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Abstract

This document presents the design and specification of the XtreemOS
Virtual Node infrastructure. Virtual Nodes provide fault-tolerance for appli-
cations by replicating them over multiple nodes. As replication performance
heavily depends on application characteristics and replication protocol, Vir-
tual Nodes offer a wide variety of paramters that can be tuned in order to
optimise the system. In the following we give a survey on replication pro-
tocols, describe how all of them can be integrated in a common framework,
and discuss the restrictions they impose on the replicated application. More-
over, we present the system run-time behaviour and an example application.
We do not cover all details about programming Virtual Nodes, as this will
be subject to the Virtual Node Programmer’s Guide, a companion paper
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1 Overview and Goals
The purpose of Virtual Nodes is to help the programmers to replicate services for
both performance and fault-tolerance reasons. The main target we are aiming at
is to minimise the effort by (a) maximising the reusability of existing replication-
unaware code and (b) making replication issues as far as possible transparent to
the service developer. At the same time, it shall be easy to make use of Virtual
Nodes for the programmer of an application and for a developer of a replicated
distributed service. For that reason the Virtual Node software written in Java is
provided as a library developers can link to their programmes. The development
process for a replicated application is similar to developing a Java RMI applica-
tion, applications using Virtual Nodes can be implemented as if they would use a
regular RMI object. This is due to our RMI-based frontend.

As we aim for supporting different kinds of applications we provide multiple
replication strategies. Furthermore, we allow the composition of the replica group
to change at runtime. The reasons for that are on one hand to ensure that long
running services do never lose their fault-tolerance guarantees which would be
reduced in case of node failures. On the other hand, when replication is used
for performance reasons, it might happen that the current number of nodes is not
sufficient to answer all requests. In both cases, new replicas have to be integrated
in the current group of replicas.

Throughout the text we use the term service for an entity that can be interacted
with in a request-response manner. We assume services comparable to remote ob-
jects. That is, the service has a well-defined interface that allows only a limited
number of types of requests. Unlike Web Services our services are stateful and
have identity. By the introduction of state, we explicitly allow the occurrence of
operations that manipulate this state. Identity, in turn, means that multiple ser-
vices with the same interface may exist even on the same host and each of them
can be distinguished from each other. Furthermore, each of the request types is
associated with a method implementation at the service. We do not restrict the
operations that are allowed during the execution of the method. However, to en-
sure that all replicas of one service are consistent with each other, it is necessary
to treat methods special that might produce a nondeterministic outcome. As we
do not see much sense in replicating services that are exclusively used by a single
client, we assume that a service is likely to be accessed concurrently by multi-
ple parties. In consequence it becomes necessary for the programmer to ensure
mutual exclusion in the service implementation. Multithreading, in turn, might
again raise consistency conflicts due to unpredictable scheduling decisions. To
allow the service developer to use the standard Java programming model, we use
an additional code transformation step in the development process that links the
service implementation to an application level scheduler which comes with the
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Virtual Node library and ensures determinism even in face of concurrency.
What we do currently not cover with Virtual Nodes is the deployment of both

code and replicas. It is out of the scope of our work so far. For the time being the
implementation requires that there be an administrator who decides which parts
of an application have to be replicated, chooses the replication factor and selects
the nodes the replicas run on. Accordingly, the decision if and where to start new
replicas is also left to the administrator. It is clear that this assumption will have
to be dropped in order to realise a system that remains manageable even in the
face of medium to high churn. Nevertheless, our assumption is reasonable for
this document, because the automatisation of Virtual Nodes is widely orthogonal
to the replication functionality, so that adding additional management capabilities
will not invalidate the information presented here.

The remainder of this document is structured as follows. In the next section
we have a look at different replication protocols. Section 3 discusses the static
architecture and with it the different components the system consists of. In Section
4 we consider run-time issues such as adding new replicas and handling nested
invocations. Section 5 gives an introduction to how to program services using
Virtual Nodes.

2 Overview on Replication Strategies
One of the goals of Virtual Nodes is to offer a framework for various replication
protocols. It is possible to divide replication protocols in two main categories:
active and passive, as well as several sub-categories. In the following we give a
short overview on the different classifications following Wiesmann et al. [13] and
Défago and Schiper [4].

2.1 Active Replication
Active replication (State Machine Approach) protocols lack a centralised entity.
All replicas receive and also process a request without comunication. As a conse-
quence active replication requires that replica implementations be deterministic.
That means, when each of them starts in the same state and gets the same input in
the same order, then they will all produce the same output and change their inter-
nal state in an identical way while processing input. A convenient mechanism to
ensure the same order on inputs is a total order multicast (abcast) [8].

There are two approaches how messages are passed to the replicas. In the first
approach clients send a request to all replicas and accept the first valid response.
In the second approach the client sends the request to a single replica which in
turn forwards it to the other replicas.
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Semi-active replication is similar to active replication. The difference is that it
does not require that the implementation be deterministic. For each non-deterministic
operation one of the replicas takes the role of a leader, executes the operation and
forwards the result to the other replicas.

2.2 Passive Replication
In the basic version of passive replication (Primary-Backup), the client sends its
request to the primary replica which executes the request and forwards the state
changes to its follower replicas. When the primary fails, the client notices this by
either timeout or some failure detector and re-sends the same request to the replica
that has become the new primary. In case the former leader has not crashed, but
was just suspected by accident, then it is forced to crash in order to avoid in-
consistencies. In an extension to that basic version (Multi-Primary) the primary
replica is not fixed, but changes due to some scheme. This requires coordina-
tion of interfering updates running at different primaries. In another extension
(Coordinator-Cohorte) the client sends its request to all replicas in order to avoid
the need for re-issuing it in the case of primary failure.

Semi-passive replication uses the same mechanism to pass requests to the
replicas than coordinator-cohorte. However, the decision which replica processes
the request depends on some algorithm that is similar to a consensus algorithm.
Instead of each replica proposing an update value only a single one does so—the
current coordinator—while all other replicas propose a void value. In case one of
the follower replicas suspects the leader to have crashed it computes its on value,
i.e., it executes the request and proposes this value to the other replicas. Eventu-
ally, there is a consensus [8] on which value to chose.

2.3 Replication Protocols for Virtual Nodes
For the first prototype of the Virtual Node infrastructure we target the imple-
mentation of both an active and a passive replication protocol. To enable non-
deterministic operations we also integrate a hook to realise semi-active replication.
Note that some literature propagates that there is no need for determinism in pas-
sive replication (e.g. [13]). This, however, is not true in the general case, but only
when the service implementation is self-contained and in addition the leader only
forwards its entire state or state changes to the followers. The self-containment
guarantee is among others violated in the following cases:

• The service invokes a method at another service

• The service writes data to a shared file system or uses other ways to make
data externally available.
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Figure 1: The Overall Structure of the Virtual Node Infrastructure

• Parts of the service state can also be accessed otherwise, e.g., by shared
memory.

If the leader crashes before the update message was forwarded to the follow-
ers the new leader has to re-execute the request and in consequence also invoke
the external service which might lead to inconsistencies; the same holds for data
written by the service if it is accessible by third parties.

Forwarding the entire service state is very expensive in case of large states.
An option to reduce the costs is to transmit only the part of the state that was
modified by the last method invocation. Yet, such a procedure requires insight
to the service which is not available for a general purpose replication framework
operating outside the service. For that reason the system offers the option to se-
rialise the state only after a number of requests. Between two serialisation points
(snapshots, checkpoints) the system logs the requests. As a new leader has to re-
execute those requests if the primary fails, the service implementation also has to
be deterministic for passive replication. Analogous to semi-active replication the
system offers hooks to also log the results of non-deterministic operations.
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3 System Description
Design-wise the Virtual Node infrastructure consists of four parts (cf. Figure 1).
The vertical division distinguishes two parties: server and client. The horizontal
division separates features unrelated to replication such as interface description,
marshalling and application binding from replication-related issues such as the
management of membership, consistency, communication, and scheduling. We
use the term middleware layer for the first part that is closer to the application and
replication layer for the part concerned with replication issues. Figure 1 shows all
the resulting four components together with client application and service imple-
mentation which are both outside the Virtual Node infrastructure. The figure also
sketches the dependencies between the components. The application depends on
the middleware layer at client-side as this defines how to bind to the service and
how to invoke methods. The middleware layer at client-side depends on the client-
side replication layer which defines the respective interfaces. The same holds for
the server side. The client-side parts also depend on their respective counterparts
at server side and vice versa. The replication layer of both the client and the server
side have to be compatible with each other. Each of the components consists of
several sub-components for some of which we provide multiple implementations.
Currently, the choice which of them to use is a compile-time consideration. For
the prototype due to M18 we focus on a start-up time configuration. On the long
run, we are planning to allow dynamic configuration changes at run-time. In the
following, we discuss the layers in detail.

3.1 Client-Side Middleware Layer
Our client side middleware layer is completely Java RMI compatible. That is, it
uses classes and interfaces provided by the java.lang.rmi package to hide
from the application the fact that it uses a proprietary communication logic. In
consequence, the application treats the reference to the service as a Java RMI
stub. Regarding functionality, the middleware layer realises two tasks that are
encapsulated in the Marshalling and Binding sub-components shown in Figure 2.
The first is concerned with parameter marshalling and unmarshalling. Secondly,
it cares about binding issues. The first issue is easy to understand: Parameters of a
method call have to be transferred by wire and thus have to be (de-)serialised. The
need for binding support is less obvious. However, when the client application
passes the service, that is, technically speaking the stub, as a parameter to another
object, then the parameter gets marshalled if the target object resides on another
node. In that case the stub is serialised and again desiralised at the target node.
During the deserialisation process the newly created stub has to get all information
required to instantiate the replication layer including its configuration and contact
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information for the replicas. As the group of replicas can change over time and
the middleware layer has no direct access to this information we have integrated
a callback mechanism used by the replica layer to inform the middleware layer
about changes. A detailed discussion on that issue can be found in [6].

3.2 Client-Side Replication Layer
The replication layer is invoked by the middleware layer calling a method invoke(
String, byte[]) with the String representing a signature identifying the
method and the byte[] containing the marshalled parameters. The sub-components
and data flow described in the following are also shown in Figure 2. The replica-
tion layer then generates a unique message id consisting of the unique identifier
of the host it is running on (the IP address), a java.rmi.server.UID gen-
erated at the moment the stub was initialised, and a consecutive number. Subse-
quentially, the message is assembled. Afterwards, the replication layer selects a
replica to contact, opens a connection and send its request to that replica. Which
selection strategy the Replica Selector uses is a configuration issue. The decision
may be influenced by the replication protocol. It is better to always select the
same replica (i.e. the primary) in case of passive replication and use a random-
ized selection strategy for load balancing in case of active replication. Finally, the
request is sent and the invoking thread blocks until a reply has been received. As
the reply may contain the return value of more than one replica a Reply Selector
decides which of them to chose. Just as the selection strategy, the reply selection
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strategy is an configurable parameter. In the first prototype we only provide a
single implementation that returns the first valid reply. If any error has occurred
during the invocation so that no valid replies are available (e.g. the contacted
replica crashed), the selection strategy chooses another replica to contact and the
request is re-sent. If no further replicas are known to the Replica Selector, the
system returns a RemoteException to the client.

The request messages also always contain the current view of the client-side
replication layer on the replica group, i.e., which replicas currently form the group
and their contact information. The reply it receives from the replicas contains the
latest version of this view if the client view lacks up-to-dateness. In that case, the
replica layer triggers the callback to the middleware layer to pass the information
about the changes.

3.3 Server-Side Replication Layer
The replication layer at server side is far more complex than the other compo-
nents of the system. Here, most of the sub-components are concerned with en-
suring consistency of the replicas. As Figure 3 clearly shows, the sub-component
implementing the replication strategy (strategy component) is the central entity
at server side. All incoming events triggered by external entities (aka clients) or
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other replicas first pass through the strategy sub-component. This is due to the fact
that passive and active replication strategies only have little in common when it
comes to reacting to events. All common patterns are sourced out to the Semantics
sub-component, which is mainly concerned with ensuring at-most-once semantics
of method executions. For that purpose it caches incoming requests together with
their respective outgoing reply using the request’s message id as a key. In order
not to punish idempotent or stateless applications such as Web or NFS server the
caching can be turned off. Furthermore, the Semantics sub-component contains
the implementation of remote methods provided by the Virtual Node infrastruc-
ture, that is methods the client can invoke, but which are not part of the service
implementation. We will discuss infrastructure methods in more detail in Section
4.3.

Some replication protocols require that the state of the service implementation
be made persistent either by sending it to other replicas or by writing it to stable
storage. This functionality is implemented by the Persistency sub-component.

The Client Communication sub-component serves as an interface for the out-
side world. This is the contact point clients address their requests to and also
the only part of a replica that is visible. The communication with other replicas
happens through the Replica Communication sub-component, which hands over
incoming messages to the Strategy component. Those messages will mainly be re-
quests, when using active replication, state update when using passive replication
Finally, the Replica Communication sub-component can also receive view change
messages, which indicate that either one replica is suspected to have crashed
or that a new node requests to become one of the replicas. A change in the
composition of the replica group eventually reaches the Group Information sub-
component, which stores the current group composition and is the entity to tell if
the view a client has sent to the service is still valid. The detailed actions triggered
by a change in the group composition are subject to Section 4.3. Finally, there is
the Scheduler. Each request that is processed is executed in its own thread. The
scheduler is an application-level entity that restricts the number of threads being
visible to the system (JVM) scheduler.

Three of the sub-components in the server-side replication layer are subject to
configuration: The scheduler, the replication protocol, and the replica communica-
tion. Note that the configurations of those components are not fully independent.
However, the current prototype does not enforce a reasonable configuration. In the
following three subsections we have a closer look at the available configuration
options of each of these sub-components.

10



Active Replication

Passive Replication

Basic Strategy State Serialisation

After Each Request

Interval Based

After n Requests

Persistency

Stable Storage

Other Replicas

Adapted Variants

Semi!Passive

Semi!Active

Other Replicas

Other Replicas

Stable Storage

Stable Storage

After Each Request

Interval Based

After n Requests

Semi!Passive

Semi!Passive

Semi!Passive

Semi!Passive

Semi!Passive

(a) Strategy

Abbr. Name Features

Condition Variables

Cond. Vars., multithreadedLoose Sync. Alg.

Single Logical Thread

Single Active Thread

Multiple Active Threads

SLT

SAT

LSA

MAT Cond. Vars., multithreaded

(b) Scheduler

Figure 4: Configuration Options for Replication Strategy and Scheduler

Strategy Instances

The system supports both replication protocols described in Section 2: active and
passive replication. Active replication was implemented in a straight forward way.
A request is passed to all replicas which execute it and finally the result is returned
to the client. There are no configuration options. For passive replication a variety
of parameters can be set. First of all, there are two different ways to make the
information persistent. It can either be written to stable storage or be sent to the
follower replicas. The first approach allows to start the new primary replica on
demand leading to higher take-over time in case of failures. A basic prerequisite
therefore is that all hosts that potentially run a replica share a common storage,
such as a distributed file system. The second approach requires that the follower
replicas be up and running, so that they can handle the messages they receive.
For both approaches the system provides a persistency sub-component realising
exactly this behaviour. In addition, the passive replication strategy allows to log
requests and only serialise the entire state after a configurable number of requests
or after an also configurable amount of time has elapsed. How to add support for
non-deterministic operations is sketched in Section 5.1, configuration issues are
discussed in Section 5.3.
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void s lock(Mutex);
void s unlock(Mutex);

void s wait(CondVar);
void s wait(CondVar, long);
void s wait(CondVar,long,int);

void s notify(CondVar);
void s notifyAll(CondVar);

Figure 5: Scheduler Interface

Scheduler Instances

As already described above, the schedulers operate on application level and re-
duce the number of threads that the system scheduler considers running or ready
to run. This is realised by redirecting any operation related to synchronization and
condition variables to the Virtual Node scheduler. For that reason the scheduler in-
terface shown in Figure 5 reflects all operations known from Java synchronization
prior to Java version 5. During the extended development process (cf. Section 5.1)
all occurences of those operations are redirected to the Virtual Node scheduler. At
run-time there is exactly one scheduler per service instance.

Currently we support four different kinds of schedulers. The SLT (single log-
ical thread) [9] scheduler realises a strictly sequential execution of requests in
which the thread for the next request is not started until its predecessor has fin-
ished its execution. The SAT (single active thread) scheduler implements an algo-
rithm [14, 5] which also has only a single thread running at a time, but in contrast
to SLT is able to start another thread in case the currently running thread blocks.
This allows the use of condition variables, i.e., wait operations, something that
is not feasible using SLT. SAT is able to use the full capacity a single processor
node provides. Yet, as it offers at most one runnable thread to the lower level
schedulers, it is not able to utilise the facilities of multi-core processors or multi-
processor systems. For that reason the Virtual Node infrastructure also supports
two additional algorithms with support for real multithreading. The LSA (lose
synchronisation algorithm) [2] scheduler uses a leader-follower scheme to assign
locks in deterministic order. The leader executes lock requests in arbitrary order
and broadcasts the order to its followers. The algorithm used by the MAT (mul-
tiple active threads) [10] scheduler is an extension to the SAT variant. It uses a
privileged primary thread that is allowed to request locks whereas all other threads
are allowed to perform computations, but are blocked once they request a lock.
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Please note that for passive replication strategies currently only the SLT sched-
uler is suited. This is due to two reasons. Firstly, if request logging is not used,
the service state has to be serialised after each method invocation. Moreover, the
serialised state must not contain changes caused by the execution of other threads.
This cannot be guaranteed in case of multithreading. Secondly, when request
logging is used, so that the entire state is serialised only from time to time, mul-
tithreading is feasible in between two checkpoints. However, this requires that it
can be guaranteed that by the time the snapshot is to be taken, no threads are ma-
nipulating the state. Yet, this is impossible in general as a thread might have called
wait. Due to the blocking characteristics of this operation and the uncertainty of
the next notify call, there are no guarantees.

Replica Communication

In the current implementation, the replica communication sub-component is a fa-
cade to a third party group communication system (GC). The preconditions an
external GC has to satisfy are rather low. First of all it has to support an—
ideally uniform—total-order broadcast [8] among the replicas. Secondly, the Vir-
tual Node implementation assumes virtual synchrony for messages. That is one
message can always be associated to a set of replicas. In addition the GC has to
provide a mechanism that allows to get information about group changes. Cur-
rently, we support the JGroups1 group communication system. As it provides
only a non-uniform abcast, we plan to also add support for the SPREAD2 GC.
To integrate a new GC system in the current infrastructure, the developer has to
provide a GC-specific factory, which is able to handle the GC startup and con-
figuration. Furthermore, (s)he has to include the new GC-specific factory in the
general factory.

3.4 Server-Side Middleware Layer
The middleware layer at server side contains three sub-components. The Mar-
shalling/Dispatching sub-component is the server-side counterpart to the Mar-
shalling sub-component at client side. Accordingly, its interface is identical to
the client-side replication layer: invoke(String, byte[]). Again, the
String represents the method to call, and the byte[] contains all serialised
method parameters. By the method information, the Dispatcher determines how
to interpreted the information in the byte[]. Afterwards, the unmarshalling
happens followed by the method invocation at the object implementation. The

1www.jgroups.org
2www.spread.org
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Binding sub-component fulfils the same task as at client side. If the service im-
plementation passes itself as a reference to some remote service or returns this
to an invocation, the serialisation process has to generate a stub and thus be aware
of the current membership information. Finally, the Semantic Information sub-
component contains semantic information about the methods implemented in the
service, if the developer has provided such information. This topic is targeted in
more detail in Section 5.

3.5 Future Work
The current implementation is a prototype lacking sophisticated features that should
be supported by a final implementation. We will try to reach this goal within the
restrictions imposed by time and human resources. In detail the features include:

• Infrastructure Sharing: Currently, the software assumes that each Virtual
Node runs in a Java Virtual Machine on its own. This wastes resources as
services instances of different Virtual Nodes might easily share the infras-
tructure. For instance they could share a common contact address as it is
typical in CORBA, Java RMI, or Web Service technology.

• New Threads: Because of the restricted multithreading model, the creation
of new threads of activity during the execution of a request is not supported
in the current version.

• Uniqueness: The use of IP addresses as the identifier for a client is not truly
unique, as clients might share a common IP adress. This should be taken
into account in the next version of the software.

• Extendibility: The use of Java as the implementation language should not
limit the possibility to port the current implementation to other platforms. In
that case, it would be welcome to have an integrated approach that — com-
parable to CORBA systems — allows different collaborating hosts to run
the Virtual Nodes architecture implemented in different programming lan-
guages. This would also be a first step towards mulitversion programming.
In detail this would require the following changes to the current implemen-
tation:

– Java Serialization: The use of Java Serialisation has to be abandoned,
as it is not or difficult to port to other programming languages. In
addition this might also reduce the amount of data to be transmitted,
as only required data will be sent.
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– External Data Representation: An external data representation for-
mat is to be specified. CORBA CDR could be an option.

– Reflection: All parts of the system that are subject to Java reflection
have to be replaced by a mechanism that is portable to other languages.
Here, too, much work has already been done for the CORBA specifi-
cation.

– Middleware: As Java RMI is not suitable for other programming lan-
guages than Java, an alternative middleware layer has to be supported.

• Additional Scheduler: Literature knows another algorithm for multithreaded
scheduling: preemptive deterministic scheduling (PDS) algorithm [1]. As
it provides completely different performance characteristics than the others,
we want to integrate it in our replication framework.

• More Concurrency: We have discussed [7], but not implemented yet, ways
how to further increase the concurrency if determinism is a hard require-
ment.

• Evaluation: We have not yet evaluated the performance of the framework
and the respective performance of the schedulers. This is a high priority
goal for the time after M18.

4 Runtime Behaviour
So far, we have mostly focused on the description of the static architecture of the
Virtual Node software. In this section, we discuss dynamic behaviour and cover
things that have not or only insufficiently been presented so far. We start with a
discussion of the regular operation in the next subsection; i.e., what happens when
no nodes fail. Then, in Subsection 4.2 we show how to start a Virtual Node service
and in the succeeding subsection we present how the system reacts to changes in
the replica group composition. Here, we also present how to add new replicas to a
running Virtual Node. Finally, in Subsection 4.4 we sketch how the system deals
with nested invocations.

4.1 Normal Operation
During normal operation, that is in the absence of new replicas joining or existing
replicas crashing or leaving, the system provides replicated method invocation to
a set of clients. Most of the individual steps that happen during this process have
already been sketched in Section 3. Here, we provide an in-depth view. We do not
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explicitly distinguish between different replication protocols. Instead, we present
a generalised protocol that covers all of them. For dedicated implementations
some phases of this protocol might be empty.

The first step to be done for being able to execute remote methods at a Virtual
Node is binding. Binding enables the client-side to contact the server(s). As we
use a Java RMI layer to hide the Virtual Node infrastructure, binding to a Virtual
Node means to bind to a remote reference (stub) representing a Virtual Node.
Concretely, this is loading the seralised form of the stub from somewhere (e.g., a
naming server). During the deserialisation process, also the replication layer of
the client-side is initialised.

Once the binding is finished, the client is able to invoke remote methods. All
layers that were described in the last section are passed: The middleware layer at
client-side marshals the parameters and passes them on to the replication layer.
Here, a replica is selected (contact replica) and a request is sent to it. Beside
the method to invoke and a unique request ID, the request contains the current
view the client has on the replica group composition and a list of former methods
from the same client that were successfully returned to the invoker. At server-
side, first the request is logged (not in all protocols). Afterwards, the request is
spread to all other replicas supposed to process it. There, the information about
successful former requests is evaluated and cache entries matching those requests
are removed. If the ID of the current request is already contained in the cache
together with a reply, i.e. the request was already process before, the cached reply
is returned. If the ID is contained in the cache without a reply, i.e., the request is
still being processed, then the current request is ignored. Otherwise, the request
is subsequentially passed on to the middleware layer where the parameters are
unmarshalled, the service is invoked, and the results are marshalled again. The
replication layer assembles the reply, adds it to the cache, and passes it back to
the contact replica. The contact replica collects a configurable number of replies
and merges them to a single reply to which it adds the latest information on the
current replica group composition. Then it makes the new state persistent. Finally,
the reply is sent back to the client where it is evaluated and one of the individual
replies is returned back to the calling process.

The invocation process described so far may be too heavyweight for opera-
tions that do not modify the state of the service, so called read-only operations or
queries. As the system cannot recognise those operations on its own, it depends
on the developer who has to specify them so the knowledge is available in the
Semantic Information sub-component. For executing those kinds of requests con-
sitency requirements can be relaxed. Thus, it is neither required to log the request,
nor to spread it to all replicas, nor to make the new state persistent. The conse-
quence of all those relaxed requirements is that it becomes possible to execute
one request exclusively at a single replica. For services which have a load pattern
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java.lang.remote.Remote
startup(String[3], Object);

Figure 6: Initialisation Method

with a high quota of queries, this optimisation yields not only availability but also
performance benefits compared to a single server solution.

4.2 Starting a Service
Warning: This subsection describes a part of the software that is still work in progress

Starting a new replicated service is identical to starting the first replica of this
service. The startup process for this purpose is different to just adding new replicas
as it requires to establish the entire infrastructure including the middleware layer.
Thus, the startup process heavily depends on the middleware layer. Furthermore,
in order to allow the instantiation of other replicas, the nodes that shall run those
replicas have to be able to use the remote invocation mechanism provided by the
first replica, i.e., they have to use a stub. In consequence, the first replica has
to provide a stub, which is again specific to the middleware layer. For the RMI-
compatible middleware layer that ships with the Virtual Node software, all of
the instantiation process can be done with calling the startup method of the
vnode.rmi.Stub class shown in Figure 6. The parameters and return value
are as follows:

• String[3]: The first entry of this array contains the system configuration
string (c.f. Section 5.3). When the method returns, the second and third
entry will contain the service ID and the ID of the replica, respectively.

• Object: The service to be replicated represented as an object. For building
a stub, the system extracts the interfaces the service implements, as stubs
can only be built out of interfaces and not out of classes. If the Object only
implements marker interfaces or no interfaces at all, the stub will contain no
methods except for the administration methods (see next section).

The step described here is comparable to the object exportation mechanism
known from standard Java RMI. Apart from the initial startup there are various
other methods to handle the replica group composition. All of them are provided
by the replication layer. Thus, functionality-wise they do not depend on the mid-
dleware layer. However, in order for the client to be able to invoke those methods,
the stub of the middleware layer has to have them in its interface. The methods
are shown in Figure 7 and discussed in the next section.
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String getInstantiationData();
void startNewReplica(String);
void killReplica(String);
void killService();

Figure 7: Administration Methods

4.3 Changing Replica Group Composition
Warning: This subsection describes a part of the software that is still work in progress

To cover all possible changes of the replica group composition it is necessary
to distinguish three cases: adding a new replica, removing a replica by inten-
tion, and removing a replica due to a hardware or process crash. By default each
service comes with additional methods in its interface; so-called administration
methods which are shown in Figure 7. Those methods are added automatically
when the dynamic proxy is created for the first time and are implemented in the
replication layer at server side. To start a new replica the first thing to find out
are aspects about the current configuration that are necessary for starting a new
replica. Such data is for example, the chosen group communication system and
its configuartion. This can be achieved by the getInstantiationData()
method. The return value of this method can be used as a parameter for the
startNewReplica() method that initialises the replication framework and
service replica: In a first step, the group communication system is brought up and
started. Once group membership is established, the new replica is known by the
other replicas, but is not a full replica yet, as it does not know the current state.
The first step to get the current state is to use the communication system to send a
getState message to all other replicas, containing the external contact address
of the new replica. At the receipt of this message all replicas stop accepting new
requests and wait until all running threads have finished. Once this is the case,
the oldest replica serialises the service state and replies to the new replica with a
setState message containing the state and the message ID of the last request
that is reflected in the state. With this message, all replicas add the new replica to
their Group Information sub-component and also forward its contact information
to the Binding Information sub-component of the middleware layer for that clients
are able to access it. The new replica installs the state and applies all requests that
have arrived between sending the getState and receiving the setState mes-
sage which were received after the message with the message ID contained in the
setState message.

The killReplica()method kills the replica with the ID represented by the
parameter. The result is equivalent to a replica running on a crashing host. The
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group communication system detects the failure and signals this event to the repli-
cation layer which passes it on to the Group Information sub-component and also
to the Binding Information sub-component. Finally, the method killService()
kills all replicas belonging to a certain service.

4.4 Nested Invocations
In replicated systems special care has to be taken for nested invocations. Nested
invocations are invocations to other services that happen while one request is pro-
cessed at a service. Mostly harmless in case of non-replicated services, they be-
come a serious consistency threat when the invoking service is replicated. The
reason therefore is most obvious, if we assume active replication. As all replicas
process the operation simultaneously, all of them will also invoke the external ser-
vice. In consequence the external operation will be executed n times in case n
is the number of replicas. As each invocation might change the service state and
also have a different return value the consistency of the replicas will in the general
case get lost. In the following we sketch our approach to handling nested invoca-
tions. We assume that the only kind of nested invocation we have to deal with are
invocations to other services that are also implemented using our framework. In
case the service implementation does not satisfy our assumption, the programmer
has to assure consistency on his own. In Section 5.1 we present our approach to
help him in with this task.

The first approach to avoid inconsistencies due to nested invocations is to en-
sure that all of the replicas use the same message ID for their respective invocation.
In that case, the other service will recognise the requests as duplicates and deny
a repeated execution. Nevertheless, all phases of a regular invocation process are
executed. This is not a problem, if the invoked service is not replicated, but gener-
ates an overhead of messages if the target is also replicated. To circumvent such a
high load on the target service we decided that in the default case only the contact
replica executes the nested invocation and passes the result on to the other repli-
cas. In case the contact replica fails while the others are waiting for a result, they
will notice the failure due to the notification mechanism of the group communi-
cation system. Instead of the contact replica the oldest replica executes the nested
invocation. This hard-wired strategy is due to two reasons: Firstly, it avoids the
execution of an expensive election algorithm and secondly, studies have shown
that it is very likely that nodes that have been online for a long time will remain
online [12].

Also in the case of passive replication nested invocations need to be handled
with care. Assume that the primary replica crashes after having started the in-
vocation. The new primary has to use the same message ID to avoid a potential
re-execution of the same request. Furthermore, when message logging is enabled,
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we do also log the replies of the nested invocation. Mainly, because of the fol-
lowing reason: When request logging is used, there is no upper time bound until
the next snapshot, and as both services are in general unrelated there is also no
guarantee how long replies are cached. Accepting an accidental re-execution due
to flushed caches and a primary failure long after the nested invocation but before
the next snapshot is not an option as it might invalidate replies already returned
to the client therewith destroying the consistency of the entire system. Consider
such a scenario: a request is re-executed based on the log. During the execution
the process triggers a nested invocation that is not recognised as a duplicate, but is
also re-executed. In the best case, its result is the same as before, in the worst case
it corrupts the state of the callee. In the general case, it will simply return a dif-
ferent result than at the first invocation leading to different a state and reply at the
caller. In consequence, the client which has already received the first reply cannot
rely on it anymore, yet it does not know. To avoid such weird constellations we
do not only log requests, but also replies to nested invocations.

Implementation-wise we attach context information to the thread that pro-
cesses a request. The context contains the message ID of request that is currently
processed, the service ID, as well as a link to the group communication system.
Invoking another service results in also calling the replication layer of the stub
associated with that service. Before generating the message ID of the request, it is
checked whether there is a context associated with the current state. If that is the
case, the new message ID is the message ID in the context plus the service ID plus
a consecutive number. This ensures that all replicas generate the same message
ID. In addition the SLT scheduler can exploit this way of constructing message
IDs to recognise recursions. To enable the scheduler to perform optimisations,
the scheduler is informed before the nested invocation and also when the result is
received

4.5 Future Work
For the future we target several extensions to the current system. First of all, we
target to support configuration changes at runtime. That is, we want to be able to
change e.g. the replication protocol dynamically. Furthermore, we would like to
provide replicas with a memory. In case of large states starting with a void state
requires long state transfer. Allowing new replicas to re-use the persistent state
of replicas having previously run on the same host can potentially reduce state
transfer times as only updates have to be transmitted. In addition, we are looking
for a way to realise the state transfer stream-based instead of block-based as the
memory footprint is enormous in the second case when the state is large.

The current implementation is inherently insecure. Firstly, due to the fact that
all clients are allowed to call administration methods. Secondly, the communi-
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cation between clients and server as well as the inter-replica communication are
plain text so that it is easily possible to sniff as well as to manipulate the data
transmitted. Third, the replication protocols rely on a crash-stop behaviour of the
replicas. We have not yet considered a non-benign behaviour of replicas which
is supposed to happen in a real-life, wide-spread set-up of Virtual Nodes. We are
planning to face all of these security threats in future versions of the software.

Earlier work [11, 3] has shown that some scenarios require explicit support for
client-side code, e.g., for accessing client-side resources, encapsulated behind the
service interface. We will provide such a functionality in a later version of Virtual
Nodes.

Finally, dynamic proxies, which we use to realise the Java RMI surface, have
turned out to be performance bottlenecks. This is especially true for local invoca-
tions. For that reason we consider generating proxies offline.

5 Programming Issues
Warning: This section describes a part of the software that is still work in progress

In this section we have a look at how to program Virtual Nodes. In addition we
summarise the configuration options that have appeared throughout the text and
we show reasonable combinations thereof.

5.1 Providing Virtual Nodes

In order to implement Virtual Nodes several things have to be taken into account.
Regarding the way how the service has to be implemented we distinguish the
algorithmic (which kind of operations are allowed, ...) and the technical (which
information has to be provided, where to put it) point of view.

Algorithmic Considerations

From the algorithmic perspective we cannot give general guide how to implement
an application ready for replicated execution, as the details depend on the repli-
cation protocol and its parametrisation. One basic issue for consistency is that
the recoverability property is satisfied. Revcoverability in the context of object-
oriented remote methods means that no reply returned to the client will be inval-
idated later on due to some events in the system. This property is enforced by
all the scheduling algorithms presented in Section 3, if the following restriction is
respected in programming Virtual Node applications:
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• Do not create threads!
As multithreading can destroy determinism even in passive replication a
thread created in an arbitrary situation without the knowledge of the repli-
cation framework will cause harm. The only exception are threads for pure
computation purposes whose input parameters have been determined be-
fore their creation and that their entire interaction users or other threads
is restricted to returning their result to the creator thread. Apart from that
there may be other cases with allow the creation of threads. However, such
a decision has to be taken as the case arises.

For actively replicated set-ups or systems using passive replication with re-
quest logging we require this additional restriction:

• Do only use deterministic operations!
Active replication is built on the assumption that all operations produce the
same output, if provided with the same input. In passive replication the
re-execution of a request due to the failure of the leader replica must not
produce another output than the first execution.

If single-threaded execution is used, deadlocks can only be prevented, if the
following constraints are respected:

• Do not use condition variables!
Calling wait with a single thread will result in a deadlock.

• Beware of cross invocations of services!
If a service A calls another service B while B also calls A, then both threads
will end up blocked.

The Java libraries are per se not replication aware and might even be non-
deterministic in some places. This is especially true when library classes use
wait/notify or the language specification is unprecise or leaves implemen-
tation details intentionally open. One example therefore is Object.hash()
which in Sun’s reference implementation returns the memory address of that par-
ticular object. Another example is the method Thread.getId(); a thread ID
is only required to be unique for the lifetime of a thread which is in general not
sufficient to guarantee determinism.

Another critical issue are operations such as writing to a file. In the general
case, this operation will be successful on all replicas and therewith deterministic.
In some cases, however, it may fail on some replicas and become a nondetermin-
istic operation. The only option to get back to a deterministic state is to kill the
replicas for which the operation has failed (or for which the operation was suc-
cessful). Nevertheless, a replica experiencing the failure is not allowed to kill
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@readonly: no changes to the service state

Figure 8: Annotation

itself without knowing the results of the other replicas. Because, if the operation
had failed on all of them, it would be deterministic again, and regular operation
might continue. So far, the framework does not offer support for those issues.

Technical Considerations

The development process of the service is very similar to the development pro-
cess of Java RMI objects. With small exceptions: At the first, the objects rep-
resenting the service can have any type and are not forced to implement the
java.rmi.Remote interface. However, it is required that the service object
implement the java.io.Serializable interface or an interface extending
it in order to be able to transfer the current state to a newly created replica. Re-
call the method from Figure 6 showing the interface to the method initialising the
first replica. The interface of the stub is the transitive closure of methods in the
interfaces implemented by the service object. The methods in the interfaces can
be annotated as @readonly. In consequence the method will be executed with
relaxed consistency guarantees. Where the annotation happens does not matter.
It is possible to annotate the method inside the service implementation, or in the
interface defining it. It is also possible to annotate an interface as a whole meaning
that all of the methods in that interface are annotated.

The second change in comparison to the Java RMI development process is
an additional code transformation step. We provide a script that searches for
synchronized statements and replaces them with calls the scheduler’s lock
and unlock method. This also changes the classes, as it adds an additional field
representing the scheduler. Only afterwards the code is ready to be compiled.

If the service implementation contains nondeterministic operations those can
be treated as nested invocations. For that purpose we will provide an interface in
the first prototype that helps the programmer to handle those kinds of operations.
The interface is not specified yet, but it will be part of the context attached to
the threads which process the requests. We will update this document once the
specification is finished. However, using this hook destroys all replication trans-
parency and turns the code unusable in a replication-unaware environment. In the
future we plan to provide additional means for transparently handling those kinds
of methods.
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while(true) {
gstat = pas.update( playerNr, playerPos,

System.currentTimeMillis() );

. . .

repaint();

Thread.sleep(Config.sleeptime);
}

Figure 9: PongAlong Client Code

5.2 Virtual Nodes without Java RMI
The layered architecture of the Virtual Node system allows to also use them when
the application itself does not make use of Java RMI. The only precondition that
has to be met is that the application works based on request-response interaction
with its clients. In the most basic use case the existing communication layer (the
part at client and server side responsible for communication) has to be changed in
order to send all data to the replication framework instead of the network. Further-
more, apart from the one new thread that is created by the replication framework
per request, in general no other new threads are allowed at server-side.

In case the server application uses one or more daemon threads, their integra-
tion in the system has to be done manually and can only be realised after having
carefully investigated if doing so remains consistency guarantees. Depending on
the application architecture and semantics the integration also fail.

5.3 Configuring Virtual Nodes
Warning: This section describes a part of the software that is still work in progress

Currently, the system can only be configured at pre-compile time by instantiating
objects of the respective classes. We will update this section while we add means
for a configuration at startup time.

6 Example Application
In this section we discuss a small example in order to illustrate the programming
with Virtual Nodes. More detailed explanations are subject to a Virtual Node Pro-
grammer’s Guide paper that is to be published before the first XtreemOS release.
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public interface PAServer extends Remote {
public GameStatus update(

int playerNr, int pos,
long timeStamp) throws . . .

}

Figure 10: PongAlong Interface

String[] s = new String[3];
s[0] = config;
PAServerImpl server = new PAServerImpl();
PAServer stub =

(PAServer) vnode.rmi.Stub.startup(
s, server);

Figure 11: PongAlong Server Instantiation

The example application PongAlong is a fault-tolerant version of tha Atari
Pong 3 game. At run-time the set-up includes up to four players (clients) and a
set of server nodes which are replicas of each other. Furthermore both clients and
servers have to have sufficiently synchronized clocks, i.e., via NTP. The interac-
tion is client-triggered: clients regularily invoke methods a the servers passing the
position of their respective racket and their current system time t as parameters.
The return value to this invocation is a set of values including the position of the
ball at t and the other players’ racket position. The client-side code is shown in
Figure 9 (exception handling code omitted).

In order to implement such a scenario one interface with a single method
update is required (see Figure 10). As the method changes the server state,
it cannot be annotated @readonly. The server implementation implements
the PAServer interface. The initialisation of the first replica is show in Figure
11: first the String array is created; afterwards, the server implementation. Fi-
nally, both are passed to the startup method that returns a stub which may for
instance be registered at a Java name service.

7 Virtual Nods in XtreemOS
Although the Virtual Node framework mainly addresses application developers,
it might also be of use for other workpackages in the XtreemOS project whose
services require high availability and cannot tolerate downtime. Entities we con-

3http://en.wikipedia.org/wiki/Pong
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sider as candidates are parts of the application execution management (WP3.3), in
particular the XOSD, the XtreemFS metadata server (WP3.4), as well as central
entities of the security infrastructure (WP3.5), such as Credential Distribution Au-
thority and the Policy Service. The question which services Virtual Nodes shall
be used for will be subject to the integration process.

On the other hand the Virtual Node framework might also make use of the
functionality of services provided by other XtreemOS entities. For example the
part of the Application Execution Management bundle concerned with ressource
management and selection could play an important rule in automatising the Virtual
Node administration. Again, the decisions whether this approach is feasible and
how realise it, are subject to the integration process.

Finally, Virtual Nodes provide fault-tolerance by replication. However, they
require that software be installed at client-side. Thus replication is not fully trans-
parent to the users. In order to achieve full transparency we plan to merge them
with the Distributed Server infrastructure described in Deliverable 3.2.2.

8 Conclusion
In this document we have presented the XtreemOS Virtual Node framework. We
have mainly focused on the architecture showing how components at both client-
and server-side collaborate in order to provide fault-tolerance by object replica-
tion. We have presented the individual configuration options for replication pro-
tocol, application-level scheduler, caching, and group communication system. In
addition, we have sketched the runtime behaviour of the entire system including
joining and failing replicas as well as nested invocations. Furthermore, the deliv-
erable contains a discussion of potential future work and a small example showing
how to programm Virtual Nodes. An in-depth discussion of programming will be
subject to another docuement, the Virtual Node Programmer’s Guide.
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