);
 if (peer == 0) {
 throw new OutOfMemoryError();
 }
 }
 public native void free();
 ...
}

jni.book Page 117 Thursday, February 21, 2002 4:36 PM

9.4.3 The CFunction Class LEVERAGING EXISTING NATIVE LIBRARIES

118

The CMalloc constructor calls a native method CMalloc.malloc, and throws
an OutOfMemoryError if CMalloc.malloc fails to return a newly allocated mem-
ory block in the C heap. We can implement the CMalloc.malloc and CMal-

loc.free methods as follows:

JNIEXPORT jlong JNICALL
Java_CMalloc_malloc(JNIEnv *env, jclass cls, jint size)
{
 return (jlong)malloc(size);
}

JNIEXPORT void JNICALL
Java_CMalloc_free(JNIEnv *env, jobject self)
{
 long peer = env->GetLongField(self, FID_CPointer_peer);
 free((void *)peer);
}

9.4.3 The CFunction Class

The CFunction class implementation requires the use of dynamic linking support
in the operating system as well as CPU-specific assembly code. The implementa-
tion presented below is targeted specifically toward the Win32/Intel x86 environ-
ment. Once you understand the principles behind implementing the CFunction

class, you can follow the same steps to implement it on other platforms.
The CFunction class is defined as follows:

public class CFunction extends CPointer {
 private static final int CONV_C = 0;
 private static final int CONV_JNI = 1;
 private int conv;
 private native long find(String lib, String fname);

 public CFunction(String lib, // native library name
 String fname, // C function name
 String conv) { // calling convention
 if (conv.equals("C")) {
 conv = CONV_C;
 } else if (conv.equals("JNI")) {
 conv = CONV_JNI;
 } else {
 throw new IllegalArgumentException(
 "bad calling convention");
 }
 peer = find(lib, fname);
 }

jni.book Page 118 Thursday, February 21, 2002 4:36 PM

LEVERAGING EXISTING NATIVE LIBRARIES The CFunction Class 9.4.3

119

 public native int callInt(Object[] args);
 ...
}

The CFunction class declares a private field conv used to store the calling
convention of the C function. The CFunction.find native method is implemented
as follows:

JNIEXPORT jlong JNICALL
Java_CFunction_find(JNIEnv *env, jobject self, jstring lib,

jstring fun)
{
 void *handle;
 void *func;
 char *libname;
 char *funname;

 if ((libname = JNU_GetStringNativeChars(env, lib))) {
 if ((funname = JNU_GetStringNativeChars(env, fun))) {
 if ((handle = LoadLibrary(libname))) {

if (!(func = GetProcAddress(handle, funname))) {
 JNU_ThrowByName(env,
 "java/lang/UnsatisfiedLinkError",
 funname);
 }
 } else {
 JNU_ThrowByName(env,
 "java/lang/UnsatisfiedLinkError",
 libname);
 }
 free(funname);
 }
 free(libname);
 }
 return (jlong)func;
}

CFunction.find converts the library name and function name to locale-spe-
cific C strings, and then calls the Win32 API functions LoadLibrary and
GetProcAddress to locate the C function in the named native library.

The callInt method, implemented as follows, carries out the main task of
redispatching to the underlying C function:

jni.book Page 119 Thursday, February 21, 2002 4:36 PM

9.4.3 The CFunction Class LEVERAGING EXISTING NATIVE LIBRARIES

120

JNIEXPORT jint JNICALL
Java_CFunction_callInt(JNIEnv *env, jobject self,

jobjectArray arr)
{
#define MAX_NARGS 32
 jint ires;
 int nargs, nwords;
 jboolean is_string[MAX_NARGS];
 word_t args[MAX_NARGS];

 nargs = env->GetArrayLength(arr);
 if (nargs > MAX_NARGS) {
 JNU_ThrowByName(env,
 "java/lang/IllegalArgumentException",
 "too many arguments");
 return 0;
 }

 // convert arguments
 for (nwords = 0; nwords < nargs; nwords++) {
 is_string[nwords] = JNI_FALSE;
 jobject arg = env->GetObjectArrayElement(arr, nwords);

 if (arg == NULL) {
 args[nwords].p = NULL;
 } else if (env->IsInstanceOf(arg, Class_Integer)) {
 args[nwords].i =
 env->GetIntField(arg, FID_Integer_value);
 } else if (env->IsInstanceOf(arg, Class_Float)) {
 args[nwords].f =
 env->GetFloatField(arg, FID_Float_value);
 } else if (env->IsInstanceOf(arg, Class_CPointer)) {
 args[nwords].p = (void *)
 env->GetLongField(arg, FID_CPointer_peer);
 } else if (env->IsInstanceOf(arg, Class_String)) {
 char * cstr =
 JNU_GetStringNativeChars(env, (jstring)arg);
 if ((args[nwords].p = cstr) == NULL) {
 goto cleanup; // error thrown
 }
 is_string[nwords] = JNI_TRUE;
 } else {
 JNU_ThrowByName(env,
 "java/lang/IllegalArgumentException",
 "unrecognized argument type");
 goto cleanup;
 }
 env->DeleteLocalRef(arg);

}

jni.book Page 120 Thursday, February 21, 2002 4:36 PM

LEVERAGING EXISTING NATIVE LIBRARIES The CFunction Class 9.4.3

121

 void *func =
 (void *)env->GetLongField(self, FID_CPointer_peer);

int conv = env->GetIntField(self, FID_CFunction_conv);

 // now transfer control to func.
 ires = asm_dispatch(func, nwords, args, conv);

cleanup:
 // free all the native strings we have created
 for (int i = 0; i < nwords; i++) {
 if (is_string[i]) {
 free(args[i].p);
 }
 }
 return ires;
}

We assume that we have set up a number of global variables for caching the
appropriate class references and field IDs. For example, global variable
FID_CPointer_peer caches the field ID for CPointer.peer and global variable
Class_String is a global reference to the java.lang.String class object. The
word_t type represents a machine word and is defined as follows:

typedef union {
 jint i;
 jfloat f;
 void *p;
} word_t;

The Java_CFunction_callInt function iterates through the argument array,
and checks the type of each element:

• If the element is a null reference, it is passed as a NULL pointer to the C func-
tion.

• If the element is an instance of the java.lang.Integer class, the integer
value is fetched and passed to the C function.

• If the element is an instance of the java.lang.Float class, the floating-point
value is fetched and passed to the C function.

• If the element is an instance of the CPointer class, the peer pointer is fetched
and passed to the C function.

• If the argument is an instance of java.lang.String, it is converted to a
locale-specific C string and passed to the C function.

• Otherwise, an IllegalArgumentException is thrown.

jni.book Page 121 Thursday, February 21, 2002 4:36 PM

9.4.3 The CFunction Class LEVERAGING EXISTING NATIVE LIBRARIES

122

We carefully check for possible errors during argument conversion and free
all the temporary storage allocated for C strings before returning from the
Java_CFunction_callInt function.

The code that transfers the arguments from the temporary buffer args to the C
function needs to manipulate the C stack directly. It is written in inlined assembly:

int asm_dispatch(void *func, // pointer to the C function
int nwords, // number of words in args array

 word_t *args, // start of the argument data
 int conv) // calling convention 0: C
 // 1: JNI
{
 __asm {
 mov esi, args
 mov edx, nwords
 // word address -> byte address
 shl edx, 2
 sub edx, 4
 jc args_done

 // push the last argument first
 args_loop:
 mov eax, DWORD PTR [esi+edx]
 push eax
 sub edx, 4
 jge SHORT args_loop
 args_done:
 call func

 // check for calling convention
 mov edx, conv
 or edx, edx
 jnz jni_call

 // pop the arguments
 mov edx, nwords
 shl edx, 2
 add esp, edx
 jni_call:
 // done, return value in eax
 }
}

The assembly routine copies the arguments onto the C stack, then redis-
patches to the C function func. After func returns, the asm_dispatch routine

jni.book Page 122 Thursday, February 21, 2002 4:36 PM

LEVERAGING EXISTING NATIVE LIBRARIES Peer Classes 9.5

123

checks func’s calling convention. If func follows the C calling convention,
asm_dispatch pops the arguments passed to func. If func follows the JNI calling
convention, asm_dispatch does not pop the arguments; func pops the arguments
before it returns.

9.5 Peer Classes

One-to-one mapping and shared stubs both address the problem of wrapping
native functions. We also encountered the problem of wrapping native data struc-
tures in the course of constructing the shared stubs implementation. Recall the
definition of the CPointer class:

public abstract class CPointer {
 protected long peer;
 public native void copyIn(int bOff, int[] buf,
 int off, int len);
 public native void copyOut(...);
 ...
}

It contains a 64-bit peer field that refers to the native data structure (in this
case, a piece of memory in the C address space). Subclasses of CPointer assign
specific meanings to the peer field. The CMalloc class, for example, uses the
peer field to point to a chunk of memory in the C heap:

Classes that directly correspond to native data structures, such as CPointer

and CMalloc, are called peer classes. You can construct peer classes for a variety
of native data structures, including, for example:

• file descriptors

• socket descriptors

• windows or other graphics user interface components

peer
memory in

the C heapAn instance of the
CMalloc class

jni.book Page 123 Thursday, February 21, 2002 4:36 PM

9.5.1 Peer Classes in the Java Platform LEVERAGING EXISTING NATIVE LIBRARIES

124

9.5.1 Peer Classes in the Java Platform

The current JDK and Java 2 SDK releases (1.1 and 1.2) use peer classes internally
to implement the java.io, java.net, and java.awt packages. An instance of the
java.io.FileDescriptor class, for example, contains a private field fd that rep-
resents a native file descriptor:

// Implementation of the java.io.FileDescriptor class
public final class FileDescriptor {
 private int fd;
 ...
}

Suppose that you want to perform a file operation that is not supported by the
Java platform API. You might be tempted to use the JNI to find out the underlying
native file descriptor of a java.io.FileDescriptor instance. The JNI allows you
to access a private field, as long as you know its name and type. You might think
that you could then perform the native file operation directly on that file descrip-
tor. This approach, however, has a couple of problems:

• First, you are relying on one java.io.FileDescriptor implementation that
stores the native file descriptor in a private field called fd. There is no guaran-
tee, however, that future implementations from Sun or third-party implemen-
tations of the java.io.FileDescriptor class will still use the same private
field name fd for the native file descriptor. Native code that assumes the name
of the peer field may fail to work with a different implementation of the Java
platform.

• Second, the operation you perform directly on the native file descriptor may
disrupt the internal consistency of the peer class. For example,
java.io.FileDescriptor instances maintain an internal state indicating
whether the underlying native file descriptor has been closed. If you use native
code to bypass the peer class and close the underlying file descriptor, the state
maintained in the java.io.FileDescriptor instance will no longer be con-
sistent with the true state of the native file descriptor. Peer class implementa-
tions typically assume that they have exclusive access to the underlying native
data structure.

The only way to overcome these problems is to define your own peer classes
that wrap native data structures. In the above case, you can define your own file
descriptor peer class that supports the required set of operations. This approach

jni.book Page 124 Thursday, February 21, 2002 4:36 PM

LEVERAGING EXISTING NATIVE LIBRARIES Freeing Native Data Structures 9.5.2

125

does not let you use your own peer classes to implement Java API classes. You
cannot, for example, pass your own file descriptor instance to a method that
expects a java.io.FileDescriptor instance. You can, however, easily define
your own peer class that implements a standard interface in the Java API. This is a
strong argument for designing APIs based on interfaces instead of classes.

9.5.2 Freeing Native Data Structures

Peer classes are defined in the Java programming language; thus instances of peer
classes will be garbage collected automatically. You need to make sure, however,
that the underlying native data structures will be freed as well.

Recall that the CMalloc class contains a free method for explicitly freeing
the malloc’ed C memory:

public class CMalloc extends CPointer {
 public native void free();
 ...
}

You must remember to call free on instances of the CMalloc class; otherwise
a CMalloc instance may be garbage collected, but its corresponding malloc’ed C
memory will never be reclaimed.

Some programmers like to put a finalizer in peer classes such as CMalloc:

public class CMalloc extends CPointer {
 public native synchronized void free();
 protected void finalize() {
 free();
 }
 ...
}

The virtual machine calls the finalize method before it garbage collects an
instance of CMalloc. Even if you forget to call free, the finalize method frees
the malloc’ed C memory for you.

You need to make a small change to the CMalloc.free native method imple-
mentation to account for the possibility that it may be called multiple times. You
also need to make CMalloc.free a synchronized method to avoid thread race
conditions:

jni.book Page 125 Thursday, February 21, 2002 4:36 PM

9.5.2 Freeing Native Data Structures LEVERAGING EXISTING NATIVE LIBRARIES

126

JNIEXPORT void JNICALL
Java_CMalloc_free(JNIEnv *env, jobject self)
{
 long peer = env->GetLongField(self, FID_CPointer_peer);
 if (peer == 0) {
 return; /* not an error, freed previously */
 }
 free((void *)peer);
 peer = 0;
 env->SetLongField(self, FID_CPointer_peer, peer);
}

We set the peer field using two statements:

peer = 0;
env->SetLongField(self, FID_CPointer_peer, peer);

instead of one statement:

env->SetLongField(self, FID_CPointer_peer, 0);

because C++ compilers will regard the literal 0 as a 32-bit integer, as opposed to a
64-bit integer. Some C++ compilers allow you to specify 64-bit integer literals,
but using 64-bit literals will not be as portable.

Defining a finalize method is a proper safeguard, but you should never rely
on finalizers as the sole means of freeing native data structures. The reason is that
the native data structures may consume much more resources than their peer
instances. The Java virtual machine may not garbage collect and finalize instances
of peer classes fast enough to free up their native counterparts.

Defining a finalizer has performance consequences as well. It is typically
slower to create and reclaim instances of classes with finalizers than to create and
reclaim those without finalizers.

If you can always ensure that you manually free the native data structure for
peer classes, you need not define a finalizer. You should make sure, however, to
free native data structures in all paths of execution; otherwise you may have cre-
ated a resource leak. Pay special attention to possible exceptions thrown during
the process of using a peer instance. Always free native data structures in a
finally clause:

CMalloc cptr = new CMalloc(10);
try {
 ... // use cptr
} finally {
 cptr.free();
}

jni.book Page 126 Thursday, February 21, 2002 4:36 PM

LEVERAGING EXISTING NATIVE LIBRARIES Backpointers to Peer Instances 9.5.3

127

The finally clause ensures that cptr is freed even if an exception occurs
inside the try block.

9.5.3 Backpointers to Peer Instances

We have shown that peer classes typically contain a private field that refers to the
underlying native data structure. In some cases it is desirable to also include a ref-
erence from the native data structure to instances of the peer class. This happens,
for example, when the native code needs to initiate callbacks to instance methods
in the peer class.

Suppose that we are building a hypothetical user interface component called
KeyInput. KeyInput’s native C++ component, key_input, receives an event as a
key_pressed C++ function call from the operating system when the user presses
a key. The key_input C++ component reports the operating system event to the
KeyInput instance by calling the keyPressed method on the KeyInput instance.
The arrows in the figure below indicate how a key press event is originated by a
user key press and propagated from the key_input C++ component to the Key-

Input peer instance:

The KeyInput peer class is defined as follows:

class KeyInput {
 private long peer;
 private native long create();
 private native void destroy(long peer);
 public KeyInput() {
 peer = create();
 }
 public destroy() {
 destroy(peer);
 }
 private void keyPressed(int key) {
 ... /* process the key event */
 }
}

key_pressed() {

key_input C++ component

 ...
}

KeyInput() {

KeyInput instance

 ...
}

User key press

jni.book Page 127 Thursday, February 21, 2002 4:36 PM

9.5.3 Backpointers to Peer Instances LEVERAGING EXISTING NATIVE LIBRARIES

128

The create native method implementation allocates an instance of the C++
structure key_input. C++ structures are similar to C++ classes, with the only dif-
ference being that all members are by default public as opposed to private. We use
a C++ structure instead of a C++ class in this example mainly to avoid confusion
with classes in the Java programming language.

// C++ structure, native counterpart of KeyInput
struct key_input {
 jobject back_ptr; // back pointer to peer instance

int key_pressed(int key); // called by the operating system
};

JNIEXPORT jlong JNICALL
Java_KeyInput_create(JNIEnv *env, jobject self)
{
 key_input *cpp_obj = new key_input();
 cpp_obj->back_ptr = env->NewGlobalRef(self);
 return (jlong)cpp_obj;
}

JNIEXPORT void JNICALL
Java_KeyInput_destroy(JNIEnv *env, jobject self, jlong peer)
{
 key_input *cpp_obj = (key_input*)peer;
 env->DeleteGlobalRef(cpp_obj->back_ptr);
 delete cpp_obj;
 return;
}

The create native method allocates the C++ structure and initializes its
back_ptr field to a global reference to the KeyInput peer instance. The destroy

native method deletes the global reference to the peer instance and the C++ struc-
ture referred to by the peer instance. The KeyInput constructor calls the create

native method to set up the links between a peer instance and its native counter-
part:

KeyInput instance C++ key_input structure

peer back_ptr

JNI global

64-bit long

reference

jni.book Page 128 Thursday, February 21, 2002 4:36 PM

LEVERAGING EXISTING NATIVE LIBRARIES Backpointers to Peer Instances 9.5.3

129

When the user presses a key, the operating system calls the C++ member
function key_input::key_pressed. This member function responds to events by
issuing a callback to the keyPressed method on the KeyInput peer instance.

// returns 0 on success, -1 on failure
int key_input::key_pressed(int key)
{
 jboolean has_exception;
 JNIEnv *env = JNU_GetEnv();
 JNU_CallMethodByName(env,
 &has_exception,
 java_peer,
 "keyPressed",
 "()V",
 key);
 if (has_exception) {
 env->ExceptionClear();
 return -1;
 } else {
 return 0;
 }
}

The key_press member function clears any exceptions after the callback and
returns error conditions to the operating system using the -1 return code. Refer to
Sections 6.2.3 and 8.4.1 for the definitions of JNU_CallMethodByName and
JNU_GetEnv utility functions respectively.

Let us discuss one final issue before concluding this section. Suppose that you
add a finalize method in the KeyInput class to avoid potential memory leaks:

class KeyInput {
 ...
 public synchronized destroy() {
 if (peer != 0) {
 destroy(peer);
 peer = 0;
 }
 }
 protect void finalize() {
 destroy();
 }
}

The destroy method checks whether the peer field is zero, and sets the peer

field to zero after calling the overloaded destroy native method. It is defined as a
synchronized method to avoid race conditions.

jni.book Page 129 Thursday, February 21, 2002 4:36 PM

9.5.3 Backpointers to Peer Instances LEVERAGING EXISTING NATIVE LIBRARIES

130

The above code will not work as you might expect, however. The virtual
machine will never garbage collect any KeyInput instances unless you call
destroy explicitly. The KeyInput constructor creates a JNI global reference to
the KeyInput instance. The global reference prevents the KeyInput instance from
being garbage collected. You can overcome this problem by using a weak global
reference instead of a global reference:

JNIEXPORT jlong JNICALL
Java_KeyInput_create(JNIEnv *env, jobject self)
{
 key_input *cpp_obj = new key_input();
 cpp_obj->back_ptr = env->NewWeakGlobalRef(self);
 return (jlong)cpp_obj;
}

JNIEXPORT void JNICALL
Java_KeyInput_destroy(JNIEnv *env, jobject self, jlong peer)
{
 key_input *cpp_obj = (key_input*)peer;
 env->DeleteWeakGlobalRef(cpp_obj->back_ptr);
 delete cpp_obj;
 return;
}

jni.book Page 130 Thursday, February 21, 2002 4:36 PM

131

C H A P T E R 10
Traps and Pitfalls

TO highlight the important techniques covered in previous chapters, this chapter
covers a number of mistakes commonly made by JNI programmers. Each mistake
described here has occurred in real-world projects.

10.1 Error Checking

The most common mistake when writing native methods is forgetting to check
whether an error condition has occurred. Unlike the Java programming language,
native languages do not offer standard exception mechanisms. The JNI does not
rely on any particular native exception mechanism (such as C++ exceptions). As a
result, programmers are required to perform explicit checks after every JNI func-
tion call that could possibly raise an exception. Not all JNI functions raise excep-
tions, but most can. Exception checks are tedious, but are necessary to ensure that
the application using native methods is robust.

The tediousness of error checking greatly emphasizes the need to limit native
code to those well-defined subsets of an application where it is necessary to use
the JNI (§10.5).

10.2 Passing Invalid Arguments to JNI Functions

The JNI functions do not attempt to detect or recover from invalid arguments. If
you pass NULL or (jobject)0xFFFFFFFF to a JNI function that expects a refer-
ence, the resulting behavior is undefined. In practice this could either lead to
incorrect results or virtual machine crashes. Java 2 SDK release 1.2 provides you
with a command-line option -Xcheck:jni. This option instructs the virtual
machine to detect and report many, though not all, cases of native code passing
illegal arguments to JNI functions. Checking the validity of arguments incurs a
significant amount of overhead and thus is not enabled by default.

jni.book Page 131 Thursday, February 21, 2002 4:36 PM

10.3 Confusing jclass with jobject TRAPS AND PITFALLS

132

Not checking the validity of arguments is a common practice in C and C++
libraries. Code that uses the library is responsible for making sure that all the
arguments passed to library functions are valid. If, however, you are used to the
Java programming language, you may have to adjust to this particular aspect of
the lack of safety in JNI programming.

10.3 Confusing jclass with jobject

The differences between instance references (a value of the jobject type) and
class references (a value of the jclass type) can be confusing when first using the
JNI.

Instance references correspond to arrays and instances of java.lang.Object
or one of its subclasses. Class references correspond to java.lang.Class

instances, which represent class types.
An operation such as GetFieldID, which takes a jclass, is a class operation

because it gets the field descriptor from a class. In contrast, GetIntField, which
takes a jobject, is an instance operation because it gets the value of a field from
an instance. The association of jobject with instance operations and the associa-
tion of jclass with class operations are consistent across all JNI functions, so it is
easy to remember that class operations are distinct from instance operations.

10.4 Truncating jboolean Arguments

A jboolean is an 8-bit unsigned C type that can store values from 0 to 255. The
value 0 corresponds to the constant JNI_FALSE, and the values from 1 to 255 cor-
respond to JNI_TRUE. But 32-bit or 16-bit values greater than 255 whose lower 8
bits are 0 pose a problem.

Suppose you have defined a function print that takes an argument condi-
tion whose type is jboolean:

void print(jboolean condition)
{

/* C compilers generate code that truncates condition
 to its lower 8 bits. */
 if (condition) {
 printf("true\n");
 } else {
 printf("false\n");
 }
}

jni.book Page 132 Thursday, February 21, 2002 4:36 PM

TRAPS AND PITFALLS Boundaries between Java Application and Native Code 10.5

133

There is nothing wrong with the previous definition. However, the following
innocent-looking call to print will produce a somewhat unexpected result:

int n = 256; /* the value 0x100, whose lower 8 bits are all 0 */
print(n);

We passed a non-zero value (256) to print expecting that it would represent
true. But because all bits other than the lower 8 are truncated, the argument evalu-
ates to 0. The program prints “false,” contrary to expectations.

A good rule of thumb when coercing integral types, such as int, to jboolean

is always to evaluate conditions on the integral type, thereby avoiding inadvertent
errors during coercion. You can rewrite the call to print as follows:

n = 256;
print (n ? JNI_TRUE : JNI_FALSE);

10.5 Boundaries between Java Application and Native Code

A common question when designing a Java application supported by native code
is “What, and how much, should be in native code?” The boundaries between the
native code and the rest of the application written in the Java programming lan-
guage are application-specific, but there are some generally applicable principles:

• Keep the boundaries simple. Complex control flow that goes back and forth
between the Java virtual machine and native code can be hard to debug and
maintain. Such control flow also gets in the way of optimizations performed
by high-performance virtual machine implementations. For example, it is
much easier for a virtual machine implementation to inline methods defined in
the Java programming language than to inline native methods defined in C
and C++.

• Keep the code on the native code side minimal. There are compelling reasons
to do so. Native code is neither portable nor type-safe. Error checking in
native code is tedious (§10.1). It is good software engineering to keep such
parts to a minimum.

• Keep native code isolated. In practice, this could mean that all native methods
are in the same package or in the same class, isolated from the rest of the
application. The package or the class containing native methods essentially
becomes the “porting layer” for the application.

The JNI provides access to virtual machine functionality such as class load-
ing, object creation, field access, method calls, thread synchronization, and so

jni.book Page 133 Thursday, February 21, 2002 4:36 PM

10.6 Confusing IDs with References TRAPS AND PITFALLS

134

forth. It is sometimes tempting to express complex interactions with Java virtual
machine functionality in native code, when in fact it is simpler to accomplish the
same task in the Java programming language. The following example shows why
“Java programming in native code” is bad practice. Consider a simple statement
that creates a new thread written in the Java programming language:

new JobThread().start();

The same statement can also be written in native code:

/* Assume these variables are precomputed and cached:
 * Class_JobThread: the class "JobThread"
 * MID_Thread_init: method ID of constructor
 * MID_Thread_start: method ID of Thread.start()
 */
aThreadObject =
 (*env)->NewObject(env, Class_JobThread, MID_Thread_init);
if (aThreadObject == NULL) {
 ... /* out of memory */
}
(*env)->CallVoidMethod(env, aThreadObject, MID_Thread_start);
if ((*env)->ExceptionOccurred(env)) {
 ... /* thread did not start */
}

The native code is much more complex than its equivalent written in the Java
programming language despite the fact that we have omitted the lines of code
needed for error checks.

Rather than writing a complex segment of native code manipulating the Java
virtual machine, it is often preferable to define an auxiliary method in the Java
programming language and have the native code issue a callback to the auxiliary
method.

10.6 Confusing IDs with References

The JNI exposes objects as references. Classes, strings, and arrays are special
types of references. The JNI exposes methods and fields as IDs. An ID is not a ref-
erence. Do not call a class reference a “class ID” or a method ID a “method refer-
ence.”

jni.book Page 134 Thursday, February 21, 2002 4:36 PM

TRAPS AND PITFALLS Caching Field and Method IDs 10.7

135

References are virtual machine resources that can be managed explicitly by
native code. The JNI function DeleteLocalRef, for example, allows native code
to delete a local reference. In contrast, field and method IDs are managed by the
virtual machine and remain valid until their defining class is unloaded. Native
code cannot explicitly delete a field or method ID before the the virtual machine
unloads the defining class.

Native code may create multiple references that refer to the same object. A
global and a local reference, for example, may refer to the same object. In con-
trast, a unique field or method ID is derived for the same definition of a field or a
method. If class A defines method f and class B inherits f from A, the two Get-

MethodID calls in the following code always return the same result:

jmethodID MID_A_f = (*env)->GetMethodID(env, A, "f", "()V");
jmethodID MID_B_f = (*env)->GetMethodID(env, B, "f", "()V");

10.7 Caching Field and Method IDs

Native code obtains field or method IDs from the virtual machine by specifying
the name and type descriptor of the field or method as strings (§4.1, §4.2). Field
and method lookups using name and type strings are slow. It often pays off to
cache the IDs. Failure to cache field and method IDs is a common performance
problem in native code.

In some cases caching IDs is more than a performance gain. A cached ID may
be necessary to ensure that the correct field or method is accessed by native code.
The following example illustrates how the failure to cache a field ID can lead to a
subtle bug:

class C {
 private int i;
 native void f();
}

Suppose that the native method f needs to obtain the value of the field i in an
instance of C. A straightforward implementation that does not cache an ID accom-
plishes this in three steps: 1) get the class of the object; 2) look up the field ID for
i from the class reference; and 3) access the field value based on the object refer-
ence and field ID:

jni.book Page 135 Thursday, February 21, 2002 4:36 PM

10.7 Caching Field and Method IDs TRAPS AND PITFALLS

136

// No field IDs cached.
JNIEXPORT void JNICALL
Java_C_f(JNIEnv *env, jobject this) {
 jclass cls = (*env)->GetObjectClass(env, this);
 ... /* error checking */
 jfieldID fid = (*env)->GetFieldID(env, cls, "i", "I");
 ... /* error checking */
 ival = (*env)->GetIntField(env, this, fid);
 ... /* ival now has the value of this.i */
}

The code works fine until we define another class D as a subclass of C, and
declare a private field also named “i” in D:

// Trouble in the absence of ID caching
class D extends C {
 private int i;
 D() {
 f(); // inherited from C
 }
}

When D’s constructor calls C.f, the native method receives an instance of D as
the this argument, cls refers to the D class, and fid represents D.i. At the end of
the native method, ival contains the value of D.i, instead of C.i. This might not
be what you expected when implementing native method C.f.

The solution is to compute and cache the field ID at the time when you are
certain that you have a class reference to C, not D. Subsequent accesses from this
cached ID will always refer to the right field C.i. Here is the corrected version:

// Version that caches IDs in static initializers
class C {
 private int i;
 native void f();
 private static native void initIDs();
 static {
 initIDs(); // Call an initializing native method
 }
}

The modified native code is:

jni.book Page 136 Thursday, February 21, 2002 4:36 PM

TRAPS AND PITFALLS Violating Access Control Rules 10.9

137

static jfieldID FID_C_i;

JNIEXPORT void JNICALL
Java_C_initIDs(JNIEnv *env, jclass cls) {
 /* Get IDs to all fields/methods of C that

 native methods will need. */
 FID_C_i = (*env)->GetFieldID(env, cls, "i", "I");
}

JNIEXPORT void JNICALL
Java_C_f(JNIEnv *env, jobject this) {
 ival = (*env)->GetIntField(env, this, FID_C_i);
 ... /* ival is always C.i, not D.i */
}

The field ID is computed and cached in C’s static initializer. This guarantees
that the field ID for C.i will be cached, and thus the native method implementa-
tion Java_C_f will read the value of C.i independent of the actual class of the
this object.

Caching may be needed for some method calls as well. If we change the
above example slightly so that classes C and D each have their own definition of a
private method g, f needs to cache the method ID of C.g to avoid accidentally
calling D.g. Caching is not needed for making correct virtual method calls. Virtual
methods by definition dynamically bind to the instance on which the method is
invoked. Thus you can safely use the JNU_CallMethodByName utility function
(§6.2.3) to call virtual methods. The previous example tells us, however, why we
do not define a similar JNU_GetFieldByName utility function.

10.8 Terminating Unicode Strings

Unicode strings obtained from GetStringChars or GetStringCritical are not
NULL-terminated. Call GetStringLength to find out the number of 16-bit Unicode
characters in a string. Some operating systems, such as Windows NT, expect two
trailing zero byte values to terminate Unicode strings. You cannot pass the result
of GetStringChars to Windows NT APIs that expect a Unicode string. You must
make another copy of the string and insert the two trailing zero byte values.

10.9 Violating Access Control Rules

The JNI does not enforce class, field, and method access control restrictions that
can be expressed at the Java programming language level through the use of mod-

jni.book Page 137 Thursday, February 21, 2002 4:36 PM

10.10 Disregarding Internationalization TRAPS AND PITFALLS

138

ifiers such as private and final. It is possible to write native code to access or
modify fields of an object even though doing so at the Java programming language
level would lead to an IllegalAccessException. JNI’s permissiveness was a
conscious design decision, given that native code can access and modify any
memory location in the heap anyway.

Native code that bypasses source-language-level access checks may have
undesirable effects on program execution. For example, an inconsistency may be
created if a native method modifies a final field after a just-in-time (JIT) com-
piler has inlined accesses to the field. Similarly, native methods should not modify
immutable objects such as fields in instances of java.lang.String or
java.lang.Integer. Doing so may lead to breakage of invariants in the Java
platform implementation.

10.10 Disregarding Internationalization

Strings in the Java virtual machine consist of Unicode characters, whereas native
strings are typically in a locale-specific encoding. Use utility functions such as
JNU_NewStringNative (§8.2.1) and JNU_GetStringNativeChars (§8.2.2) to
translate between Unicode jstrings and locale-specific native strings of the
underlying host environment. Pay special attention to message strings and file
names, which typically are internationalized. If a native method gets a file name as
a jstring, the file name must be translated to a native string before being passed
to a C library routine.

The following native method, MyFile.open, opens a file and returns the file
descriptor as its result:

JNIEXPORT jint JNICALL
Java_MyFile_open(JNIEnv *env, jobject self, jstring name,
 jint mode)
{
 jint result;
 char *cname = JNU_GetStringNativeChars(env, name);
 if (cname == NULL) {
 return 0;
 }
 result = open(cname, mode);
 free(cname);
 return result;
}

jni.book Page 138 Thursday, February 21, 2002 4:36 PM

TRAPS AND PITFALLS Retaining Virtual Machine Resources 10.11

139

We translate the jstring argument using the JNU_GetStringNativeChars

function because the open system call expects the file name to be in the locale-
specific encoding.

10.11 Retaining Virtual Machine Resources

A common mistake in native methods is forgetting to free virtual machine
resources. Programmers need to be particularly careful in code paths that are only
executed when there is an error. The following code segment, a slight modifica-
tion of an example in Section 6.2.2, misses a ReleaseStringChars call:

JNIEXPORT void JNICALL
Java_pkg_Cls_f(JNIEnv *env, jclass cls, jstring jstr)
{
 const jchar *cstr =
 (*env)->GetStringChars(env, jstr, NULL);
 if (cstr == NULL) {
 return;
 }
 ...
 if (...) { /* exception occurred */
 /* misses a ReleaseStringChars call */
 return;
 }
 ...
 /* normal return */
 (*env)->ReleaseStringChars(env, jstr, cstr);
}

Forgetting to call the ReleaseStringChars function may cause either the
jstring object to be pinned indefinitely, leading to memory fragmentation, or the
C copy to be retained indefinitely, a memory leak.

There must be a corresponding ReleaseStringChars call whether or not
GetStringChars has made a copy of the string. The following code fails to
release virtual machine resources properly:

jni.book Page 139 Thursday, February 21, 2002 4:36 PM

10.12 Excessive Local Reference Creation TRAPS AND PITFALLS

140

/* The isCopy argument is misused here! */
JNIEXPORT void JNICALL
Java_pkg_Cls_f(JNIEnv *env, jclass cls, jstring jstr)
{
 jboolean isCopy;
 const jchar *cstr = (*env)->GetStringChars(env, jstr,
 &isCopy);
 if (cstr == NULL) {
 return;
 }
 ... /* use cstr */

/* This is wrong. Always need to call ReleaseStringChars. */
 if (isCopy) {
 (*env)->ReleaseStringChars(env, jstr, cstr);
 }
}

The call to ReleaseStringChars is still needed even when isCopy is
JNI_FALSE so that the virtual machine will unpin the jstring elements.

10.12 Excessive Local Reference Creation

Excessive local reference creation causes programs to retain memory unnecessar-
ily. An unnecessary local reference wastes memory both for the referenced object
and for the reference itself.

Pay special attention to long-running native methods, local references created
in loops, and utility functions. Take advantage of the new Push/PopLocalFrame

functions in Java 2 SDK release 1.2 to manage local references more effectively.
Refer to Section 5.2.1 and Section 5.2.2 for a more detailed discussion of this
problem.

You can specify the -verbose:jni option in Java 2 SDK 1.2 to ask the virtual
machine to detect and report excessive local reference creation. Suppose that you
run a class Foo with this option:

% java -verbose:jni Foo

and the output contains the following:

***ALERT: JNI local ref creation exceeded capacity
 (creating: 17, limit: 16).
 at Baz.g (Native method)
 at Bar.f (Compiled method)
 at Foo.main (Compiled method)

jni.book Page 140 Thursday, February 21, 2002 4:36 PM

TRAPS AND PITFALLS Mismatched Thread Models 10.15

141

It is likely that the native method implementation for Baz.g fails to manage
local references properly.

10.13 Using Invalid Local References

Local references are valid only inside a single invocation of a native method.
Local references created in a native method invocation are freed automatically
after the native function that implements the method returns. Native code should
not store a local reference in a global variable and expect to use it in later invoca-
tions of the native method.

Local references are valid only within the thread in which they are created.
You should not pass a local reference from one thread to another. Create a global
reference when it is necessary to pass a reference across threads.

10.14 Using the JNIEnv across Threads

The JNIEnv pointer, passed as the first argument to every native method, can only
be used in the thread with which it is associated. It is wrong to cache the JNIEnv

interface pointer obtained from one thread, and use that pointer in another thread.
Section 8.1.4 explains how you can obtain the JNIEnv interface pointer for the
current thread.

10.15 Mismatched Thread Models

The JNI works only if the host native code and the Java virtual machine imple-
mentation share the same thread model (§8.1.5). For example, programmers can-
not attach native platform threads to an embedded Java virtual machine
implemented using a user thread package.

On Solaris, Sun ships a virtual machine implementation that is based on a user
thread package known as Green threads. If your native code relies on Solaris
native thread support, it will not work with a Green-thread-based Java virtual
machine implementation. You need a virtual machine implementation that is
designed to work with Solaris native threads. Native threads support in Solaris
JDK release 1.1 requires a separate download. The native threads support is bun-
dled with Solaris Java 2 SDK release 1.2.

Sun’s virtual machine implementation on Win32 supports native threads by
default, and can be easily embedded into native Win32 applications.

jni.book Page 141 Thursday, February 21, 2002 4:36 PM

jni.book Page 142 Thursday, February 21, 2002 4:36 PM

Part Three: Specification

jni.book Page 143 Thursday, February 21, 2002 4:36 PM

jni.book Page 144 Thursday, February 21, 2002 4:36 PM

145

C H A P T E R 11
Overview of the JNI Design

THIS chapter gives an overview of the JNI design. Where necessary, we also
provide the underlying technical motivation. The design overview serves as the
specification for key JNI concepts such as the JNIEnv interface pointer, local and
global references, and field and method IDs. The technical motivation aims at
helping the reader to understand various design trade-offs. On a few occasions, we
will discuss how certain features may be implemented. The purpose of such dis-
cussion is not to present a practical implementation strategy, but instead to clarify
the subtle semantic issues.

The concept of a programming interface that bridges different languages is
not new. For example, C programs can typically call functions written in lan-
guages such as FORTRAN and assembly. Similarly, implementations of program-
ming languages such as LISP and Smalltalk support a variety of foreign function
interfaces.

The JNI addresses an issue similar to that addressed by the interoperability
mechanisms supported by other languages. There is, however, a significant differ-
ence between the JNI and the interoperability mechanisms used in many other
languages. The JNI is not designed for a particular implementation of the Java vir-
tual machine. Rather, it is a native interface that can be supported by every imple-
mentation of the Java virtual machine. We will further elaborate on this as we
describe the JNI design goals.

11.1 Design Goals

The most important goal of the JNI design is ensuring that it offers binary com-
patibility among different Java virtual machine implementations on a given host
environment. The same native library binary will run on different virtual machine
implementations on a given host environment without the need for recompilation.

To achieve this goal, the JNI design cannot make any assumptions about the
internal details of the Java virtual machine implementation. Because Java virtual
machine implementation technologies are evolving rapidly, we must be careful to

jni.book Page 145 Thursday, February 21, 2002 4:36 PM

11.2 Loading Native Libraries OVERVIEW OF THE JNI DESIGN

146

avoid introducing any constraints that may interfere with advanced implementa-
tion techniques in the future.

The second goal of JNI design is efficiency. To support time-critical code, the
JNI imposes as little overhead as possible. We will see, however, that our first
goal, the need for implementation-independence, sometimes requires us to adopt a
slightly less efficient design than we might have otherwise. We strike a compro-
mise between efficiency and implementation-independence.

Lastly, the JNI must be functionally complete. It must expose enough Java vir-
tual machine functionality to enable native methods and applications to accom-
plish useful tasks.

It is not the goal of JNI to be the only native programming interface supported
by a given Java virtual machine implementation. A standard interface benefits
programmers who would like to load their native code libraries into different Java
virtual machine implementations. In some cases, however, a lower-level imple-
mentation-specific interface may achieve higher performance. In other cases, the
programmer might use a higher-level interface to build software components.

11.2 Loading Native Libraries

Before an application can invoke a native method, the virtual machine must locate
and load a native library that contains an implementation of the native method.

11.2.1 Class Loaders

Native libraries are located by class loaders. Class loaders have many uses in the
Java virtual machine including, for example, loading class files, defining classes
and interfaces, providing namespace separation among software components,
resolving symbolic references among different classes and interfaces, and finally,
locating native libraries. We assume that you have a basic understanding of class
loaders, so we will not go into the details of how they load and link classes in the
Java virtual machine. You can find out more details on class loaders in the paper
Dynamic Class Loading in the Java Virtual Machine, by Sheng Liang and Gilad
Bracha, published in the proceedings of the ACM Conference on Object Oriented
Programming Systems, Languages, and Applications (OOPSLA), 1998.

Class loaders provide the namespace separation needed to run multiple com-
ponents (such as the applets downloaded from different web sites) inside an
instance of the same virtual machine. A class loader maintains a separate
namespace by mapping class or interface names to actual class or interface types
represented as objects in the Java virtual machine. Each class or interface type is
associated with its defining loader, the loader that initially reads the class file and

jni.book Page 146 Thursday, February 21, 2002 4:36 PM

OVERVIEW OF THE JNI DESIGN Class Loaders and Native Libraries 11.2.2

147

defines the class or interface object. Two class or interface types are the same only
when they have the same name and the same defining loader. For example, in Fig-
ure 11.1, class loaders L1 and L2 each define a class named C. These two classes
named C are not the same. Indeed, they contain two different f methods that have
distinct return types.

Figure 11.1 Two classes of the same name loaded by different class loaders

The dotted lines in the above figure represent the delegation relationships
among class loaders. A class loader may ask another class loader to load a class or
an interface on its behalf. For example, both L1 and L2 delegate to the bootstrap
class loader for loading the system class java.lang.String. Delegation allows
system classes to be shared among all class loaders. This is necessary because
type safety would be violated if, for example, application and system code had
different notions of what the type java.lang.String was.

11.2.2 Class Loaders and Native Libraries

Now suppose the method f in both classes C are native methods. The virtual
machine locates the native implementation for both C.f methods using the name
“C_f”. To ensure that each C class links with the correct native function, each class
loader must maintain its own set of native libraries, as shown in Figure 11.2.

class C {
 String f();
}

class C {
 int f();
}

java.lang.String
and other system

Bootstrap class loader

Class loader L1 Class loader L2

classes

jni.book Page 147 Thursday, February 21, 2002 4:36 PM

11.2.3 Locating Native Libraries OVERVIEW OF THE JNI DESIGN

148

Figure 11.2 Associating native libraries with class loaders

Because each class loader maintains a set of native libraries, the programmer
may use a single library to store all the native methods needed by any number of
classes as long as those classes have the same defining loader.

Native libraries will automatically be unloaded by the virtual machine when
their corresponding class loaders are garbage collected (§11.2.5).

11.2.3 Locating Native Libraries

Native libraries are loaded by the System.loadLibrary method. In the following
example, the static initializer of class Cls loads a platform-specific native library
in which the native method f is defined:

package pkg;
class Cls {
 native double f(int i, String s);
 static {
 System.loadLibrary("mypkg");
 }
}

class C {
 native String f();
}

class C {
 native int f();
}

java.lang.String
and other system

Bootstrap class loader

Class loader L1 Class loader L2

classes

Native libraries
associated with L1

Native libraries
associated with L2

Native libraries
associated with
system classes

C_f
...

C_f
...

jni.book Page 148 Thursday, February 21, 2002 4:36 PM

OVERVIEW OF THE JNI DESIGN Locating Native Libraries 11.2.3

149

The argument to System.loadLibrary is a library name chosen by the pro-
grammer. Software developers are responsible for choosing native library names
that minimize the chance of name clashes. The virtual machine follows a standard,
but host environment specific, convention to convert the library name to a native
library name. For example, the Solaris operating system converts the name mypkg

to libmypkg.so, while the Win32 operating system converts the same mypkg

name to mypkg.dll.
When the Java virtual machine starts up, it constructs a list of directories that

will be used to locate native libraries for application classes. The contents of the
list are dependent upon the host environment and the virtual machine implementa-
tion. For example, under the Win32 JDK or Java 2 SDK releases, the list of direc-
tories consists of the Windows system directories, the current working directory,
and the entries in the PATH environment variable. Under the Solaris JDK or Java 2
SDK releases, the list of directories consists of the entries in the
LD_LIBRARY_PATH environment variable.

System.loadLibrary throws an UnsatisfiedLinkError if it fails to load the
named native library. System.loadLibrary completes silently if an earlier call to
System.loadLibrary has already loaded the same native library. If the underly-
ing operating system does not support dynamic linking, all native methods must
be prelinked with the virtual machine. In this case, the virtual machine completes
the System.loadLibrary calls without actually loading the library.

The virtual machine internally maintains a list of loaded native libraries for
each class loader. It follows three steps to determine which class loader should be
associated with a newly loaded native library:

1. determine the immediate caller of System.loadLibrary

2. identify the class that defines the caller

3. obtain the defining loader of the caller class

In the following example, the native library foo will be associated with C’s
defining loader:

class C {
 static {
 System.loadLibrary("foo");
 }
}

Java 2 SDK release 1.2 introduces a new ClassLoader.findLibrary method
that allows the programmer to specify a custom library loading policy that is spe-
cific to a given class loader. The ClassLoader.findLibrary method takes a plat-
form-independent library name (such as mypkg) as an argument, and:

jni.book Page 149 Thursday, February 21, 2002 4:36 PM

11.2.4 A Type Safety Restriction OVERVIEW OF THE JNI DESIGN

150

• either returns null to instruct the virtual machine to follow the default library
search path,

• or returns a host-environment-dependent absolute path of the library file (such
as "c:\\mylibs\\mypkg.dll").

ClassLoader.findLibrary is typically used with another method added in
the Java 2 SDK release 1.2, System.mapLibraryName. System.mapLibrary-

Name maps platform-independent library names (such as mypkg) to platform-
dependent library file names (such as mypkg.dll).

You can override the default library search path in Java 2 SDK release 1.2 by
setting the property java.library.path. For example, the following command
line starts up a program Foo which needs to load a native library in the c:\mylibs

directory:

java -Djava.library.path=c:\mylibs Foo

11.2.4 A Type Safety Restriction

The virtual machine does not allow a given JNI native library to be loaded by
more than one class loader. Attempting to load the same native library by multiple
class loaders causes an UnsatisfiedLinkError to be thrown. The purpose of this
restriction is to make sure that namespace separation based on class loaders is pre-
served in native libraries. Without this restriction, it becomes much easier to mis-
takenly intermix classes and interfaces from different class loaders through native
methods. Consider a native method Foo.f that caches its own defining class Foo

in a global reference:

JNIEXPORT void JNICALL
Java_Foo_f(JNIEnv *env, jobject self)
{
 static jclass cachedFooClass; /* cached class Foo */
 if (cachedFooClass == NULL) {
 jclass fooClass = (*env)->FindClass(env, "Foo");
 if (fooClass == NULL) {
 return; /* error */
 }
 cachedFooClass = (*env)->NewGlobalRef(env, fooClass);
 if (cachedFooClass == NULL) {
 return; /* error */
 }
 }
 assert((*env)->IsInstanceOf(env, self, cachedFooClass));
 ... /* use cachedFooClass */
}

jni.book Page 150 Thursday, February 21, 2002 4:36 PM

OVERVIEW OF THE JNI DESIGN Linking Native Methods 11.3

151

We expect the assertion to succeed because Foo.f is an instance method and
self refers to an instance of Foo. The assertion could fail, however, if two differ-
ent Foo classes are loaded by class loaders L1 and L2 and both Foo classes are
linked with the previous implementation of Foo.f. The cachedFooClass global
reference will be created for the Foo class whose f method is invoked first. A later
invocation of the f method of the other Foo class will cause the assertion to fail.

JDK release 1.1 did not properly enforce native library separation among
class loaders. This means that it would be possible for two classes in different
class loaders to link with the same native method. As shown by the previous
example, the approach in JDK release 1.1 leads to the following two problems:

• A class may mistakenly link with native libraries that were loaded by a class
with the same name in a different class loader.

• Native methods can easily mix classes from different class loaders. This
breaks the namespace separation offered by class loaders, and leads to type
safety problems.

11.2.5 Unloading Native Libraries

The virtual machine unloads a native library after it garbage collects the class
loader associated with the native library. Because classes refer to their defining
loaders, this implies that the virtual machine has also unloaded the class whose
static initializer called System.loadLibrary and loaded the native library
(§11.2.2).

11.3 Linking Native Methods

The virtual machine attempts to link each native method before invoking it for the
first time. The earliest time that a native method f can be linked is the first invoca-
tion of a method g, where there is a reference from the method body of g to f. Vir-
tual machine implementations should not try to link a native method too early.
Doing so could lead to unexpected linkage errors because the native library that
implements the native method may not have been loaded.

Linking a native method involves the following steps:

• Determining the class loader of the class that defines the native method.

• Searching the set of native libraries associated with this class loader to locate
the native function that implements the native method.

• Setting up the internal data structures so that all future calls to the native
method will jump directly to the native function.

jni.book Page 151 Thursday, February 21, 2002 4:36 PM

11.3 Linking Native Methods OVERVIEW OF THE JNI DESIGN

152

The virtual machine deduces the name of the native function from the name of
the native method by concatenating the following components:

• the prefix “Java_”

• an encoded fully qualified class name

• an underscore (“_”) separator

• an encoded method name

• for overloaded native methods, two underscores (“__”) followed by the
encoded argument descriptor

The virtual machine iterates through all native libraries associated with the
defining loader to search for a native function with an appropriate name. For each
native library, the virtual machine looks first for the short name, that is, the name
without the argument descriptor. It then looks for the long name, which is the
name with the argument descriptor. Programmers need to use the long name only
when a native method is overloaded with another native method. However, this is
not a problem if the native method is overloaded with a non-native method. The
latter does not reside in a native library.

In the following example, the native method g does not have to be linked
using the long name because the other method g is not a native method.

class Cls1 {
 int g(int i) { ... } // regular method
 native int g(double d);
}

The JNI adopts a simple name-encoding scheme to ensure that all Unicode
characters translate into valid C function names. The underscore (“_”) character
separates the components of fully qualified class names. Because a name or type
descriptor never begins with a number, we can use _0, ..., _9 for escape sequences,
as illustrated below:

Escape Sequence Denotes

_0XXXX a Unicode character XXXX

1 the character “”

_2 the character “;” in descriptors

_3 the character “[” in descriptors

jni.book Page 152 Thursday, February 21, 2002 4:36 PM

OVERVIEW OF THE JNI DESIGN Organization of the JNIEnv Interface Pointer 11.5.1

153

If native functions matching an encoded native method name are present in
multiple native libraries, the function in the native library that is loaded first is
linked with the native method. If no function matches the native method name, an
UnsatisfiedLinkError is thrown.

The programmer can also call the JNI function RegisterNatives to register
the native methods associated with a class. The RegisterNatives function is par-
ticularly useful with statically linked functions.

11.4 Calling Conventions

The calling convention determines how a native function receives arguments and
returns results. There is no standard calling convention among various native lan-
guages, or among different implementations of the same language. For example, it
is common for different C++ compilers to generate code that follows different
calling conventions.

It would be difficult, if not impossible, to require the Java virtual machine to
interoperate with a wide variety of native calling conventions. The JNI requires
the native methods to be written in a specified standard calling convention on a
given host environment. For example, the JNI follows the C calling convention on
UNIX and the stdcall convention on Win32.

When programmers need to call functions that follow a different calling con-
vention, they must write stub routines that adapt the JNI calling conventions to
those of the appropriate native language.

11.5 The JNIEnv Interface Pointer

Native code accesses virtual machine functionality by calling various functions
exported through the JNIEnv interface pointer.

11.5.1 Organization of the JNIEnv Interface Pointer

A JNIEnv interface pointer is a pointer to thread-local data, which in turn contains
a pointer to a function table. Every interface function is at a predefined offset in
the table. The JNIEnv interface is organized like a C++ virtual function table and

jni.book Page 153 Thursday, February 21, 2002 4:36 PM

11.5.1 Organization of the JNIEnv Interface Pointer OVERVIEW OF THE JNI DESIGN

154

is also like a Microsoft COM interface. Figure 11.3 illustrates a set of JNIEnv

interface pointers.

Figure 11.3 Thread Local JNIEnv Interface Pointers

Functions that implement a native method receive the JNIEnv interface
pointer as their first argument. The virtual machine is guaranteed to pass the same
interface pointer to native method implementation functions called from the same
thread. However, a native method can be called from different threads, and there-
fore may be passed different JNIEnv interface pointers. Although the interface
pointer is thread-local, the doubly indirected JNI function table is shared among
multiple threads.

The reason the JNIEnv interface pointer refers to a thread-local structure is
that some platforms do not have efficient support for thread-local storage access.
By passing around a thread-local pointer, the JNI implementation inside the vir-
tual machine can avoid many thread-local storage access operations that it would
otherwise have to perform.

Thread #1’s JNIEnv interface pointer

...

per-thread
data

Table of JNI functions

Pointer

 interface
function

 interface
function

 interface
function

Pointer

Pointer

Pointer

Thread #n’s JNIEnv interface pointer

per-thread
data

Pointer

Thread #2’s JNIEnv interface pointer

per-thread
data

Pointer

...

jni.book Page 154 Thursday, February 21, 2002 4:36 PM

OVERVIEW OF THE JNI DESIGN Passing Data 11.6

155

Because the JNIEnv interface pointer is thread-local, native code must not use
the JNIEnv interface pointer belonging to one thread in another thread. Native
code may use the JNIEnv pointer as a thread ID that remains unique for the life-
time of the thread.

11.5.2 Benefits of an Interface Pointer

There are several advantages of using an interface pointer, as opposed to hard-
wired function entries:

• Most importantly, because the JNI function table is passed as an argument to
each native method, native libraries do not have to link with a particular
implementation of the Java virtual machine. This is crucial because different
vendors may name their virtual machine implementations differently. Having
each native library be self-contained is a prerequisite for the same native
library binary to work with virtual machine implementations from different
vendors on a given host environment.

• Second, by not using hard-wired function entries, a virtual machine imple-
mentation may choose to provide multiple versions of JNI function tables. For
example, the virtual machine implementation may support two JNI function
tables: one performs thorough illegal argument checks, and is suitable for
debugging; the other performs the minimal amount of checking required by
the JNI specification, and is therefore more efficient. Java 2 SDK release 1.2
supports a -Xcheck:jni option that optionally turns on additional checks for
JNI functions.

• Finally, multiple JNI function tables make it possible to support multiple ver-
sions of JNIEnv-like interfaces in the future. Although we do not yet foresee
the need to do so, a future version of the Java platform can support a new JNI
function table, in addition to the one pointed to by the JNIEnv interface in the
1.1 and 1.2 releases. Java 2 SDK release 1.2 introduces a JNI_Onload func-
tion, which can be defined by a native library to indicate the version of the JNI
function table needed by the native library. Future implementations of Java
virtual machines can simultaneously support multiple versions of JNI func-
tion tables, and pass the correct version to individual native libraries depend-
ing upon their needs.

11.6 Passing Data

Primitive data types, such as integers, characters, and so on, are copied between
the Java virtual machine and native code. Objects, on the other hand, are passed

jni.book Page 155 Thursday, February 21, 2002 4:36 PM

11.6.1 Global and Local References OVERVIEW OF THE JNI DESIGN

156

by reference. Each reference contains a direct pointer to the underlying object.
The pointer to the object is never directly used by native code. From the native
code’s point of view, references are opaque.

Passing references, instead of direct pointers to objects, enables the virtual
machine to manage objects in more flexible ways. Figure 11.4 illustrates one such
flexibility. While native code is holding a reference, the virtual machine may per-
form a garbage collection that results in the object being copied from one area of
memory to another. The virtual machine can automatically update the content of
the reference so that although the object has moved, the reference is still valid.

Figure 11.4 Relocating an Object while Native Code Holds a Reference

11.6.1 Global and Local References

The JNI creates two kinds of object references for native code: local and global
references. Local references are valid for the duration of a native method invoca-
tion and are automatically freed after the native method returns. Global references
remain valid until they are explicitly freed.

Objects are passed to native methods as local references. Most JNI functions
return local references. The JNI allows the programmer to create global references
from local references. JNI functions that take objects as arguments accept both
global and local references. A native method may return either a local or a global
reference to the virtual machine as its result.

Local references are only valid in the thread in which they are created. Native
code must not pass local references from one thread to another.

A NULL reference in the JNI refers to the null object in the Java virtual
machine. A local or global reference whose value is not NULL does not refer to a
null object.

reference

object

reference

object

(moved)

GCAfter the garbage collector
moves the object, the virtual
machine automatically updates
the reference.

jni.book Page 156 Thursday, February 21, 2002 4:36 PM

OVERVIEW OF THE JNI DESIGN Implementing Local References 11.6.2

157

11.6.2 Implementing Local References

To implement local references, the Java virtual machine creates a registry for each
transition of control from the virtual machine to a native method. A registry maps
nonmovable local references to object pointers. Objects in the registery cannot be
garbage collected. All objects passed to the native method, including those that
are returned as the results of JNI function calls, are automatically added to the reg-
istry. The registry is deleted after the native method returns, allowing its entries to
be garbage collected. Figure 11.5 illustrates how the local references registry is
created and deleted. The Java virtual machine frame that corresponds to the native
method contains a pointer to the local reference registry. A method D.f calls
native method C.g. C.g is implemented by the C function Java_C_g. The virtual
machine creates a local reference registry before entering Java_C_g and deletes
the local reference registry after Java_C_g returns.

Figure 11.5 Creating and Deleting a Local Reference Registry

There are different ways to implement a registry, such as using a stack, a
table, a linked list, or a hash table. Although reference counting may be used to
avoid duplicated entries in the registry, a JNI implementation is not obliged to
detect and collapse duplicate entries.

Local references cannot be implemented faithfully by conservatively scanning
the native stack. Native code may store local references into global or C heap data
structures.

... ...

...

Before calling
native method In the native method

Returned from
native method

local

Java

Native

D.f D.f

C.g

Java_C_g
...

virtual
machine
frames

frames

reference
registry

...

D.f

jni.book Page 157 Thursday, February 21, 2002 4:36 PM

11.6.3 Weak Global References OVERVIEW OF THE JNI DESIGN

158

11.6.3 Weak Global References

Java 2 SDK release 1.2 introduces a new kind of global reference: weak global
references. Unlike normal global references, a weak global reference allows the
referenced object to be garbage collected. After the underlying object is garbage
collected, a weak global reference is cleared. Native code can test whether a weak
global reference is cleared by using IsSameObject to compare the reference
against NULL.

11.7 Accessing Objects

The JNI provides a rich set of accessor functions for references to objects. This
means that the same native method implementation works no matter how the vir-
tual machine represents objects internally. This is a crucial design decision
enabling the JNI to be supported by any virtual machine implementation.

The overhead of using accessor functions through opaque references is higher
than that of direct access to C data structures. We believe that, in most cases,
native methods perform nontrivial tasks that overshadow the cost of the extra
function call.

11.7.1 Accessing Primitive Arrays

The function call overhead is not acceptable, however, for repeated access to val-
ues of primitive data types in large objects, such as integer arrays and strings.
Consider native methods that are used to perform vector and matrix calculations.
It would be grossly inefficient to iterate through an integer array and retrieve every
element with a function call.

One solution introduces a notion of “pinning” so that the native method can
ask the virtual machine not to move the contents of an array. The native method
then receives a direct pointer to the elements. This approach, however, has two
implications:

• The garbage collector must support pinning. In many implementations, pin-
ning is undesirable because it complicates garbage collection algorithms and
leads to memory fragmentation.

• The virtual machine must lay out primitive arrays contiguously in memory.
Although this is the natural implementation for most primitive arrays, boolean
arrays can be implemented as packed or unpacked. A packed boolean array
uses one bit for each element, whereas an unpacked one typically uses one
byte for each element. Therefore, native code that relies on the exact layout of

jni.book Page 158 Thursday, February 21, 2002 4:36 PM

OVERVIEW OF THE JNI DESIGN Accessing Primitive Arrays 11.7.1

159

boolean arrays will not be portable.

The JNI adopts a compromise that addresses both of the above problems.
First, the JNI provides a set of functions (for example, GetIntArrayRegion

and SetIntArrayRegion) to copy primitive array elements between a segment of
a primitive array and a native memory buffer. Use these functions if the native
method needs to access only a small number of elements in a large array or if the
native method needs to make a copy of the array anyway.

Second, programmers can use another set of functions (for example, GetInt-
ArrayElements) to try to obtain a pinned version of array elements. Depending
upon the virtual machine implementation, however, these functions may cause
storage allocation and copying. Whether these functions in fact copy the array
depends upon the virtual machine implementation as follows:

• If the garbage collector supports pinning, and the layout of the array is the
same as that of a native array of the same type, then no copying is needed.

• Otherwise, the array is copied to a nonmovable memory block (for example,
in the C heap) and the necessary format conversion is performed. A pointer to
the copy is returned.

Native code calls a third set of functions (for example, ReleaseInt-

ArrayElements) to inform the virtual machine that the native code no longer
needs to access the array elements. When that happens, the virtual machine either
unpins the array or reconciles the original array with its nonmovable copy and
frees the copy.

This approach provides flexibility. A garbage collector algorithm can make
separate decisions about copying or pinning for each array. Under a particular
implementation scheme the garbage collector might copy small arrays, but pin
large arrays.

Finally, Java 2 SDK release 1.2 introduces two new functions: GetPrimi-

tiveArrayCritical and ReleasePrimitiveArrayCritical. These functions
can be used in ways similar to, for example, GetIntArrayElements and
ReleaseIntArrayElements. There are, however, significant restrictions on the
native code after it obtains a pointer to array elements using GetPrimitiveAr-

rayCritical and before it releases the pointer using ReleasePrimitiveArray-

Critical. Inside a “critical region” the native code should not run for an
indefinite period of time, must not invoke arbitrary JNI functions, and must not
perform operations that might cause the current thread to block and wait for
another thread in the virtual machine. Given these restrictions, the virtual machine
can temporarily disable garbage collection while giving the native code direct
access to array elements. Because no pinning support is needed, GetPrimitive-

jni.book Page 159 Thursday, February 21, 2002 4:36 PM

11.7.2 Fields and Methods OVERVIEW OF THE JNI DESIGN

160

ArrayCritical is more likely to return a direct pointer to the primitive array ele-
ments than, for example, GetIntArrayElements.

A JNI implementation must ensure that native methods running in multiple
threads can simultaneously access the same array. For example, the JNI may keep
an internal counter for each pinned array so that one thread does not unpin an
array that is also pinned by another thread. Note that the JNI does not need to lock
primitive arrays for exclusive access by a native method. Simultaneously updating
an array from different threads is allowed, although this leads to nondeterministic
results.

11.7.2 Fields and Methods

The JNI allows native code to access fields and to call methods defined in the Java
programming language. The JNI identifies methods and fields by their symbolic
names and type descriptors. A two-step process factors out the cost of locating the
field or method from its name and descriptor. For example, to read an integer
instance field i in class cls, native code first obtains a field ID, as follows:

jfieldID fid = env->GetFieldID(env, cls, "i", "I");

The native code can then use the field ID repeatedly, without the cost of field
lookup, as follows:

jint value = env->GetIntField(env, obj, fid);

A field or method ID remains valid until the virtual machine unloads the class
or interface that defines the corresponding field or method. After the class or inter-
face is unloaded, the method or field ID becomes invalid.

Programmers can derive a field or method ID from the classes or interfaces
where the corresponding field or method can be resolved. The field or method can
be defined in the class or interface itself or inherited from superclasses or super-
interfaces. The Java™ Virtual Machine Specification contains the precise rules of
resolving fields and methods. The JNI implementation must derive the same field
or method ID for a given name and descriptor from two classes or interfaces if the
same field or method definition is resolved from these two classes or interfaces.
For example, if B defines field fld, and C inherits fld from B, then the program-
mer is guaranteed to obtain the same field ID for field name "fld" from both
classes B and C.

The JNI does not impose any restrictions on how field and method IDs are
implemented internally.

Note that you need both the field name and field descriptor to obtain a field ID
from a given class or interface. This might seem unnecessary because fields can-

jni.book Page 160 Thursday, February 21, 2002 4:36 PM

OVERVIEW OF THE JNI DESIGN No Checking for Programming Errors 11.8.1

161

not be overloaded in the Java programming language. It is legal, however, to have
overloaded fields in a class file, and to run such class files on Java virtual
machines. Therefore, the JNI is able to handle legal class files that are not gener-
ated by a compiler for the Java programming language.

Programmers can use the JNI to call methods or access fields only if they
already know the names and types of the methods or fields. In comparison, the
Java Core Reflection API allows programmers to determine the set of fields and
methods in a given class or interface. It is sometimes useful to be able to reflect on
class or interface types in native code as well. Java 2 SDK release 1.2 provides
new JNI functions that are designed to work with the existing Java Core Reflec-
tion API. The new functions include one pair that converts between JNI field IDs
and instances of the java.lang.reflect.Field class, and another pair that con-
verts between JNI method IDs and instances of the java.lang.reflect.Method

class.

11.8 Errors and Exceptions

Errors made in JNI programming are different from exceptions that occur in the
Java virtual machine implementation. Programmer errors are caused by misuses
of JNI functions. The programmer, for example, may mistakenly pass an object
reference instead of a class reference to GetFieldID. Java virtual machine excep-
tions are raised, for example, by out-of-memory situations that occur when native
code tries to allocate an object through the JNI.

11.8.1 No Checking for Programming Errors

The JNI functions do not check for programming errors. Passing illegal arguments
to JNI functions results in undefined behavior. The reason for this design decision
is as follows:

• Forcing JNI functions to check for all possible error conditions degrades the
performance in all (typically correct) native methods.

• In many cases there is not enough runtime type information to perform such
checking.

Most C library functions do not guard against programming errors. The
printf function, for example, usually triggers a runtime error instead of returning
an error code when it receives an invalid address. Forcing C library functions to
check for all possible error conditions would likely result in such checks being
duplicated, once in the user code and then again in the library.

jni.book Page 161 Thursday, February 21, 2002 4:36 PM

11.8.2 Java Virtual Machine Exceptions OVERVIEW OF THE JNI DESIGN

162

Although the JNI specification does not require the virtual machine to check
for programming errors, virtual machine implementations are encouraged to pro-
vide checks for common mistakes. For example, a virtual machine may perform
more checking in a debug version of the JNI function table (§11.5.2).

11.8.2 Java Virtual Machine Exceptions

The JNI does not rely on exception handling mechanisms in native programming
languages. Native code may cause the Java virtual machine to throw an exception
by calling Throw or ThrowNew. A pending exception is recorded in the current
thread. Unlike exceptions thrown in the Java programming language, exceptions
thrown in native code do not immediately disrupt the current execution.

There is no standard exception handling mechanism in native languages.
Thus, JNI programmers are expected to check for and handle exceptions after
each operation that can potentially throw an exception. JNI programmers may
deal with an exception in two ways:

• The native method may choose to return immediately, causing the exception
to be thrown in the code that initiated the native method call.

• The native code may clear the exception by calling ExceptionClear and then
execute its own exception-handling code.

It is extremely important to check, handle, and clear a pending exception
before calling any subsequent JNI functions. Calling most JNI functions with a
pending exception leads to undefined results. The following is the complete list of
JNI functions that can be called safely when there is a pending exception:

ExceptionOccurred
ExceptionDescribe
ExceptionClear
ExceptionCheck

ReleaseStringChars
ReleaseStringUTFchars
ReleaseStringCritical
Release<Type>ArrayElements
ReleasePrimitiveArrayCritical
DeleteLocalRef
DeleteGlobalRef
DeleteWeakGlobalRef
MonitorExit

The first four functions are directly related to exception handling. The remain-
ing ones are common in that they release various virtual machine resources

jni.book Page 162 Thursday, February 21, 2002 4:36 PM

OVERVIEW OF THE JNI DESIGN Asynchronous Exceptions 11.8.3

163

exposed through the JNI. It is often necessary to be able to free resources when
exceptions occur.

11.8.3 Asynchronous Exceptions

One thread may raise an asynchronous exception in another thread by calling
Thread.stop. An asynchronous exception does not affect the execution of native
code in the current thread until:

• the native code calls one of the JNI functions that could raise synchronous
exceptions, or

• the native code uses ExceptionOccurred to check for synchronous and asyn-
chronous exceptions explicitly.

Only those JNI functions that could potentially raise synchronous exceptions
check for asynchronous exceptions.

Native methods may insert ExceptionOccurred checks in necessary places
(such as in tight loops without other exception checks) to ensure that the current
thread responds to asynchronous exceptions in a reasonable amount of time.

The Java thread API that generates asynchronous exceptions, Thread.stop,
has been deprecated in Java 2 SDK release 1.2. Programmers are strongly discour-
aged from using Thread.stop because it generally leads to unreliable programs.
This is particularly a problem for JNI code. For example, many JNI libraries writ-
ten today do not carefully follow the rules of checking for asynchronous excep-
tions described in this section.

jni.book Page 163 Thursday, February 21, 2002 4:36 PM

jni.book Page 164 Thursday, February 21, 2002 4:36 PM

165

C H A P T E R 12
JNI Types

THIS chapter specifies the standard data types defined by the JNI. C and C++
code should include the header file jni.h before referring to these types.

12.1 Primitive and Reference Types

The JNI defines a set of C/C++ types that correspond to the primitive and refer-
ence types in the Java programming language.

12.1.1 Primitive Types

The following table describes the primitive types in the Java programming lan-
guage and the corresponding types in the JNI. Like their counterparts in the Java
programming language, all primitive types in the JNI have well-defined sizes.

Java Language Type Native Type Description

boolean jboolean unsigned 8 bits

byte jbyte signed 8 bits

char jchar unsigned 16 bits

short jshort signed 16 bits

int jint signed 32 bits

long jlong signed 64 bits

float jfloat 32 bits

double jdouble 64 bits

jni.book Page 165 Thursday, February 21, 2002 4:36 PM

12.1.2 Reference Types JNI TYPES

166

The jsize integer type is used to describe cardinal indices and sizes:

typedef jint jsize;

12.1.2 Reference Types

The JNI includes a number of reference types that correspond to different kinds of
reference types in the Java programming language. JNI reference types are orga-
nized in the hierarchy shown below.

When used in the C programming language, all other JNI reference types are
defined to be the same as jobject. For example:

typedef jobject jclass;

When used in the C++ programming language, the JNI introduces a set of
dummy classes to express the subtyping relationship among various reference
types:

class _jobject {};
class _jclass : public _jobject {};
class _jthrowable : public _jobject {};

jobject

jclass

jobjectArray

jbooleanArray

jbyteArray

jcharArray
jshortArray

jintArray

jlongArray

jfloatArray
jdoubleArray

jstring

jarray

jthrowable

(all objects)

(java.lang.Class instances)
(java.lang.String instances)
(arrays)
(Object[])
(boolean[])
(byte[])
(char[])
(short[])
(int[])
(long[])
(float[])
(double[])

(java.lang.Throwable objects)

jni.book Page 166 Thursday, February 21, 2002 4:36 PM

JNI TYPES The jvalue Type 12.1.3

167

class _jstring : public _jobject {};
class _jarray : public _jobject {};
class _jbooleanArray : public _jarray {};
class _jbyteArray : public _jarray {};
class _jcharArray : public _jarray {};
class _jshortArray : public _jarray {};
class _jintArray : public _jarray {};
class _jlongArray : public _jarray {};
class _jfloatArray : public _jarray {};
class _jdoubleArray : public _jarray {};
class _jobjectArray : public _jarray {};

typedef _jobject *jobject;
typedef _jclass *jclass;
typedef _jthrowable *jthrowable;
typedef _jstring *jstring;
typedef _jarray *jarray;
typedef _jbooleanArray *jbooleanArray;
typedef _jbyteArray *jbyteArray;
typedef _jcharArray *jcharArray;
typedef _jshortArray *jshortArray;
typedef _jintArray *jintArray;
typedef _jlongArray *jlongArray;
typedef _jfloatArray *jfloatArray;
typedef _jdoubleArray *jdoubleArray;
typedef _jobjectArray *jobjectArray;

12.1.3 The jvalue Type

The jvalue type is a union of the reference types and primitive types. It is defined
as follows:

typedef union jvalue {
 jboolean z;
 jbyte b;
 jchar c;
 jshort s;
 jint i;
 jlong j;
 jfloat f;
 jdouble d;
 jobject l;
} jvalue;

jni.book Page 167 Thursday, February 21, 2002 4:36 PM

12.2 Field and Method IDs JNI TYPES

168

12.2 Field and Method IDs

Method and field IDs are regular C pointer types:

struct _jfieldID; /* opaque structure */
typedef struct _jfieldID *jfieldID; /* field ID */
struct _jmethodID; /* opaque structure */
typedef struct _jmethodID *jmethodID; /* method ID */

12.3 String Formats

The JNI uses C strings to represent class names, field and method names, and field
and method descriptors. These strings are in the UTF-8 format.

12.3.1 UTF-8 Strings

UTF-8 strings are encoded so that character sequences that contain only non-null
ASCII characters can be represented using only one byte per character, but char-
acters of up to 16 bits can be represented. All characters in the range ’\u0001’ to
’\u007F’ are represented by a single byte, as follows:

The seven bits of data in the byte give the value of the character that is repre-
sented. The null character (’\u000’) and characters in the range ’\u0080’ to
’\u07FF’ are represented by a pair of bytes, x and y, as follows:

The bytes represent the character with the value ((x & 0x1f) << 6) + (y & 0x3f).
Characters in the range ’\u0800’ to ’\uFFFF’ are represented by three bytes,

x, y, and z:

The character with the value ((x & 0xf) << 12) + (y & 0x3f) << 6) + (z & 0x3f) is
represented by the three bytes.

bits 6-00

x: y:1 1 0 bits 10-6 1 0 bits 5-0

x: y: z:1 1 1 0 bits 15-12 1 0 bits 11-6 1 0 bits 5-0

jni.book Page 168 Thursday, February 21, 2002 4:36 PM

JNI TYPES Field Descriptors 12.3.3

169

There are two differences between this format and the standard UTF-8 format.
First, the null byte (byte)0 is encoded using the two-byte format rather than the
one-byte format. This means that JNI UTF-8 strings never have embedded nulls.
Second, only the one-byte, two-byte, and three-byte formats are used. The JNI
does not recognize the longer UTF-8 formats.

12.3.2 Class Descriptors

A class descriptor represents the name of a class or an interface. It can be derived
from a fully qualified class or interface name as defined in The Java™ Language
Specification by substituting the “.” character with the “/” character. For exam-
ple, the class descriptor for java.lang.String is:

"java/lang/String"

Array classes are formed using the “[” character followed by the field
descriptor (§12.3.3) of the element type. The class descriptor for “int[]” is:

"[I"

and the class descriptor for “double[][][]” is:

"[[[D"

12.3.3 Field Descriptors

The field descriptors for eight primitive types are as follows:

Field Descriptor Java Language Type

Z boolean

B byte

C char

S short

I int

J long

F float

D double

jni.book Page 169 Thursday, February 21, 2002 4:36 PM

12.3.4 Method Descriptors JNI TYPES

170

Field descriptors of reference types begin with the “L” character, followed by the
class descriptor, and terminated by the “;” character. Field descriptors of array
types are formed following the same rule as class descriptors of array classes. The
following are some examples of field descriptors for reference types and their Java
programming language counterparts.

12.3.4 Method Descriptors

Method descriptors are formed by placing the field descriptors of all argument
types in a pair of parentheses, and following that by the field descriptor of the
return type. There are no spaces or other separator characters between the argu-
ment types. "V" is used to denote the void method return type. Constructors use
"V" as their return type, and use "<init>" as their name.

Here are some examples of JNI method descriptors and their corresponding
method and constructor types.

12.4 Constants

JNIEXPORT and JNICALL are macros used to specify the calling and linkage con-
vention of both JNI functions and native method implementations. The program-
mer must place the JNIEXPORT macro before the function return type and the
JNICALL macro between the function name and the return type. For example:

Field Descriptor Java Language Type

"Ljava/lang/String;" String

"[I" int[]

"[Ljava/lang/Object;" Object[]

Method Descriptor Java Language Type

"()Ljava/lang/String;" String f();

"(ILjava/lang/Class;)J" long f(int i, Class c);

"([B)V" String(byte[] bytes);

jni.book Page 170 Thursday, February 21, 2002 4:36 PM

JNI TYPES Constants 12.4

171

JNIEXPORT jint JNICALL
Java_pkg_Cls_f(JNIEnv *env, jobject this);

is the prototype for a C function that implements pkg.Cls.f, whereas:

jint (JNICALL *f_ptr)(JNIEnv *env, jobject this);

is the function pointer variable that can be assigned the Java_pkg_Cls_f function.
JNI_FALSE and JNI_TRUE are constants defined for the jboolean type:

#define JNI_FALSE 0
#define JNI_TRUE 1

JNI_OK represents the successful return value of JNI functions, and JNI_ERR

is sometimes used to represent error conditions.

#define JNI_OK 0
#define JNI_ERR (-1)

Not all error conditions are represented by JNI_ERR because the JNI specification
does not currently include a standard set of error codes. JNI functions return
JNI_OK on success, and a negative number on failure.

The following two constants are used in functions that release the native copy
of primitive arrays. An example of such functions is ReleaseIntArrayElements.
JNI_COMMIT forces the native array to be copied back to the original array in the
Java virtual machine. JNI_ABORT frees the memory allocated for the native array
without copying back the new contents.

#define JNI_COMMIT 1
#define JNI_ABORT 2

Java 2 SDK release 1.2 introduces two constants representing the JNI version
numbers.

#define JNI_VERSION_1_1 0x00010001 /* JNI version 1.1 */
#define JNI_VERSION_1_2 0x00010002 /* JNI version 1.2 */

A native application may determine whether it is being compiled against the
1.1 or 1.2 version of the jni.h file by performing the following conditional com-
pilation:

jni.book Page 171 Thursday, February 21, 2002 4:36 PM

12.4 Constants JNI TYPES

172

#ifdef JNI_VERSION_1_2
/* compiling against Java 2 SDK 1.2’s jni.h */
#else
/* compiling against JDK 1.1’s jni.h */
#endif

The following constants represent the special error codes returned by the
GetEnv function, which is part of the JavaVM Interface:

#define JNI_EDETACHED (-2) /* thread detached from the VM */
#define JNI_EVERSION (-3) /* JNI version error */

jni.book Page 172 Thursday, February 21, 2002 4:36 PM

173

C H A P T E R 13
JNI Functions

THIS chapter specifies the JNI functions. We will use the term “must” to describe
the restrictions placed on JNI programmers. For example, when a certain JNI
function must receive a non-NULL object, it is the programmer’s responsibility not
to pass NULL to that function. As a result, a JNI implementation does not need to
check for possibly receiving NULL pointers in that function. If the programmer
passes NULL to that function, the resulting behavior is undefined.

We will begin with a summary of JNI functions. The main body of the chapter
contains the detailed specifications of all JNI functions.

13.1 Summary of the JNI Functions

The JNI functions fall into one of four categories depending on where they are
defined and what they are used for. First of all, a virtual machine implementation
exports a set of native functions. These functions are part of the invocation inter-
face. They can be used to accomplish tasks such as creating a virtual machine
instance in a native application. Second, the JavaVM interface represents a virtual
machine instance. The JavaVM interface provides functions that allow, for exam-
ple, native threads to attach to a virtual machine instance. Third, a native library
that implements native methods may export special handler functions that are
called when a virtual machine implementation loads and unloads the native
library. Finally, the JNIEnv interface supports JNI features such as creating
objects, accessing fields, and calling methods.

13.1.1 Directly-Exported Invocation Interface Functions

A virtual machine implementation directly exports the following three functions
as part of the invocation interface:

JNI_GetDefaultJavaVMInitArgs
JNI_CreateJavaVM
JNI_GetCreatedJavaVMs

jni.book Page 173 Thursday, February 21, 2002 4:36 PM

The JavaVM Interface JNI FUNCTIONS

174

The JNI_GetDefaultJavaVMInitArgs function provides the values of default
initialization arguments used to create a virtual machine instance. The information
is specific to the virtual machine implementation in JDK release 1.1. This function
is no longer useful in Java 2 SDK release 1.2 but is still supported for backward
compatibility.

The JNI_CreateJavaVM function creates a virtual machine instance according
to a given set of initialization arguments. You specify initialization arguments in
JDK release 1.1 by setting the fields of a C structure. Java 2 SDK release 1.2 sup-
ports a more flexible way to specify the initialization arguments but still supports
the same JDK 1.1 style initialization structure for backward compatibility.

The JNI_GetCreatedJavaVMs function returns all virtual machine instances
that have been created in the current process. A particular JNI implementation
need not be able to create more than one virtual machine instance in the same pro-
cess. Neither JDK release 1.1 nor Java 2 SDK release 1.2 supports the creation of
more than one virtual machine instance in the same process.

A native application that embeds a virtual machine instance can invoke any of
these functions. The native application may either link against the virtual machine
library that exports these functions, or use native dynamic linking mechanisms to
load the virtual machine library and locate any of the exported functions at run
time.

13.1.2 The JavaVM Interface

The JavaVM interface is a pointer to a pointer to a function table. The first three
entries in the function table are reserved for future compatibility with the
Microsoft COM interface and are set to NULL. The remaining four entries are part
of the invocation interface:

DestroyJavaVM
AttachCurrentThread
DetachCurrentThread
GetEnv

Unlike the JNIEnv interface pointer, which is specific to a single thread, a
JavaVM interface pointer represents an entire virtual machine instance and is valid
for all threads in the virtual machine instance.

The DestroyJavaVM function unloads the virtual machine instance denoted
by the JavaVM interface pointer. The AttachCurrentThread function sets up the
current native thread to run as part of a virtual machine instance. Once a thread is
attached to the virtual machine instance, it can then make JNI function calls to
perform such tasks as accessing objects and invoking methods. The Detach-

CurrentThread function informs a virtual machine instance that the current

jni.book Page 174 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS The JNIEnv Interface

175

thread no longer needs to issue JNI function calls, allowing the virtual machine
implementation to perform cleanups and free resources.

The GetEnv function is new in Java 2 SDK release 1.2. It can serve two pur-
poses. First, it can be used to check whether the current thread is attached to a vir-
tual machine instance. Second, it can be used to obtain other interfaces, such as
the JNIEnv interface, from the JavaVM interface pointer.

13.1.3 Functions Defined in Native Libraries

Java 2 SDK release 1.2 allows the programmer to export additional handler func-
tions to be invoked when a virtual machine implementation loads and unloads a
native library. When the virtual machine implementation loads a native library, it
searches for and invokes the exported function entry JNI_OnLoad. When the vir-
tual machine implementation unloads a native library, it searches for and invokes
the exported function entry JNI_OnUnload.

13.1.4 The JNIEnv Interface

The JNIEnv interface supports the core features of the JNI. Virtual machine imple-
mentations pass a JNIEnv interface pointer as the first argument to each native
method. Native code may also obtain a JNIEnv interface pointer by calling the
GetEnv function on a JavaVM interface pointer. Although a JNIEnv interface
pointer is valid only in a particular thread, the JavaVM interface pointer is valid for
all threads in a virtual machine instance.

A JNIEnv interface pointer is a pointer to a pointer to a function table. The
first three entries in the function table are reserved for future compatibility with
Microsoft COM interface and are set to NULL. The fourth entry in the function
table is reserved for future use and is also set to NULL.

The remainder of this chapter will cover all the entries in the JNIEnv interface
in detail. For now we give a high-level overview.

Version Information

• GetVersion returns the version of the JNIEnv interface.

Class and Interface Operations

• DefineClass defines a class or interface type from a native byte array repre-
senting the raw class file data.

• FindClass returns a reference to a class or interface type of a given name.

• GetSuperclass returns the superclass of a given class or interface.

jni.book Page 175 Thursday, February 21, 2002 4:36 PM

The JNIEnv Interface JNI FUNCTIONS

176

• IsAssignableFrom checks if an instance of one class or interface can be
assigned to an instance of another class or interface, and is useful for runtime
type checking.

Exceptions

• Throw and ThrowNew raise an exception in the current thread.

• ExceptionOccurred and ExceptionCheck check for pending exceptions in
the current thread. ExceptionCheck is new in Java 2 SDK release 1.2.

• ExceptionDescribe prints a diagnostic message about the pending excep-
tion.

• ExceptionClear clears the pending exception.

• FatalError prints a message and terminates the current virtual machine
instance.

Global and Local References

• NewGlobalRef creates a global reference, DeleteGlobalRef deletes one.

• NewWeakGlobalRef and DeleteWeakGlobalRef manage weak global refer-
ences. Both are new in Java 2 SDK release 1.2.

• DeleteLocalRef reclaims the virtual machine resource needed for a local ref-
erence.

• NewLocalRef is new in Java 2 SDK release 1.2.

• EnsureLocalCapacity reserves space in the current thread for a fixed num-
ber of local references to be created. EnsureLocalCapacity is new in Java 2
SDK release 1.2.

• PushLocalFrame and PopLocalFrame create a nested scope for local refer-
ences. Both functions are new in Java 2 SDK release 1.2.

Object Operations

• AllocObject allocates an uninitialized object.

• NewObject allocates an object and runs one of its constructors.

• GetObjectClass returns the class of a given instance.

• IsInstanceOf checks if a given object is an instance of a given class or inter-
face.

• IsSameObject checks if two references refer to the same object.

jni.book Page 176 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS The JNIEnv Interface

177

Instance Field Access

• GetFieldID performs a symbolic lookup on a given class and returns the field
ID of a named instance field.

• Functions of the Get<Type>Field and Set<Type>Field families access
instance fields.

Static Field Access

• GetStaticFieldID performs a symbolic lookup on a given class or interface
and returns the field ID of a named static field.

• Functions of the GetStatic<Type>Field and SetStatic<Type>Field fami-
lies access static fields.

Instance Method Calls

• GetMethodID performs a symbolic lookup on a given class or interface and
returns the method ID of an instance method or a constructor.

• Functions of the Call<Type>Method family invoke instance methods.

• Functions of the CallNonvirtual<Type>Method family invoke either
instance methods of a superclass or constructors.

Static Method Calls

• GetStaticMethodID performs a symbolic lookup on a given class and returns
the method ID of a static method.

• Functions of the CallStatic<Type>Method family invoke static methods.

String Operations

• NewString creates a java.lang.String object representing a native Unicode
string.

• NewStringUTF creates a java.lang.String object representing a native
UTF-8 string.

• GetStringLength returns the number of Unicode characters in a string repre-
sented by a java.lang.String object.

• GetStringLengthUTF returns the number of UTF-8 bytes needed to encode
all characters in a string represented by a given java.lang.String object.

• GetStringChars and ReleaseStringChars access the content of a
java.lang.String object as a pointer to a Unicode string.

jni.book Page 177 Thursday, February 21, 2002 4:36 PM

The JNIEnv Interface JNI FUNCTIONS

178

• GetStringUTFChars and ReleaseStringUTFChars access the content of a
java.lang.String objectas a pointer to a UTF-8 string.

• GetStringCritical and ReleaseStringCritical access the content of a
java.lang.String object with minimum overhead. Both functions are new
in Java 2 SDK release 1.2.

• GetStringRegion and GetStringUTFRegion copy the contents of a
java.lang.String object into a native buffer. Both functions are new in Java
2 SDK release 1.2.

Array Operations

• GetArrayLength returns the number of elements in an array.

• NewObjectArray creates an array of objects, whereas functions of the
New<Type>Array family create arrays of primitive types.

• GetObjectArrayElement and SetObjectArrayElement allow native code to
access arrays of reference types.

• Functions of the Get<Type>ArrayElements and Release<Type>Array-

Elements families access all the elements in arrays of primitive types.

• Functions of the Get<Type>ArrayRegion and Set<Type>ArrayRegion fami-
lies copy multiple elements in or out of arrays of primitive types.

• GetPrimitiveArrayCritical and ReleasePrimitiveArrayCritical

access elements in an array of primitive types with minimum overhead. Both
functions are new in Java 2 SDK release 1.2.

Native Method Registration

• RegisterNatives and UnregisterNatives allow native code to eagerly link
and unlink native methods.

Monitor Operations

• MonitorEnter and MonitorExit synchronize on the monitor associated with
objects.

JavaVM Interface

• GetJavaVM returns the JavaVM interface pointer for the current virtual
machine instance.

jni.book Page 178 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS The JNIEnv Interface

179

Reflection Support

• FromReflectedField converts instances of java.lang.reflect.Field in
the Java Core Reflection API into field IDs. FromReflectedField is new in
Java 2 SDK release 1.2.

• FromReflectedMethod converts instances of java.lang.reflect.Method or
instances of java.lang.reflect.Constructor into method IDs. From-

ReflectedMethod is new in Java 2 SDK release 1.2.

• ToReflectedField and ToReflectedMethod carry out the conversions in the
opposite direction. Both functions are new in Java 2 SDK release 1.2.

The flexibility of an interface pointer makes it easy to evolve (§11.5.2) the
JNIEnv interface. A future version of the JNI specification could introduce a new
interface, say a JNIEnv2 interface, that is different from the current version of the
JNIEnv. A future virtual machine implementation can maintain backward compat-
ibility by simultaneously supporting both JNIEnv and JNIEnv2 interfaces. The
return value of the JNI_OnLoad handler of a native library informs the virtual
machine implementation about the version of the JNI interface expected by the
native library. For example, a native library can presently implement a native
method Foo.f using a native function Java_Foo_f as follows:

JNIEXPORT void JNICALL
Java_Foo_f(JNIEnv *env, jobject this, jint arg)
{
 ... (*env)->... /* some call to the JNIEnv interface */
}

In the future, the same native method may also be implemented as follows:

/* possible implementation of Foo.f using a hypothetical
 * future version (JNI_VERSION_2_0) of the JNI interface */
JNIEnv2 *g_env;

JNIEXPORT jint JNICALL
JNIOnLoad(JavaVM *vm, void *reserved)
{
 jint res;
 /* cache JNIEnv2 interface pointer in global variable */
 res = (*vm)->GetEnv(vm, (void **)&g_env, JNI_VERSION_2_0);
 if (res < 0) {
 return res;
 }
 return JNI_VERSION_2_0; /* the required JNI version */
}

jni.book Page 179 Thursday, February 21, 2002 4:36 PM

Specification of JNI Functions JNI FUNCTIONS

180

JNIEXPORT void JNICALL
Java_Foo_f(jobject this, jint arg)
{
 ... (*g_env)->... /* some call to the JNIEnv2 interface */
}

To highlight interface evolution, we have made the hypothetical future
JNIEnv2 interface different from the JNIEnv interface in a number of ways. The
JNIEnv2 interface need not be thread-local, and thus can be cached in a global
variable. The JNIEnv2 interface need not be passed as the first argument to the
Java_Foo_f native function. The name encoding convention (§11.3) of native
method implementation functions such as Java_Foo_f need not be changed. Vir-
tual machine implementations rely on the return value of the JNI_OnLoad handler
to determine the argument passing convention of native method implementation
functions in a given native library.

13.2 Specification of JNI Functions

This section contains the complete specification of the JNI functions. For each
function, we provide information on the following:

• function prototypes

• a detailed description, including the parameters, return values, and possible
exceptions

• linkage information, including 0-based index for all entries in the JNIEnv and
JavaVM interface function tables

jni.book Page 180 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS AllocObject

181

AllocObject

Prototype jobject AllocObject(JNIEnv *env, jclass clazz);

Description Allocates a new object without invoking any of the constructors
for the object. Returns a local reference to the object.

The clazz argument must not refer to an array class. Use the
New<Type>Array family of functions to allocate array objects.

Use NewObject, NewObjectV, or NewObjectA to allocate an
object and execute one of its contructors.

Linkage Index 27 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

clazz: a reference to the class of the object to be allocated.

Return Values Returns a local reference to the newly allocated object, or NULL
if the object cannot be allocated. Returns NULL if and only if an
invocation of this function has thrown an exception.

Exceptions InstantiationException: if the class is an interface or an
abstract class.

OutOfMemoryError: if the system runs out of memory.

jni.book Page 181 Thursday, February 21, 2002 4:36 PM

AttachCurrentThread JNI FUNCTIONS

182

AttachCurrentThread

Prototype jint AttachCurrentThread(JavaVM *vm, void **penv,
void *args);

Description Attaches the current thread to a given virtual machine instance.
Once attached to the virtual machine instance, a native thread
has an associated java.lang.Thread instance. An attached
native thread may issue JNI function calls. The native thread
remains attached to the virtual machine instance until it calls
DetachCurrentThread to detach itself.

Trying to attach a thread that is already attached simply sets the
value pointed to by penv to the JNIEnv of the current thread.

A native thread cannot be attached simultaneously to two Java
virtual machine instances.

In JDK release 1.1, the second argument receives a JNIEnv

interface pointer. The third argument is reserved, and should be
set to NULL. The default java.lang.Thread constructor auto-
matically generates a thread name (for example, "Thread-123")
for the associated java.lang.Thread instance. The
java.lang.Thread instance belongs to the default thread
group "main" created by the virtual machine implementation.

In Java 2 SDK release 1.2, the third argument may be set to
NULL to preserve the release 1.1 behavior. Alternatively, the
third argument may point to the following structure:

 typedef struct {
 jint version;
 char *name;
 jobject group;
 } JavaVMAttachArgs;

The version field specifies the version of the JNIEnv interface
passed back through the second argument. The valid versions
accepted by Java 2 SDK release 1.2 are JNI_VERSION_1_1 and
JNI_VERSION_1_2.

If the name field is not NULL, it points to a UTF-8 string specify-
ing the name of the associated java.lang.Thread instance. If
the name field is NULL, the default java.lang.Thread construc-

jni.book Page 182 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS AttachCurrentThread

183

tor generates a thread name (for example, "Thread-123") for
the associated java.lang.Thread instance.

If the group field is not NULL, it specifies a global reference of a
thread group to which the newly created java.lang.Thread

instance is added. If the group field is NULL, the
java.lang.Thread instance is added to the default thread
group "main" created by the virtual machine implementation.

Linkage Index 4 in the JavaVM interface function table.

Parameters vm: the virtual machine instance to which the current thread will
be attached.

penv: a pointer to the location in which the JNIEnv interface
pointer for the current thread will be placed.

args: reserved (in JDK release 1.1) or a pointer to a JavaVM-

AttachArgs structure (in Java 2 SDK release 1.2).

Return Values Returns zero on success; otherwise, returns a negative number.

Exceptions None.

jni.book Page 183 Thursday, February 21, 2002 4:36 PM

Call<Type>Method JNI FUNCTIONS

184

Call<Type>Method

Prototype <NativeType> Call<Type>Method(JNIEnv *env,
jobject obj, jmethodID methodID, ...);

Forms This family of functions consists of ten members.

Description Invokes an instance method, specified using a method ID, on an
object.

Programmers place all arguments that are to be passed to the
method immediately following the methodID argument. The
Call<Type>Method function accepts these arguments and
passes them to the method that the programmer wishes to
invoke.

Call<Type>Method <NativeType>

CallVoidMethod void

CallObjectMethod jobject

CallBooleanMethod jboolean

CallByteMethod jbyte

CallCharMethod jchar

CallShortMethod jshort

CallIntMethod jint

CallLongMethod jlong

CallFloatMethod jfloat

CallDoubleMethod jdouble

jni.book Page 184 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS Call<Type>Method

185

Linkage Indices in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

obj: a reference to the object on which the method is invoked.

methodID: method ID denoting the method to be invoked.

Additional arguments: arguments to be passed to the method.

Return Values The result of calling the method.

Exceptions Any exception raised during the execution of the method.

Call<Type>Method Index

CallVoidMethod 61

CallObjectMethod 34

CallBooleanMethod 37

CallByteMethod 40

CallCharMethod 43

CallShortMethod 46

CallIntMethod 49

CallLongMethod 52

CallFloatMethod 55

CallDoubleMethod 58

jni.book Page 185 Thursday, February 21, 2002 4:36 PM

Call<Type>MethodA JNI FUNCTIONS

186

Call<Type>MethodA

Prototype <NativeType> Call<Type>MethodA(JNIEnv *env,
jobject obj, jmethodID methodID, jvalue *args);

Forms This family of functions consists of ten members.

Description Invokes an instance method, specified using a method ID, on an
object.

Programmers place all arguments to the method in an array of
jvalues that immediately follows the methodID argument. The
Call<Type>MethodA routine accepts the arguments in this
array, and, in turn, passes them to the method that the program-
mer wishes to invoke.

Call<Type>MethodA <NativeType>

CallVoidMethodA void

CallObjectMethodA jobject

CallBooleanMethodA jboolean

CallByteMethodA jbyte

CallCharMethodA jchar

CallShortMethodA jshort

CallIntMethodA jint

CallLongMethodA jlong

CallFloatMethodA jfloat

CallDoubleMethodA jdouble

jni.book Page 186 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS Call<Type>MethodA

187

Linkage Indices in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

obj: a reference to the object on which the method is invoked.

methodID: method ID denoting the method to be invoked.

args: an array of arguments to be passed to the method.

Return Values Returns the result of calling the method.

Exceptions Any exception raised during the execution of the method.

Call<Type>MethodA Index

CallVoidMethodA 63

CallObjectMethodA 36

CallBooleanMethodA 39

CallByteMethodA 42

CallCharMethodA 45

CallShortMethodA 48

CallIntMethodA 51

CallLongMethodA 54

CallFloatMethodA 57

CallDoubleMethodA 60

jni.book Page 187 Thursday, February 21, 2002 4:36 PM

Call<Type>MethodV JNI FUNCTIONS

188

Call<Type>MethodV

Prototype <NativeType> Call<Type>MethodV(JNIEnv *env,
jobject obj, jmethodID methodID, va_list args);

Forms This family of functions consists of ten members.

Description Invokes an instance method, specified using a method ID, on an
object.

Programmers place all arguments to the method in an args

argument of type va_list that immediately follows the meth-

odID argument. The Call<Type>MethodV routine accepts the
arguments, and, in turn, passes them to the method that the pro-
grammer wishes to invoke.

Call<Type>MethodV <NativeType>

CallVoidMethodV void

CallObjectMethodV jobject

CallBooleanMethodV jboolean

CallByteMethodV jbyte

CallCharMethodV jchar

CallShortMethodV jshort

CallIntMethodV jint

CallLongMethodV jlong

CallFloatMethodV jfloat

CallDoubleMethodV jdouble

jni.book Page 188 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS Call<Type>MethodV

189

Linkage Indices in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

obj: a reference to an object on which the method is invoked.

methodID: method ID of the method to be invoked.

args: a va_list of arguments passed to the invoked method.

Return Values Returns the result of calling the method.

Exceptions Any exception raised during the execution of the method.

Call<Type>MethodV Index

CallVoidMethodV 62

CallObjectMethodV 35

CallBooleanMethodV 38

CallByteMethodV 41

CallCharMethodV 44

CallShortMethodV 47

CallIntMethodV 50

CallLongMethodV 53

CallFloatMethodV 56

CallDoubleMethodV 59

jni.book Page 189 Thursday, February 21, 2002 4:36 PM

CallNonvirtual<Type>Method JNI FUNCTIONS

190

CallNonvirtual<Type>Method

Prototype <NativeType> CallNonvirtual<Type>Method(
JNIEnv *env, jobject obj, jclass clazz,
jmethodID methodID, ...);

Forms This family of functions consists of ten members.

Descriptions Invokes an instance method, specified using a class and a
method ID, on an object.

The CallNonvirtual<Type>Method family of functions and
the Call<Type>Method family of functions are different.
Call<Type>Method functions invoke the method based on the
real class of the object, while CallNonvirtual<Type>Method

routines invoke the method based on the class, designated by
the clazz parameter, from which the method ID is obtained.
The clazz parameter must refer to the real class of the object or
from one of its superclasses.

Programmers place all arguments that are to be passed to the
method immediately following the methodID argument. The
CallNonvirtual<Type>Method routine accepts these argu-
ments and passes them to the method that the programmer
wishes to invoke.

CallNonvirtual<Type>Method <NativeType>

CallNonvirtualVoidMethod void

CallNonvirtualObjectMethod jobject

CallNonvirtualBooleanMethod jboolean

CallNonvirtualByteMethod jbyte

CallNonvirtualCharMethod jchar

CallNonvirtualShortMethod jshort

CallNonvirtualIntMethod jint

CallNonvirtualLongMethod jlong

CallNonvirtualFloatMethod jfloat

CallNonvirtualDoubleMethod jdouble

jni.book Page 190 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS CallNonvirtual<Type>Method

191

Linkage Indices in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

clazz: a reference to the class from which the method ID is
derived.

obj: a reference to the object on which the method is invoked.

methodID: a method ID that is valid with the class reference
clazz.

Additional arguments: arguments to be passed to the method.

Return Values Returns the result of calling the method.

Exceptions Any exception raised during the execution of the method.

CallNonvirtual<Type>Method Index

CallNonvirtualVoidMethod 91

CallNonvirtualObjectMethod 64

CallNonvirtualBooleanMethod 67

CallNonvirtualByteMethod 70

CallNonvirtualCharMethod 73

CallNonvirtualShortMethod 76

CallNonvirtualIntMethod 79

CallNonvirtualLongMethod 82

CallNonvirtualFloatMethod 85

CallNonvirtualDoubleMethod 88

jni.book Page 191 Thursday, February 21, 2002 4:36 PM

CallNonvirtual<Type>MethodA JNI FUNCTIONS

192

CallNonvirtual<Type>MethodA

Prototype <NativeType> CallNonvirtual<Type>MethodA(
JNIEnv *env, jobject obj, jclass clazz,
jmethodID methodID, jvalue *args);

Forms This family of functions consists of ten members.

Description Invokes an instance method, specified using a class and a
method ID, on an object.

The CallNonvirtual<Type>MethodA families of functions and
the Call<Type>MethodA families of functions are different.
Call<Type>MethodA functions invoke the method based on the
real class of the object, while CallNonvirtual<Type>MethodA

routines invoke the method based on the class, designated by
the clazz parameter, from which the method ID is obtained.
The clazz parameter must refer to the real class of the object or
from one of its superclasses.

Programmers place all arguments to the method in an args

array of jvalues that immediately follows the methodID argu-
ment. The CallNonvirtual<Type>MethodA routine accepts the
arguments in this array, and, in turn, passes them to the method
that the programmer wishes to invoke.

CallNonvirtual<Type>MethodA <NativeType>

CallNonvirtualVoidMethodA void

CallNonvirtualObjectMethodA jobject

CallNonvirtualBooleanMethodA jboolean

CallNonvirtualByteMethodA jbyte

CallNonvirtualCharMethodA jchar

CallNonvirtualShortMethodA jshort

CallNonvirtualIntMethodA jint

CallNonvirtualLongMethodA jlong

CallNonvirtualFloatMethodA jfloat

CallNonvirtualDoubleMethodA jdouble

jni.book Page 192 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS CallNonvirtual<Type>MethodA

193

Linkage Indices in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

clazz: a reference to the class from which the method ID is
derived.

obj: a reference to the object on which the method is invoked.

methodID: a method ID that is valid with the class reference
clazz.

args: an array of arguments to be passed to the method.

Return Values Returns the result of calling the method.

Exceptions Any exception raised during the execution of the method.

CallNonvirtual<Type>MethodA Index

CallNonvirtualVoidMethodA 93

CallNonvirtualObjectMethodA 66

CallNonvirtualBooleanMethodA 69

CallNonvirtualByteMethodA 72

CallNonvirtualCharMethodA 75

CallNonvirtualShortMethodA 78

CallNonvirtualIntMethodA 81

CallNonvirtualLongMethodA 84

CallNonvirtualFloatMethodA 87

CallNonvirtualDoubleMethodA 90

jni.book Page 193 Thursday, February 21, 2002 4:36 PM

CallNonvirtual<Type>MethodV JNI FUNCTIONS

194

CallNonvirtual<Type>MethodV

Prototype <NativeType> CallNonvirtual<Type>MethodV(
JNIEnv *env, jobject obj, jclass clazz,
jmethodID methodID, va_list args);

Forms This family of functions consists of ten members.

Description Invokes an instance method, specified using a class and a
method ID, on an object. The methodID argument must be
obtained by calling GetMethodID on the class clazz.

The CallNonvirtual<Type>MethodV families of functions and
the Call<Type>MethodV families of functions are different.
Call<Type>MethodV functions invoke the method based on the
real class of the object, while CallNonvirtual<Type>MethodV

routines invoke the method based on the class, designated by
the clazz parameter, from which the method ID is obtained.
The clazz parameter must refer to the real class of the object or
from one of its superclasses.

Programmers place all arguments to the method in an args

argument of type va_list that immediately follows the meth-

odID argument. The CallNonvirtual<Type>MethodV routine
accepts the arguments, and, in turn, passes them to the method
that the programmer wishes to invoke.

CallNonvirtual<Type>MethodV <NativeType>

CallNonvirtualVoidMethodV void

CallNonvirtualObjectMethodV jobject

CallNonvirtualBooleanMethodV jboolean

CallNonvirtualByteMethodV jbyte

CallNonvirtualCharMethodV jchar

CallNonvirtualShortMethodV jshort

CallNonvirtualIntMethodV jint

CallNonvirtualLongMethodV jlong

CallNonvirtualFloatMethodV jfloat

CallNonvirtualDoubleMethodV jdouble

jni.book Page 194 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS CallNonvirtual<Type>MethodV

195

Linkage Indices in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

clazz: a reference to the class from which the method ID is
derived.

obj: a reference to the object on which the method is invoked.

methodID: a method ID that is valid with the class reference
clazz.

args: a va_list of arguments to be passed to the method.

Return Values Returns the result of calling the method.

Exceptions Any exception raised during the execution of the method.

CallNonvirtual<Type>MethodV Index

CallNonvirtualVoidMethodV 92

CallNonvirtualObjectMethodV 65

CallNonvirtualBooleanMethodV 68

CallNonvirtualByteMethodV 71

CallNonvirtualCharMethodV 74

CallNonvirtualShortMethodV 77

CallNonvirtualIntMethodV 80

CallNonvirtualLongMethodV 83

CallNonvirtualFloatMethodV 86

CallNonvirtualDoubleMethodV 89

jni.book Page 195 Thursday, February 21, 2002 4:36 PM

CallStatic<Type>Method JNI FUNCTIONS

196

CallStatic<Type>Method

Prototype <NativeType> CallStatic<Type>Method(
JNIEnv *env, jclass clazz,
jmethodID methodID, ...);

Forms This family of functions consists of ten members.

Description Invokes a static method, specified using a method ID, on a
class. The method must be accessible in clazz, although it may
be defined in one of the superclasses of clazz.

Programmers should place all arguments that are to be passed to
the method immediately following the methodID argument. The
CallStatic<Type>Method routine accepts these arguments and
passes them to the static method that the programmer wishes to
invoke.

CallStatic<Type>Method <NativeType>

CallStaticVoidMethod void

CallStaticObjectMethod jobject

CallStaticBooleanMethod jboolean

CallStaticByteMethod jbyte

CallStaticCharMethod jchar

CallStaticShortMethod jshort

CallStaticIntMethod jint

CallStaticLongMethod jlong

CallStaticFloatMethod jfloat

CallStaticDoubleMethod jdouble

jni.book Page 196 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS CallStatic<Type>Method

197

Linkage Indices in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

clazz: a reference to the class object on which the static
method is called.

methodID: the static method ID of the method to be called.

Additional arguments: arguments to be passed to the static
method.

Return Values Returns the result of calling the static method.

Exceptions Any exception raised during the execution of the method.

CallStatic<Type>Method Index

CallStaticVoidMethod 141

CallStaticObjectMethod 114

CallStaticBooleanMethod 117

CallStaticByteMethod 120

CallStaticCharMethod 123

CallStaticShortMethod 126

CallStaticIntMethod 129

CallStaticLongMethod 132

CallStaticFloatMethod 135

CallStaticDoubleMethod 138

jni.book Page 197 Thursday, February 21, 2002 4:36 PM

CallStatic<Type>MethodA JNI FUNCTIONS

198

CallStatic<Type>MethodA

Prototype <NativeType> CallStatic<Type>MethodA(
JNIEnv *env, jclass clazz,
jmethodID methodID, jvalue *args);

Forms This family of functions consists of ten members.

Description Invokes a static method, specified using a method ID, on a
class. The method must be accessible in clazz, although it may
be defined in one of the superclasses of clazz.

Programmers should place all arguments to the method in an
args array of jvalues that immediately follows the methodID

argument. The CallStatic<Type>MethodA routine accepts the
arguments in this array, and, in turn, passes them to the static
method that the programmer wishes to invoke.

CallStatic<Type>MethodA <NativeType>

CallStaticVoidMethodA void

CallStaticObjectMethodA jobject

CallStaticBooleanMethodA jboolean

CallStaticByteMethodA jbyte

CallStaticCharMethodA jchar

CallStaticShortMethodA jshort

CallStaticIntMethodA jint

CallStaticLongMethodA jlong

CallStaticFloatMethodA jfloat

CallStaticDoubleMethodA jdouble

jni.book Page 198 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS CallStatic<Type>MethodA

199

Linkage Indices in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

clazz: a reference to the class object on which the static
method is called.

methodID: the static method ID of the method to be called.

args: an array of arguments to be passed to the static method.

Return Values Returns the result of calling the static method.

Exceptions Any exception raised during the execution of the method.

CallStatic<Type>MethodA Index

CallStaticVoidMethodA 143

CallStaticObjectMethodA 116

CallStaticBooleanMethodA 119

CallStaticByteMethodA 122

CallStaticCharMethodA 125

CallStaticShortMethodA 128

CallStaticIntMethodA 131

CallStaticLongMethodA 134

CallStaticFloatMethodA 137

CallStaticDoubleMethodA 140

jni.book Page 199 Thursday, February 21, 2002 4:36 PM

CallStatic<Type>MethodV JNI FUNCTIONS

200

CallStatic<Type>MethodV

Prototype <NativeType> CallStatic<Type>MethodV(
JNIEnv *env, jclass clazz,
jmethodID methodID, va_list args);

Forms This family of functions consists of ten members.

Description Invokes a static method, specified using a method ID, on a
class. The method must be accessible in clazz, although it may
be defined in one of the superclasses of clazz.

Programmers should place all arguments to the method in an
args argument of type va_list that immediately follows the
methodID argument. The CallStatic<Type>MethodV routine
accepts the arguments, and, in turn, passes them to the static
method that the programmer wishes to invoke.

CallStatic<Type>MethodV <NativeType>

CallStaticVoidMethodV void

CallStaticObjectMethodV jobject

CallStaticBooleanMethodV jboolean

CallStaticByteMethodV jbyte

CallStaticCharMethodV jchar

CallStaticShortMethodV jshort

CallStaticIntMethodV jint

CallStaticLongMethodV jlong

CallStaticFloatMethodV jfloat

CallStaticDoubleMethodV jdouble

jni.book Page 200 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS CallStatic<Type>MethodV

201

Linkage Indices in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

clazz: a reference to the class object on which the static
method is called.

methodID: the static method ID of the method to be called.

args: a va_list of arguments to be passed to the static method.

Return Values Returns the result of calling the static method.

Exceptions Any exception raised during the execution of the method.

CallStatic<Type>MethodV Index

CallStaticVoidMethodV 142

CallStaticObjectMethodV 115

CallStaticBooleanMethodV 118

CallStaticByteMethodV 121

CallStaticCharMethodV 124

CallStaticShortMethodV 127

CallStaticIntMethodV 130

CallStaticLongMethodV 133

CallStaticFloatMethodV 136

CallStaticDoubleMethodV 139

jni.book Page 201 Thursday, February 21, 2002 4:36 PM

DefineClass JNI FUNCTIONS

202

DefineClass

Prototype jclass DefineClass(JNIEnv *env, const char *name,
jobject loader, const jbyte *buf,
jsize bufLen);

Description Creates a java.lang.Class instance from a buffer of raw class
data representing a class or interface. The format of the raw
class data is specified by The Java™ Virtual Machine Specifica-
tion.

This function is slightly more general than the
java.lang.ClassLoader.defineClass method. This function
can define classes or interfaces with the null class loader. The
java.lang.ClassLoader.defineClass method is an instance
method and thus requires a java.lang.ClassLoader instance.

Linkage Index 5 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

name: the name of the class or interface to be defined.

loader: a class loader assigned to the defined class or interface.

buf: buffer containing the raw class file data.

bufLen: buffer length.

Return Values Returns a local reference to the newly defined class or interface
object, or NULL if an exception occurs. Returns NULL if and only
if an invocation of this function has thrown an exception.

Exceptions ClassFormatError: if the class data does not specify a valid
class or interface.

NoClassDefFoundError: if the class data does not specify the
named class or interface to be defined.

ClassCircularityError: if a class or interface would be its
own superclass or superinterface.

OutOfMemoryError: if the system runs out of memory.

jni.book Page 202 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS DeleteGlobalRef

203

DeleteGlobalRef

Prototype void DeleteGlobalRef(JNIEnv *env, jobject gref);

Description Deletes the global reference pointed to by gref. The gref argu-
ment must be a global reference, or NULL. The same non-NULL
global reference must not be deleted more than once. Deleting a
NULL global reference is a no-op.

Linkage Index 22 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

gref: the global reference to be deleted.

Exceptions None.

jni.book Page 203 Thursday, February 21, 2002 4:36 PM

DeleteLocalRef JNI FUNCTIONS

204

DeleteLocalRef

Prototype void DeleteLocalRef(JNIEnv *env, jobject lref);

Description Deletes the local reference pointed to by lref. The lref argu-
ment must be a local reference, or NULL. The same non-NULL
local reference must not be deleted more than once. Deleting a
NULL local reference is a no-op.

Deleting a local reference that does not belong to the topmost
local reference frame is a no-op. Each native method invocation
creates a new local reference frame. The PushLocalFrame

function (added in Java 2 SDK release 1.2) also creates a new
local reference frame.

Linkage Index 23 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

lref: the local reference to be deleted.

Exceptions None.

jni.book Page 204 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS DeleteWeakGlobalRef

205

DeleteWeakGlobalRef

Prototype void DeleteWeakGlobalRef(JNIEnv *env,
jobject wref);

Description Deletes a weak global reference. The wref argument must be a
weak global reference. The same weak global reference must
not be deleted more than once.

This function was introduced in Java 2 SDK release 1.2.

Linkage Index 227 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

wref: the weak global reference to be deleted.

Exceptions None.

jni.book Page 205 Thursday, February 21, 2002 4:36 PM

DestroyJavaVM JNI FUNCTIONS

206

DestroyJavaVM

Prototype jint DestroyJavaVM(JavaVM *vm);

Description Unloads a virtual machine instance and reclaims its resources.
The system blocks until the current thread is the only remaining
user thread before it attempts to unload the virtual machine
instance. This restriction exists because an attached thread may
be holding system resources such as locks, windows, and so on.
Virtual machine implementations cannot automatically free
these resources. By restricting the main thread to be the only
running thread when the virtual machine instance is unloaded,
the burden of releasing system resources held by arbitrary
threads is on the programmer.

The support for DestroyJavaVM was not complete in JDK
release 1.1; only the main thread may call DestroyJavaVM. The
virtual machine implementation blocks until the main thread is
the only user-level thread and returns a negative error code.

Java 2 SDK release 1.2 still does not support unloading virtual
machine instances. There is a slight relaxation to the use of
DestroyJavaVM, however; any thread may call DestroyJavaVM.
The virtual machine implementation blocks until the current
thread is the only user thread before it returns an error code.

Linkage Index 3 in the JavaVM interface function table.

Parameters vm: the virtual machine instance that will be destroyed.

Return Values Returns zero on success; otherwise, returns a negative number.

Exceptions None.

jni.book Page 206 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS DetachCurrentThread

207

DetachCurrentThread

Prototype jint DetachCurrentThread(JavaVM *vm);

Description Detaches the current thread from a virtual machine instance. All
monitors held by this thread are released. All threads waiting
for this thread to die (i.e., performing a Thread.join on this
thread) are notified.

In JDK release 1.1, the main thread cannot be detached from a
virtual machine instance. Instead, it must call DestroyJavaVM
to unload the entire virtual machine instance.

In Java 2 SDK release 1.2, the main thread may be detached
from a virtual machine instance.

Linkage Index 5 in the JavaVM interface function table.

Parameters vm: the virtual machine instance from which the current thread
will be detached.

Return Values Returns zero on success; otherwise, returns a negative number.

Exceptions None.

jni.book Page 207 Thursday, February 21, 2002 4:36 PM

EnsureLocalCapacity JNI FUNCTIONS

208

EnsureLocalCapacity

Prototype jint EnsureLocalCapacity(JNIEnv *env,
jint capacity);

Description Ensures that at least a given number of local references can be
created in the current thread.

Before it enters a native method, the virtual machine implemen-
tation ensures that at least sixteen local references can be cre-
ated in the current thread.

Allocating more local references than the ensured capacity may
or may not lead to an immediate failure depending on whether
the virtual machine implementation has enough memory avail-
able. The virtual machine implementation calls FatalError if
it is unable to provide the memory for additional local refer-
ences beyond the ensured capacity.

For debugging support, a virtual machine implementation may
give the user warnings when the user creates more local refer-
ences than the ensured capacity. In Java 2 SDK release 1.2, the
programmer can supply the -verbose:jni command line
option to turn on these warning messages.

This function was introduced in Java 2 SDK release 1.2.

Linkage Index 26 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

capacity: the number of local references that will be created.

Return Values Returns zero on success; otherwise, returns a negative number
and throws an exception.

Exceptions OutOfMemoryError: if the system runs out of memory.

jni.book Page 208 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS ExceptionCheck

209

ExceptionCheck

Prototype jboolean ExceptionCheck(JNIEnv *env);

Description Determines if an exception has been thrown. The exception
stays thrown until either the native code calls ExceptionClear,
or the caller of the native method handles the exception.

The difference between this function and ExceptionOccurred

is that this function returns a jboolean to indicate whether
there is a pending exception, whereas ExceptionOccurred

returns a local reference to the pending exception, or returns
NULL if there is no pending exception.

This function was introduced in Java 2 SDK release 1.2.

Linkage Index 228 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

Return Values Returns the JNI_TRUE if there is a pending exception, or
JNI_FALSE if there is no pending exception.

Exceptions None.

jni.book Page 209 Thursday, February 21, 2002 4:36 PM

ExceptionClear JNI FUNCTIONS

210

ExceptionClear

Prototype void ExceptionClear(JNIEnv *env);

Description Clears any pending exception that is currently being thrown in
the current thread. If no exception is currently being thrown,
this function has no effect. This function has no effect on excep-
tions pending on other threads.

ExceptionDescribe also has the side effect of clearing the
pending exception.

Linkage Index 17 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

Exceptions None.

jni.book Page 210 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS ExceptionDescribe

211

ExceptionDescribe

Prototype void ExceptionDescribe(JNIEnv *env);

Description Prints the pending exception and a backtrace of the stack to the
system error-reporting channel System.out.err. This is a con-
venience routine provided for debugging.

This function has the side effect of clearing the pending excep-
tion.

Linkage Index 16 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

Exceptions None.

jni.book Page 211 Thursday, February 21, 2002 4:36 PM

ExceptionOccurred JNI FUNCTIONS

212

ExceptionOccurred

Prototype jthrowable ExceptionOccurred(JNIEnv *env);

Description Determines if an exception is pending in the current thread. The
exception stays pending until either the native code calls
ExceptionClear, or the caller of the native method handles the
exception.

The difference between this function and ExceptionCheck

(added in Java 2 SDK release 1.2) is that ExceptionCheck

returns a jboolean to indicate whether there is a pending
exception, whereas this function returns a local reference to the
pending exception, or returns NULL if there is no pending excep-
tion.

Linkage Index 15 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

Return Values Returns the exception object that is pending in the current
thread, or NULL if no exception is pending.

Exceptions None.

jni.book Page 212 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS FatalError

213

FatalError

Prototype void FatalError(JNIEnv *env, const char *msg);

Description Raises a fatal error and does not expect the virtual machine
implementation to recover. Prints the message in a system
debugging channel, such as stderr, and terminates the virtual
machine instance.

This function does not return.

Linkage Index 18 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

msg: an error message.

Exceptions None.

jni.book Page 213 Thursday, February 21, 2002 4:36 PM

FindClass JNI FUNCTIONS

214

FindClass

Prototype jclass FindClass(JNIEnv *env, const char *name);

Description Returns a reference to the named class or interface. This func-
tion was introduced in JDK release 1.1, and has been extended
in Java 2 SDK release 1.2. In JDK release 1.1, this function
loads a locally defined class or interface. It searches the directo-
ries and zip files specified by the CLASSPATH environment vari-
able for the class or interface with the specified name.

In Java 2 SDK release 1.2, FindClass locates the class loader
associated with the current native method. If the native code
belongs to the null loader, then it uses the bootstrap class
loader to load the named class or interface. Otherwise, it
invokes the ClassLoader.loadClass method in the corre-
sponding class loader to load the named class or interface.

FindClass initializes the class or interface it returns.

The name argument is a class descriptor (§12.3.2). For example,
the descriptor for the java.lang.String class is:

"java/lang/String"

The descriptor of the array class java.lang.Object[] is:

"[Ljava/lang/Object;"

Linkage Index 6 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

name: the descriptor of the class or interface to be returned.

Return Values Returns a local reference to the named class or interface, or
NULL if the class or interface cannot be loaded. Returns NULL if
and only if an invocation of this function has thrown an excep-
tion.

jni.book Page 214 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS FindClass

215

Exceptions ClassFormatError: if the class data does not specify a valid
class or interface.

ClassCircularityError: if a class or interface would be its
own superclass or superinterface.

NoClassDefFoundError: if no definition for a requested class
or interface can be found.

OutOfMemoryError: if the system runs out of memory.

ExceptionInInitializerError: if class or interface initializa-
tion fails.

jni.book Page 215 Thursday, February 21, 2002 4:36 PM

FromReflectedField JNI FUNCTIONS

216

FromReflectedField

Prototype jfieldID FromReflectedField(JNIEnv *env,
jobject field);

Description Converts a java.lang.reflect.Field instance to a field ID.

This function was introduced in Java 2 SDK release 1.2.

Linkage Index 8 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

field: a reference to a java.lang.reflect.Field instance.

Return Values Returns the field ID corresponding to the given instance of
java.lang.reflect.Field, or NULL if an exception occurs.
Returns NULL if and only if an invocation of this function has
thrown an exception.

Exceptions OutOfMemoryError: if the system runs out of memory.

jni.book Page 216 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS FromReflectedMethod

217

FromReflectedMethod

Prototype jmethodID FromReflectedMethod(JNIEnv *env,
jobject method);

Description Converts a java.lang.reflect.Method instance or a
java.lang.reflect.Constructor instance to a method ID.

This function was introduced in Java 2 SDK release 1.2.

Linkage Index 7 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

method: a reference to a java.lang.reflect.Method object or
a reference to a java.lang.reflect.Constructor object.

Return Values Returns a method ID that corresponds to a given instance of the
java.lang.reflect.Method class or a given instance of the
java.lang.reflect.Constructor class, or NULL if an excep-
tion occurs. Returns NULL if and only if an invocation of this
function has thrown an exception.

Exceptions OutOfMemoryError: if the system runs out of memory.

jni.book Page 217 Thursday, February 21, 2002 4:36 PM

GetArrayLength JNI FUNCTIONS

218

GetArrayLength

Prototype jsize GetArrayLength(JNIEnv *env, jarray array);

Description Returns the number of elements in a given array. The array
argument may denote an array of any element types, including
primitive types such as int or double, or referencs types such
as the subclasses of java.lang.Object or other array types.

Linkage Index 171 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

array: a reference to the array object whose length is to be
determined.

Return Values Returns the length of the array.

Exceptions None.

jni.book Page 218 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS Get<Type>ArrayElements

219

Get<Type>ArrayElements

Prototype <NativeType> *Get<Type>ArrayElements(JNIEnv *env,
<ArrayType> array, jboolean *isCopy);

Forms This family of functions consists of eight members.

Description Returns the body of the primitive array. The result is valid until
the corresponding Release<Type>ArrayElements function is
called. Since the returned array may be a copy of the original
array, changes made to the returned array will not necessarily
be reflected in the original array until a corresponding
Release<Type>ArrayElements is called.

If isCopy is not NULL, then *isCopy is set to JNI_TRUE if a copy
is made; if no copy is made, it is set to JNI_FALSE.

Linkage Indices in the JNIEnv interface function table.

Get<Type>ArrayElements <ArrayType> <NativeType>

GetBooleanArrayElements jbooleanArray jboolean

GetByteArrayElements jbyteArray jbyte

GetCharArrayElements jcharArray jchar

GetShortArrayElements jshortArray jshort

GetIntArrayElements jintArray jint

GetLongArrayElements jlongArray jlong

GetFloatArrayElements jfloatArray jfloat

GetDoubleArrayElements jdoubleArray jdouble

Get<Type>ArrayElements Index

GetBooleanArrayElements 183

GetByteArrayElements 184

GetCharArrayElements 185

GetShortArrayElements 186

GetIntArrayElements 187

GetLongArrayElements 188

GetFloatArrayElements 189

GetDoubleArrayElements 190

jni.book Page 219 Thursday, February 21, 2002 4:36 PM

Get<Type>ArrayElements JNI FUNCTIONS

220

Parameters env: the JNIEnv interface pointer.

array: a reference to the primitive array whose elements are to
be accessed.

isCopy: a pointer to a jboolean indicating whether a function
returned a pointer to a copy of the array elements or a direct
pointer to the original array elements.

Return Values Returns a pointer to the array elements, or NULL if an exception
occurs. Returns NULL if and only if an invocation of this func-
tion has thrown an exception.

Exceptions OutOfMemoryError: if the system runs out of memory.

jni.book Page 220 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS Get<Type>ArrayRegion

221

Get<Type>ArrayRegion

Prototype void Get<Type>ArrayRegion(JNIEnv *env,
<ArrayType> array, jsize start,
jsize len, <NativeType> *buf);

Forms This family of functions consists of eight members.

Description Copies a region of a primitive array into a buffer. The array

reference and buf buffer must not be NULL.

Linkage Indices in the JNIEnv interface function table.

Get<Type>ArrayRegion <ArrayType> <NativeType>

GetBooleanArrayRegion jbooleanArray jboolean

GetByteArrayRegion jbyteArray jbyte

GetCharArrayRegion jcharArray jchar

GetShortArrayRegion jshortArray jhort

GetIntArrayRegion jintArray jint

GetLongArrayRegion jlongArray jlong

GetFloatArrayRegion jfloatArray jloat

GetDoubleArrayRegion jdoubleArray jdouble

Get<Type>ArrayRegion Index

GetBooleanArrayRegion 199

GetByteArrayRegion 200

GetCharArrayRegion 201

GetShortArrayRegion 202

GetIntArrayRegion 203

GetLongArrayRegion 204

GetFloatArrayRegion 205

GetDoubleArrayRegion 206

jni.book Page 221 Thursday, February 21, 2002 4:36 PM

Get<Type>ArrayRegion JNI FUNCTIONS

222

Parameters env: the JNIEnv interface pointer.

array: a reference to an array whose elements are to be copied.

start: the starting index of the array elements to be copied.

len: the number of elements to be copied.

buf: the destination buffer.

Exceptions ArrayIndexOutOfBoundsException: if one of the indices in
the region is not valid.

jni.book Page 222 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS Get<Type>Field

223

Get<Type>Field

Prototype <NativeType> Get<Type>Field(JNIEnv *env,
jobject obj, jfieldID fieldID);

Forms This family of functions consists of nine members.

Description Returns the value of a field of an instance. The field to access is
specified by a field ID. The field ID must be valid in the class of
the obj reference. The obj reference must not be NULL.

Linkage Indices in the JNIEnv interface function table.

Get<Type>Field <NativeType>

GetObjectField jobject

GetBooleanField jboolean

GetByteField jbyte

GetCharField jchar

GetShortField jshort

GetIntField jint

GetLongField jlong

GetFloatField jfloat

GetDoubleField jdouble

Get<Type>Field Index

GetObjectField 95

GetBooleanField 96

GetByteField 97

GetCharField 98

GetShortField 99

GetIntField 100

GetLongField 101

GetFloatField 102

GetDoubleField 103

jni.book Page 223 Thursday, February 21, 2002 4:36 PM

Get<Type>Field JNI FUNCTIONS

224

Parameters env: the JNIEnv interface pointer.

obj: a reference to the instance whose field are to be accessed.

fieldID: a field ID of the given instance.

Return Values Returns the value of the field.

Exceptions None.

jni.book Page 224 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS GetEnv

225

GetEnv

Prototype jint GetEnv(JavaVM *vm, void **penv,
jint interface_id);

Description If the current thread is not attached to the given virtual machine
instance, sets *penv to NULL, and returns JNI_EDETACHED. If the
specified interface is not supported, sets *penv to NULL, and
returns JNI_EVERSION. Otherwise, sets *env to the appropriate
interface, and returns JNI_OK.

Java 2 SDK release 1.2 supports two valid interface versions:
JNI_VERSION_1_1 and JNI_VERSION_1_2. In both cases,
GetEnv sets *penv to a 1.2 version of the JNIEnv interface
pointer.

This function is added in Java 2 SDK release 1.2.

Linkage Index 6 in the JavaVM interface function table.

Parameters vm: a virtual machine instance.

penv: a location for storing an interface pointer.

interface_id: an interface version number.

Return Values Returns JNI_OK on success, JNI_EDETACHED when the current
thread is not attached, and JNI_EVERSION when the specified
interface is not supported.

Exceptions None.

jni.book Page 225 Thursday, February 21, 2002 4:36 PM

GetFieldID JNI FUNCTIONS

226

GetFieldID

Prototype jfieldID GetFieldID(JNIEnv *env, jclass clazz,
const char *name, const char *sig);

Description Returns the field ID for an instance field of a class. The field is
specified by its name and descriptor. The Get<Type>Field and
Set<Type>Field families of accessor functions use field IDs to
retrieve instance fields. The field must be accessible from the
class referred to by clazz. The actual field, however, may be
defined in one of clazz’s superclasses. The clazz reference
must not be NULL.

GetFieldID causes an uninitialized class to be initialized.

GetFieldID cannot be used to obtain the length of an array. Use
GetArrayLength instead.

Linkage Index 94 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

clazz: a reference to the class object from which the field ID
will be derived.

name: the field name in a 0-terminated UTF-8 string.

sig: the field descriptor in a 0-terminated UTF-8 string.

Return Values Returns a field ID, or NULL if the operation fails. Returns NULL if
and only if an invocation of this function has thrown an excep-
tion.

Exceptions NoSuchFieldError: if the specified field cannot be found.

ExceptionInInitializerError: if the class initializer fails
due to an exception.

OutOfMemoryError: if the system runs out of memory.

jni.book Page 226 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS GetJavaVM

227

GetJavaVM

Prototype jint GetJavaVM(JNIEnv *env, JavaVM **vm);

Description Returns the JavaVM interface pointer to which the current thread
is attached. The result is placed at the location pointed to by the
second argument.

Linkage Index 219 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

vm: a pointer to where the result should be placed.

Return Values Returns zero on success; otherwise, returns a negative value.
Returns a negative number if and only if an invocation of this
function has thrown an exception.

Exceptions None.

jni.book Page 227 Thursday, February 21, 2002 4:36 PM

GetMethodID JNI FUNCTIONS

228

GetMethodID

Prototype jmethodID GetMethodID(JNIEnv *env, jclass clazz,
const char *name, const char *sig);

Description Returns the method ID for an instance method of a class or
interface. The method may be defined in one of the clazz’s
superclasses or superinterfaces and inherited by clazz. The
method is determined by its name and descriptor. The clazz

reference must not be NULL.

GetMethodID causes an uninitialized class or interface to be ini-
tialized.

To obtain the method ID of a constructor, supply "<init>" as
the method name and “V” as the return type. For example, the
following code segment obtains the method ID for the
String(char []) constructor:

 jmethodID cid = (*env)->GetMethodID(env,
 Class_java_lang_String, "<init>", "([C)V");

Linkage Index 33 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

clazz: a reference to the class or interface object from which
the method ID will be derived.

name: the method name in a 0-terminated UTF-8 string.

sig: the method descriptor in a 0-terminated UTF-8 string.

Return Values Returns a method ID, or NULL if the operation fails. Returns
NULL if and only if an invocation of this function has thrown an
exception.

Exceptions NoSuchMethodError: if the specified method cannot be found.

ExceptionInInitializerError: if the class or interface static
initializer fails due to an exception.

OutOfMemoryError: if the system runs out of memory.

jni.book Page 228 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS GetObjectArrayElement

229

GetObjectArrayElement

Prototype jobject GetObjectArrayElement(JNIEnv *env,
jobjectArray array, jsize index);

Description Returns an element of a java.lang.Object array. The array

reference must not be NULL.

Linkage Index 173 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

array: a reference to the java.lang.Object array from which
the element will be accessed.

index: the array index.

Return Values Returns a local reference to the element.

Exceptions ArrayIndexOutOfBoundsException: if index does not specify
a valid index in the array.

jni.book Page 229 Thursday, February 21, 2002 4:36 PM

GetObjectClass JNI FUNCTIONS

230

GetObjectClass

Prototype jclass GetObjectClass(JNIEnv *env, jobject obj);

Description Returns the class of an object. The obj reference must not be
NULL.

Linkage Index 31 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

obj: a reference to the object whose class will be obtained.

Return Values Returns a local reference to the class of the given object.

Exceptions None.

jni.book Page 230 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS GetPrimitiveArrayCritical

231

GetPrimitiveArrayCritical

Prototype void * GetPrimitiveArrayCritical(JNIEnv *env,
jarray array, jboolean *isCopy);

Description Returns a pointer to the body of a primitive array. The result is
valid until the corresponding ReleasePrimitiveArray-

Critical function is called.

It is important to treat the code inside this pair of functions as
running in a “critical region.” Inside a critical region, native
code must not call other JNI functions, nor may the native code
make any system call that may cause the current thread to block
and wait for another thread in the virtual machine instance.

These restrictions make it more likely that native code will
obtain an uncopied version of the array, even if the virtual
machine implementation does not support pinning. For exam-
ple, a virtual machine implementation may temporarily disable
garbage collection when native code is holding a pointer to an
array obtained via GetPrimitiveArrayCritical.

Multiple pairs of Get/ReleasePrimitiveArrayCritical calls
may be overlapped:

 jint len = (*env)->GetArrayLength(env, arr1);
 jbyte *a1 = (*env)->
 GetPrimitiveArrayCritical(env, arr1 0);
 if (a1 == NULL) {
 ... /* out of memory error */
 }
 jbyte *a2 = (*env)->
 GetPrimitiveArrayCritical(env, arr2, 0);
 if (a2 == NULL) {
 ... /* out of memory error */
 }
 memcpy(a1, a2, len);
 (*env)->ReleasePrimitiveArrayCritical(
 env, arr2, a2, 0);
 (*env)->ReleasePrimitiveArrayCritical(
 env, arr1, a1, 0);

GetPrimitiveArrayCritical might still make a copy of the
array if the virtual machine implementation internally repre-
sents arrays in a different format (noncontiguously, for exam-

jni.book Page 231 Thursday, February 21, 2002 4:36 PM

GetPrimitiveArrayCritical JNI FUNCTIONS

232

ple). Therefore, it is important to check its return value against
NULL for possible out-of-memory situations.

If isCopy is not NULL, then *isCopy is set to JNI_TRUE if a copy
is made; or it is set to JNI_FALSE if no copy is made.

This function was introduced in Java 2 SDK release 1.2.

Linkage Index 222 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

array: a reference to the array whose elements are to be
accessed.

isCopy: a pointer to a jboolean.

Return Values Returns a pointer to the array elements, or NULL if the operation
fails. Returns NULL if and only if an invocation of this function
has thrown an exception.

Exceptions OutOfMemoryError: if the system runs out of memory.

jni.book Page 232 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS GetStaticFieldID

233

GetStaticFieldID

Prototype jfieldID GetStaticFieldID(JNIEnv *env,
jclass clazz, const char *name,
const char *sig);

Description Returns the field ID for a static field of a class or interface. The
field may be defined in the class or interface referred to by
clazz or in one of its superclass or superinterfaces. The clazz

reference must not be NULL. The field is specified by its name
and descriptor. The GetStatic<Type>Field and Set-

Static<Type>Field families of accessor functions use static
field IDs to retrieve static fields.

GetStaticFieldID causes an uninitialized class or interface to
be initialized.

Linkage Index 144 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

clazz: a reference to the class or interface object whose static
field is to be accessed.

name: the static field name in a 0-terminated UTF-8 string.

sig: the field descriptor in a 0-terminated UTF-8 string.

Return Values Returns a field ID, or NULL if the operation fails. Returns NULL if
and only if an invocation of this function has thrown an excep-
tion.

Exceptions NoSuchFieldError: if the specified static field cannot be found.

ExceptionInInitializerError: if the class or interface static
initializer fails due to an exception.

OutOfMemoryError: if the system runs out of memory.

jni.book Page 233 Thursday, February 21, 2002 4:36 PM

GetStatic<Type>Field JNI FUNCTIONS

234

GetStatic<Type>Field

Prototype <NativeType> GetStatic<Type>Field(JNIEnv *env,
jclass clazz, jfieldID fieldID);

Forms This family of functions consists of nine members.

Description This family of accessor routines returns the value of a static
field of a class or interface. The clazz reference must not be
NULL. The field to access is specified by a field ID, which is
obtained by calling GetStaticFieldID.

Linkage Indices in the JNIEnv interface function table.

GetStatic<Type>Field <NativeType>

GetStaticObjectField jobject

GetStaticBooleanField jboolean

GetStaticByteField jbyte

GetStaticCharField jchar

GetStaticShortField jshort

GetStaticIntField jint

GetStaticLongField jlong

GetStaticFloatField jfloat

GetStaticDoubleField jdouble

GetStatic<Type>Field Index

GetStaticObjectField 145

GetStaticBooleanField 146

GetStaticByteField 147

GetStaticCharField 148

GetStaticShortField 149

GetStaticIntField 150

GetStaticLongField 151

GetStaticFloatField 152

GetStaticDoubleField 153

jni.book Page 234 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS GetStatic<Type>Field

235

Parameters env: the JNIEnv interface pointer.

clazz: a reference to the class or interface object whose static
field is to be accessed.

fieldID: the ID of the static field to be accessed.

Return Values Returns the value of the static field.

Exceptions None.

jni.book Page 235 Thursday, February 21, 2002 4:36 PM

GetStaticMethodID JNI FUNCTIONS

236

GetStaticMethodID

Prototype jmethodID GetStaticMethodID(JNIEnv *env,
jclass clazz, const char *name,
const char *sig);

Description Returns the method ID for a static method of a class. The
method is specified by its name and descriptor. The method
may be defined in the class referred to by clazz or in one of its
superclasses. The clazz reference must not be NULL.

GetStaticMethodID causes an uninitialized class to be initial-
ized.

Linkage Index 113 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

clazz: a reference to the class object whose static method is to
be called.

name: the static method name in a 0-terminated UTF-8 string.

sig: the method descriptor in a 0-terminated UTF-8 string.

Return Values Returns a method ID, or NULL if the operation fails. Returns
NULL if and only if an invocation of this function has thrown an
exception.

Exceptions NoSuchMethodError: if the specified static method cannot be
found.

ExceptionInInitializerError: if the class initializer fails
due to an exception.

OutOfMemoryError: if the system runs out of memory.

jni.book Page 236 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS GetStringChars

237

GetStringChars

Prototype const jchar * GetStringChars(JNIEnv *env,
jstring string, jboolean *isCopy);

Description Returns a pointer to the array of Unicode characters of the
string. This pointer is valid until ReleaseStringchars is
called.

If isCopy is not NULL, then *isCopy is set to JNI_TRUE if a copy
is made; or it is set to JNI_FALSE if no copy is made.

Linkage Index 165 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

string: a reference to the string object whose elements are to
be accessed.

isCopy: a pointer to a jboolean indicating whether a copy of
the string is returned.

Return Values Returns a pointer to a Unicode string, or NULL if the operation
fails. Returns NULL if and only if an invocation of this function
has thrown an exception.

Exceptions OutOfMemoryError: if the system runs out of memory.

jni.book Page 237 Thursday, February 21, 2002 4:36 PM

GetStringCritical JNI FUNCTIONS

238

GetStringCritical

Prototype const jchar * GetStringCritical(JNIEnv *env,
jstring string, jboolean *isCopy);

Description Returns a pointer to the contents of a jstring reference. The
semantics of this function is similar to the GetStringChars

function. If possible, the virtual machine implementation
returns a pointer to the elements of the given string; otherwise,
a copy is made. The pointer is valid until ReleaseStringCrit-
ical is called.

If isCopy is not NULL, then *isCopy is set to JNI_TRUE if a copy
is made; if no copy is made, it is set to JNI_FALSE.

There are significant restrictions on how this function—and the
corresponding ReleaseStringCritical function—can be
used. In a code segment enclosed by GetStringCritical and
ReleaseStringCritical calls, native code must not issue arbi-
trary JNI calls or cause the current thread to block and wait for
another thread in the virtual machine instance.

The restrictions on GetStringCritical are the same as those
on GetPrimitiveArrayCritical.

This function was introduced in Java 2 SDK release 1.2.

Linkage Index 224 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

string: a reference to the string object whose elements are to
be accessed.

isCopy: a pointer to a jboolean indicating whether a copy has
been made.

Return Values Returns a pointer to a Unicode string, or NULL if the operation
fails. Returns NULL if and only if an invocation of this function
has thrown an exception.

Exceptions OutOfMemoryError: if the system runs out of memory.

jni.book Page 238 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS GetStringLength

239

GetStringLength

Prototype jsize GetStringLength(JNIEnv *env, jstring string);

Description Returns the number of Unicode characters that constitute a
string. The given string reference must not be NULL.

Linkage Index 164 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

string: a reference to the string object whose length is to be
determined.

Return Values Returns the length of the string.

Exceptions None.

jni.book Page 239 Thursday, February 21, 2002 4:36 PM

GetStringRegion JNI FUNCTIONS

240

GetStringRegion

Prototype void GetStringRegion(JNIEnv *env, jstring str,
jsize start, jsize len, jchar *buf);

Description Copies len number of Unicode characters, beginning at offset
start. Copies the characters to the given buffer buf.

This function was introduced in Java 2 SDK release 1.2.

Linkage Index 220 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

str: a reference to the string object to be copied.

start: the offset within the string at which to start the copy.

len: the number of Unicode characters to copy.

buf: a pointer to a buffer to hold the Unicode characters.

Exceptions StringIndexOutOfBoundsException: if an index overflow
error occurs.

jni.book Page 240 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS GetStringUTFChars

241

GetStringUTFChars

Prototype const jbyte * GetStringUTFChars(JNIEnv *env,
jstring string, jboolean *isCopy);

Description Returns a pointer to an array of UTF-8 characters of the string.
This array is valid until it is released by ReleaseStringUTF-

Chars.

If isCopy is not NULL, then *isCopy is set to JNI_TRUE if a copy
is made; if no copy is made, it is set to JNI_FALSE.

Linkage Index 169 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

string: a reference to the string object whose elements are to
be accessed.

isCopy: a pointer to a jboolean indicating whether a copy has
been made.

Return Values Returns a pointer to a UTF-8 string, or NULL if the operation
fails. Returns NULL if and only if an invocation of this function
has thrown an exception.

Exceptions OutOfMemoryError: if the system runs out of memory.

jni.book Page 241 Thursday, February 21, 2002 4:36 PM

GetStringUTFLength JNI FUNCTIONS

242

GetStringUTFLength

Prototype jsize GetStringUTFLength(JNIEnv *env,
jstring string);

Description Returns the number of bytes needed to represent a string in the
UTF-8 format. The length does not include the trailing zero
character. The given string reference must not be NULL.

Linkage Index 168 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

string: a reference to the string object whose UTF-8 length is
to be determined.

Return Values Returns the UTF-8 length of the string.

Exceptions None.

jni.book Page 242 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS GetStringUTFRegion

243

GetStringUTFRegion

Prototype void GetStringUTFRegion(JNIEnv *env, jstring str,
jsize start, jsize len, char *buf);

Description Translates len number of Unicode characters into UTF-8 for-
mat. The function begins the translation at offset start and
places the result in the given buffer buf. The str reference and
buf buffer must not be NULL.

Note that the len argument denotes the number to Unicode
characters to be converted, not the number of UTF-8 characters
to be copied.

This function was introduced in Java 2 SDK release 1.2.

Linkage Index 221 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

str: a reference to the string object to be copied.

start: the offset within the string at which to start the copy.

len: the number of Unicode characters to copy.

buf: a pointer to a buffer to hold the UTF-8 characters.

Exceptions StringIndexOutOfBoundsException: if an index overflow
error occurs.

jni.book Page 243 Thursday, February 21, 2002 4:36 PM

GetSuperclass JNI FUNCTIONS

244

GetSuperclass

Prototype jclass GetSuperclass(JNIEnv *env, jclass clazz);

Description Returns the superclass of the given class. If clazz represents
any class other than the class java.lang.Object, then this
function returns a reference to the superclass of the class speci-
fied by clazz.

If clazz represents the class java.lang.Object, or if clazz

represents an interface, this function returns NULL.

Linkage Index 10 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

clazz: a reference to a class object whose superclass is to be
determined.

Return Values Returns the superclass of the class represented by clazz, or
NULL.

Exceptions None.

jni.book Page 244 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS GetVersion

245

GetVersion

Prototype jint GetVersion(JNIEnv *env);

Description Returns the version of the JNIEnv interface. In JDK release 1.1,
GetVersion returns 0x00010001. In Java 2 SDK release 1.2,
GetVersion returns 0x00010002. A virtual machine implemen-
tation that supports both the 1.1 and 1.2 versions of the JNI pro-
vides only one JNIEnv interface whose version is 0x00010002.

Linkage Index 4 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

Return Values Returns the version of the JNIEnv interface.

Exceptions None.

jni.book Page 245 Thursday, February 21, 2002 4:36 PM

IsAssignableFrom JNI FUNCTIONS

246

IsAssignableFrom

Prototype jboolean IsAssignableFrom(JNIEnv *env,
jclass clazz1, jclass clazz2);

Description Determines whether an object of class or interface clazz1 can
be safely cast to class or interface clazz2. Both clazz1 and
clazz2 must not be NULL.

Linkage Index 11 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

clazz1: the first class or interface argument.

clazz2: the second class or interface argument.

Return Values Returns JNI_TRUE if any of the following is true:

• The first and second arguments refer to the same class or
interface.

• The first argument refer to a subclass of the second argu-
ment.

• The first argument refers to a class that has the second argu-
ment as one of its interfaces.

• The first and second arguments both refer to array classes
with element types X and Y, and IsAssignableFrom(env,

X, Y) is JNI_TRUE.

Otherwise, this function returns JNI_FALSE.

Exceptions None.

jni.book Page 246 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS IsInstanceOf

247

IsInstanceOf

Prototype jboolean IsInstanceOf(JNIEnv *env, jobject obj,
jclass clazz);

Description Tests whether an object is an instance of a class or interface.
The clazz reference must not be NULL.

Linkage Index 32 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

obj: a reference to an object.

clazz: a reference to a class or interface.

Return Values Returns JNI_TRUE if obj can be cast to clazz, if obj denotes a
null object, or if obj is a weak global reference to an already-
collected object; otherwise, returns JNI_FALSE.

Exceptions None.

jni.book Page 247 Thursday, February 21, 2002 4:36 PM

IsSameObject JNI FUNCTIONS

248

IsSameObject

Prototype jboolean IsSameObject(JNIEnv *env, jobject ref1,
jobject ref2);

Description Tests whether two references refer to the same object. A NULL

reference refers to the null object.

In Java 2 SDK release 1.2, this function can also be used to
check whether the object referred to by a weak global reference
is alive.

Linkage Index 24 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

ref1: a reference to an object.

ref2: a reference to an object.

Return Values Returns JNI_TRUE if ref1 and ref2 refer to the same object;
otherwise, returns JNI_FALSE.

In Java 2 SDK release 1.2, as long as a weak global reference
wref refers to a live object, IsSameObject(env, wref, NULL)

returns JNI_FALSE. After the object referred to by wref is gar-
bage collected, the IsSameObject(env, wref, NULL) call
returns JNI_TRUE.

Exceptions None.

jni.book Page 248 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS JNI_CreateJavaVM

249

JNI_CreateJavaVM

Prototype jint JNI_CreateJavaVM(JavaVM **pvm, void **penv,
void *vm_args);

Description Loads and initializes a virtual machine instance. Once the vir-
tual machine instance is initialized, the current thread is called
the main thread. In addition, this function sets the env argument
to the JNIEnv interface pointer of the main thread.

JDK release 1.1 and Java 2 SDK release 1.2 do not support cre-
ating more than one virtual machine instance in a single pro-
cess.

In JDK release 1.1, the second argument to JNI_CreateJavaVM

is always an address of a JNIEnv pointer. The third argument is
a pointer to an initialization structure, JDK1_1InitArgs, that is
specific to the JDK release 1.1. The version field in vm_args

must be set to 0x00010001.

The JDK1_1InitArgs structure is not designed to be portable
on all virtual machine implementations. It reflects the require-
ments of the JDK release 1.1 implementation:

 typedef struct JDK1_1InitArgs {
 /* Java VM version */

 jint version;

 /* System properties. */
 char **properties;

/* whether to check the source files are
 * newer than compiled class files.
 */
jint checkSource;

/* maximum native stack size of
 * java.lang.Thread threads.
 */
jint nativeStackSize;

/* maximum java.lang.Thread stack size. */
jint javaStackSize;

/* initial heap size. */

jni.book Page 249 Thursday, February 21, 2002 4:36 PM

JNI_CreateJavaVM JNI FUNCTIONS

250

jint minHeapSize;

/* maximum heap size. */
jint maxHeapSize;

/* which byte code should be verified:
 * 0 -- none,
* 1 -- remotely loaded code,
* 2 -- all code.
*/
jint verifyMode;

/* local directory path for class loading. */
const char *classpath;

/* a hook for a function that redirects
 * all VM messages.
 */
jint (*vfprintf)(FILE *fp,
 const char *format,
 va_list args);

/* a VM exit hook. */
void (*exit)(jint code);

/* a VM abort hook. */
void (*abort)();

/* whether to enable class GC. */
jint enableClassGC;

/* whether GC messages will appear. */
jint enableVerboseGC;

/* whether asynchronous GC is allowed. */
jint disableAsyncGC;

/* Three reserved fields. */
jint reserved0;
jint reserved1;
jint reserved2;

} JDK1_1InitArgs;

Java 2 SDK release 1.2 preserves backward compatibility with
JDK release 1.1. If the initialization argument points to a
JDK1_1InitArgs structure, JNI_CreateJavaVM still works as it
did in JDK release 1.1.

jni.book Page 250 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS JNI_CreateJavaVM

251

In addition, Java 2 SDK release 1.2 introduces a generic virtual
machine initialization structure that will work with Java 2 SDK
release 1.2 as well as future virtual machine implementations.
The JNI_CreateJavaVM accepts as the third argument a Java-

VMInitArgs structure. Unlike JDK1_1InitArgs, which con-
tains a fixed set of options, JavaVMInitArgs uses symbolic
name/value pairs to encode arbitrary virtual machine start-up
options. JavaVMInitArgs is defined as follows:

 typedef struct JavaVMInitArgs {
 jint version;
 jint nOptions;
 JavaVMOption *options;
 jboolean ignoreUnrecognized;
 } JavaVMInitArgs;

The version field must be set to JNI_VERSION_1_2. (In contrast,
the version field in JDK1_1InitArgs must be set to
JNI_VERSION_1_1.) The options field is an array of the follow-
ing type:

 typedef struct JavaVMOption {
 char *optionString;
 void *extraInfo;
 } JavaVMOption;

The size of the array is denoted by the nOptions field in Jav-

aVMInitArgs. If ignoreUnrecognized is JNI_TRUE,
JNI_CreateJavaVM ignores all unrecognized option strings that
begin with “-X” or “_”. If ignoreUnrecognized is JNI_FALSE,
JNI_CreateJavaVM returns JNI_ERR as soon as it encounters
any unrecognized option strings. All Java virtual machine
implementations must recognize the following set of standard
options:

jni.book Page 251 Thursday, February 21, 2002 4:36 PM

JNI_CreateJavaVM JNI FUNCTIONS

252

In addition, virtual machine implementations may support their
own set of implementation-dependent option strings. Imple-
mentation-dependent option strings must begin with “-X” or an
underscore (“_”). For example, Java 2 SDK release 1.2 supports
-Xms and -Xmx options to allow programmers to specify the ini-
tial and maximum heap size. Options that begin with “-X” can
be specified at the “java” command line.

Here is the example code that creates a virtual machine instance
in Java 2 SDK release 1.2:

optionString Meaning

-D<name>=<value> Set a system property

-verbose Enable verbose output. The option
can be followed by a colon and a
comma-separated list of names
indicating what kind of messages
will be printed by the VM. For
example,

-verbose:gc,class

instructs the VM to print GC and
class-loading related messages.
Standard names include: gc, class,
and jni. Implementation-specific
names must begin with “X”.

vfprintf extraInfo is a pointer to the
vfprintf hook.

exit extraInfo is a pointer to the exit

hook.

abort extraInfo is a pointer to the abort

hook.

jni.book Page 252 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS JNI_CreateJavaVM

253

 JavaVMInitArgs vm_args;
 JavaVMOption options[4];
 /* disable JIT */
 options[0].optionString =
 "-Djava.compiler=NONE";
 /* user classes */
 options[1].optionString =
 "-Djava.class.path=c:\\myclasses";
 /* native lib path */
 options[2].optionString =
 "-Djava.library.path=c:\\mylibs";
 /* print JNI msgs */
 options[3].optionString = "-verbose:jni";
 vm_args.version = JNI_VERSION_1_2;
 vm_args.options = options;
 vm_args.nOptions = 4;
 vm_args.ignoreUnrecognized = TRUE;

 res = JNI_CreateJavaVM(&vm, (void **)&env,
 &vm_args);
 if (res < 0) {
 ... /* error occurred
 }

Linkage Exported from the native library that implements the Java vir-
tual machine.

Parameters pvm: pointer to the location where the resulting JavaVM interface
pointer will be placed.

penv: pointer to the location where the JNIEnv interface pointer
for the main thread will be placed.

args: Java virtual machine initialization arguments.

Return Values Returns zero on success; otherwise, returns a negative number.

Exceptions None.

jni.book Page 253 Thursday, February 21, 2002 4:36 PM

JNI_GetCreatedJavaVMs JNI FUNCTIONS

254

JNI_GetCreatedJavaVMs

Prototype jint JNI_GetCreatedJavaVMs(JavaVM **vmBuf,
jsize bufLen, jsize *nVMs);

Description Returns pointers to all the virtual machine instances that have
been created. This function writes the pointers to the virtual
machine instances into the buffer vmBuf in the order that they
were created. At most, it writes bufLen number of entries.
Finally, it returns the total number of created virtual machine
instances in *nVMs.

JDK release 1.1 and Java 2 SDK release 1.2 do not support cre-
ating more than one virtual machine instance in a single pro-
cess.

Linkage Exported from the native library that implements the Java vir-
tual machine.

Parameters vmBuf: pointer to the buffer where the pointer to virtual
machine instance will be placed.

bufLen: the length of the buffer.

nVMs: a pointer to an integer.

Return Values Returns zero on success; otherwise, returns a negative number.

Exceptions None.

jni.book Page 254 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS JNI_GetDefaultJavaVMInitArgs

255

JNI_GetDefaultJavaVMInitArgs

Prototype jint JNI_GetDefaultJavaVMInitArgs(void *vm_args);

Description Returns a default configuration for the Java virtual machine
implementation. Before calling this function, native code must
set the version field in vm_args to 0x00010001.

In JDK release 1.1, this function takes as argument a pointer to
the JDK1_1InitArgs structure and upon successful return ini-
tializes that structure. You must set the version field in
JDK1_1InitArgs to 0x00010001 before calling this function.
The specification for the JNI_CreateJavaVM function describes
the internals of the JDK1_1InitArgs structure.

The new virtual machine initialization structure in Java 2 SDK
release 1.2 no longer requires programmers to call
JNI_GetDefaultJavaVMInitArgs. This function is still sup-
ported but no longer useful in Java 2 SDK release 1.2.

Linkage Exported from the native library that implements the Java vir-
tual machine.

Parameters vm_args: a pointer to a VM-specific initialization structure into
which the default arguments are filled.

Return Values Returns zero if the requested version is supported; otherwise,
returns a negative number if the requested version is not sup-
ported.

Exceptions None.

jni.book Page 255 Thursday, February 21, 2002 4:36 PM

JNI_OnLoad JNI FUNCTIONS

256

JNI_OnLoad

Prototype jint JNI_OnLoad(JavaVM *vm, void *reserved);

Description Performs initialization operations for a given native library and
returns the JNI version required by the native library. The vir-
tual machine implementation calls JNI_OnLoad when the native
library is loaded, for example, through a call to System.load-

Library. JNI_OnLoad must return the JNIEnv interface version
required by the native library.

System.loadLibrary triggers the execution of this function.
The JNI_OnLoad function returns the JNI version number
required by the native library. If the native library does not
export a JNI_OnLoad function, the virtual machine implementa-
tion assumes that the library only requires JNI version
JNI_VERSION_1_1. If the virtual machine implementation does
not recognize the version number returned by JNI_OnLoad, then
the native library cannot be loaded.

Support for the JNI_OnLoad hook is added in Java 2 SDK 1.2.

Linkage Exported from native libraries that contain native method imple-
mentation.

Parameters vm: the pointer to the Java virtual machine instance that loaded
the native library.

reserved: not currently used. This parameter is set to NULL and
reserved for use in the future.

Return Values Returns the JNIEnv interface version number that the native
library needs.

Exceptions None.

jni.book Page 256 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS JNI_OnUnload

257

JNI_OnUnload

Prototype void JNI_OnUnload(JavaVM *vm, void *reserved);

Description Performs cleanup operations for a native library. The virtual
machine implementation calls JNI_OnUnload when the class
loader containing the native library is garbage collected. This
function can be used to perform cleanup operations. Because
this function is called in an unknown context (such as from a
finalizer), the programmer should be conservative when using
Java virtual machine services and refrain from making arbitrary
JNI function calls.

Support for the JNI_OnUnload hook is added in Java 2 SDK
1.2.

Linkage Exported from native libraries that contain native method
implementation.

Parameters vm: the pointer to the Java virtual machine instance.

reserved: Not currently used. This parameter is set to NULL and
reserved for possible use in the future.

Exceptions None.

jni.book Page 257 Thursday, February 21, 2002 4:36 PM

MonitorEnter JNI FUNCTIONS

258

MonitorEnter

Prototype jint MonitorEnter(JNIEnv *env, jobject obj);

Description Enters the monitor associated with the object referred to by obj.
The obj reference must not be NULL.

Each object has a monitor associated with it. If the current
thread already owns the monitor associated with obj, it incre-
ments a counter in the monitor indicating the number of times
this thread has entered the monitor. If the monitor associated
with obj is not owned by any thread, the current thread
becomes the owner of the monitor, setting the entry count of
this monitor to 1. If another thread already owns the monitor
associated with obj, the current thread waits until the monitor is
released, then tries again to gain ownership.

A monitor entered through a MonitorEnter JNI function call
cannot be exited using the monitorexit Java virtual machine
instruction or a synchronized method return. A MonitorEnter

JNI function call and a monitorenter Java virtual machine
instruction may race to enter the monitor associated with the
same object.

Linkage Index 217 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

obj: a reference to an object whose associated monitor will be
entered.

Return Values Returns zero on success; otherwise, returns a negative value.
Returns a negative number if and only if an invocation of this
function has thrown an exception.

Exceptions OutOfMemoryError: if the system runs out of memory.

jni.book Page 258 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS MonitorExit

259

MonitorExit

Prototype jint MonitorExit(JNIEnv *env, jobject obj);

Description Exits the monitor associated with the given object. The current
thread must be the owner of the monitor associated with the
object referred to by obj. The obj reference must not be NULL.

The thread decrements the counter indicating the number of
times it has entered this monitor. If the value of the counter
becomes zero, the current thread releases the monitor.

Native code must not use MonitorExit to exit a monitor
entered through a synchronized method or a monitorenter

Java virtual machine instruction.

Linkage Index 218 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

obj: a reference to an object whose associated monitor will be
exited.

Return Values Returns zero on success; otherwise, returns a negative value.
Returns a negative number if and only if an invocation of this
function has thrown an exception.

Exceptions OutOfMemoryError: if the system runs out of memory.

IllegalMonitorStateException: if the current thread does
not own the monitor.

jni.book Page 259 Thursday, February 21, 2002 4:36 PM

NewGlobalRef JNI FUNCTIONS

260

NewGlobalRef

Prototype jobject NewGlobalRef(JNIEnv *env, jobject obj);

Description Creates a new global reference to the object referred to by the
obj argument. The obj argument may be a global, weak global,
or local reference. Global references must be explicitly dis-
posed of by calling DeleteGlobalRef.

Linkage Index 21 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

obj: a global or local reference.

Return Values Returns a global reference. The result is NULL if the system runs
out of memory, if the given argument is NULL, or if the given
reference is a weak global reference referring to an object that
has already been garbage collected.

Exceptions None.

jni.book Page 260 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS NewLocalRef

261

NewLocalRef

Prototype jobject NewLocalRef(JNIEnv *env, jobject ref);

Description Creates a new local reference that refers to the same object as
ref. The given ref may be a global, weak global, or local refer-
ence.

This function was introduced in Java 2 SDK release 1.2.

Linkage Index 25 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

ref: a reference to the object for which the function creates a
new local reference.

Return Values Returns a local reference. The result is NULL if the system runs
out of memory, if the given argument is NULL, or if the given
reference is a weak global reference referring to an object that
has already been garbage collected.

Exceptions None.

jni.book Page 261 Thursday, February 21, 2002 4:36 PM

NewObject JNI FUNCTIONS

262

NewObject

Prototype jobject NewObject(JNIEnv *env, jclass clazz,
jmethodID methodID, ...);

Description Constructs a new object. The method ID indicates which con-
structor method to invoke. This ID may be obtained by calling
GetMethodID with "<init>" as the method name and “V” as the
return type. The constructor must be defined in the class
referred to by clazz, not one of its superclasses.

The clazz argument must not refer to an array class.

Programmers place all arguments that are to be passed to the
constructor immediately following the methodID argument.
NewObject accepts these arguments and passes them to the con-
structor that the programmer wishes to invoke.

Linkage Index 28 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

clazz: a reference to the class object whose instance is to be
created.

methodID: the method ID of the constructor to be executed in
the newly created instance.

Additional arguments: arguments to be passed to the construc-
tor.

Return Values Returns a local reference to an object, or NULL if the object can-
not be constructed. Returns NULL if and only if an invocation of
this function has thrown an exception.

Exceptions InstantiationException: if the class is an interface or an
abstract class.

OutOfMemoryError: if the system runs out of memory.

Any exceptions thrown by the constructor.

jni.book Page 262 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS NewObjectA

263

NewObjectA

Prototype jobject NewObjectA(JNIEnv *env, jclass clazz,
jmethodID methodID, jvalue *args);

Description Constructs a new object. The method ID indicates which con-
structor method to invoke.This ID may be obtained by calling
GetMethodID with "<init>" as the method name and “V” as the
return type. The constructor must be defined in the class
referred to by clazz, not one of its superclasses.

The clazz argument must not refer to an array class.

Programmers place all arguments that are to be passed to the
constructor in an args array of jvalues that immediately fol-
lows the methodID argument. NewObjectA accepts the argu-
ments in this array, and, in turn, passes them to the constructor
that the programmer wishes to invoke.

Linkage Index 30 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

clazz: a reference to the class object whose instance is to be
created.

methodID: the method ID of the constructor to be executed in
the newly created instance.

args: an array of arguments to be passed to the constructor.

Return Values Returns a local reference to an object, or NULL if the object can-
not be constructed. Returns NULL if and only if an invocation of
this function has thrown an exception.

Exceptions InstantiationException: if the class is an interface or an
abstract class.

OutOfMemoryError: if the system runs out of memory.

Any exceptions thrown by the constructor.

jni.book Page 263 Thursday, February 21, 2002 4:36 PM

NewObjectV JNI FUNCTIONS

264

NewObjectV

Prototype jobject NewObjectV(JNIEnv *env, jclass clazz,
jmethodID methodID, va_list args);

Description Constructs a new object. The method ID indicates which con-
structor method to invoke. This ID may be obtained by calling
GetMethodID with "<init>" as the method name and "V" as the
return type. The constructor must be defined in the class
referred to by clazz, not one of its superclasses.

The clazz argument must not refer to an array class.

Programmers place all arguments that are to be passed to the
constructor in an args argument of type va_list that immedi-
ately follows the methodID argument. NewObjectV accepts
these arguments, and, in turn, passes them to the constructor
that the programmer wishes to invoke.

Linkage Index 29 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

clazz: a reference to the class object whose instance is to be
created.

methodID: the method ID of the constructor to be executed in
the newly created instance.

args: a va_list of arguments to be passed to the constructor.

Return Values Returns a local reference to an object, or NULL if the object can-
not be constructed. Returns NULL if and only if an invocation of
this function has thrown an exception.

Exceptions InstantiationException: if the class is an interface or an
abstract class.

OutOfMemoryError: if the system runs out of memory.

Any exceptions thrown by the constructor.

jni.book Page 264 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS NewObjectArray

265

NewObjectArray

Prototype jarray NewObjectArray(JNIEnv *env, jsize length,
jclass elementType, jobject initialElement);

Description Constructs a new array holding objects in class or interface
elementType. All elements are initially set to initialEle-

ment. The length argument can be zero. The elementType ref-
erence must not be NULL.

Linkage Index 172 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

length: the number of elements in the array to be created.

elementType: class or interface of the elements in the array.

initialElement: a reference to initialization value object. This
value can be NULL.

Return Values Returns a local reference to an array object, or NULL if the array
cannot be constructed. Returns NULL if and only if an invocation
of this function has thrown an exception.

Exceptions OutOfMemoryError: if the system runs out of memory.

jni.book Page 265 Thursday, February 21, 2002 4:36 PM

New<Type>Array JNI FUNCTIONS

266

New<Type>Array

Prototype <ArrayType> New<Type>Array(JNIEnv *env,
jsize length);

Forms This family of functions consists of eight members.

Description Constructs a new array of primitive element types. All elements
in the newly constructed array are initialized to zero.

Linkage Indices in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

length: the number of elements in the array to be created.

New<Type>Array <ArrayType>

NewBooleanArray jbooleanArray

NewByteArray jbyteArray

NewCharArray jcharArray

NewShortArray jshortArray

NewIntArray jintArray

NewLongArray jlongArray

NewFloatArray jfloatArray

NewDoubleArray jdoubleArray

New<Type>Array Index

NewBooleanArray 175

NewByteArray 176

NewCharArray 177

NewShortArray 178

NewIntArray 179

NewLongArray 180

NewFloatArray 181

NewDoubleArray 182

jni.book Page 266 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS New<Type>Array

267

Return Values Returns a local reference to a primitive array, or NULL if the
array cannot be constructed. Returns NULL if and only if an
invocation of this function has thrown an exception.

Exceptions OutOfMemoryError: if the system runs out of memory.

jni.book Page 267 Thursday, February 21, 2002 4:36 PM

NewString JNI FUNCTIONS

268

NewString

Prototype jstring NewString(JNIEnv *env,
const jchar *uchars, jsize len);

Description Constructs a java.lang.String object from the given Unicode
characters.

Linkage Index 163 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

uchars: pointer to the Unicode sequence that makes up the
string.

len: length of the Unicode string.

Return Values Returns a local reference to a string object, or NULL if the string
cannot be constructed. Returns NULL if and only if an invocation
of this function has thrown an exception.

Exceptions OutOfMemoryError: if the system runs out of memory.

jni.book Page 268 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS NewStringUTF

269

NewStringUTF

Prototype jstring NewStringUTF(JNIEnv *env,
const char *bytes);

Description Constructs a new java.lang.String object from an array of
UTF-8 characters. The UTF-8 characters pointed to by bytes

are 0-terminated.

Linkage Index 167 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer, or NULL if the string cannot
be constructed.

bytes: the pointer to the sequence of UTF-8 characters that
makes up the string.

Return Values Returns a local reference to a string object, or NULL if the string
cannot be constructed. Returns NULL if and only if an invocation
of this function has thrown an exception.

Exceptions OutOfMemoryError: if the system runs out of memory.

jni.book Page 269 Thursday, February 21, 2002 4:36 PM

NewWeakGlobalRef JNI FUNCTIONS

270

NewWeakGlobalRef

Prototype jweak NewWeakGlobalRef(JNIEnv *env, jobject obj);

Description Creates a new weak global reference to the object referenced to
by obj. Weak global references are a special kind of global ref-
erence. Unlike normal global references, a weak global refer-
ence allows the underlying object to be garbage collected. You
can use weak global references in any situation where you
would otherwise use global or local references. When the gar-
bage collector runs, it frees the underlying object if the object is
only referred to by weak references. A weak global reference
pointing to a freed object is functionally equivalent to the NULL

reference. Programmers can detect whether a weak global refer-
ence points to a freed object by using the function IsSame-

Object to compare the weak reference against NULL.

Weak global references in JNI are a simplified version of the
Java weak references (java.lang.ref) API, available as part
of Java 2 SDK release 1.2. The JNI weak global references are
weaker than all four types of weak references in the Java weak
references API.

This function was introduced in Java 2 SDK release 1.2.

Linkage Index 226 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

obj: the object for which the weak global reference will be cre-
ated.

Return Values Returns NULL if obj refers to null, if obj is a weak global refer-
ence to a garbage-collected object, or if the virtual machine
implementation runs out of memory.

Exceptions OutOfMemoryError: if the system runs out of memory.

jni.book Page 270 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS PopLocalFrame

271

PopLocalFrame

Prototype jobject PopLocalFrame(JNIEnv *env, jobject result);

Description Pops the current (top-most) local reference frame from the
stack. In addition, this function frees all the local references
contained in the frame and returns a local reference in the previ-
ous local reference frame for the given result object.

Pass NULL in the result parameter if you do not need to return
a reference to the previous frame.

This function was introduced in Java 2 SDK release 1.2.

Linkage Index 20 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

result: an object to be passed to the previous local reference
frame.

Return Values Returns a local reference in the previous local reference frame
that refers to the same object as the second argument.

Exceptions None.

jni.book Page 271 Thursday, February 21, 2002 4:36 PM

PushLocalFrame JNI FUNCTIONS

272

PushLocalFrame

Prototype jint PushLocalFrame(JNIEnv *env, jint capacity);

Description Creates a new local reference frame in which at least the speci-
fied number of local references can be created. All the local ref-
erences created in the new frame will be freed when
PopLocalFrame is called.

This function was introduced in Java 2 SDK release 1.2.

Linkage Index 19 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

capacity: the maximum number of local references that will
be created in the local reference frame.

Return Values Returns zero on success; otherwise, returns a negative number
and throws OutOfMemoryError. Returns a negative number if
and only if an invocation of this function has thrown an excep-
tion.

Exceptions OutOfMemoryError: if the system runs out of memory.

jni.book Page 272 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS RegisterNatives

273

RegisterNatives

Prototype jint RegisterNatives(JNIEnv *env, jclass clazz,
const JNINativeMethod *methods, jint nMethods);

Description Registers native methods with the class specified by the clazz

argument. The methods parameter specifies an array of JNI-

NativeMethod structures that contains the names, descriptors,
and function pointers of the native methods. The nMethods

parameter specifies the number of native methods in the array.
The JNINativeMethod structure is defined as follows:

 typedef struct {
 char *name;
 char *signature;
 void *fnPtr;
 } JNINativeMethod;

The fnPtr fields in the JNINativeMethod structures must be
valid function pointer that implements the native method.

Linkage Index 215 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

clazz: a reference to a class object in which the native methods
will be registered.

methods: native methods to be registered.

nMethods: the number of native methods to be registered.

Return Values Returns zero on success; otherwise, returns a negative value.
Returns a negative number if and only if an invocation of this
function has thrown an exception.

Exceptions NoSuchMethodError: if a specified method cannot be found or
if the method is not native.

jni.book Page 273 Thursday, February 21, 2002 4:36 PM

Release<Type>ArrayElements JNI FUNCTIONS

274

Release<Type>ArrayElements

Prototype void Release<Type>ArrayElements(JNIEnv *env,
<ArrayType> array, <NativeType> *elems,
jint mode);

Forms This family of functions consists of eight members.

Description Informs the virtual machine implementation that native code no
longer needs access to primitive array elements, derived using
the corresponding Get<Type>ArrayElements function. If nec-
essary, this function copies back all changes made to elems to
the original array.

The mode argument provides information on how the array
buffer should be released. The mode argument has no effect if
elems is not a copy of the elements in array. Otherwise, mode
has the following impact, as shown in the following table:

In most cases, programmers pass 0 to the mode argument to
ensure consistent behavior for both pinned and copied arrays.
The other options give the programmer more control over mem-
ory management and should be used with extreme care.

Release<Type>ArrayElements <ArrayType> <NativeType>

ReleaseBooleanArrayElements jbooleanArray jboolean

ReleaseByteArrayElements jbyteArray jbyte

ReleaseCharArrayElements jcharArray jchar

ReleaseShortArrayElements jshortArray jshort

ReleaseIntArrayElements jintArray jint

ReleaseLongArrayElements jlongArray jlong

ReleaseFloatArrayElements jfloatArray jfloat

ReleaseDoubleArrayElements jdoubleArray jdouble

Mode Actions

0 copy back and free the elems buffer

JNI_COMMIT copy back but do not free the elems buffer

JNI_ABORT free the buffer without copying back the
possible changes in the elems buffer

jni.book Page 274 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS Release<Type>ArrayElements

275

Linkage Indices in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

array: a reference to an array object.

elems: a pointer to array elements.

mode: the release mode.

Exceptions None.

Release<Type>ArrayElements Index

ReleaseBooleanArrayElements 191

ReleaseByteArrayElements 192

ReleaseCharArrayElements 193

ReleaseShortArrayElements 194

ReleaseIntArrayElements 195

ReleaseLongArrayElements 196

ReleaseFloatArrayElements 197

ReleaseDoubleArrayElements 198

jni.book Page 275 Thursday, February 21, 2002 4:36 PM

ReleasePrimitiveArrayCritical JNI FUNCTIONS

276

ReleasePrimitiveArrayCritical

Prototype void ReleasePrimitiveArrayCritical(JNIEnv *env,
jarray array, void *carray, jint mode);

Description Informs the virtual machine implementation that native code no
longer needs access to carray, the result of a previous
GetPrimitiveArrayCritical call. If necessary, this function
copies back all changes made to carray to the original array.

The mode argument provides information on how the array
buffer should be released. The mode argument has no effect if
carray is not a copy of the elements in array. Otherwise, mode
has the following impact, as shown in the following table:

In most cases, programmers pass 0 to the mode argument to
ensure consistent behavior for copied arrays. The other options
give the programmer more control over memory management
and should be used with extreme care.

This function was introduced in Java 2 SDK release 1.2.

Linkage Index 223 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

array: a reference to an array object.

carray: a pointer to array elements.

mode: the release mode.

Exceptions None.

Mode Actions

0 copy back and free the carray buffer

JNI_COMMIT copy back but do not free the carray buffer

JNI_ABORT free the buffer without copying back the
possible changes in the carray buffer

jni.book Page 276 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS ReleaseStringChars

277

ReleaseStringChars

Prototype void ReleaseStringChars(JNIEnv *env,
jstring string, const jchar *chars);

Description Informs the virtual machine implementation that native code no
longer needs access to chars. The chars argument is a pointer
obtained from string using GetStringChars.

Linkage Index 166 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

string: a reference to a string object.

chars: a pointer to a Unicode string.

Exceptions None.

jni.book Page 277 Thursday, February 21, 2002 4:36 PM

ReleaseStringCritical JNI FUNCTIONS

278

ReleaseStringCritical

Prototype void ReleaseStringCritical(JNIEnv *env,
jstring string, const jchar *carray);

Description Informs the virtual machine implementation that native code no
longer needs access to carray. The carray argument is a
pointer obtained from string using GetStringCritical.

In a code segment enclosed by GetStringCritical and
ReleaseStringCritical calls, native code must not issue arbi-
trary JNI calls or cause the current thread to block and wait for
another thread in the virtual machine instance.

This function was introduced in Java 2 SDK release 1.2.

Linkage Index 225 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

string: a reference to a string object.

chars: a pointer to a Unicode string.

Exceptions None.

jni.book Page 278 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS ReleaseStringUTFChars

279

ReleaseStringUTFChars

Prototype void ReleaseStringUTFChars(JNIEnv *env,
jstring string, const char *utf);

Description Informs the virtual machine implementation that native code no
longer needs access to the native string utf. The utf argument
is a pointer derived from string using GetStringUTFChars.

Linkage Index 169 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

string: a reference to a string object.

utf: a pointer to a UTF-8 string.

Exceptions None.

jni.book Page 279 Thursday, February 21, 2002 4:36 PM

Set<Type>ArrayRegion JNI FUNCTIONS

280

Set<Type>ArrayRegion

Prototype void Set<Type>ArrayRegion(JNIEnv *env,
<ArrayType> array, jsize start,
jsize len, <NativeType> *buf);

Forms This family of functions consists of eight members.

Description Copies back a region of a primitive array from a buffer. The
array reference and buf buffer must not be NULL.

Linkage Indices in the JNIEnv interface function table.

Set<Type>ArrayRegion <ArrayType> <NativeType>

SetBooleanArrayRegion jbooleanArray jboolean

SetByteArrayRegion jbyteArray jbyte

SetCharArrayRegion jcharArray jchar

SetShortArrayRegion jshortArray jshort

SetIntArrayRegion jintArray jint

SetLongArrayRegion jlongArray jlong

SetFloatArrayRegion jfloatArray jfloat

SetDoubleArrayRegion jdoubleArray jdouble

Set<Type>ArrayRegion Index

SetBooleanArrayRegion 207

SetByteArrayRegion 208

SetCharArrayRegion 209

SetShortArrayRegion 210

SetIntArrayRegion 211

SetLongArrayRegion 212

SetFloatArrayRegion 213

SetDoubleArrayRegion 214

jni.book Page 280 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS Set<Type>ArrayRegion

281

Parameters env: the JNIEnv interface pointer.

array: a reference to a primitive array to which the elements
are copied.

start: the starting index in the primitive array.

len: the number of elements to be copied.

buf: the source buffer.

Exceptions ArrayIndexOutOfBoundsException: if one of the indices in
the region is not valid.

jni.book Page 281 Thursday, February 21, 2002 4:36 PM

Set<Type>Field JNI FUNCTIONS

282

Set<Type>Field

Prototype void Set<Type>Field(JNIEnv *env, jobject obj,
jfieldID fieldID, <NativeType> value);

Forms This family of functions consists of nine members.

Description Sets the value of an instance field of an object. The obj refer-
ence must not be NULL.

Linkage Indices in the JNIEnv interface function table.

Set<Type>Field <NativeType>

SetObjectField jobject

SetBooleanField jboolean

SetByteField jbyte

SetCharField jchar

SetShortField jshort

SetIntField jint

SetLongField jlong

SetFloatField jfloat

SetDoubleField jdouble

Set<Type>Field Index

SetObjectField 104

SetBooleanField 105

SetByteField 106

SetCharField 107

SetShortField 108

SetIntField 109

SetLongField 110

SetFloatField 111

SetDoubleField 112

jni.book Page 282 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS Set<Type>Field

283

Parameters env: the JNIEnv interface pointer.

obj: a reference to an object.

fieldID: a field ID.

value: the new value of the field.

Exceptions None.

jni.book Page 283 Thursday, February 21, 2002 4:36 PM

SetObjectArrayElement JNI FUNCTIONS

284

SetObjectArrayElement

Prototype void SetObjectArrayElement(JNIEnv *env,
jobjectArray array, jsize index,
jobject value);

Description Sets an element of an Object array. The array reference must
not be NULL.

Linkage Index 174 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

array: a reference to an array whose element will be accessed.

index: index of the array element to be accessed.

value: the new value of the array element.

Exceptions ArrayIndexOutOfBoundsException: if index does not specify
a valid index in the array.

ArrayStoreException: if the class of value is not a subclass
of the element class of the array.

jni.book Page 284 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS SetStatic<Type>Field

285

SetStatic<Type>Field

Prototype void SetStatic<Type>Field(JNIEnv *env,
jclass clazz, jfieldID fieldID,
<NativeType> value);

Forms This family of functions consists of nine members.

Description Sets the value of a static field of a class or interface. The field to
access is specified by a field ID.

Linkage Indices in the JNIEnv interface function table.

SetStatic<Type>Field <NativeType>

SetStaticObjectField jobject

SetStaticBooleanField jboolean

SetStaticByteField jbyte

SetStaticCharField jchar

SetStaticShortField jshort

SetStaticIntField jint

SetStaticLongField jlong

SetStaticFloatField jfloat

SetStaticDoubleField jdouble

SetStatic<Type>Field Index

SetStaticObjectField 154

SetStaticBooleanField 155

SetStaticByteField 156

SetStaticCharField 157

SetStaticShortField 158

SetStaticIntField 159

SetStaticLongField 160

SetStaticFloatField 161

SetStaticDoubleField 162

jni.book Page 285 Thursday, February 21, 2002 4:36 PM

SetStatic<Type>Field JNI FUNCTIONS

286

Parameters env: the JNIEnv interface pointer.

clazz: a reference to a class or interface whose static field will
be accessed.

fieldID: an ID denoting the static field to be accessed.

value: the new value of the field.

Exceptions None.

jni.book Page 286 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS Throw

287

Throw

Prototype jint Throw(JNIEnv *env, jthrowable obj);

Description Causes a java.lang.Throwable object to be thrown. A thrown
exception will be pending in the current thread, but does not
immediately disrupt native code execution.

Linkage Index 13 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

obj: a java.lang.Throwable object.

Return Values Returns zero on success; otherwise, returns a negative value.

Exceptions The given java.lang.Throwable object.

jni.book Page 287 Thursday, February 21, 2002 4:36 PM

ThrowNew JNI FUNCTIONS

288

ThrowNew

Prototype jint ThrowNew(JNIEnv *env, jclass clazz,
const char *message);

Description Constructs an exception object from the specified class with the
message specified by message and causes that exception to be
thrown.

Linkage Index 14 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

clazz: a subclass of java.lang.Throwable.

message: the message used to construct the java.lang.Throw-

able object.

Return Values Returns zero on success; otherwise, returns a negative value if
the specified exception cannot be thrown.

Exceptions The newly constructed java.lang.Throwable object, or any
exception that occurs in constructing this object.

jni.book Page 288 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS ToReflectedField

289

ToReflectedField

Prototype jobject ToReflectedField(JNIEnv *env, jclass cls,
jfieldID fieldID, jboolean isStatic);

Description Converts a field ID derived from cls to an instance of the
java.lang.reflect.Field class.

This function was introduced in Java 2 SDK release 1.2.

Linkage Index 12 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

cls: a reference to a class or interface.

fieldID: a JNI field ID.

isStatic: whether the field ID denotes a static field.

Return Values Returns an instance of the java.lang.reflect.Field class;
otherwise, returns NULL. Returns NULL if and only if an invoca-
tion of this function has thrown an exception.

Exceptions OutofMemoryError: if the system runs out of memory.

jni.book Page 289 Thursday, February 21, 2002 4:36 PM

ToReflectedMethod JNI FUNCTIONS

290

ToReflectedMethod

Prototype jobject ToReflectedMethod(JNIEnv *env, jclass cls,
jmethodID methodID, jboolean isStatic);

Description Converts a method ID derived from cls to an instance of the
java.lang.reflect.Method class or to an instance of the
java.lang.reflect.Constructor class.

This function was introduced in Java 2 SDK release 1.2.

Linkage Index 9 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

cls: a reference to a class or interface.

methodID: a method ID.

isStatic: whether the method ID refers to a static method.

Return Values Returns an instance of the java.lang.reflect.Method class
or an instance of the java.lang.reflect.Constructor class;
otherwise, returns NULL. Returns NULL if and only if an invoca-
tion of this function has thrown an exception.

Exceptions OutofMemoryError: if the system runs out of memory.

jni.book Page 290 Thursday, February 21, 2002 4:36 PM

JNI FUNCTIONS UnregisterNatives

291

UnregisterNatives

Prototype jint UnregisterNatives(JNIEnv *env, jclass clazz);

Description Unregisters native methods of a class. The class goes back to
the state before it was linked or registered with its native
method functions.

This function should not be used in normal native code. Instead,
it provides special programs a way to reload and relink native
libraries.

Linkage Index 216 in the JNIEnv interface function table.

Parameters env: the JNIEnv interface pointer.

clazz: a reference to a class object whose native methods are to
be unregistered.

Return Values Returns zero on success; otherwise, returns a negative value.

Exceptions None.

jni.book Page 291 Thursday, February 21, 2002 4:36 PM

jni.book Page 292 Thursday, February 21, 2002 4:36 PM

293

A
abort hook, 250, 252
AllocObject, 52, 181
Arnold, Ken, 3
ArrayIndexOutOfBoundsException, 37, 229
arrays, 23

accessing, 33
choosing among functions, 36
efficient access, 158
function summary, 35
multi-dimensional, 39
object vs. primitive, 33
simultaneous access, 160

ASCII strings, 24
asm_dispatch assembly routine, 122
assembly implementation

shared stubs dispatcher, 122
time-critical code, 7

asynchronous exceptions, 163
atol example, 109
attach native threads, 89
attach.c example, 89
AttachCurrentThread, 96, 182

B
binary compatibility, 145
boolean, 165
boundaries of native code, 133
Bracha, Gilad, 146
byte, 165

C
C

calling convention, 153
programming language, 3

C shell, 17
C++

programming language, 3
programming the JNI in, 106
virtual function table, 153

caching field and method IDs, 53
at point of use, 53
in defining class, 56
needed for correctness, 135

Call<Type>Method, 47, 184
Call<Type>MethodA, 186
Call<Type>MethodV, 188
callbacks, 46
CallBooleanMethod, 184
CallBooleanMethodA, 186
CallBooleanMethodV, 188
CallByteMethod, 184
CallByteMethodA, 186
CallByteMethodV, 188
CallCharMethod, 184
CallCharMethodA, 186
CallCharMethodV, 188
CallDoubleMethod, 184
CallDoubleMethodA, 186
CallDoubleMethodV, 188
CallFloatMethod, 184
CallFloatMethodA, 186
CallFloatMethodV, 188
calling conventions, 153

Index

jni.book Page 293 Thursday, February 21, 2002 4:36 PM

INDEX

294

CallIntMethod, 47, 184
CallIntMethodA, 186
CallIntMethodV, 188
CallLongMethod, 184
CallLongMethodA, 186
CallLongMethodV, 188
CallNonvirtual<Type>Method, 51, 190
CallNonvirtual<Type>MethodA, 192
CallNonvirtual<Type>MethodV, 194
CallNonvirtualBooleanMethod, 51, 190
CallNonvirtualBooleanMethodA, 192
CallNonvirtualBooleanMethodV, 194
CallNonvirtualByteMethod, 190
CallNonvirtualByteMethodA, 192
CallNonvirtualByteMethodV, 194
CallNonvirtualCharMethod, 190
CallNonvirtualCharMethodA, 192
CallNonvirtualCharMethodV, 194
CallNonvirtualDoubleMethod, 190
CallNonvirtualDoubleMethodA, 192
CallNonvirtualDoubleMethodV, 194
CallNonvirtualFloatMethod, 190
CallNonvirtualFloatMethodA, 192
CallNonvirtualFloatMethodV, 194
CallNonvirtualIntMethod, 190
CallNonvirtualIntMethodA, 192
CallNonvirtualIntMethodV, 194
CallNonvirtualLongMethod, 190
CallNonvirtualLongMethodA, 192
CallNonvirtualLongMethodV, 194
CallNonvirtualObjectMethod, 190
CallNonvirtualObjectMethodA, 192
CallNonvirtualObjectMethodV, 194
CallNonvirtualShortMethod, 190
CallNonvirtualShortMethodA, 192
CallNonvirtualShortMethodV, 194
CallNonvirtualVoidMethod, 51, 190
CallNonvirtualVoidMethodA, 192
CallNonvirtualVoidMethodV, 194
CallObjectMethod, 47, 184
CallObjectMethodA, 186
CallObjectMethodV, 188
CallShortMethod, 184
CallShortMethodA, 186

CallShortMethodV, 188
CallStatic<Type>Method, 196
CallStatic<Type>MethodA, 198
CallStatic<Type>MethodV, 200
CallStaticBooleanMethod, 49, 196
CallStaticBooleanMethodA, 198
CallStaticBooleanMethodV, 200
CallStaticByteMethod, 196
CallStaticByteMethodA, 198
CallStaticByteMethodV, 200
CallStaticCharMethod, 196
CallStaticCharMethodA, 198
CallStaticCharMethodV, 200
CallStaticDoubleMethod, 196
CallStaticDoubleMethodA, 198
CallStaticDoubleMethodV, 200
CallStaticFloatMethod, 196
CallStaticFloatMethodA, 198
CallStaticFloatMethodV, 200
CallStaticIntMethod, 196
CallStaticIntMethodA, 198
CallStaticIntMethodV, 200
CallStaticLongMethod, 196
CallStaticLongMethodA, 198
CallStaticLongMethodV, 200
CallStaticObjectMethod, 196
CallStaticObjectMethodA, 198
CallStaticObjectMethodV, 200
CallStaticShortMethod, 196
CallStaticShortMethodA, 198
CallStaticShortMethodV, 200
CallStaticVoidMethod, 49, 196
CallStaticVoidMethodA, 198
CallStaticVoidMethodV, 200
CallVoidMethod, 47, 184
CallVoidMethodA, 186
CallVoidMethodV, 188
CatchThrow example, 73
cc

See Solaris C compiler
CFunction class

callInt method
implementation, 119
use of, 114

implementation, 118

jni.book Page 294 Thursday, February 21, 2002 4:36 PM

INDEX

295

use of, 113
char, 23, 165
cl

See Microsoft Visual C++ compiler
class descriptors, 39, 169
class loaders

bootstrap loader, 214
defining loader, 146
delegation, 147
garbage collection, 151
JNI_OnUnload handler, 104
type safety, 150

ClassCircularityError, 202, 215
classes, 4, 23

descriptors, 169
load through the JNI, 39

ClassFormatError, 202, 215
ClassLoader.defineClass, 202
ClassLoader.findLibrary, 149
ClassLoader.loadClass, 214
CLASSPATH, 214
CMalloc class

free method, 115
implementation, 117
use of, 114

code examples
atol, 109
attach.c, 89
CacheThrow, 73
CFunction, 118
CMalloc, 117
CPointer, 117
HelloWorld, 11
InstanceFieldAccess, 42, 54
InstanceMethodCall, 46, 57
IntArray, 33, 34, 35
invoke.c, 83
KeyInput, 127
MyNewString, 51, 55, 62, 64, 71
ObjectArrayTest, 38
Prompt, 21, 25, 29
StaticFieldAccess, 45
StaticMethodCall, 50
web download address, 9
Win32.CreateFile, 111, 115

command-line options, 251
constants, 170
constructors, 46

See also NewObject, 51
invoking, 51

CPointer class
copyIn method, 114
definition, 114
implementation, 117

CreateFileA and CreateFileW, 115
csh, 17

D
-D command line option, 17

-Djava.class.path, 85
-Djava.library.path, 150

data types
definitions, 165
mapping, 23
passing, 155

deadlocks
by GetPrimitiveArrayCritical, 35
by GetStringCritical, 32

DefineClass, 202
defining loader, 146
delegation, 147
DeleteGlobalRef, 203
DeleteGlobalWeakRef, 65
DeleteLocalRef, 63, 204
DeleteWeakGlobalRef, 70, 130, 205
descriptors

class
See class descriptors

field
See field descriptors

method
See method descriptors

DestroyJavaVM, 86, 206
DetachCurrentThread, 92, 207
DLL

See dynamic link library
dlopen, 88
dlsym, 88
double, 165
dynamic link library, 16

E
EnsureLocalCapacity, 68, 208

jni.book Page 295 Thursday, February 21, 2002 4:36 PM

INDEX

296

escape sequences
in name encoding, 152
in UTF-8 strings, 168

example programs
See code examples

ExceptionCheck, 77, 209
ExceptionClear, 75, 210
ExceptionDescribe, 75, 211
ExceptionInInitializerError, 215, 226,

228, 233, 236
ExceptionOccurred, 75, 212
exceptions

asynchronous, 163
checking for, 76, 131
handling, 78, 161
in utility functions, 79
pending, 25, 75, 162
vs. programmer errors, 161

exit hook, 250, 252

F
FatalError, 213
field descriptors, 44, 169

javap -s, 44
field IDs, 43, 160, 168

caching, 53, 135
resolving, 160

fields
accessing, 41
accessing static vs. instance, 46
descriptor

See field descriptors
instance

See instance fields
name, 43
static

See static fields
file descriptors, 123
FileDescriptor class, 124
final access control, 138
finalize, 125

See also finalizers
finalizers

freeing native peers, 126
JNI_OnUnload, 104

FindClass, 39, 214

findLibrary
See ClassLoader.findLibrary

float, 23, 165
foreign function interface, 145
FORTRAN, 145
free

global references, 69
local references, 67
native peer resources, 125
virtual machine resources, 139

FromReflectedField, 105, 216
FromReflectedMethod, 105, 217

G
-G option to cc, 16
garbage collection

class loaders, 151
copy objects, 156
and native method interface, 8
relocating objects, 27
weak global references, 65

Get<Type>ArrayElements, 35, 36, 219
Get<Type>ArrayRegion, 36, 221
Get<Type>Field, 223
GetArrayLength, 35, 36, 218
GetBooleanArrayElements, 219
GetBooleanArrayRegion, 221
GetBooleanField, 223
GetByteArrayElements, 219
GetByteArrayRegion, 221
GetByteField, 223
GetCharArrayElements, 219
GetCharArrayRegion, 221
GetCharField, 223
GetDoubleArrayElements, 219
GetDoubleArrayRegion, 221
GetDoubleField, 223
GetEnv, 97, 172, 225
GetFieldID, 43, 160, 226
GetFloatArrayElements, 219
GetFloatArrayRegion, 221
GetFloatField, 223
GetIntArrayElements, 159, 219
GetIntArrayRegion, 34, 159, 221

jni.book Page 296 Thursday, February 21, 2002 4:36 PM

INDEX

297

GetIntField, 43, 160, 223
GetJavaVM, 97, 227
GetLongArrayElements, 219
GetLongArrayRegion, 221
GetLongField, 223
GetMethodID, 47, 228
GetObjectArrayElement, 38, 229
GetObjectClass, 43, 105, 230
GetObjectField, 43, 223
GetPrimitiveArrayCritical, 35, 36, 159,

231
GetProcAddress Win32 API, 88, 119
GetShortArrayElements, 219
GetShortArrayRegion, 221
GetShortField, 223
GetStatic<Type>Field, 234
GetStaticBooleanField, 234
GetStaticByteField, 234
GetStaticCharField, 234
GetStaticDoubleField, 234
GetStaticFieldID, 46, 233
GetStaticFloatField, 234
GetStaticIntField, 45, 234
GetStaticLongField, 234
GetStaticMethodID, 49, 236
GetStaticObjectField, 234
GetStaticShortField, 234
GetStringChars, 26
GetStringChars, 30, 139, 237
GetStringCritical, 27, 30, 238
GetStringLength, 26, 30, 239
GetStringRegion, 29, 30, 240
GetStringUTFChars, 24, 25, 30, 241
GetStringUTFLength, 30, 242
GetStringUTFRegion, 29, 30, 243
GetSuperclass, 105, 244
GetVersion, 245
global references, 64, 156

freeing, 69
Gosling, James, 3
Green threads, 97, 141

H
HANDLE Win32 type, 111
HelloWorld example, 11
host environment, 4

See also Java platform
HTTP server, 89

I
IDs vs. references, 134
IllegalAccessException, 138
IllegalArgumentException, 73
IllegalMonitorStateException, 94, 259
initIDs, 56
inlining

final field access, 138
native methods, 58, 133

instance fields, 41
procedure for accessing, 43

instance methods, 46
calling, of superclass, 51
native, 23
steps for calling, 47

InstanceFieldAccess example, 42, 54
InstanceMethodCall example, 46, 57
instances, 23

virtual machine, 173
InstantiationException, 181, 262, 263, 264
int, 23, 165
IntArray example, 33, 34, 35
interfaces

calling methods, 47
obtaining, 48

internationalized code, 99, 138
invocation interface, 5, 83
invoke.c example, 83
IsAssignableFrom, 105, 246
isCopy argument, 26

release resources, 140
IsInstanceOf, 105, 247
IsSameObject, 66, 158, 248

jni.book Page 297 Thursday, February 21, 2002 4:36 PM

INDEX

298

J
jarray, 166, 167
Java 2 SDK, 8
Java API

See Java Application Programming Inter-
face

Java application, 4
See also native application

Java Application Programming Interface, 4
Java Core Reflection API, 161
Java Development Kit, 7
Java Native Interface, 3

alternative solutions, 6
benefits, 8
design goals, 145
function table, 22
functions, 22
implications of using, 6
performance characteristics, 58
role of, 4
version evolution, 155, 179
when to use, 6

Java platform, 4
See also host environment

Java programming language, 3
Java Runtime Environment, 4
java runtime interpreter, 11, 83
Java virtual machine, 4

instance, 173
Java weak references API, 270
java.class.path property, 85
java.io.FileDescriptor, 124
java.lang.Class, 202
java.lang.ClassLoader, 202
java.lang.Float, 121
java.lang.Integer, 121
java.lang.reflect package, 105
java.lang.reflect.Constructor, 105, 217
java.lang.reflect.Field, 105, 216
java.lang.reflect.Method, 105, 217
java.lang.String

See String

java.lang.Thread, 48
java.library.path property, 17, 150
Java/Java call, 58
Java/native call, 58

Java_ prefix, 22
Java_VMInitArgs, 251
javac compiler, 11, 14
javah tool, 9, 11, 14
javai.dll, 87
javai.lib, 87
javap tool, 44
JavaVM interface

create, 83
destroy, 86
obtaining pointer to, 97

JavaVMAttachArgs, 182
JavaVMInitArgs, 85
JavaVMOption, 85
jboolean, 165

accidentally truncated, 132
jbooleanArray, 166, 167
jbyte, 165
jbyteArray, 166, 167
jchar, 165
jcharArray, 166, 167
jclass, 166, 167
jclass vs. jobject, 132
JDK

See Java Development Kit
JDK1_1InitArgs, 85, 249
jdouble, 165
jdoubleArray, 166, 167
jfieldID, 168
jfloat, 23, 165
jfloatArray, 166, 167
jint, 23, 165
jintArray, 166, 167
JIT compiler

See just-in-time compiler
jlong, 165
jlongArray, 166, 167
jmethodID, 168
JNI

See Java Native Interface
jni.h header file, 15, 165
JNI_ABORT constant, 171, 276
JNI_AttachCurrentThread, 92
JNI_COMMIT constant, 171, 276
JNI_CreateJavaVM, 85, 249

jni.book Page 298 Thursday, February 21, 2002 4:36 PM

INDEX

299

JNI_EDETACHED constant, 172, 225
JNI_ERR constant, 171
JNI_EVERSION constant, 172, 225
JNI_FALSE constant, 171
JNI_GetCreatedJavaVMs, 97, 254
JNI_GetDefaultJavaVMInitArgs, 85, 255
JNI_NativeMethod, 273
JNI_OK constant, 171
JNI_OnLoad, 97, 102, 256
JNI_OnUnload, 104, 257
JNI_ThreadAttachArgs, 92
JNI_TRUE constant, 171
JNI_VERSION_1_1 constant, 171
JNI_VERSION_1_2 constant, 85, 103, 171
JNICALL macro, 22, 170
JNIEnv, 22

benefits, 155
obtaining pointer to, 96
organization, 153
thread-local, 93, 141

JNIEnv2, 179
JNIEXPORT macro, 22, 170
JNU_CallMethodByName, 79, 137
JNU_FindCreateJavaVM, 88
JNU_GetEnv, 103
JNU_GetStringNativeChars, 100, 112, 138
JNU_MonitorNotify, 96
JNU_MonitorNotifyAll, 96
JNU_MonitorWait, 96
JNU_NewStringNative, 99, 138
JNU_ThrowByName, 75
jobject, 24, 166, 167
jobjectArray, 24, 166, 167
JRE

See Java Runtime Environment
jshort, 165
jshortArray, 166, 167
jsize, 166
jstring, 24, 166, 167
jthrowable, 166, 167
just-in-time compiler, 138
jvalue union type, 167
jvm.dll, 87
jvm.lib, 87

K
kernel32.dll, 115
Kernighan, Brian, 3
KeyInput example, 127
KornShell, 17
ksh, 17

L
-LD option to cl, 16
LD_LIBRARY_PATH, 17, 87, 149
Lea, Doug, 93
Liang, Sheng, 146
libjava.so, 86
libjvm.so, 87
-link option to cl, 87
linking

native applications, 86
native methods, 151

LISP, 145
-ljava option to cc, 86
loadLibrary

See System.loadLibrary

LoadLibrary Win32 API, 88, 119
local references, 62, 156

1.2-specific functions, 68
excessive creation, 140

See also -verbose:jni option
freeing, 67
how to implement, 157
how to invalidate, 63
registry, 157
thread-local, 94
validity of, 141

locale, 99
long, 165
longjmp, 97
-lthread option to cc, 86

M
mapLibraryName

See System.mapLibraryName

-MD option to cl, 16, 87

jni.book Page 299 Thursday, February 21, 2002 4:36 PM

INDEX

300

memory leaks, 67
method descriptors, 48, 170

javap -s, 49
method IDs, 160, 168

caching, 53, 135
resolving, 160

methods
calling, 46
descriptor

See method descriptors
in superclasses, 51
instance

See instance methods
static

See static methods
Microsoft COM interface, 154, 174, 175
Microsoft Visual C++ compiler, 16
MonitorEnter, 94, 258
monitorenter instruction, 258, 259
MonitorExit, 94, 259
monitorexit instruction, 258
monitors, 94
msvcrt.dll, 113
mutex_lock, 97
MyNewString example, 51, 55, 62, 64, 71

N
name encoding

long, 117, 152
short, 152

namespaces, 146
native application, 4

See also Java application
native code, 3

See also C, C++
native library, 5

creation, 15
loading, 146
shared library, 16
unloading, 151

native library path
See also -Djava.library.path
setting, 16

native method, 5
arguments, 22
declaration, 13

differences with regular methods, 13
implementation

See also javah tool
function prototype, 14
header files, 15
name encoding, 152

linking, 151
registering, 101
steps in writing and running, 11

native method interface, 7
See also Java Native Interface
compatibility among releases, 8
problems in JDK 1.0, 7

native modifier, 13
native programming languages, 4
native thread model, 97
native/Java callback, 58
New<Type>Array, 36, 266
NewBooleanArray, 266
NewByteArray, 266
NewCharArray, 52, 266
NewDoubleArray, 266
NewFloatArray, 266
NewGlobalRef, 64, 260
NewGlobalWeakRef, 65
NewIntArray, 266
NewLocalRef, 71, 261
NewLongArray, 266
NewObject, 52, 262
NewObjectA, 263
NewObjectArray, 39, 265
NewObjectV, 264
NewShortArray, 266
NewString, 30, 268
NewStringUTF, 25, 30, 269
NewWeakGlobalRef, 130, 270
NoClassDefFoundError, 76, 202, 215
NoSuchFieldError, 226, 233
NoSuchMethodError, 47, 228, 236, 273

O
object array, 33
Object.wait, notify, and notifyAll, 95
ObjectArrayTest example, 38

jni.book Page 300 Thursday, February 21, 2002 4:36 PM

INDEX

301

objects
See also instances
layout, 8

one-to-one mapping, 109
advantages and disadvantages, 116
vs. shared stubs, 116

OOPSLA, 146
opaque references, 61
OutOfMemoryError, 25

P
PATH, 17, 87
peer classes, 123

backpointers, 127
synchronized free method, 125

performance of JNI operations
accessing primitive arrays, 158
efficiency goal, 146
field access, 59
method call, 58

pinning, 27, 158
PopLocalFrame, 69, 271
porting layer, 133
primitive arrays, 33
primitive types, 165
printf, 15
private access control, 138
process separation, 6
programmer errors, 161
Prompt example, 21, 25, 29
PushLocalFrame, 69, 272

R
race condition

in caching field and method IDs, 54
in freeing native peers, 125

reference types, 166
references

comparing, 66
freeing, 66
global

See global references
local

See local references
opaque, 23, 156
rules for managing, 70
weak global

See weak global references
reflection, 105, 161
RegisterNatives, 101, 153, 273

uses of, 102
registry of local references, 157
Release<Type>ArrayElements, 35, 36, 274
ReleaseBooleanArrayElements, 274
ReleaseByteArrayElements, 274
ReleaseCharArrayElements, 274
ReleaseDoubleArrayElements, 274
ReleaseFloatArrayElements, 274
ReleaseIntArrayElements, 159, 171, 274
ReleaseLongArrayElements, 274
ReleasePrimitiveArrayCritical, 35, 36,

159, 276
ReleaseShortArrayElements, 274
ReleaseStringChars, 26, 30, 139, 277
ReleaseStringCritical, 27, 30, 278
ReleaseStringUTFChars, 25, 30, 279
resolving field and method IDs, 160
restrictions

See also constraints
on GetPrimitiveArrayCritical, 35,

159, 231
on GetStringCritical, 27, 238

Ritchie, Dennis, 3

S
SECURITY_ATTRIBUTES, 111
Set<Type>ArrayRegion, 36, 280
Set<Type>Field, 282
SetBooleanArrayRegion, 280
SetBooleanField, 282
SetByteArrayRegion, 280
SetByteField, 282
SetCharArrayRegion, 280
SetCharField, 282
SetDoubleArrayRegion, 280
SetDoubleField, 282
SetFloatArrayRegion, 280

jni.book Page 301 Thursday, February 21, 2002 4:36 PM

INDEX

302

SetFloatField, 43, 282
SetIntArrayRegion, 34, 280
SetIntField, 282
setjmp, 97
SetLongArrayRegion, 280
SetLongField, 282
SetObjectArrayElement, 38, 284
SetObjectField, 43, 282
SetShortArrayRegion, 280
SetShortField, 282
SetStatic<Type>Field, 285
SetStaticBooleanField, 285
SetStaticByteField, 285
SetStaticCharField, 285
SetStaticDoubleField, 285
SetStaticFloatField, 285
SetStaticIntField, 45, 285
SetStaticLongField, 285
SetStaticObjectField, 285
SetStaticShortField, 285
SetStringRegion, 30
SetStringUTFRegion, 30
sh, 17
shared library

See native library
shared stubs, 113

advantages and disadvantages, 116
implementation, 116
vs. one-to-one mapping, 116

short, 165
Smalltalk, 145
socket descriptors, 123
Solaris

native threads, 141
shared library, 16

Solaris C compiler, 16
standard shell, 17
static fields, 41

accessing, 44
static initializer, 13

invoked by
FindClass, 214
GetFieldID, 226
GetMethodID, 228
GetStaticFieldID, 233
GetStaticMethodID, 236

static methods, 46
native, 23
steps in calling, 49

StaticFieldAccess example, 45
StaticMethodCall example, 50
stdcall, 116, 153
stderr, 213
stdio.h header file, 15
String, 23

See also strings
String constructor, 99
String.getBytes method, 100
StringIndexOutOfBoundsException, 29,

240, 243
strings, 23

accessing, 24
ASCII, 24
choosing among functions, 31
constructing, 26
freeing resources, 25
NULL-terminated C, 24
summary of functions, 29
Unicode, 24
UTF-8, 24, 168

Stroustrup, Bjarne, 4
stub functions, 112
subtyping, 106, 166
synchronization

in peer classes, 125
synchronized blocks, 94
System.loadLibrary, 101, 148

how to use, 13
System.mapLibraryName, 150
System.out.err, 211
System.runFinalization, 104

T
tcsh, 17
"this" pointer in C++, 14
thr_create, 97
thread models, 97, 141

See also Green, native, and user thread
models

Thread.start, 97
Thread.stop, 163

jni.book Page 302 Thursday, February 21, 2002 4:36 PM

INDEX

303

threads, 93
constraints on programming, 93
thread-local JNIEnv, 153
validity of local references, 64

Throw, 162, 287
ThrowNew, 75, 162, 288
ToReflectedField, 105, 289
ToReflectedMethod, 105, 290
type conversion

in C++, 107

U
Unicode strings, 24

not NULL-terminated, 137
UNIX, 153
UnregisterNatives, 291
UnsatisfiedLinkError, 17, 149, 153
user thread model, 97
UTF-8 strings, 24, 168
utility functions, 70

JNU_CallMethodByName, 79
JNU_FindCreateJavaVM, 88
JNU_GetEnv, 103
JNU_GetStringNativeChars, 100
JNU_MonitorNotify, 96
JNU_MonitorNotifyAll, 96
JNU_MonitorWait, 96
JNU_NewStringNative, 99
JNU_ThrowByName, 75

V
-verbose

gc, class, jni, 252
-verbose:jni option, 69, 140
vfprintf hook, 250, 252
virtual machine instances, 173

W
weak global references, 65, 158

in native peers, 130
uses of IsSameObject, 66

Win32
CreateFile API, 110
dynamic link library, 16

Win32.CreateFile example, 111, 115
wrapper classes, 109

X
-Xcheck:jni option, 131, 155
-Xmx option, 85

jni.book Page 303 Thursday, February 21, 2002 4:36 PM

jni.book Page 304 Thursday, February 21, 2002 4:36 PM

	Preface
	Introduction
	Getting Started
	Basic Types, Strings, and Arrays
	Fields and Methods
	Local and Global References
	Exceptions
	The Invocation Interface
	Additional JNI Features
	Leveraging Existing Native Libraries
	Traps and Pitfalls
	Overview of the JNI Design
	JNI Types
	JNI Functions
	Index

