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Abstract. Multi-domain spoken dialog system should be able to detect more than 
one domain from a user’s utterance. However, it is difficult to train an accurate 
binary classifier of a domain based on only positive and unlabeled examples. This 
paper improves hierarchical clustering algorithm to automatically identify reliable 
negative examples among unlabeled examples. This paper also verifies three 
linkage criteria that measure the distance between two clusters. In experiments, the 
proposed method resulted in the highest gain of F1 score compared to the existing 
methods. 
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1 Introduction 

Spoken dialog system (SDS) provides natural language interface between human 
and computer. Especially, multi-domain SDS (MDSDS) provides dialog service to 
many domains including restaurant guide, car navigation, movie guide, and movie 
ticketing. MDSDS first selects domain that the user may desire and then performs 
domain-specific processes: natural language understanding, dialog management, 
and response generation. Therefore, the selection of the appropriate domain from a 
user’s utterance is a bottleneck of MDSDS; the incorrect selection of domain drives 
MDSDS to generate nonsense response. 

The domain selection component usually uses as a multi-class classifier which is 
trained from multi-domain corpora. However, the boundaries of domains are 
ambiguous in the real world [1]. For example, when a user says “I’m planning to go 
to Busan”, the intended domain of the user could be car navigation, hotel 
reservation, or both. Therefore, for accurate service, the domain selection 
component should be able to detect more than one domain at one time from a user’s 
utterance. We called this task multi-domain detection (MDD). 



MDD is a multi-label classification problem and this problem can be solved by 
combining in-domain verifiers (IDVs); an IDV classifies whether a user’s utterance 
belongs to that domain. The IDV can be implemented as a binary classifier (BC) 
trained from positive examples and negative examples. Initially, a BC can be trained 
by considering the target domain’s corpus as positive examples and the rest of the 
domain’s corpora as negative examples. However, that BC can cause many 
incorrect rejections because the rest of the domain’s corpora have some in-domain 
utterances. So the nature of the rest of the domain’s corpora is unlabeled examples, 
not necessarily negative examples. 

In this paper, we solved the MDD task by using a two-step approach to train an 
accurate BC from only positive and unlabeled examples. In the first step, we 
automatically identified reliable negative examples among unlabeled examples. We 
first constructed one cluster of positive examples, and several clusters of unlabeled 
examples. Then we hierarchically merged clusters by fixing the cluster that was 
constructed from positive examples. We also verified three linkage criteria that 
measure the distance between two clusters. 

In the second step, we trained a BC iteratively based on positive examples and 
the reliable negative examples identified in the first step. The obtained BC was more 
accurate than the basic BC that was trained using all the rest domain’s corpora as 
negative examples. The effectiveness of this two-step approach in learning from 
positive and unlabeled examples has been demonstrated theoretically [2]. 

The remainder of this paper is organized as follows: Section 2 briefly introduces 
related work and explains the contributions of this paper compared to the related 
work. Section 3 describes the proposed method of hierarchical clustering in detail. 
Section 4 demonstrates the experimental design and results. Finally, Section 5 
concludes the paper. 

2 Related Work 

Ryu et al. [1] first introduced the MDD task and proposed an automatic multi-
domain label annotation method that uses a hierarchical domain model designed by 
humans. The method automatically assigns positive and negative labels to 
utterances based on their previously-annotated intents and named entities. The 
method performed well for a small-scale MDSDS. However, it is difficult for 
human to design complex hierarchical domain models. So the method can hardly be 
applied to large-scale MDSDS. 

A similar task occurs in natural language question answering systems. In question 
answering systems, detecting multiple possible answer types for a question can give 
a chance to improve the answer. A two-step classification method can be used to 
solve this problem: the first step is to classify a question into several coarse-grained 
classes; the second step is to classify it into several fine-grained classes that belong 
to the coarse-grained classes [3]. However, this method is based on classical multi-



class classification and selects multiple answer types with an empirically 
determined confidence score threshold in the multi-class classification. 

Some research considered learning from positive and unlabeled examples. PEBL 
[4] uses 1-disjunctive normal from (1-DNF) technique to identify reliable negative 
examples and then trains a support vector machine (SVM) iteratively. S-EM [2] first 
proposes a Spy technique to identify reliable negative examples and then uses 
Expectation Maximization (EM) [5] to train a Naïve Bayes classifier [6]. Roc-SVM 
[7] uses an existing Rocchio method [8] to identify reliable negative examples and 
then uses a classifier selection method to train an SVM iteratively. Biased-SVM [9] 
focused on biased formulation of SVM. 

To our knowledge, no previous work applies learning from positive and 
unlabeled examples to MDD task. One contribution point of this paper is improving 
hierarchical clustering algorithm to identify reliable negative examples among 
unlabeled examples; we fixed a cluster which consists of positive examples at the 
beginning of hierarchical clustering. Another contribution point of this paper is 
verifying which linkage criterion works accurately for MDD task. 

3 Methods 

3.1 Hierarchical Clustering from Positive and Unlabeled 
Examples 

 
Fig. 1 An example of the proposed hierarchical clustering from positive and unlabeled 
examples: u3, u4, and u5 are reliable negative examples. 
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Algorithm 1 Hierarchical clustering from positive and unlabeled examples 

Input 
 P = {P1, … P|P|}: positive examples 
 U = {U1, … U|U|}: unlabeled examples 
 td: maximum cluster distance criterion (0 < td ≤ 1) 
 tk: minimum cluster number criterion (2 ≤ tk < 1 + |U|) 

Local variable 
 C = {C1, … C|C|}: clusters 
 RN = {RN1, … RN|RN|}: reliable negative examples 
 F: a fixed cluster 

Output 
 Reliable negative examples 

1. F ← {P1, ... P|P|}; 
2. C ← {F, U1, ... U|U|}; 
3. while |C| > tk do 
4.     (i*, j*) ← (null, null); minDist ← 1.0; 
5.     foreach (i, j), where Ci ∊ C, Cj ∊ C, and Ci ≠ Cj do 
6.         if dC(Ci, Cj) < minDist then 
7.             (i*, j*) ← (i, j); minDist ← dC(Ci, Cj); 
8.     if minDist < td then 
9.         if Ci* = F then C ← C − Cj*; 
10.         else if Cj* = F then C ← C − Ci*; 
11.         else C ← C − Ci* − Cj*; C ← C∪{Ci*∪Cj*}; 
12.     else escape loop; 
13. for i = 1 to |C|, where Ci ≠ F do 
14.     for k = 1 to |Ci| do 
15.         RN ← RN∪{Ci,k}; 
16. return RN; 

3.1.1 Cluster Initialization 

In our work, a cluster is a set of items and each item is a set of words in an example. 
We constructed clusters C from positive examples P and unlabeled examples U (Fig. 
1; Algorithm 1 lines 1 – 2). We first constructed one cluster F of P and a total of |U| 
clusters of each unlabeled example in U. So C initially consisted of 1 + |U| clusters. 

3.1.2 Hierarchical Clustering 

After initializing C, we performed the following hierarchical clustering iteratively 
(Algorithm 1 lines 3 – 12): merge two clusters X and Y when the distance dC(X, Y) 
between the two clusters is minimum in C. The distance measure is discussed in 
Section 3.2. When F and another cluster Z were selected to be merged during the 
iteration process, we did not perform the actual merge; we removed Z from C. We 
did this because we focused only identifying reliable negative examples and were 



not interested in identifying additional positive examples. We terminated 
hierarchical clustering when the minimum distance between two clusters in C was 
too far or |C| was sufficiently small. 

3.1.3 Reliable Negative Examples Selection 

After hierarchical clustering, we regarded the remaining clusters in C as reliable 
negative examples RN except for F (Algorithm 1 lines 13 – 15). For example (Fig. 
1), when P = {p1, ... p3} and U = {u1, ... u6}, a total of seven clusters are constructed: 
F = {p1, ... p3} from P and six clusters {u1}, … {u6} from each unlabeled example 
in U. When distance between {u1, u2} and F reached a minimum value during the 
iteration process, {u1, u2} was removed from C. When F and {u3, ... u6} remain at 
the end of iteration, {u3, ... u6} is selected as RN examples. 

3.2 Linkage Criteria 

We defined an item as a set of words. The distance dJ(x, y) between two items x and 
y is the Jaccard distance: 

𝑑𝑑𝐽𝐽(𝑥𝑥, 𝑦𝑦) = 1 − 𝐽𝐽(𝑥𝑥, 𝑦𝑦) = 1 −
|𝑥𝑥 ∩ 𝑦𝑦|
|𝑥𝑥 ∪ 𝑦𝑦| , (1) 

where J(x, y) is the Jaccard similarity between x and y. So |x∩y| is the number of 
words in the intersection set of x and y; |x∪y| is the number of words in the union 
set of x and y. This Jaccard distance is used in all linkage criteria below. 

In hierarchical clustering, the selected clusters to be merged are the closest pair 
based on one of the following linkage criteria: single linkage clustering dSL(X, Y), 
complete linkage clustering dCL(X, Y), or group average clustering dGA(X, Y) [10]. 

𝑑𝑑𝑆𝑆𝑆𝑆(𝑋𝑋,𝑌𝑌) = min
𝑥𝑥∊𝑋𝑋,𝑦𝑦∊𝑌𝑌

𝑑𝑑𝐽𝐽(𝑥𝑥, 𝑦𝑦) (2) 

𝑑𝑑𝐶𝐶𝑆𝑆(𝑋𝑋,𝑌𝑌) = max
𝑥𝑥∊𝑋𝑋,𝑦𝑦∊𝑌𝑌

𝑑𝑑𝐽𝐽(𝑥𝑥, 𝑦𝑦) (3) 

𝑑𝑑𝐺𝐺𝐺𝐺(𝑋𝑋,𝑌𝑌) =
1

|𝑋𝑋||𝑌𝑌|��𝑑𝑑𝐽𝐽(𝑥𝑥, 𝑦𝑦)
𝑦𝑦∊𝑌𝑌𝑥𝑥∊𝑋𝑋

 
(4) 

However, some methods do not work well in MDD, because a domain in 
MDSDS includes various types of utterances. For example, both two utterances 
“City Cinema in Gangnam.” and “A Werewolf Boy seems interesting!” are very 
different but both can be located in F for the Movie Ticketing domain. Therefore, a 
cluster can contain implicit sub-clusters: this structure can cause complete linkage 
clustering (3) and group average clustering (4) to fail. 



 

Fig. 2 Examples of the linkage criteria for MDD (filled circles: items, solid-line empty circles: 
clusters, dashed-line empty circles: implicit sub-clusters, arrows: considered distances in 
linkage criteria). 

For example, C1 is close to the left sub-cluster of C2 (Fig. 2), where C1 is 
constructed from an unlabeled example and C2 is constructed from positive 
examples. Therefore, C1 and C2 should be merged. Single linkage clustering (2) 
gives a short distance between C1 and C2 so they are merged. In contrast, complete 
linkage clustering (3) and group average clustering (4) give a large distance between 
C1 and C2 so they are not merged. Therefore, we expected that single linkage 
clustering is more accurate than the other linkage criteria. 

3.3 Iterative Training of the Binary Classifier 

Algorithm 2 Iterative binary classifier training. 

Input 
 P = {P1, … P|P|}: positive examples 
 RU = {RU1, … RU|RU|}: remaining unlabeled examples 
 RN = {RN1, … RN|RN|}: reliable negative examples 

Local variable 
 Ω: binary classifier 

Output 
 Final binary classifier 

1. loop 
2.     Train Ω using P and RN; 
3.     Nout ← null; 
4.     for i = 1 to |RU| do 
5.         c ← classify RUi using Ω; 
6.         if c is negative then Nout ← Nout∪{RUi}; 
7.     if |Nout| > 0 then RN ← RN∪Nout; RU ← RU – Nout; 
8.     else escape loop 
9. return Ω; 
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We obtained the final BC by training BCs iteratively using positive examples P, 
reliable negative examples RN, and the remaining unlabeled examples RU 
(Algorithm 2). We first used P and RN to train a BC Ω. Then we classified RU and 
obtained a set of negative outputs Nout. We added Nout to RN and removed Nout from 
RU. We repeated this iteration until Ω converged. We used LIBSVM [11] as a BC: 
we used the radial basis function kernel, disabled shrinking heuristics, and used 
default settings for the remaining parameters in the experiment. 

4 Experiments 

4.1 Experimental Designs 

Table. 1 The basic information of collected corpora. 

Domain Translated sentence example 

D1: Car Navigation “Please guide me the best path from Pohang to Gyeongju.” 

D2: Civil Application Service “I want to renew my passport.” 
D3: Home Control “What is in my refrigerator?” 
D4: Movie Ticketing “City Cinema in Gangnam.” 

D5: Traffic Guide “I’m planning to go to Busan.” 
D6: Travel Reservation “I’m going to take a trip from Seoul to Busan.” 
D7: Weather Information “How will the weather be on Sunday?” 

We prepared Korean corpora of seven domains (Table 1). We used 80% of the 
corpora as training data and 20% of the corpora as test data. Each BC used the target 
domain’s corpus as positive examples and the other six domains’ corpora as 
unlabeled examples. For evaluation we labeled the test data as positive or negative. 

We performed experiments with three existing methods and the proposed method. 
 Baseline: we trained the SVM of a domain by using the rest six domain’s 

corpora as negative examples directly. 
 SVM: we trained the one-class SVM (O-SVM) [12] of a domain by using the 

target domain’s corpus as positive examples and no negative examples. 
 PEBL: we trained the SVM of a domain based on the PEBL framework [4]. 
 HCPU: we trained the SVM of a domain based on our hierarchical clustering 

from positive and unlabeled examples (HCPU). In HCPU, we tried three 
different linkage criteria: single linkage clustering (HCPU-SL), complete 
linkage clustering (HCPU-CL), and group average clustering (HCPU-GA). 

We evaluated MDD performance by measuring the precision, recall, and F1 score 
of each domain’s BC. We also computed the macro-average precision, recall, and 
F1 score. 



4.2 Experimental Results 

Table. 2 The precision, recall, and F1 scores of MDD. 

(a) Precision 

 Baseline O-SVM PEBL  HCPU  
SL CL GA 

D1 0.9535 0.7334 0.9286 0.9322 0.9537 0.9514 
D2 0.9370 0.7547 0.9132 0.9189 0.9353 0.9344 
D3 0.8631 0.7188 0.8503 0.8681 0.8629 0.8611 
D4 0.9138 0.7701 0.8824 0.9111 0.9175 0.9122 
D5 0.9085 0.7388 0.8487 0.9031 0.9126 0.9100 
D6 0.8561 0.7866 0.8555 0.9117 0.8539 0.5814 
D7 0.9285 0.7010 0.8701 0.9159 0.9274 0.9274 

Avg. 0.9086 0.7433 0.8784 0.9087 0.9090 0.8683 

(b) Recall 

 Baseline O-SVM PEBL  HCPU  
SL CL GA 

D1 0.5115 0.7430 0.5845 0.6949 0.5140 0.5246 
D2 0.5328 0.7803 0.6528 0.7032 0.4906 0.4924 
D3 0.4267 0.8185 0.6162 0.8419 0.4173 0.4193 
D4 0.3640 0.7756 0.4283 0.8116 0.3573 0.3568 
D5 0.5602 0.7562 0.5639 0.6998 0.5633 0.5583 
D6 0.3412 0.7458 0.5511 0.7071 0.3412 0.3367 
D7 0.4779 0.7724 0.6368 0.6877 0.4859 0.4859 

Avg. 0.4592 0.7703 0.5762 0.7352 0.45288 0.4534 

(c) F1 score 

 Baseline O-SVM PEBL  HCPU  
SL CL GA 

D1 0.6659 0.7381 0.7175 0.7963 0.6680 0.6732 
D2 0.6793 0.7673 0.7614 0.7967 0.6436 0.6449 
D3 0.5710 0.7654 0.7146 0.8548 0.5625 0.5640 
D4 0.5206 0.7728 0.5767 0.8585 0.5144 0.5129 
D5 0.6930 0.7474 0.6776 0.7885 0.6966 0.6920 
D6 0.4879 0.7657 0.6703 0.7965 0.4876 0.4829 
D7 0.6310 0.7350  0.7354  0.7856 0.6377 0.6377 

Avg. 0.6070 0.7560 0.6933 0.8110 0.6015 0.6011 

The proposed method HCPU-SL resulted in the highest gain in F1 scores from 
Baseline (Table 2): The macro-average F1 score increased from 0.6070 (Baseline) 
to 0.8110 (HCPU-SL), because HCPU increased macro-average recall from 0.4592 
to 0.7352 without decreasing macro-average precision. In contrast, HCPU-CL and 
HCPU-GA had no significant change compared to Baseline. Both OC-SVM and 
PEBL increased F1 scores by increasing recall but they decreased precision. 



5 Conclusion 

 
Fig. 3 Summary of MDD experiments 

We improved a method of hierarchical clustering from positive and unlabeled 
examples to solve the MDD task. In the experimental results, the proposed method 
had higher F1 score than the existing methods (Fig. 3). The proposed method 
reduced the number of false-negative errors and therefore achieved high recall 
compared to the baseline (Fig. 3). This is because the final BC was trained 
iteratively using identified reliable negative examples. We also verified that single 
linkage clustering is the most accurate linkage criterion for the MDD task. This is 
because the other linkage criteria identified incorrectly most unlabeled examples as 
negative examples. 

We plan to perform research on out-of-domain (OOD) detection. MDSDS should 
detect OOD utterances and reject them. The problem is that detecting OOD without 
using actual OOD data for training is a difficult task [13]. However, we expect OOD 
detection problem can be solved by applying the proposed method into large-scale 
unlabeled examples such as conversational logs. 
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